volumes.c 62.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/*
 * Copyright (C) 2007 Oracle.  All rights reserved.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public
 * License v2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with this program; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 021110-1307, USA.
 */
#include <linux/sched.h>
#include <linux/bio.h>
20
#include <linux/buffer_head.h>
21
#include <linux/blkdev.h>
22
#include <linux/random.h>
23
#include <asm/div64.h>
24 25 26 27 28 29
#include "ctree.h"
#include "extent_map.h"
#include "disk-io.h"
#include "transaction.h"
#include "print-tree.h"
#include "volumes.h"
30
#include "async-thread.h"
31

32 33 34 35 36 37 38
struct map_lookup {
	u64 type;
	int io_align;
	int io_width;
	int stripe_len;
	int sector_size;
	int num_stripes;
C
Chris Mason 已提交
39
	int sub_stripes;
40
	struct btrfs_bio_stripe stripes[];
41 42 43
};

#define map_lookup_size(n) (sizeof(struct map_lookup) + \
44
			    (sizeof(struct btrfs_bio_stripe) * (n)))
45

46 47 48
static DEFINE_MUTEX(uuid_mutex);
static LIST_HEAD(fs_uuids);

49 50 51 52 53 54 55 56 57 58
void btrfs_lock_volumes(void)
{
	mutex_lock(&uuid_mutex);
}

void btrfs_unlock_volumes(void)
{
	mutex_unlock(&uuid_mutex);
}

59 60 61 62 63 64 65 66 67
static void lock_chunks(struct btrfs_root *root)
{
	mutex_lock(&root->fs_info->alloc_mutex);
	mutex_lock(&root->fs_info->chunk_mutex);
}

static void unlock_chunks(struct btrfs_root *root)
{
	mutex_unlock(&root->fs_info->chunk_mutex);
J
Josef Bacik 已提交
68
	mutex_unlock(&root->fs_info->alloc_mutex);
69 70
}

71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
int btrfs_cleanup_fs_uuids(void)
{
	struct btrfs_fs_devices *fs_devices;
	struct list_head *uuid_cur;
	struct list_head *devices_cur;
	struct btrfs_device *dev;

	list_for_each(uuid_cur, &fs_uuids) {
		fs_devices = list_entry(uuid_cur, struct btrfs_fs_devices,
					list);
		while(!list_empty(&fs_devices->devices)) {
			devices_cur = fs_devices->devices.next;
			dev = list_entry(devices_cur, struct btrfs_device,
					 dev_list);
			if (dev->bdev) {
				close_bdev_excl(dev->bdev);
87
				fs_devices->open_devices--;
88 89
			}
			list_del(&dev->dev_list);
90
			kfree(dev->name);
91 92 93 94 95 96
			kfree(dev);
		}
	}
	return 0;
}

97 98
static noinline struct btrfs_device *__find_device(struct list_head *head,
						   u64 devid, u8 *uuid)
99 100 101 102 103 104
{
	struct btrfs_device *dev;
	struct list_head *cur;

	list_for_each(cur, head) {
		dev = list_entry(cur, struct btrfs_device, dev_list);
105
		if (dev->devid == devid &&
106
		    (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
107
			return dev;
108
		}
109 110 111 112
	}
	return NULL;
}

113
static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
114 115 116 117 118 119 120 121 122 123 124 125
{
	struct list_head *cur;
	struct btrfs_fs_devices *fs_devices;

	list_for_each(cur, &fs_uuids) {
		fs_devices = list_entry(cur, struct btrfs_fs_devices, list);
		if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
			return fs_devices;
	}
	return NULL;
}

126 127 128 129 130 131 132 133 134 135 136
/*
 * we try to collect pending bios for a device so we don't get a large
 * number of procs sending bios down to the same device.  This greatly
 * improves the schedulers ability to collect and merge the bios.
 *
 * But, it also turns into a long list of bios to process and that is sure
 * to eventually make the worker thread block.  The solution here is to
 * make some progress and then put this work struct back at the end of
 * the list if the block device is congested.  This way, multiple devices
 * can make progress from a single worker thread.
 */
137
static int noinline run_scheduled_bios(struct btrfs_device *device)
138 139 140
{
	struct bio *pending;
	struct backing_dev_info *bdi;
141
	struct btrfs_fs_info *fs_info;
142 143 144 145
	struct bio *tail;
	struct bio *cur;
	int again = 0;
	unsigned long num_run = 0;
146
	unsigned long limit;
147 148

	bdi = device->bdev->bd_inode->i_mapping->backing_dev_info;
149 150 151 152
	fs_info = device->dev_root->fs_info;
	limit = btrfs_async_submit_limit(fs_info);
	limit = limit * 2 / 3;

153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
loop:
	spin_lock(&device->io_lock);

	/* take all the bios off the list at once and process them
	 * later on (without the lock held).  But, remember the
	 * tail and other pointers so the bios can be properly reinserted
	 * into the list if we hit congestion
	 */
	pending = device->pending_bios;
	tail = device->pending_bio_tail;
	WARN_ON(pending && !tail);
	device->pending_bios = NULL;
	device->pending_bio_tail = NULL;

	/*
	 * if pending was null this time around, no bios need processing
	 * at all and we can stop.  Otherwise it'll loop back up again
	 * and do an additional check so no bios are missed.
	 *
	 * device->running_pending is used to synchronize with the
	 * schedule_bio code.
	 */
	if (pending) {
		again = 1;
		device->running_pending = 1;
	} else {
		again = 0;
		device->running_pending = 0;
	}
	spin_unlock(&device->io_lock);

	while(pending) {
		cur = pending;
		pending = pending->bi_next;
		cur->bi_next = NULL;
188 189 190 191 192
		atomic_dec(&fs_info->nr_async_bios);

		if (atomic_read(&fs_info->nr_async_bios) < limit &&
		    waitqueue_active(&fs_info->async_submit_wait))
			wake_up(&fs_info->async_submit_wait);
193 194 195

		BUG_ON(atomic_read(&cur->bi_cnt) == 0);
		bio_get(cur);
196
		submit_bio(cur->bi_rw, cur);
197
		bio_put(cur);
198 199 200 201 202 203 204
		num_run++;

		/*
		 * we made progress, there is more work to do and the bdi
		 * is now congested.  Back off and let other work structs
		 * run instead
		 */
205
		if (pending && bdi_write_congested(bdi)) {
206 207 208
			struct bio *old_head;

			spin_lock(&device->io_lock);
209

210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
			old_head = device->pending_bios;
			device->pending_bios = pending;
			if (device->pending_bio_tail)
				tail->bi_next = old_head;
			else
				device->pending_bio_tail = tail;

			spin_unlock(&device->io_lock);
			btrfs_requeue_work(&device->work);
			goto done;
		}
	}
	if (again)
		goto loop;
done:
	return 0;
}

void pending_bios_fn(struct btrfs_work *work)
{
	struct btrfs_device *device;

	device = container_of(work, struct btrfs_device, work);
	run_scheduled_bios(device);
}

236
static noinline int device_list_add(const char *path,
237 238 239 240 241 242 243 244 245
			   struct btrfs_super_block *disk_super,
			   u64 devid, struct btrfs_fs_devices **fs_devices_ret)
{
	struct btrfs_device *device;
	struct btrfs_fs_devices *fs_devices;
	u64 found_transid = btrfs_super_generation(disk_super);

	fs_devices = find_fsid(disk_super->fsid);
	if (!fs_devices) {
246
		fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
247 248 249
		if (!fs_devices)
			return -ENOMEM;
		INIT_LIST_HEAD(&fs_devices->devices);
250
		INIT_LIST_HEAD(&fs_devices->alloc_list);
251 252 253 254 255 256
		list_add(&fs_devices->list, &fs_uuids);
		memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
		fs_devices->latest_devid = devid;
		fs_devices->latest_trans = found_transid;
		device = NULL;
	} else {
257 258
		device = __find_device(&fs_devices->devices, devid,
				       disk_super->dev_item.uuid);
259 260 261 262 263 264 265 266
	}
	if (!device) {
		device = kzalloc(sizeof(*device), GFP_NOFS);
		if (!device) {
			/* we can safely leave the fs_devices entry around */
			return -ENOMEM;
		}
		device->devid = devid;
267
		device->work.func = pending_bios_fn;
268 269
		memcpy(device->uuid, disk_super->dev_item.uuid,
		       BTRFS_UUID_SIZE);
270
		device->barriers = 1;
271
		spin_lock_init(&device->io_lock);
272 273 274 275 276 277
		device->name = kstrdup(path, GFP_NOFS);
		if (!device->name) {
			kfree(device);
			return -ENOMEM;
		}
		list_add(&device->dev_list, &fs_devices->devices);
278
		list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
279 280 281 282 283 284 285 286 287 288 289
		fs_devices->num_devices++;
	}

	if (found_transid > fs_devices->latest_trans) {
		fs_devices->latest_devid = devid;
		fs_devices->latest_trans = found_transid;
	}
	*fs_devices_ret = fs_devices;
	return 0;
}

290 291 292 293 294 295 296 297 298 299 300
int btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices)
{
	struct list_head *head = &fs_devices->devices;
	struct list_head *cur;
	struct btrfs_device *device;

	mutex_lock(&uuid_mutex);
again:
	list_for_each(cur, head) {
		device = list_entry(cur, struct btrfs_device, dev_list);
		if (!device->in_fs_metadata) {
301
			struct block_device *bdev;
302 303 304
			list_del(&device->dev_list);
			list_del(&device->dev_alloc_list);
			fs_devices->num_devices--;
305 306 307 308 309 310 311
			if (device->bdev) {
				bdev = device->bdev;
				fs_devices->open_devices--;
				mutex_unlock(&uuid_mutex);
				close_bdev_excl(bdev);
				mutex_lock(&uuid_mutex);
			}
312 313 314 315 316 317 318 319
			kfree(device->name);
			kfree(device);
			goto again;
		}
	}
	mutex_unlock(&uuid_mutex);
	return 0;
}
320

321 322 323 324 325 326 327 328 329 330 331
int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
{
	struct list_head *head = &fs_devices->devices;
	struct list_head *cur;
	struct btrfs_device *device;

	mutex_lock(&uuid_mutex);
	list_for_each(cur, head) {
		device = list_entry(cur, struct btrfs_device, dev_list);
		if (device->bdev) {
			close_bdev_excl(device->bdev);
332
			fs_devices->open_devices--;
333 334
		}
		device->bdev = NULL;
335
		device->in_fs_metadata = 0;
336
	}
337
	fs_devices->mounted = 0;
338 339 340 341 342 343 344 345 346 347 348
	mutex_unlock(&uuid_mutex);
	return 0;
}

int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
		       int flags, void *holder)
{
	struct block_device *bdev;
	struct list_head *head = &fs_devices->devices;
	struct list_head *cur;
	struct btrfs_device *device;
349 350 351 352 353 354 355 356
	struct block_device *latest_bdev = NULL;
	struct buffer_head *bh;
	struct btrfs_super_block *disk_super;
	u64 latest_devid = 0;
	u64 latest_transid = 0;
	u64 transid;
	u64 devid;
	int ret = 0;
357 358

	mutex_lock(&uuid_mutex);
359 360 361
	if (fs_devices->mounted)
		goto out;

362 363
	list_for_each(cur, head) {
		device = list_entry(cur, struct btrfs_device, dev_list);
364 365 366
		if (device->bdev)
			continue;

367 368 369
		if (!device->name)
			continue;

370
		bdev = open_bdev_excl(device->name, flags, holder);
371

372 373
		if (IS_ERR(bdev)) {
			printk("open %s failed\n", device->name);
374
			goto error;
375
		}
376
		set_blocksize(bdev, 4096);
377 378 379 380 381 382 383 384 385 386 387 388 389 390 391

		bh = __bread(bdev, BTRFS_SUPER_INFO_OFFSET / 4096, 4096);
		if (!bh)
			goto error_close;

		disk_super = (struct btrfs_super_block *)bh->b_data;
		if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
		    sizeof(disk_super->magic)))
			goto error_brelse;

		devid = le64_to_cpu(disk_super->dev_item.devid);
		if (devid != device->devid)
			goto error_brelse;

		transid = btrfs_super_generation(disk_super);
392
		if (!latest_transid || transid > latest_transid) {
393 394 395 396 397
			latest_devid = devid;
			latest_transid = transid;
			latest_bdev = bdev;
		}

398
		device->bdev = bdev;
399
		device->in_fs_metadata = 0;
400 401
		fs_devices->open_devices++;
		continue;
402

403 404 405 406 407 408
error_brelse:
		brelse(bh);
error_close:
		close_bdev_excl(bdev);
error:
		continue;
409
	}
410 411 412 413 414 415 416 417 418
	if (fs_devices->open_devices == 0) {
		ret = -EIO;
		goto out;
	}
	fs_devices->mounted = 1;
	fs_devices->latest_bdev = latest_bdev;
	fs_devices->latest_devid = latest_devid;
	fs_devices->latest_trans = latest_transid;
out:
419 420 421 422 423 424 425 426 427 428 429 430
	mutex_unlock(&uuid_mutex);
	return ret;
}

int btrfs_scan_one_device(const char *path, int flags, void *holder,
			  struct btrfs_fs_devices **fs_devices_ret)
{
	struct btrfs_super_block *disk_super;
	struct block_device *bdev;
	struct buffer_head *bh;
	int ret;
	u64 devid;
431
	u64 transid;
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452

	mutex_lock(&uuid_mutex);

	bdev = open_bdev_excl(path, flags, holder);

	if (IS_ERR(bdev)) {
		ret = PTR_ERR(bdev);
		goto error;
	}

	ret = set_blocksize(bdev, 4096);
	if (ret)
		goto error_close;
	bh = __bread(bdev, BTRFS_SUPER_INFO_OFFSET / 4096, 4096);
	if (!bh) {
		ret = -EIO;
		goto error_close;
	}
	disk_super = (struct btrfs_super_block *)bh->b_data;
	if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
	    sizeof(disk_super->magic))) {
453
		ret = -EINVAL;
454 455 456
		goto error_brelse;
	}
	devid = le64_to_cpu(disk_super->dev_item.devid);
457
	transid = btrfs_super_generation(disk_super);
458 459 460 461 462 463 464 465 466
	if (disk_super->label[0])
		printk("device label %s ", disk_super->label);
	else {
		/* FIXME, make a readl uuid parser */
		printk("device fsid %llx-%llx ",
		       *(unsigned long long *)disk_super->fsid,
		       *(unsigned long long *)(disk_super->fsid + 8));
	}
	printk("devid %Lu transid %Lu %s\n", devid, transid, path);
467 468 469 470 471 472 473 474 475 476
	ret = device_list_add(path, disk_super, devid, fs_devices_ret);

error_brelse:
	brelse(bh);
error_close:
	close_bdev_excl(bdev);
error:
	mutex_unlock(&uuid_mutex);
	return ret;
}
477 478 479 480 481 482

/*
 * this uses a pretty simple search, the expectation is that it is
 * called very infrequently and that a given device has a small number
 * of extents
 */
483 484 485 486
static noinline int find_free_dev_extent(struct btrfs_trans_handle *trans,
					 struct btrfs_device *device,
					 struct btrfs_path *path,
					 u64 num_bytes, u64 *start)
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
{
	struct btrfs_key key;
	struct btrfs_root *root = device->dev_root;
	struct btrfs_dev_extent *dev_extent = NULL;
	u64 hole_size = 0;
	u64 last_byte = 0;
	u64 search_start = 0;
	u64 search_end = device->total_bytes;
	int ret;
	int slot = 0;
	int start_found;
	struct extent_buffer *l;

	start_found = 0;
	path->reada = 2;

	/* FIXME use last free of some kind */

505 506 507 508
	/* we don't want to overwrite the superblock on the drive,
	 * so we make sure to start at an offset of at least 1MB
	 */
	search_start = max((u64)1024 * 1024, search_start);
509 510 511 512

	if (root->fs_info->alloc_start + num_bytes <= device->total_bytes)
		search_start = max(root->fs_info->alloc_start, search_start);

513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
	key.objectid = device->devid;
	key.offset = search_start;
	key.type = BTRFS_DEV_EXTENT_KEY;
	ret = btrfs_search_slot(trans, root, &key, path, 0, 0);
	if (ret < 0)
		goto error;
	ret = btrfs_previous_item(root, path, 0, key.type);
	if (ret < 0)
		goto error;
	l = path->nodes[0];
	btrfs_item_key_to_cpu(l, &key, path->slots[0]);
	while (1) {
		l = path->nodes[0];
		slot = path->slots[0];
		if (slot >= btrfs_header_nritems(l)) {
			ret = btrfs_next_leaf(root, path);
			if (ret == 0)
				continue;
			if (ret < 0)
				goto error;
no_more_items:
			if (!start_found) {
				if (search_start >= search_end) {
					ret = -ENOSPC;
					goto error;
				}
				*start = search_start;
				start_found = 1;
				goto check_pending;
			}
			*start = last_byte > search_start ?
				last_byte : search_start;
			if (search_end <= *start) {
				ret = -ENOSPC;
				goto error;
			}
			goto check_pending;
		}
		btrfs_item_key_to_cpu(l, &key, slot);

		if (key.objectid < device->devid)
			goto next;

		if (key.objectid > device->devid)
			goto no_more_items;

		if (key.offset >= search_start && key.offset > last_byte &&
		    start_found) {
			if (last_byte < search_start)
				last_byte = search_start;
			hole_size = key.offset - last_byte;
			if (key.offset > last_byte &&
			    hole_size >= num_bytes) {
				*start = last_byte;
				goto check_pending;
			}
		}
		if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY) {
			goto next;
		}

		start_found = 1;
		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
		last_byte = key.offset + btrfs_dev_extent_length(l, dev_extent);
next:
		path->slots[0]++;
		cond_resched();
	}
check_pending:
	/* we have to make sure we didn't find an extent that has already
	 * been allocated by the map tree or the original allocation
	 */
	btrfs_release_path(root, path);
	BUG_ON(*start < search_start);

588
	if (*start + num_bytes > search_end) {
589 590 591 592 593 594 595 596 597 598 599
		ret = -ENOSPC;
		goto error;
	}
	/* check for pending inserts here */
	return 0;

error:
	btrfs_release_path(root, path);
	return ret;
}

600 601 602 603 604 605 606 607
int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
			  struct btrfs_device *device,
			  u64 start)
{
	int ret;
	struct btrfs_path *path;
	struct btrfs_root *root = device->dev_root;
	struct btrfs_key key;
608 609 610
	struct btrfs_key found_key;
	struct extent_buffer *leaf = NULL;
	struct btrfs_dev_extent *extent = NULL;
611 612 613 614 615 616 617 618 619 620

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	key.objectid = device->devid;
	key.offset = start;
	key.type = BTRFS_DEV_EXTENT_KEY;

	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
	if (ret > 0) {
		ret = btrfs_previous_item(root, path, key.objectid,
					  BTRFS_DEV_EXTENT_KEY);
		BUG_ON(ret);
		leaf = path->nodes[0];
		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
		extent = btrfs_item_ptr(leaf, path->slots[0],
					struct btrfs_dev_extent);
		BUG_ON(found_key.offset > start || found_key.offset +
		       btrfs_dev_extent_length(leaf, extent) < start);
		ret = 0;
	} else if (ret == 0) {
		leaf = path->nodes[0];
		extent = btrfs_item_ptr(leaf, path->slots[0],
					struct btrfs_dev_extent);
	}
637 638
	BUG_ON(ret);

639 640
	if (device->bytes_used > 0)
		device->bytes_used -= btrfs_dev_extent_length(leaf, extent);
641 642 643 644 645 646 647
	ret = btrfs_del_item(trans, root, path);
	BUG_ON(ret);

	btrfs_free_path(path);
	return ret;
}

648
int noinline btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
649
			   struct btrfs_device *device,
650 651 652
			   u64 chunk_tree, u64 chunk_objectid,
			   u64 chunk_offset,
			   u64 num_bytes, u64 *start)
653 654 655 656 657 658 659 660
{
	int ret;
	struct btrfs_path *path;
	struct btrfs_root *root = device->dev_root;
	struct btrfs_dev_extent *extent;
	struct extent_buffer *leaf;
	struct btrfs_key key;

661
	WARN_ON(!device->in_fs_metadata);
662 663 664 665 666
	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	ret = find_free_dev_extent(trans, device, path, num_bytes, start);
667
	if (ret) {
668
		goto err;
669
	}
670 671 672 673 674 675 676 677 678 679 680

	key.objectid = device->devid;
	key.offset = *start;
	key.type = BTRFS_DEV_EXTENT_KEY;
	ret = btrfs_insert_empty_item(trans, root, path, &key,
				      sizeof(*extent));
	BUG_ON(ret);

	leaf = path->nodes[0];
	extent = btrfs_item_ptr(leaf, path->slots[0],
				struct btrfs_dev_extent);
681 682 683 684 685 686 687 688
	btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
	btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
	btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);

	write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
		    (unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent),
		    BTRFS_UUID_SIZE);

689 690 691 692 693 694 695
	btrfs_set_dev_extent_length(leaf, extent, num_bytes);
	btrfs_mark_buffer_dirty(leaf);
err:
	btrfs_free_path(path);
	return ret;
}

696 697
static noinline int find_next_chunk(struct btrfs_root *root,
				    u64 objectid, u64 *offset)
698 699 700 701
{
	struct btrfs_path *path;
	int ret;
	struct btrfs_key key;
702
	struct btrfs_chunk *chunk;
703 704 705 706 707
	struct btrfs_key found_key;

	path = btrfs_alloc_path();
	BUG_ON(!path);

708
	key.objectid = objectid;
709 710 711 712 713 714 715 716 717 718 719
	key.offset = (u64)-1;
	key.type = BTRFS_CHUNK_ITEM_KEY;

	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0)
		goto error;

	BUG_ON(ret == 0);

	ret = btrfs_previous_item(root, path, 0, BTRFS_CHUNK_ITEM_KEY);
	if (ret) {
720
		*offset = 0;
721 722 723
	} else {
		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
				      path->slots[0]);
724 725 726 727 728 729 730 731
		if (found_key.objectid != objectid)
			*offset = 0;
		else {
			chunk = btrfs_item_ptr(path->nodes[0], path->slots[0],
					       struct btrfs_chunk);
			*offset = found_key.offset +
				btrfs_chunk_length(path->nodes[0], chunk);
		}
732 733 734 735 736 737 738
	}
	ret = 0;
error:
	btrfs_free_path(path);
	return ret;
}

739 740
static noinline int find_next_devid(struct btrfs_root *root,
				    struct btrfs_path *path, u64 *objectid)
741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784
{
	int ret;
	struct btrfs_key key;
	struct btrfs_key found_key;

	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
	key.type = BTRFS_DEV_ITEM_KEY;
	key.offset = (u64)-1;

	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0)
		goto error;

	BUG_ON(ret == 0);

	ret = btrfs_previous_item(root, path, BTRFS_DEV_ITEMS_OBJECTID,
				  BTRFS_DEV_ITEM_KEY);
	if (ret) {
		*objectid = 1;
	} else {
		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
				      path->slots[0]);
		*objectid = found_key.offset + 1;
	}
	ret = 0;
error:
	btrfs_release_path(root, path);
	return ret;
}

/*
 * the device information is stored in the chunk root
 * the btrfs_device struct should be fully filled in
 */
int btrfs_add_device(struct btrfs_trans_handle *trans,
		     struct btrfs_root *root,
		     struct btrfs_device *device)
{
	int ret;
	struct btrfs_path *path;
	struct btrfs_dev_item *dev_item;
	struct extent_buffer *leaf;
	struct btrfs_key key;
	unsigned long ptr;
785
	u64 free_devid = 0;
786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801

	root = root->fs_info->chunk_root;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	ret = find_next_devid(root, path, &free_devid);
	if (ret)
		goto out;

	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
	key.type = BTRFS_DEV_ITEM_KEY;
	key.offset = free_devid;

	ret = btrfs_insert_empty_item(trans, root, path, &key,
802
				      sizeof(*dev_item));
803 804 805 806 807 808
	if (ret)
		goto out;

	leaf = path->nodes[0];
	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);

809
	device->devid = free_devid;
810 811 812 813 814 815 816
	btrfs_set_device_id(leaf, dev_item, device->devid);
	btrfs_set_device_type(leaf, dev_item, device->type);
	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
	btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
	btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
817 818 819
	btrfs_set_device_group(leaf, dev_item, 0);
	btrfs_set_device_seek_speed(leaf, dev_item, 0);
	btrfs_set_device_bandwidth(leaf, dev_item, 0);
820 821

	ptr = (unsigned long)btrfs_device_uuid(dev_item);
822
	write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
823 824 825 826 827 828 829
	btrfs_mark_buffer_dirty(leaf);
	ret = 0;

out:
	btrfs_free_path(path);
	return ret;
}
830

831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852
static int btrfs_rm_dev_item(struct btrfs_root *root,
			     struct btrfs_device *device)
{
	int ret;
	struct btrfs_path *path;
	struct block_device *bdev = device->bdev;
	struct btrfs_device *next_dev;
	struct btrfs_key key;
	u64 total_bytes;
	struct btrfs_fs_devices *fs_devices;
	struct btrfs_trans_handle *trans;

	root = root->fs_info->chunk_root;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	trans = btrfs_start_transaction(root, 1);
	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
	key.type = BTRFS_DEV_ITEM_KEY;
	key.offset = device->devid;
853
	lock_chunks(root);
854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887

	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
	if (ret < 0)
		goto out;

	if (ret > 0) {
		ret = -ENOENT;
		goto out;
	}

	ret = btrfs_del_item(trans, root, path);
	if (ret)
		goto out;

	/*
	 * at this point, the device is zero sized.  We want to
	 * remove it from the devices list and zero out the old super
	 */
	list_del_init(&device->dev_list);
	list_del_init(&device->dev_alloc_list);
	fs_devices = root->fs_info->fs_devices;

	next_dev = list_entry(fs_devices->devices.next, struct btrfs_device,
			      dev_list);
	if (bdev == root->fs_info->sb->s_bdev)
		root->fs_info->sb->s_bdev = next_dev->bdev;
	if (bdev == fs_devices->latest_bdev)
		fs_devices->latest_bdev = next_dev->bdev;

	total_bytes = btrfs_super_num_devices(&root->fs_info->super_copy);
	btrfs_set_super_num_devices(&root->fs_info->super_copy,
				    total_bytes - 1);
out:
	btrfs_free_path(path);
888
	unlock_chunks(root);
889 890 891 892 893 894 895 896
	btrfs_commit_transaction(trans, root);
	return ret;
}

int btrfs_rm_device(struct btrfs_root *root, char *device_path)
{
	struct btrfs_device *device;
	struct block_device *bdev;
897
	struct buffer_head *bh = NULL;
898 899 900 901 902 903
	struct btrfs_super_block *disk_super;
	u64 all_avail;
	u64 devid;
	int ret = 0;

	mutex_lock(&uuid_mutex);
904
	mutex_lock(&root->fs_info->volume_mutex);
905 906 907 908 909 910

	all_avail = root->fs_info->avail_data_alloc_bits |
		root->fs_info->avail_system_alloc_bits |
		root->fs_info->avail_metadata_alloc_bits;

	if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) &&
911
	    btrfs_super_num_devices(&root->fs_info->super_copy) <= 4) {
912 913 914 915 916 917
		printk("btrfs: unable to go below four devices on raid10\n");
		ret = -EINVAL;
		goto out;
	}

	if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) &&
918
	    btrfs_super_num_devices(&root->fs_info->super_copy) <= 2) {
919 920 921 922 923
		printk("btrfs: unable to go below two devices on raid1\n");
		ret = -EINVAL;
		goto out;
	}

924 925 926 927
	if (strcmp(device_path, "missing") == 0) {
		struct list_head *cur;
		struct list_head *devices;
		struct btrfs_device *tmp;
928

929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952
		device = NULL;
		devices = &root->fs_info->fs_devices->devices;
		list_for_each(cur, devices) {
			tmp = list_entry(cur, struct btrfs_device, dev_list);
			if (tmp->in_fs_metadata && !tmp->bdev) {
				device = tmp;
				break;
			}
		}
		bdev = NULL;
		bh = NULL;
		disk_super = NULL;
		if (!device) {
			printk("btrfs: no missing devices found to remove\n");
			goto out;
		}

	} else {
		bdev = open_bdev_excl(device_path, 0,
				      root->fs_info->bdev_holder);
		if (IS_ERR(bdev)) {
			ret = PTR_ERR(bdev);
			goto out;
		}
953

954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977
		bh = __bread(bdev, BTRFS_SUPER_INFO_OFFSET / 4096, 4096);
		if (!bh) {
			ret = -EIO;
			goto error_close;
		}
		disk_super = (struct btrfs_super_block *)bh->b_data;
		if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
		    sizeof(disk_super->magic))) {
			ret = -ENOENT;
			goto error_brelse;
		}
		if (memcmp(disk_super->fsid, root->fs_info->fsid,
			   BTRFS_FSID_SIZE)) {
			ret = -ENOENT;
			goto error_brelse;
		}
		devid = le64_to_cpu(disk_super->dev_item.devid);
		device = btrfs_find_device(root, devid, NULL);
		if (!device) {
			ret = -ENOENT;
			goto error_brelse;
		}

	}
978
	root->fs_info->fs_devices->num_devices--;
C
Chris Mason 已提交
979
	root->fs_info->fs_devices->open_devices--;
980 981 982 983 984 985 986 987 988 989

	ret = btrfs_shrink_device(device, 0);
	if (ret)
		goto error_brelse;


	ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
	if (ret)
		goto error_brelse;

990 991 992 993 994 995 996
	if (bh) {
		/* make sure this device isn't detected as part of
		 * the FS anymore
		 */
		memset(&disk_super->magic, 0, sizeof(disk_super->magic));
		set_buffer_dirty(bh);
		sync_dirty_buffer(bh);
997

998 999
		brelse(bh);
	}
1000

1001 1002 1003 1004 1005 1006 1007 1008
	if (device->bdev) {
		/* one close for the device struct or super_block */
		close_bdev_excl(device->bdev);
	}
	if (bdev) {
		/* one close for us */
		close_bdev_excl(bdev);
	}
1009 1010 1011 1012 1013 1014 1015 1016
	kfree(device->name);
	kfree(device);
	ret = 0;
	goto out;

error_brelse:
	brelse(bh);
error_close:
1017 1018
	if (bdev)
		close_bdev_excl(bdev);
1019
out:
1020
	mutex_unlock(&root->fs_info->volume_mutex);
1021 1022 1023 1024
	mutex_unlock(&uuid_mutex);
	return ret;
}

1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
{
	struct btrfs_trans_handle *trans;
	struct btrfs_device *device;
	struct block_device *bdev;
	struct list_head *cur;
	struct list_head *devices;
	u64 total_bytes;
	int ret = 0;


	bdev = open_bdev_excl(device_path, 0, root->fs_info->bdev_holder);
	if (!bdev) {
		return -EIO;
	}
1040

1041
	mutex_lock(&root->fs_info->volume_mutex);
1042

1043
	trans = btrfs_start_transaction(root, 1);
1044
	lock_chunks(root);
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
	devices = &root->fs_info->fs_devices->devices;
	list_for_each(cur, devices) {
		device = list_entry(cur, struct btrfs_device, dev_list);
		if (device->bdev == bdev) {
			ret = -EEXIST;
			goto out;
		}
	}

	device = kzalloc(sizeof(*device), GFP_NOFS);
	if (!device) {
		/* we can safely leave the fs_devices entry around */
		ret = -ENOMEM;
		goto out_close_bdev;
	}

	device->barriers = 1;
1062
	device->work.func = pending_bios_fn;
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
	generate_random_uuid(device->uuid);
	spin_lock_init(&device->io_lock);
	device->name = kstrdup(device_path, GFP_NOFS);
	if (!device->name) {
		kfree(device);
		goto out_close_bdev;
	}
	device->io_width = root->sectorsize;
	device->io_align = root->sectorsize;
	device->sector_size = root->sectorsize;
	device->total_bytes = i_size_read(bdev->bd_inode);
	device->dev_root = root->fs_info->dev_root;
	device->bdev = bdev;
1076
	device->in_fs_metadata = 1;
1077 1078 1079 1080 1081

	ret = btrfs_add_device(trans, root, device);
	if (ret)
		goto out_close_bdev;

1082 1083
	set_blocksize(device->bdev, 4096);

1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
	total_bytes = btrfs_super_total_bytes(&root->fs_info->super_copy);
	btrfs_set_super_total_bytes(&root->fs_info->super_copy,
				    total_bytes + device->total_bytes);

	total_bytes = btrfs_super_num_devices(&root->fs_info->super_copy);
	btrfs_set_super_num_devices(&root->fs_info->super_copy,
				    total_bytes + 1);

	list_add(&device->dev_list, &root->fs_info->fs_devices->devices);
	list_add(&device->dev_alloc_list,
		 &root->fs_info->fs_devices->alloc_list);
	root->fs_info->fs_devices->num_devices++;
1096
	root->fs_info->fs_devices->open_devices++;
1097
out:
1098
	unlock_chunks(root);
1099
	btrfs_end_transaction(trans, root);
1100
	mutex_unlock(&root->fs_info->volume_mutex);
1101

1102 1103 1104 1105 1106 1107 1108
	return ret;

out_close_bdev:
	close_bdev_excl(bdev);
	goto out;
}

1109 1110
int noinline btrfs_update_device(struct btrfs_trans_handle *trans,
				 struct btrfs_device *device)
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
{
	int ret;
	struct btrfs_path *path;
	struct btrfs_root *root;
	struct btrfs_dev_item *dev_item;
	struct extent_buffer *leaf;
	struct btrfs_key key;

	root = device->dev_root->fs_info->chunk_root;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
	key.type = BTRFS_DEV_ITEM_KEY;
	key.offset = device->devid;

	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
	if (ret < 0)
		goto out;

	if (ret > 0) {
		ret = -ENOENT;
		goto out;
	}

	leaf = path->nodes[0];
	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);

	btrfs_set_device_id(leaf, dev_item, device->devid);
	btrfs_set_device_type(leaf, dev_item, device->type);
	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
	btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
	btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
	btrfs_mark_buffer_dirty(leaf);

out:
	btrfs_free_path(path);
	return ret;
}

1155
static int __btrfs_grow_device(struct btrfs_trans_handle *trans,
1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
		      struct btrfs_device *device, u64 new_size)
{
	struct btrfs_super_block *super_copy =
		&device->dev_root->fs_info->super_copy;
	u64 old_total = btrfs_super_total_bytes(super_copy);
	u64 diff = new_size - device->total_bytes;

	btrfs_set_super_total_bytes(super_copy, old_total + diff);
	return btrfs_update_device(trans, device);
}

1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
int btrfs_grow_device(struct btrfs_trans_handle *trans,
		      struct btrfs_device *device, u64 new_size)
{
	int ret;
	lock_chunks(device->dev_root);
	ret = __btrfs_grow_device(trans, device, new_size);
	unlock_chunks(device->dev_root);
	return ret;
}

1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
			    struct btrfs_root *root,
			    u64 chunk_tree, u64 chunk_objectid,
			    u64 chunk_offset)
{
	int ret;
	struct btrfs_path *path;
	struct btrfs_key key;

	root = root->fs_info->chunk_root;
	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	key.objectid = chunk_objectid;
	key.offset = chunk_offset;
	key.type = BTRFS_CHUNK_ITEM_KEY;

	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
	BUG_ON(ret);

	ret = btrfs_del_item(trans, root, path);
	BUG_ON(ret);

	btrfs_free_path(path);
	return 0;
}

int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
			chunk_offset)
{
	struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
	struct btrfs_disk_key *disk_key;
	struct btrfs_chunk *chunk;
	u8 *ptr;
	int ret = 0;
	u32 num_stripes;
	u32 array_size;
	u32 len = 0;
	u32 cur;
	struct btrfs_key key;

	array_size = btrfs_super_sys_array_size(super_copy);

	ptr = super_copy->sys_chunk_array;
	cur = 0;

	while (cur < array_size) {
		disk_key = (struct btrfs_disk_key *)ptr;
		btrfs_disk_key_to_cpu(&key, disk_key);

		len = sizeof(*disk_key);

		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
			chunk = (struct btrfs_chunk *)(ptr + len);
			num_stripes = btrfs_stack_chunk_num_stripes(chunk);
			len += btrfs_chunk_item_size(num_stripes);
		} else {
			ret = -EIO;
			break;
		}
		if (key.objectid == chunk_objectid &&
		    key.offset == chunk_offset) {
			memmove(ptr, ptr + len, array_size - (cur + len));
			array_size -= len;
			btrfs_set_super_sys_array_size(super_copy, array_size);
		} else {
			ptr += len;
			cur += len;
		}
	}
	return ret;
}


int btrfs_relocate_chunk(struct btrfs_root *root,
			 u64 chunk_tree, u64 chunk_objectid,
			 u64 chunk_offset)
{
	struct extent_map_tree *em_tree;
	struct btrfs_root *extent_root;
	struct btrfs_trans_handle *trans;
	struct extent_map *em;
	struct map_lookup *map;
	int ret;
	int i;

1264 1265
	printk("btrfs relocating chunk %llu\n",
	       (unsigned long long)chunk_offset);
1266 1267 1268 1269 1270
	root = root->fs_info->chunk_root;
	extent_root = root->fs_info->extent_root;
	em_tree = &root->fs_info->mapping_tree.map_tree;

	/* step one, relocate all the extents inside this chunk */
Z
Zheng Yan 已提交
1271
	ret = btrfs_relocate_block_group(extent_root, chunk_offset);
1272 1273 1274 1275 1276
	BUG_ON(ret);

	trans = btrfs_start_transaction(root, 1);
	BUG_ON(!trans);

1277 1278
	lock_chunks(root);

1279 1280 1281 1282 1283 1284 1285 1286
	/*
	 * step two, delete the device extents and the
	 * chunk tree entries
	 */
	spin_lock(&em_tree->lock);
	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
	spin_unlock(&em_tree->lock);

1287 1288
	BUG_ON(em->start > chunk_offset ||
	       em->start + em->len < chunk_offset);
1289 1290 1291 1292 1293 1294
	map = (struct map_lookup *)em->bdev;

	for (i = 0; i < map->num_stripes; i++) {
		ret = btrfs_free_dev_extent(trans, map->stripes[i].dev,
					    map->stripes[i].physical);
		BUG_ON(ret);
1295

1296 1297 1298 1299
		if (map->stripes[i].dev) {
			ret = btrfs_update_device(trans, map->stripes[i].dev);
			BUG_ON(ret);
		}
1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
	}
	ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid,
			       chunk_offset);

	BUG_ON(ret);

	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
		ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
		BUG_ON(ret);
	}

Z
Zheng Yan 已提交
1311 1312 1313
	ret = btrfs_remove_block_group(trans, extent_root, chunk_offset);
	BUG_ON(ret);

1314 1315
	spin_lock(&em_tree->lock);
	remove_extent_mapping(em_tree, em);
Z
Zheng Yan 已提交
1316 1317
	spin_unlock(&em_tree->lock);

1318 1319 1320 1321 1322 1323 1324 1325
	kfree(map);
	em->bdev = NULL;

	/* once for the tree */
	free_extent_map(em);
	/* once for us */
	free_extent_map(em);

1326
	unlock_chunks(root);
1327 1328 1329 1330
	btrfs_end_transaction(trans, root);
	return 0;
}

1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356
static u64 div_factor(u64 num, int factor)
{
	if (factor == 10)
		return num;
	num *= factor;
	do_div(num, 10);
	return num;
}


int btrfs_balance(struct btrfs_root *dev_root)
{
	int ret;
	struct list_head *cur;
	struct list_head *devices = &dev_root->fs_info->fs_devices->devices;
	struct btrfs_device *device;
	u64 old_size;
	u64 size_to_free;
	struct btrfs_path *path;
	struct btrfs_key key;
	struct btrfs_chunk *chunk;
	struct btrfs_root *chunk_root = dev_root->fs_info->chunk_root;
	struct btrfs_trans_handle *trans;
	struct btrfs_key found_key;


1357
	mutex_lock(&dev_root->fs_info->volume_mutex);
1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402
	dev_root = dev_root->fs_info->dev_root;

	/* step one make some room on all the devices */
	list_for_each(cur, devices) {
		device = list_entry(cur, struct btrfs_device, dev_list);
		old_size = device->total_bytes;
		size_to_free = div_factor(old_size, 1);
		size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
		if (device->total_bytes - device->bytes_used > size_to_free)
			continue;

		ret = btrfs_shrink_device(device, old_size - size_to_free);
		BUG_ON(ret);

		trans = btrfs_start_transaction(dev_root, 1);
		BUG_ON(!trans);

		ret = btrfs_grow_device(trans, device, old_size);
		BUG_ON(ret);

		btrfs_end_transaction(trans, dev_root);
	}

	/* step two, relocate all the chunks */
	path = btrfs_alloc_path();
	BUG_ON(!path);

	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
	key.offset = (u64)-1;
	key.type = BTRFS_CHUNK_ITEM_KEY;

	while(1) {
		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
		if (ret < 0)
			goto error;

		/*
		 * this shouldn't happen, it means the last relocate
		 * failed
		 */
		if (ret == 0)
			break;

		ret = btrfs_previous_item(chunk_root, path, 0,
					  BTRFS_CHUNK_ITEM_KEY);
1403
		if (ret)
1404
			break;
1405

1406 1407 1408 1409
		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
				      path->slots[0]);
		if (found_key.objectid != key.objectid)
			break;
1410

1411 1412 1413 1414 1415 1416 1417 1418
		chunk = btrfs_item_ptr(path->nodes[0],
				       path->slots[0],
				       struct btrfs_chunk);
		key.offset = found_key.offset;
		/* chunk zero is special */
		if (key.offset == 0)
			break;

1419
		btrfs_release_path(chunk_root, path);
1420 1421 1422 1423 1424 1425 1426 1427 1428
		ret = btrfs_relocate_chunk(chunk_root,
					   chunk_root->root_key.objectid,
					   found_key.objectid,
					   found_key.offset);
		BUG_ON(ret);
	}
	ret = 0;
error:
	btrfs_free_path(path);
1429
	mutex_unlock(&dev_root->fs_info->volume_mutex);
1430 1431 1432
	return ret;
}

1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468
/*
 * shrinking a device means finding all of the device extents past
 * the new size, and then following the back refs to the chunks.
 * The chunk relocation code actually frees the device extent
 */
int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
{
	struct btrfs_trans_handle *trans;
	struct btrfs_root *root = device->dev_root;
	struct btrfs_dev_extent *dev_extent = NULL;
	struct btrfs_path *path;
	u64 length;
	u64 chunk_tree;
	u64 chunk_objectid;
	u64 chunk_offset;
	int ret;
	int slot;
	struct extent_buffer *l;
	struct btrfs_key key;
	struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
	u64 old_total = btrfs_super_total_bytes(super_copy);
	u64 diff = device->total_bytes - new_size;


	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	trans = btrfs_start_transaction(root, 1);
	if (!trans) {
		ret = -ENOMEM;
		goto done;
	}

	path->reada = 2;

1469 1470
	lock_chunks(root);

1471 1472 1473
	device->total_bytes = new_size;
	ret = btrfs_update_device(trans, device);
	if (ret) {
1474
		unlock_chunks(root);
1475 1476 1477 1478 1479
		btrfs_end_transaction(trans, root);
		goto done;
	}
	WARN_ON(diff > old_total);
	btrfs_set_super_total_bytes(super_copy, old_total - diff);
1480
	unlock_chunks(root);
1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528
	btrfs_end_transaction(trans, root);

	key.objectid = device->devid;
	key.offset = (u64)-1;
	key.type = BTRFS_DEV_EXTENT_KEY;

	while (1) {
		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
			goto done;

		ret = btrfs_previous_item(root, path, 0, key.type);
		if (ret < 0)
			goto done;
		if (ret) {
			ret = 0;
			goto done;
		}

		l = path->nodes[0];
		slot = path->slots[0];
		btrfs_item_key_to_cpu(l, &key, path->slots[0]);

		if (key.objectid != device->devid)
			goto done;

		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
		length = btrfs_dev_extent_length(l, dev_extent);

		if (key.offset + length <= new_size)
			goto done;

		chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
		chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
		btrfs_release_path(root, path);

		ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid,
					   chunk_offset);
		if (ret)
			goto done;
	}

done:
	btrfs_free_path(path);
	return ret;
}

1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552
int btrfs_add_system_chunk(struct btrfs_trans_handle *trans,
			   struct btrfs_root *root,
			   struct btrfs_key *key,
			   struct btrfs_chunk *chunk, int item_size)
{
	struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
	struct btrfs_disk_key disk_key;
	u32 array_size;
	u8 *ptr;

	array_size = btrfs_super_sys_array_size(super_copy);
	if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
		return -EFBIG;

	ptr = super_copy->sys_chunk_array + array_size;
	btrfs_cpu_key_to_disk(&disk_key, key);
	memcpy(ptr, &disk_key, sizeof(disk_key));
	ptr += sizeof(disk_key);
	memcpy(ptr, chunk, item_size);
	item_size += sizeof(disk_key);
	btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
	return 0;
}

1553 1554
static u64 noinline chunk_bytes_by_type(u64 type, u64 calc_size,
					int num_stripes, int sub_stripes)
1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
{
	if (type & (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_DUP))
		return calc_size;
	else if (type & BTRFS_BLOCK_GROUP_RAID10)
		return calc_size * (num_stripes / sub_stripes);
	else
		return calc_size * num_stripes;
}


1565 1566
int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
		      struct btrfs_root *extent_root, u64 *start,
1567
		      u64 *num_bytes, u64 type)
1568 1569
{
	u64 dev_offset;
1570
	struct btrfs_fs_info *info = extent_root->fs_info;
1571
	struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
1572
	struct btrfs_path *path;
1573 1574 1575
	struct btrfs_stripe *stripes;
	struct btrfs_device *device = NULL;
	struct btrfs_chunk *chunk;
1576
	struct list_head private_devs;
1577
	struct list_head *dev_list;
1578
	struct list_head *cur;
1579 1580 1581
	struct extent_map_tree *em_tree;
	struct map_lookup *map;
	struct extent_map *em;
1582
	int min_stripe_size = 1 * 1024 * 1024;
1583 1584
	u64 physical;
	u64 calc_size = 1024 * 1024 * 1024;
1585 1586
	u64 max_chunk_size = calc_size;
	u64 min_free;
1587 1588
	u64 avail;
	u64 max_avail = 0;
1589
	u64 percent_max;
1590
	int num_stripes = 1;
1591
	int min_stripes = 1;
C
Chris Mason 已提交
1592
	int sub_stripes = 0;
1593
	int looped = 0;
1594
	int ret;
1595
	int index;
1596
	int stripe_len = 64 * 1024;
1597 1598
	struct btrfs_key key;

1599 1600 1601 1602 1603
	if ((type & BTRFS_BLOCK_GROUP_RAID1) &&
	    (type & BTRFS_BLOCK_GROUP_DUP)) {
		WARN_ON(1);
		type &= ~BTRFS_BLOCK_GROUP_DUP;
	}
1604
	dev_list = &extent_root->fs_info->fs_devices->alloc_list;
1605 1606
	if (list_empty(dev_list))
		return -ENOSPC;
1607

1608
	if (type & (BTRFS_BLOCK_GROUP_RAID0)) {
C
Chris Mason 已提交
1609
		num_stripes = extent_root->fs_info->fs_devices->open_devices;
1610 1611 1612
		min_stripes = 2;
	}
	if (type & (BTRFS_BLOCK_GROUP_DUP)) {
1613
		num_stripes = 2;
1614 1615
		min_stripes = 2;
	}
1616 1617
	if (type & (BTRFS_BLOCK_GROUP_RAID1)) {
		num_stripes = min_t(u64, 2,
C
Chris Mason 已提交
1618
			    extent_root->fs_info->fs_devices->open_devices);
1619 1620
		if (num_stripes < 2)
			return -ENOSPC;
1621
		min_stripes = 2;
1622
	}
C
Chris Mason 已提交
1623
	if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
C
Chris Mason 已提交
1624
		num_stripes = extent_root->fs_info->fs_devices->open_devices;
C
Chris Mason 已提交
1625 1626 1627 1628
		if (num_stripes < 4)
			return -ENOSPC;
		num_stripes &= ~(u32)1;
		sub_stripes = 2;
1629
		min_stripes = 4;
C
Chris Mason 已提交
1630
	}
1631 1632 1633

	if (type & BTRFS_BLOCK_GROUP_DATA) {
		max_chunk_size = 10 * calc_size;
1634
		min_stripe_size = 64 * 1024 * 1024;
1635 1636
	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
		max_chunk_size = 4 * calc_size;
1637 1638 1639 1640 1641
		min_stripe_size = 32 * 1024 * 1024;
	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
		calc_size = 8 * 1024 * 1024;
		max_chunk_size = calc_size * 2;
		min_stripe_size = 1 * 1024 * 1024;
1642 1643
	}

1644 1645 1646 1647
	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

1648 1649 1650 1651
	/* we don't want a chunk larger than 10% of the FS */
	percent_max = div_factor(btrfs_super_total_bytes(&info->super_copy), 1);
	max_chunk_size = min(percent_max, max_chunk_size);

1652
again:
1653 1654 1655 1656 1657 1658 1659
	if (calc_size * num_stripes > max_chunk_size) {
		calc_size = max_chunk_size;
		do_div(calc_size, num_stripes);
		do_div(calc_size, stripe_len);
		calc_size *= stripe_len;
	}
	/* we don't want tiny stripes */
1660
	calc_size = max_t(u64, min_stripe_size, calc_size);
1661 1662 1663 1664

	do_div(calc_size, stripe_len);
	calc_size *= stripe_len;

1665 1666 1667
	INIT_LIST_HEAD(&private_devs);
	cur = dev_list->next;
	index = 0;
1668 1669 1670

	if (type & BTRFS_BLOCK_GROUP_DUP)
		min_free = calc_size * 2;
1671 1672
	else
		min_free = calc_size;
1673

J
Josef Bacik 已提交
1674 1675 1676 1677 1678 1679 1680
	/*
	 * we add 1MB because we never use the first 1MB of the device, unless
	 * we've looped, then we are likely allocating the maximum amount of
	 * space left already
	 */
	if (!looped)
		min_free += 1024 * 1024;
1681

1682 1683
	/* build a private list of devices we will allocate from */
	while(index < num_stripes) {
1684
		device = list_entry(cur, struct btrfs_device, dev_alloc_list);
1685

1686 1687 1688 1689
		if (device->total_bytes > device->bytes_used)
			avail = device->total_bytes - device->bytes_used;
		else
			avail = 0;
1690
		cur = cur->next;
1691

1692
		if (device->in_fs_metadata && avail >= min_free) {
1693 1694 1695 1696 1697 1698 1699
			u64 ignored_start = 0;
			ret = find_free_dev_extent(trans, device, path,
						   min_free,
						   &ignored_start);
			if (ret == 0) {
				list_move_tail(&device->dev_alloc_list,
					       &private_devs);
1700
				index++;
1701 1702 1703
				if (type & BTRFS_BLOCK_GROUP_DUP)
					index++;
			}
1704
		} else if (device->in_fs_metadata && avail > max_avail)
1705
			max_avail = avail;
1706 1707 1708 1709 1710
		if (cur == dev_list)
			break;
	}
	if (index < num_stripes) {
		list_splice(&private_devs, dev_list);
1711 1712 1713 1714 1715 1716 1717 1718 1719
		if (index >= min_stripes) {
			num_stripes = index;
			if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
				num_stripes /= sub_stripes;
				num_stripes *= sub_stripes;
			}
			looped = 1;
			goto again;
		}
1720 1721 1722 1723 1724
		if (!looped && max_avail > 0) {
			looped = 1;
			calc_size = max_avail;
			goto again;
		}
1725
		btrfs_free_path(path);
1726 1727
		return -ENOSPC;
	}
1728 1729 1730 1731
	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
	key.type = BTRFS_CHUNK_ITEM_KEY;
	ret = find_next_chunk(chunk_root, BTRFS_FIRST_CHUNK_TREE_OBJECTID,
			      &key.offset);
1732 1733
	if (ret) {
		btrfs_free_path(path);
1734
		return ret;
1735
	}
1736 1737

	chunk = kmalloc(btrfs_chunk_item_size(num_stripes), GFP_NOFS);
1738 1739
	if (!chunk) {
		btrfs_free_path(path);
1740
		return -ENOMEM;
1741
	}
1742

1743 1744 1745
	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
	if (!map) {
		kfree(chunk);
1746
		btrfs_free_path(path);
1747 1748
		return -ENOMEM;
	}
1749 1750
	btrfs_free_path(path);
	path = NULL;
1751

1752
	stripes = &chunk->stripe;
1753 1754
	*num_bytes = chunk_bytes_by_type(type, calc_size,
					 num_stripes, sub_stripes);
1755

1756
	index = 0;
1757
	while(index < num_stripes) {
1758
		struct btrfs_stripe *stripe;
1759 1760
		BUG_ON(list_empty(&private_devs));
		cur = private_devs.next;
1761
		device = list_entry(cur, struct btrfs_device, dev_alloc_list);
1762 1763 1764 1765

		/* loop over this device again if we're doing a dup group */
		if (!(type & BTRFS_BLOCK_GROUP_DUP) ||
		    (index == num_stripes - 1))
1766
			list_move_tail(&device->dev_alloc_list, dev_list);
1767 1768

		ret = btrfs_alloc_dev_extent(trans, device,
1769 1770 1771
			     info->chunk_root->root_key.objectid,
			     BTRFS_FIRST_CHUNK_TREE_OBJECTID, key.offset,
			     calc_size, &dev_offset);
1772 1773 1774 1775 1776
		BUG_ON(ret);
		device->bytes_used += calc_size;
		ret = btrfs_update_device(trans, device);
		BUG_ON(ret);

1777 1778
		map->stripes[index].dev = device;
		map->stripes[index].physical = dev_offset;
1779 1780 1781 1782
		stripe = stripes + index;
		btrfs_set_stack_stripe_devid(stripe, device->devid);
		btrfs_set_stack_stripe_offset(stripe, dev_offset);
		memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
1783 1784 1785
		physical = dev_offset;
		index++;
	}
1786
	BUG_ON(!list_empty(&private_devs));
1787

1788 1789
	/* key was set above */
	btrfs_set_stack_chunk_length(chunk, *num_bytes);
1790
	btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
1791
	btrfs_set_stack_chunk_stripe_len(chunk, stripe_len);
1792 1793
	btrfs_set_stack_chunk_type(chunk, type);
	btrfs_set_stack_chunk_num_stripes(chunk, num_stripes);
1794 1795
	btrfs_set_stack_chunk_io_align(chunk, stripe_len);
	btrfs_set_stack_chunk_io_width(chunk, stripe_len);
1796
	btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
C
Chris Mason 已提交
1797
	btrfs_set_stack_chunk_sub_stripes(chunk, sub_stripes);
1798 1799 1800 1801 1802 1803
	map->sector_size = extent_root->sectorsize;
	map->stripe_len = stripe_len;
	map->io_align = stripe_len;
	map->io_width = stripe_len;
	map->type = type;
	map->num_stripes = num_stripes;
C
Chris Mason 已提交
1804
	map->sub_stripes = sub_stripes;
1805 1806 1807 1808

	ret = btrfs_insert_item(trans, chunk_root, &key, chunk,
				btrfs_chunk_item_size(num_stripes));
	BUG_ON(ret);
1809
	*start = key.offset;;
1810 1811 1812 1813 1814

	em = alloc_extent_map(GFP_NOFS);
	if (!em)
		return -ENOMEM;
	em->bdev = (struct block_device *)map;
1815 1816
	em->start = key.offset;
	em->len = *num_bytes;
1817 1818
	em->block_start = 0;

1819 1820 1821 1822 1823
	if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
		ret = btrfs_add_system_chunk(trans, chunk_root, &key,
				    chunk, btrfs_chunk_item_size(num_stripes));
		BUG_ON(ret);
	}
1824 1825 1826 1827 1828 1829
	kfree(chunk);

	em_tree = &extent_root->fs_info->mapping_tree.map_tree;
	spin_lock(&em_tree->lock);
	ret = add_extent_mapping(em_tree, em);
	spin_unlock(&em_tree->lock);
1830
	BUG_ON(ret);
1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859
	free_extent_map(em);
	return ret;
}

void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
{
	extent_map_tree_init(&tree->map_tree, GFP_NOFS);
}

void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
{
	struct extent_map *em;

	while(1) {
		spin_lock(&tree->map_tree.lock);
		em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
		if (em)
			remove_extent_mapping(&tree->map_tree, em);
		spin_unlock(&tree->map_tree.lock);
		if (!em)
			break;
		kfree(em->bdev);
		/* once for us */
		free_extent_map(em);
		/* once for the tree */
		free_extent_map(em);
	}
}

1860 1861 1862 1863 1864 1865 1866 1867 1868
int btrfs_num_copies(struct btrfs_mapping_tree *map_tree, u64 logical, u64 len)
{
	struct extent_map *em;
	struct map_lookup *map;
	struct extent_map_tree *em_tree = &map_tree->map_tree;
	int ret;

	spin_lock(&em_tree->lock);
	em = lookup_extent_mapping(em_tree, logical, len);
1869
	spin_unlock(&em_tree->lock);
1870 1871 1872 1873 1874 1875
	BUG_ON(!em);

	BUG_ON(em->start > logical || em->start + em->len < logical);
	map = (struct map_lookup *)em->bdev;
	if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
		ret = map->num_stripes;
C
Chris Mason 已提交
1876 1877
	else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
		ret = map->sub_stripes;
1878 1879 1880 1881 1882 1883
	else
		ret = 1;
	free_extent_map(em);
	return ret;
}

1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899
static int find_live_mirror(struct map_lookup *map, int first, int num,
			    int optimal)
{
	int i;
	if (map->stripes[optimal].dev->bdev)
		return optimal;
	for (i = first; i < first + num; i++) {
		if (map->stripes[i].dev->bdev)
			return i;
	}
	/* we couldn't find one that doesn't fail.  Just return something
	 * and the io error handling code will clean up eventually
	 */
	return optimal;
}

1900 1901 1902 1903
static int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
			     u64 logical, u64 *length,
			     struct btrfs_multi_bio **multi_ret,
			     int mirror_num, struct page *unplug_page)
1904 1905 1906 1907 1908
{
	struct extent_map *em;
	struct map_lookup *map;
	struct extent_map_tree *em_tree = &map_tree->map_tree;
	u64 offset;
1909 1910
	u64 stripe_offset;
	u64 stripe_nr;
1911
	int stripes_allocated = 8;
C
Chris Mason 已提交
1912
	int stripes_required = 1;
1913
	int stripe_index;
1914
	int i;
1915
	int num_stripes;
1916
	int max_errors = 0;
1917
	struct btrfs_multi_bio *multi = NULL;
1918

1919 1920 1921 1922 1923 1924 1925 1926 1927
	if (multi_ret && !(rw & (1 << BIO_RW))) {
		stripes_allocated = 1;
	}
again:
	if (multi_ret) {
		multi = kzalloc(btrfs_multi_bio_size(stripes_allocated),
				GFP_NOFS);
		if (!multi)
			return -ENOMEM;
1928 1929

		atomic_set(&multi->error, 0);
1930
	}
1931 1932 1933

	spin_lock(&em_tree->lock);
	em = lookup_extent_mapping(em_tree, logical, *length);
1934
	spin_unlock(&em_tree->lock);
1935 1936 1937 1938

	if (!em && unplug_page)
		return 0;

1939
	if (!em) {
1940
		printk("unable to find logical %Lu len %Lu\n", logical, *length);
1941
		BUG();
1942
	}
1943 1944 1945 1946

	BUG_ON(em->start > logical || em->start + em->len < logical);
	map = (struct map_lookup *)em->bdev;
	offset = logical - em->start;
1947

1948 1949 1950
	if (mirror_num > map->num_stripes)
		mirror_num = 0;

1951
	/* if our multi bio struct is too small, back off and try again */
C
Chris Mason 已提交
1952 1953 1954 1955
	if (rw & (1 << BIO_RW)) {
		if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
				 BTRFS_BLOCK_GROUP_DUP)) {
			stripes_required = map->num_stripes;
1956
			max_errors = 1;
C
Chris Mason 已提交
1957 1958
		} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
			stripes_required = map->sub_stripes;
1959
			max_errors = 1;
C
Chris Mason 已提交
1960 1961 1962 1963
		}
	}
	if (multi_ret && rw == WRITE &&
	    stripes_allocated < stripes_required) {
1964 1965 1966 1967 1968
		stripes_allocated = map->num_stripes;
		free_extent_map(em);
		kfree(multi);
		goto again;
	}
1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981
	stripe_nr = offset;
	/*
	 * stripe_nr counts the total number of stripes we have to stride
	 * to get to this block
	 */
	do_div(stripe_nr, map->stripe_len);

	stripe_offset = stripe_nr * map->stripe_len;
	BUG_ON(offset < stripe_offset);

	/* stripe_offset is the offset of this block in its stripe*/
	stripe_offset = offset - stripe_offset;

1982
	if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 |
C
Chris Mason 已提交
1983
			 BTRFS_BLOCK_GROUP_RAID10 |
1984 1985 1986 1987 1988 1989 1990
			 BTRFS_BLOCK_GROUP_DUP)) {
		/* we limit the length of each bio to what fits in a stripe */
		*length = min_t(u64, em->len - offset,
			      map->stripe_len - stripe_offset);
	} else {
		*length = em->len - offset;
	}
1991 1992

	if (!multi_ret && !unplug_page)
1993 1994
		goto out;

1995
	num_stripes = 1;
1996
	stripe_index = 0;
1997
	if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
1998 1999
		if (unplug_page || (rw & (1 << BIO_RW)))
			num_stripes = map->num_stripes;
2000
		else if (mirror_num)
2001
			stripe_index = mirror_num - 1;
2002 2003 2004 2005 2006
		else {
			stripe_index = find_live_mirror(map, 0,
					    map->num_stripes,
					    current->pid % map->num_stripes);
		}
2007

2008
	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
2009
		if (rw & (1 << BIO_RW))
2010
			num_stripes = map->num_stripes;
2011 2012
		else if (mirror_num)
			stripe_index = mirror_num - 1;
2013

C
Chris Mason 已提交
2014 2015 2016 2017 2018 2019
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
		int factor = map->num_stripes / map->sub_stripes;

		stripe_index = do_div(stripe_nr, factor);
		stripe_index *= map->sub_stripes;

2020 2021
		if (unplug_page || (rw & (1 << BIO_RW)))
			num_stripes = map->sub_stripes;
C
Chris Mason 已提交
2022 2023
		else if (mirror_num)
			stripe_index += mirror_num - 1;
2024 2025 2026 2027 2028
		else {
			stripe_index = find_live_mirror(map, stripe_index,
					      map->sub_stripes, stripe_index +
					      current->pid % map->sub_stripes);
		}
2029 2030 2031 2032 2033 2034 2035 2036
	} else {
		/*
		 * after this do_div call, stripe_nr is the number of stripes
		 * on this device we have to walk to find the data, and
		 * stripe_index is the number of our device in the stripe array
		 */
		stripe_index = do_div(stripe_nr, map->num_stripes);
	}
2037
	BUG_ON(stripe_index >= map->num_stripes);
2038

2039 2040 2041 2042 2043 2044
	for (i = 0; i < num_stripes; i++) {
		if (unplug_page) {
			struct btrfs_device *device;
			struct backing_dev_info *bdi;

			device = map->stripes[stripe_index].dev;
2045 2046 2047 2048 2049
			if (device->bdev) {
				bdi = blk_get_backing_dev_info(device->bdev);
				if (bdi->unplug_io_fn) {
					bdi->unplug_io_fn(bdi, unplug_page);
				}
2050 2051 2052 2053 2054 2055 2056
			}
		} else {
			multi->stripes[i].physical =
				map->stripes[stripe_index].physical +
				stripe_offset + stripe_nr * map->stripe_len;
			multi->stripes[i].dev = map->stripes[stripe_index].dev;
		}
2057
		stripe_index++;
2058
	}
2059 2060 2061
	if (multi_ret) {
		*multi_ret = multi;
		multi->num_stripes = num_stripes;
2062
		multi->max_errors = max_errors;
2063
	}
2064
out:
2065 2066 2067 2068
	free_extent_map(em);
	return 0;
}

2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085
int btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
		      u64 logical, u64 *length,
		      struct btrfs_multi_bio **multi_ret, int mirror_num)
{
	return __btrfs_map_block(map_tree, rw, logical, length, multi_ret,
				 mirror_num, NULL);
}

int btrfs_unplug_page(struct btrfs_mapping_tree *map_tree,
		      u64 logical, struct page *page)
{
	u64 length = PAGE_CACHE_SIZE;
	return __btrfs_map_block(map_tree, READ, logical, &length,
				 NULL, 0, page);
}


2086 2087
static void end_bio_multi_stripe(struct bio *bio, int err)
{
2088
	struct btrfs_multi_bio *multi = bio->bi_private;
2089
	int is_orig_bio = 0;
2090 2091

	if (err)
2092
		atomic_inc(&multi->error);
2093

2094 2095 2096
	if (bio == multi->orig_bio)
		is_orig_bio = 1;

2097
	if (atomic_dec_and_test(&multi->stripes_pending)) {
2098 2099 2100 2101
		if (!is_orig_bio) {
			bio_put(bio);
			bio = multi->orig_bio;
		}
2102 2103
		bio->bi_private = multi->private;
		bio->bi_end_io = multi->end_io;
2104 2105 2106
		/* only send an error to the higher layers if it is
		 * beyond the tolerance of the multi-bio
		 */
2107
		if (atomic_read(&multi->error) > multi->max_errors) {
2108
			err = -EIO;
2109 2110 2111 2112 2113 2114
		} else if (err) {
			/*
			 * this bio is actually up to date, we didn't
			 * go over the max number of errors
			 */
			set_bit(BIO_UPTODATE, &bio->bi_flags);
2115
			err = 0;
2116
		}
2117 2118 2119
		kfree(multi);

		bio_endio(bio, err);
2120
	} else if (!is_orig_bio) {
2121 2122 2123 2124
		bio_put(bio);
	}
}

2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138
struct async_sched {
	struct bio *bio;
	int rw;
	struct btrfs_fs_info *info;
	struct btrfs_work work;
};

/*
 * see run_scheduled_bios for a description of why bios are collected for
 * async submit.
 *
 * This will add one bio to the pending list for a device and make sure
 * the work struct is scheduled.
 */
2139 2140 2141
static int noinline schedule_bio(struct btrfs_root *root,
				 struct btrfs_device *device,
				 int rw, struct bio *bio)
2142 2143 2144 2145 2146
{
	int should_queue = 1;

	/* don't bother with additional async steps for reads, right now */
	if (!(rw & (1 << BIO_RW))) {
2147
		bio_get(bio);
2148
		submit_bio(rw, bio);
2149
		bio_put(bio);
2150 2151 2152 2153
		return 0;
	}

	/*
2154
	 * nr_async_bios allows us to reliably return congestion to the
2155 2156 2157 2158
	 * higher layers.  Otherwise, the async bio makes it appear we have
	 * made progress against dirty pages when we've really just put it
	 * on a queue for later
	 */
2159
	atomic_inc(&root->fs_info->nr_async_bios);
2160
	WARN_ON(bio->bi_next);
2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177
	bio->bi_next = NULL;
	bio->bi_rw |= rw;

	spin_lock(&device->io_lock);

	if (device->pending_bio_tail)
		device->pending_bio_tail->bi_next = bio;

	device->pending_bio_tail = bio;
	if (!device->pending_bios)
		device->pending_bios = bio;
	if (device->running_pending)
		should_queue = 0;

	spin_unlock(&device->io_lock);

	if (should_queue)
2178 2179
		btrfs_queue_worker(&root->fs_info->submit_workers,
				   &device->work);
2180 2181 2182
	return 0;
}

2183
int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
2184
		  int mirror_num, int async_submit)
2185 2186 2187
{
	struct btrfs_mapping_tree *map_tree;
	struct btrfs_device *dev;
2188
	struct bio *first_bio = bio;
2189 2190 2191
	u64 logical = bio->bi_sector << 9;
	u64 length = 0;
	u64 map_length;
2192
	struct btrfs_multi_bio *multi = NULL;
2193
	int ret;
2194 2195
	int dev_nr = 0;
	int total_devs = 1;
2196

2197
	length = bio->bi_size;
2198 2199
	map_tree = &root->fs_info->mapping_tree;
	map_length = length;
2200

2201 2202
	ret = btrfs_map_block(map_tree, rw, logical, &map_length, &multi,
			      mirror_num);
2203 2204 2205 2206 2207 2208 2209 2210 2211 2212
	BUG_ON(ret);

	total_devs = multi->num_stripes;
	if (map_length < length) {
		printk("mapping failed logical %Lu bio len %Lu "
		       "len %Lu\n", logical, length, map_length);
		BUG();
	}
	multi->end_io = first_bio->bi_end_io;
	multi->private = first_bio->bi_private;
2213
	multi->orig_bio = first_bio;
2214 2215
	atomic_set(&multi->stripes_pending, multi->num_stripes);

2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226
	while(dev_nr < total_devs) {
		if (total_devs > 1) {
			if (dev_nr < total_devs - 1) {
				bio = bio_clone(first_bio, GFP_NOFS);
				BUG_ON(!bio);
			} else {
				bio = first_bio;
			}
			bio->bi_private = multi;
			bio->bi_end_io = end_bio_multi_stripe;
		}
2227 2228
		bio->bi_sector = multi->stripes[dev_nr].physical >> 9;
		dev = multi->stripes[dev_nr].dev;
2229 2230
		if (dev && dev->bdev) {
			bio->bi_bdev = dev->bdev;
2231 2232 2233 2234
			if (async_submit)
				schedule_bio(root, dev, rw, bio);
			else
				submit_bio(rw, bio);
2235 2236 2237 2238 2239
		} else {
			bio->bi_bdev = root->fs_info->fs_devices->latest_bdev;
			bio->bi_sector = logical >> 9;
			bio_endio(bio, -EIO);
		}
2240 2241
		dev_nr++;
	}
2242 2243
	if (total_devs == 1)
		kfree(multi);
2244 2245 2246
	return 0;
}

2247 2248
struct btrfs_device *btrfs_find_device(struct btrfs_root *root, u64 devid,
				       u8 *uuid)
2249
{
2250
	struct list_head *head = &root->fs_info->fs_devices->devices;
2251

2252
	return __find_device(head, devid, uuid);
2253 2254
}

2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268
static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
					    u64 devid, u8 *dev_uuid)
{
	struct btrfs_device *device;
	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;

	device = kzalloc(sizeof(*device), GFP_NOFS);
	list_add(&device->dev_list,
		 &fs_devices->devices);
	list_add(&device->dev_alloc_list,
		 &fs_devices->alloc_list);
	device->barriers = 1;
	device->dev_root = root->fs_info->dev_root;
	device->devid = devid;
2269
	device->work.func = pending_bios_fn;
2270 2271 2272 2273 2274 2275 2276
	fs_devices->num_devices++;
	spin_lock_init(&device->io_lock);
	memcpy(device->uuid, dev_uuid, BTRFS_UUID_SIZE);
	return device;
}


2277 2278 2279 2280 2281 2282 2283 2284 2285 2286
static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
			  struct extent_buffer *leaf,
			  struct btrfs_chunk *chunk)
{
	struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
	struct map_lookup *map;
	struct extent_map *em;
	u64 logical;
	u64 length;
	u64 devid;
2287
	u8 uuid[BTRFS_UUID_SIZE];
2288
	int num_stripes;
2289
	int ret;
2290
	int i;
2291

2292 2293
	logical = key->offset;
	length = btrfs_chunk_length(leaf, chunk);
2294

2295 2296
	spin_lock(&map_tree->map_tree.lock);
	em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
2297
	spin_unlock(&map_tree->map_tree.lock);
2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313

	/* already mapped? */
	if (em && em->start <= logical && em->start + em->len > logical) {
		free_extent_map(em);
		return 0;
	} else if (em) {
		free_extent_map(em);
	}

	map = kzalloc(sizeof(*map), GFP_NOFS);
	if (!map)
		return -ENOMEM;

	em = alloc_extent_map(GFP_NOFS);
	if (!em)
		return -ENOMEM;
2314 2315
	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
2316 2317 2318 2319 2320 2321 2322 2323 2324 2325
	if (!map) {
		free_extent_map(em);
		return -ENOMEM;
	}

	em->bdev = (struct block_device *)map;
	em->start = logical;
	em->len = length;
	em->block_start = 0;

2326 2327 2328 2329 2330 2331
	map->num_stripes = num_stripes;
	map->io_width = btrfs_chunk_io_width(leaf, chunk);
	map->io_align = btrfs_chunk_io_align(leaf, chunk);
	map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
	map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
	map->type = btrfs_chunk_type(leaf, chunk);
C
Chris Mason 已提交
2332
	map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
2333 2334 2335 2336
	for (i = 0; i < num_stripes; i++) {
		map->stripes[i].physical =
			btrfs_stripe_offset_nr(leaf, chunk, i);
		devid = btrfs_stripe_devid_nr(leaf, chunk, i);
2337 2338 2339 2340
		read_extent_buffer(leaf, uuid, (unsigned long)
				   btrfs_stripe_dev_uuid_nr(chunk, i),
				   BTRFS_UUID_SIZE);
		map->stripes[i].dev = btrfs_find_device(root, devid, uuid);
2341 2342

		if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
2343 2344 2345 2346
			kfree(map);
			free_extent_map(em);
			return -EIO;
		}
2347 2348 2349 2350 2351 2352 2353 2354 2355 2356
		if (!map->stripes[i].dev) {
			map->stripes[i].dev =
				add_missing_dev(root, devid, uuid);
			if (!map->stripes[i].dev) {
				kfree(map);
				free_extent_map(em);
				return -EIO;
			}
		}
		map->stripes[i].dev->in_fs_metadata = 1;
2357 2358 2359 2360 2361
	}

	spin_lock(&map_tree->map_tree.lock);
	ret = add_extent_mapping(&map_tree->map_tree, em);
	spin_unlock(&map_tree->map_tree.lock);
2362
	BUG_ON(ret);
2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382
	free_extent_map(em);

	return 0;
}

static int fill_device_from_item(struct extent_buffer *leaf,
				 struct btrfs_dev_item *dev_item,
				 struct btrfs_device *device)
{
	unsigned long ptr;

	device->devid = btrfs_device_id(leaf, dev_item);
	device->total_bytes = btrfs_device_total_bytes(leaf, dev_item);
	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
	device->type = btrfs_device_type(leaf, dev_item);
	device->io_align = btrfs_device_io_align(leaf, dev_item);
	device->io_width = btrfs_device_io_width(leaf, dev_item);
	device->sector_size = btrfs_device_sector_size(leaf, dev_item);

	ptr = (unsigned long)btrfs_device_uuid(dev_item);
2383
	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
2384 2385 2386 2387

	return 0;
}

2388
static int read_one_dev(struct btrfs_root *root,
2389 2390 2391 2392 2393 2394
			struct extent_buffer *leaf,
			struct btrfs_dev_item *dev_item)
{
	struct btrfs_device *device;
	u64 devid;
	int ret;
2395 2396
	u8 dev_uuid[BTRFS_UUID_SIZE];

2397
	devid = btrfs_device_id(leaf, dev_item);
2398 2399 2400 2401
	read_extent_buffer(leaf, dev_uuid,
			   (unsigned long)btrfs_device_uuid(dev_item),
			   BTRFS_UUID_SIZE);
	device = btrfs_find_device(root, devid, dev_uuid);
2402
	if (!device) {
2403 2404
		printk("warning devid %Lu missing\n", devid);
		device = add_missing_dev(root, devid, dev_uuid);
2405 2406 2407
		if (!device)
			return -ENOMEM;
	}
2408 2409 2410

	fill_device_from_item(leaf, dev_item, device);
	device->dev_root = root->fs_info->dev_root;
2411
	device->in_fs_metadata = 1;
2412 2413 2414 2415 2416 2417 2418 2419 2420 2421
	ret = 0;
#if 0
	ret = btrfs_open_device(device);
	if (ret) {
		kfree(device);
	}
#endif
	return ret;
}

2422 2423 2424 2425 2426 2427 2428 2429 2430
int btrfs_read_super_device(struct btrfs_root *root, struct extent_buffer *buf)
{
	struct btrfs_dev_item *dev_item;

	dev_item = (struct btrfs_dev_item *)offsetof(struct btrfs_super_block,
						     dev_item);
	return read_one_dev(root, buf, dev_item);
}

2431 2432 2433
int btrfs_read_sys_array(struct btrfs_root *root)
{
	struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
2434
	struct extent_buffer *sb;
2435 2436
	struct btrfs_disk_key *disk_key;
	struct btrfs_chunk *chunk;
2437 2438 2439
	u8 *ptr;
	unsigned long sb_ptr;
	int ret = 0;
2440 2441 2442 2443
	u32 num_stripes;
	u32 array_size;
	u32 len = 0;
	u32 cur;
2444
	struct btrfs_key key;
2445

2446 2447 2448 2449 2450 2451
	sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET,
					  BTRFS_SUPER_INFO_SIZE);
	if (!sb)
		return -ENOMEM;
	btrfs_set_buffer_uptodate(sb);
	write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
2452 2453 2454 2455 2456 2457 2458 2459 2460 2461
	array_size = btrfs_super_sys_array_size(super_copy);

	ptr = super_copy->sys_chunk_array;
	sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array);
	cur = 0;

	while (cur < array_size) {
		disk_key = (struct btrfs_disk_key *)ptr;
		btrfs_disk_key_to_cpu(&key, disk_key);

2462
		len = sizeof(*disk_key); ptr += len;
2463 2464 2465
		sb_ptr += len;
		cur += len;

2466
		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2467
			chunk = (struct btrfs_chunk *)sb_ptr;
2468
			ret = read_one_chunk(root, &key, sb, chunk);
2469 2470
			if (ret)
				break;
2471 2472 2473
			num_stripes = btrfs_chunk_num_stripes(sb, chunk);
			len = btrfs_chunk_item_size(num_stripes);
		} else {
2474 2475
			ret = -EIO;
			break;
2476 2477 2478 2479 2480
		}
		ptr += len;
		sb_ptr += len;
		cur += len;
	}
2481
	free_extent_buffer(sb);
2482
	return ret;
2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527
}

int btrfs_read_chunk_tree(struct btrfs_root *root)
{
	struct btrfs_path *path;
	struct extent_buffer *leaf;
	struct btrfs_key key;
	struct btrfs_key found_key;
	int ret;
	int slot;

	root = root->fs_info->chunk_root;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	/* first we search for all of the device items, and then we
	 * read in all of the chunk items.  This way we can create chunk
	 * mappings that reference all of the devices that are afound
	 */
	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
	key.offset = 0;
	key.type = 0;
again:
	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	while(1) {
		leaf = path->nodes[0];
		slot = path->slots[0];
		if (slot >= btrfs_header_nritems(leaf)) {
			ret = btrfs_next_leaf(root, path);
			if (ret == 0)
				continue;
			if (ret < 0)
				goto error;
			break;
		}
		btrfs_item_key_to_cpu(leaf, &found_key, slot);
		if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
			if (found_key.objectid != BTRFS_DEV_ITEMS_OBJECTID)
				break;
			if (found_key.type == BTRFS_DEV_ITEM_KEY) {
				struct btrfs_dev_item *dev_item;
				dev_item = btrfs_item_ptr(leaf, slot,
						  struct btrfs_dev_item);
2528
				ret = read_one_dev(root, leaf, dev_item);
2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548
				BUG_ON(ret);
			}
		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
			struct btrfs_chunk *chunk;
			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
			ret = read_one_chunk(root, &found_key, leaf, chunk);
		}
		path->slots[0]++;
	}
	if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
		key.objectid = 0;
		btrfs_release_path(root, path);
		goto again;
	}

	btrfs_free_path(path);
	ret = 0;
error:
	return ret;
}