volumes.c 36.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/*
 * Copyright (C) 2007 Oracle.  All rights reserved.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public
 * License v2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with this program; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 021110-1307, USA.
 */
#include <linux/sched.h>
#include <linux/bio.h>
20
#include <linux/buffer_head.h>
21
#include <asm/div64.h>
22 23 24 25 26 27 28
#include "ctree.h"
#include "extent_map.h"
#include "disk-io.h"
#include "transaction.h"
#include "print-tree.h"
#include "volumes.h"

29 30 31 32 33 34 35
struct map_lookup {
	u64 type;
	int io_align;
	int io_width;
	int stripe_len;
	int sector_size;
	int num_stripes;
C
Chris Mason 已提交
36
	int sub_stripes;
37
	struct btrfs_bio_stripe stripes[];
38 39 40
};

#define map_lookup_size(n) (sizeof(struct map_lookup) + \
41
			    (sizeof(struct btrfs_bio_stripe) * (n)))
42

43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
static DEFINE_MUTEX(uuid_mutex);
static LIST_HEAD(fs_uuids);

int btrfs_cleanup_fs_uuids(void)
{
	struct btrfs_fs_devices *fs_devices;
	struct list_head *uuid_cur;
	struct list_head *devices_cur;
	struct btrfs_device *dev;

	list_for_each(uuid_cur, &fs_uuids) {
		fs_devices = list_entry(uuid_cur, struct btrfs_fs_devices,
					list);
		while(!list_empty(&fs_devices->devices)) {
			devices_cur = fs_devices->devices.next;
			dev = list_entry(devices_cur, struct btrfs_device,
					 dev_list);
			if (dev->bdev) {
				close_bdev_excl(dev->bdev);
			}
			list_del(&dev->dev_list);
			kfree(dev);
		}
	}
	return 0;
}

70 71
static struct btrfs_device *__find_device(struct list_head *head, u64 devid,
					  u8 *uuid)
72 73 74 75 76 77
{
	struct btrfs_device *dev;
	struct list_head *cur;

	list_for_each(cur, head) {
		dev = list_entry(cur, struct btrfs_device, dev_list);
78 79
		if (dev->devid == devid &&
		    !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE)) {
80
			return dev;
81
		}
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
	}
	return NULL;
}

static struct btrfs_fs_devices *find_fsid(u8 *fsid)
{
	struct list_head *cur;
	struct btrfs_fs_devices *fs_devices;

	list_for_each(cur, &fs_uuids) {
		fs_devices = list_entry(cur, struct btrfs_fs_devices, list);
		if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
			return fs_devices;
	}
	return NULL;
}

static int device_list_add(const char *path,
			   struct btrfs_super_block *disk_super,
			   u64 devid, struct btrfs_fs_devices **fs_devices_ret)
{
	struct btrfs_device *device;
	struct btrfs_fs_devices *fs_devices;
	u64 found_transid = btrfs_super_generation(disk_super);

	fs_devices = find_fsid(disk_super->fsid);
	if (!fs_devices) {
		fs_devices = kmalloc(sizeof(*fs_devices), GFP_NOFS);
		if (!fs_devices)
			return -ENOMEM;
		INIT_LIST_HEAD(&fs_devices->devices);
		list_add(&fs_devices->list, &fs_uuids);
		memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
		fs_devices->latest_devid = devid;
		fs_devices->latest_trans = found_transid;
		fs_devices->lowest_devid = (u64)-1;
		fs_devices->num_devices = 0;
		device = NULL;
	} else {
121 122
		device = __find_device(&fs_devices->devices, devid,
				       disk_super->dev_item.uuid);
123 124 125 126 127 128 129 130
	}
	if (!device) {
		device = kzalloc(sizeof(*device), GFP_NOFS);
		if (!device) {
			/* we can safely leave the fs_devices entry around */
			return -ENOMEM;
		}
		device->devid = devid;
131 132
		memcpy(device->uuid, disk_super->dev_item.uuid,
		       BTRFS_UUID_SIZE);
133
		device->barriers = 1;
134
		spin_lock_init(&device->io_lock);
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
		device->name = kstrdup(path, GFP_NOFS);
		if (!device->name) {
			kfree(device);
			return -ENOMEM;
		}
		list_add(&device->dev_list, &fs_devices->devices);
		fs_devices->num_devices++;
	}

	if (found_transid > fs_devices->latest_trans) {
		fs_devices->latest_devid = devid;
		fs_devices->latest_trans = found_transid;
	}
	if (fs_devices->lowest_devid > devid) {
		fs_devices->lowest_devid = devid;
	}
	*fs_devices_ret = fs_devices;
	return 0;
}

int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
{
	struct list_head *head = &fs_devices->devices;
	struct list_head *cur;
	struct btrfs_device *device;

	mutex_lock(&uuid_mutex);
	list_for_each(cur, head) {
		device = list_entry(cur, struct btrfs_device, dev_list);
		if (device->bdev) {
			close_bdev_excl(device->bdev);
		}
		device->bdev = NULL;
	}
	mutex_unlock(&uuid_mutex);
	return 0;
}

int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
		       int flags, void *holder)
{
	struct block_device *bdev;
	struct list_head *head = &fs_devices->devices;
	struct list_head *cur;
	struct btrfs_device *device;
	int ret;

	mutex_lock(&uuid_mutex);
	list_for_each(cur, head) {
		device = list_entry(cur, struct btrfs_device, dev_list);
		bdev = open_bdev_excl(device->name, flags, holder);
186

187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
		if (IS_ERR(bdev)) {
			printk("open %s failed\n", device->name);
			ret = PTR_ERR(bdev);
			goto fail;
		}
		if (device->devid == fs_devices->latest_devid)
			fs_devices->latest_bdev = bdev;
		if (device->devid == fs_devices->lowest_devid) {
			fs_devices->lowest_bdev = bdev;
		}
		device->bdev = bdev;
	}
	mutex_unlock(&uuid_mutex);
	return 0;
fail:
	mutex_unlock(&uuid_mutex);
	btrfs_close_devices(fs_devices);
	return ret;
}

int btrfs_scan_one_device(const char *path, int flags, void *holder,
			  struct btrfs_fs_devices **fs_devices_ret)
{
	struct btrfs_super_block *disk_super;
	struct block_device *bdev;
	struct buffer_head *bh;
	int ret;
	u64 devid;
215
	u64 transid;
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236

	mutex_lock(&uuid_mutex);

	bdev = open_bdev_excl(path, flags, holder);

	if (IS_ERR(bdev)) {
		ret = PTR_ERR(bdev);
		goto error;
	}

	ret = set_blocksize(bdev, 4096);
	if (ret)
		goto error_close;
	bh = __bread(bdev, BTRFS_SUPER_INFO_OFFSET / 4096, 4096);
	if (!bh) {
		ret = -EIO;
		goto error_close;
	}
	disk_super = (struct btrfs_super_block *)bh->b_data;
	if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
	    sizeof(disk_super->magic))) {
237
		ret = -EINVAL;
238 239 240
		goto error_brelse;
	}
	devid = le64_to_cpu(disk_super->dev_item.devid);
241
	transid = btrfs_super_generation(disk_super);
242 243 244 245 246 247 248 249 250
	if (disk_super->label[0])
		printk("device label %s ", disk_super->label);
	else {
		/* FIXME, make a readl uuid parser */
		printk("device fsid %llx-%llx ",
		       *(unsigned long long *)disk_super->fsid,
		       *(unsigned long long *)(disk_super->fsid + 8));
	}
	printk("devid %Lu transid %Lu %s\n", devid, transid, path);
251 252 253 254 255 256 257 258 259 260
	ret = device_list_add(path, disk_super, devid, fs_devices_ret);

error_brelse:
	brelse(bh);
error_close:
	close_bdev_excl(bdev);
error:
	mutex_unlock(&uuid_mutex);
	return ret;
}
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288

/*
 * this uses a pretty simple search, the expectation is that it is
 * called very infrequently and that a given device has a small number
 * of extents
 */
static int find_free_dev_extent(struct btrfs_trans_handle *trans,
				struct btrfs_device *device,
				struct btrfs_path *path,
				u64 num_bytes, u64 *start)
{
	struct btrfs_key key;
	struct btrfs_root *root = device->dev_root;
	struct btrfs_dev_extent *dev_extent = NULL;
	u64 hole_size = 0;
	u64 last_byte = 0;
	u64 search_start = 0;
	u64 search_end = device->total_bytes;
	int ret;
	int slot = 0;
	int start_found;
	struct extent_buffer *l;

	start_found = 0;
	path->reada = 2;

	/* FIXME use last free of some kind */

289 290 291 292
	/* we don't want to overwrite the superblock on the drive,
	 * so we make sure to start at an offset of at least 1MB
	 */
	search_start = max((u64)1024 * 1024, search_start);
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
	key.objectid = device->devid;
	key.offset = search_start;
	key.type = BTRFS_DEV_EXTENT_KEY;
	ret = btrfs_search_slot(trans, root, &key, path, 0, 0);
	if (ret < 0)
		goto error;
	ret = btrfs_previous_item(root, path, 0, key.type);
	if (ret < 0)
		goto error;
	l = path->nodes[0];
	btrfs_item_key_to_cpu(l, &key, path->slots[0]);
	while (1) {
		l = path->nodes[0];
		slot = path->slots[0];
		if (slot >= btrfs_header_nritems(l)) {
			ret = btrfs_next_leaf(root, path);
			if (ret == 0)
				continue;
			if (ret < 0)
				goto error;
no_more_items:
			if (!start_found) {
				if (search_start >= search_end) {
					ret = -ENOSPC;
					goto error;
				}
				*start = search_start;
				start_found = 1;
				goto check_pending;
			}
			*start = last_byte > search_start ?
				last_byte : search_start;
			if (search_end <= *start) {
				ret = -ENOSPC;
				goto error;
			}
			goto check_pending;
		}
		btrfs_item_key_to_cpu(l, &key, slot);

		if (key.objectid < device->devid)
			goto next;

		if (key.objectid > device->devid)
			goto no_more_items;

		if (key.offset >= search_start && key.offset > last_byte &&
		    start_found) {
			if (last_byte < search_start)
				last_byte = search_start;
			hole_size = key.offset - last_byte;
			if (key.offset > last_byte &&
			    hole_size >= num_bytes) {
				*start = last_byte;
				goto check_pending;
			}
		}
		if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY) {
			goto next;
		}

		start_found = 1;
		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
		last_byte = key.offset + btrfs_dev_extent_length(l, dev_extent);
next:
		path->slots[0]++;
		cond_resched();
	}
check_pending:
	/* we have to make sure we didn't find an extent that has already
	 * been allocated by the map tree or the original allocation
	 */
	btrfs_release_path(root, path);
	BUG_ON(*start < search_start);

368
	if (*start + num_bytes > search_end) {
369 370 371 372 373 374 375 376 377 378 379 380 381
		ret = -ENOSPC;
		goto error;
	}
	/* check for pending inserts here */
	return 0;

error:
	btrfs_release_path(root, path);
	return ret;
}

int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
			   struct btrfs_device *device,
382 383 384
			   u64 chunk_tree, u64 chunk_objectid,
			   u64 chunk_offset,
			   u64 num_bytes, u64 *start)
385 386 387 388 389 390 391 392 393 394 395 396 397
{
	int ret;
	struct btrfs_path *path;
	struct btrfs_root *root = device->dev_root;
	struct btrfs_dev_extent *extent;
	struct extent_buffer *leaf;
	struct btrfs_key key;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	ret = find_free_dev_extent(trans, device, path, num_bytes, start);
398
	if (ret) {
399
		goto err;
400
	}
401 402 403 404 405 406 407 408 409 410 411

	key.objectid = device->devid;
	key.offset = *start;
	key.type = BTRFS_DEV_EXTENT_KEY;
	ret = btrfs_insert_empty_item(trans, root, path, &key,
				      sizeof(*extent));
	BUG_ON(ret);

	leaf = path->nodes[0];
	extent = btrfs_item_ptr(leaf, path->slots[0],
				struct btrfs_dev_extent);
412 413 414 415 416 417 418 419
	btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
	btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
	btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);

	write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
		    (unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent),
		    BTRFS_UUID_SIZE);

420 421 422 423 424 425 426
	btrfs_set_dev_extent_length(leaf, extent, num_bytes);
	btrfs_mark_buffer_dirty(leaf);
err:
	btrfs_free_path(path);
	return ret;
}

427
static int find_next_chunk(struct btrfs_root *root, u64 objectid, u64 *offset)
428 429 430 431
{
	struct btrfs_path *path;
	int ret;
	struct btrfs_key key;
432
	struct btrfs_chunk *chunk;
433 434 435 436 437
	struct btrfs_key found_key;

	path = btrfs_alloc_path();
	BUG_ON(!path);

438
	key.objectid = objectid;
439 440 441 442 443 444 445 446 447 448 449
	key.offset = (u64)-1;
	key.type = BTRFS_CHUNK_ITEM_KEY;

	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0)
		goto error;

	BUG_ON(ret == 0);

	ret = btrfs_previous_item(root, path, 0, BTRFS_CHUNK_ITEM_KEY);
	if (ret) {
450
		*offset = 0;
451 452 453
	} else {
		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
				      path->slots[0]);
454 455 456 457 458 459 460 461
		if (found_key.objectid != objectid)
			*offset = 0;
		else {
			chunk = btrfs_item_ptr(path->nodes[0], path->slots[0],
					       struct btrfs_chunk);
			*offset = found_key.offset +
				btrfs_chunk_length(path->nodes[0], chunk);
		}
462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
	}
	ret = 0;
error:
	btrfs_free_path(path);
	return ret;
}

static int find_next_devid(struct btrfs_root *root, struct btrfs_path *path,
			   u64 *objectid)
{
	int ret;
	struct btrfs_key key;
	struct btrfs_key found_key;

	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
	key.type = BTRFS_DEV_ITEM_KEY;
	key.offset = (u64)-1;

	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0)
		goto error;

	BUG_ON(ret == 0);

	ret = btrfs_previous_item(root, path, BTRFS_DEV_ITEMS_OBJECTID,
				  BTRFS_DEV_ITEM_KEY);
	if (ret) {
		*objectid = 1;
	} else {
		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
				      path->slots[0]);
		*objectid = found_key.offset + 1;
	}
	ret = 0;
error:
	btrfs_release_path(root, path);
	return ret;
}

/*
 * the device information is stored in the chunk root
 * the btrfs_device struct should be fully filled in
 */
int btrfs_add_device(struct btrfs_trans_handle *trans,
		     struct btrfs_root *root,
		     struct btrfs_device *device)
{
	int ret;
	struct btrfs_path *path;
	struct btrfs_dev_item *dev_item;
	struct extent_buffer *leaf;
	struct btrfs_key key;
	unsigned long ptr;
	u64 free_devid;

	root = root->fs_info->chunk_root;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	ret = find_next_devid(root, path, &free_devid);
	if (ret)
		goto out;

	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
	key.type = BTRFS_DEV_ITEM_KEY;
	key.offset = free_devid;

	ret = btrfs_insert_empty_item(trans, root, path, &key,
532
				      sizeof(*dev_item));
533 534 535 536 537 538
	if (ret)
		goto out;

	leaf = path->nodes[0];
	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);

539
	device->devid = free_devid;
540 541 542 543 544 545 546
	btrfs_set_device_id(leaf, dev_item, device->devid);
	btrfs_set_device_type(leaf, dev_item, device->type);
	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
	btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
	btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
547 548 549
	btrfs_set_device_group(leaf, dev_item, 0);
	btrfs_set_device_seek_speed(leaf, dev_item, 0);
	btrfs_set_device_bandwidth(leaf, dev_item, 0);
550 551

	ptr = (unsigned long)btrfs_device_uuid(dev_item);
552
	write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
	btrfs_mark_buffer_dirty(leaf);
	ret = 0;

out:
	btrfs_free_path(path);
	return ret;
}
int btrfs_update_device(struct btrfs_trans_handle *trans,
			struct btrfs_device *device)
{
	int ret;
	struct btrfs_path *path;
	struct btrfs_root *root;
	struct btrfs_dev_item *dev_item;
	struct extent_buffer *leaf;
	struct btrfs_key key;

	root = device->dev_root->fs_info->chunk_root;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
	key.type = BTRFS_DEV_ITEM_KEY;
	key.offset = device->devid;

	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
	if (ret < 0)
		goto out;

	if (ret > 0) {
		ret = -ENOENT;
		goto out;
	}

	leaf = path->nodes[0];
	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);

	btrfs_set_device_id(leaf, dev_item, device->devid);
	btrfs_set_device_type(leaf, dev_item, device->type);
	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
	btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
	btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
	btrfs_mark_buffer_dirty(leaf);

out:
	btrfs_free_path(path);
	return ret;
}

int btrfs_add_system_chunk(struct btrfs_trans_handle *trans,
			   struct btrfs_root *root,
			   struct btrfs_key *key,
			   struct btrfs_chunk *chunk, int item_size)
{
	struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
	struct btrfs_disk_key disk_key;
	u32 array_size;
	u8 *ptr;

	array_size = btrfs_super_sys_array_size(super_copy);
	if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
		return -EFBIG;

	ptr = super_copy->sys_chunk_array + array_size;
	btrfs_cpu_key_to_disk(&disk_key, key);
	memcpy(ptr, &disk_key, sizeof(disk_key));
	ptr += sizeof(disk_key);
	memcpy(ptr, chunk, item_size);
	item_size += sizeof(disk_key);
	btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
	return 0;
}

630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650
static u64 div_factor(u64 num, int factor)
{
	if (factor == 10)
		return num;
	num *= factor;
	do_div(num, 10);
	return num;
}

static u64 chunk_bytes_by_type(u64 type, u64 calc_size, int num_stripes,
			       int sub_stripes)
{
	if (type & (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_DUP))
		return calc_size;
	else if (type & BTRFS_BLOCK_GROUP_RAID10)
		return calc_size * (num_stripes / sub_stripes);
	else
		return calc_size * num_stripes;
}


651 652
int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
		      struct btrfs_root *extent_root, u64 *start,
653
		      u64 *num_bytes, u64 type)
654 655
{
	u64 dev_offset;
656
	struct btrfs_fs_info *info = extent_root->fs_info;
657 658 659 660
	struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
	struct btrfs_stripe *stripes;
	struct btrfs_device *device = NULL;
	struct btrfs_chunk *chunk;
661
	struct list_head private_devs;
662
	struct list_head *dev_list = &extent_root->fs_info->fs_devices->devices;
663
	struct list_head *cur;
664 665 666
	struct extent_map_tree *em_tree;
	struct map_lookup *map;
	struct extent_map *em;
667
	int min_chunk_size = 8 * 1024 * 1024;
668 669
	u64 physical;
	u64 calc_size = 1024 * 1024 * 1024;
670 671
	u64 max_chunk_size = calc_size;
	u64 min_free;
672 673
	u64 avail;
	u64 max_avail = 0;
674
	u64 percent_max;
675
	int num_stripes = 1;
C
Chris Mason 已提交
676
	int sub_stripes = 0;
677
	int looped = 0;
678
	int ret;
679
	int index;
680
	int stripe_len = 64 * 1024;
681 682
	struct btrfs_key key;

683 684
	if (list_empty(dev_list))
		return -ENOSPC;
685

686
	if (type & (BTRFS_BLOCK_GROUP_RAID0))
687
		num_stripes = btrfs_super_num_devices(&info->super_copy);
688 689
	if (type & (BTRFS_BLOCK_GROUP_DUP))
		num_stripes = 2;
690 691 692
	if (type & (BTRFS_BLOCK_GROUP_RAID1)) {
		num_stripes = min_t(u64, 2,
				  btrfs_super_num_devices(&info->super_copy));
693 694
		if (num_stripes < 2)
			return -ENOSPC;
695
	}
C
Chris Mason 已提交
696 697 698 699 700 701 702
	if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
		num_stripes = btrfs_super_num_devices(&info->super_copy);
		if (num_stripes < 4)
			return -ENOSPC;
		num_stripes &= ~(u32)1;
		sub_stripes = 2;
	}
703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729

	if (type & BTRFS_BLOCK_GROUP_DATA) {
		max_chunk_size = 10 * calc_size;
		min_chunk_size = 256 * 1024 * 1024;
	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
		max_chunk_size = 4 * calc_size;
		min_chunk_size = 64 * 1024 * 1024;
	} else {
		min_chunk_size = 32 * 1024 * 1024;
	}

	/* we don't want a chunk larger than 10% of the FS */
	percent_max = div_factor(btrfs_super_total_bytes(&info->super_copy), 1);
	max_chunk_size = min(percent_max, max_chunk_size);

	if (calc_size * num_stripes > max_chunk_size) {
		calc_size = max_chunk_size;
		do_div(calc_size, num_stripes);
		do_div(calc_size, stripe_len);
		calc_size *= stripe_len;
	}
	/* we don't want tiny stripes */
	*num_bytes = chunk_bytes_by_type(type, calc_size,
					 num_stripes, sub_stripes);
	calc_size = max_t(u64, chunk_bytes_by_type(type, min_chunk_size,
		          num_stripes, sub_stripes), calc_size);

730
again:
731 732 733
	do_div(calc_size, stripe_len);
	calc_size *= stripe_len;

734 735 736
	INIT_LIST_HEAD(&private_devs);
	cur = dev_list->next;
	index = 0;
737 738 739

	if (type & BTRFS_BLOCK_GROUP_DUP)
		min_free = calc_size * 2;
740 741
	else
		min_free = calc_size;
742

743 744 745
	/* build a private list of devices we will allocate from */
	while(index < num_stripes) {
		device = list_entry(cur, struct btrfs_device, dev_list);
746

747 748 749 750
		avail = device->total_bytes - device->bytes_used;
		cur = cur->next;
		if (avail > max_avail)
			max_avail = avail;
751
		if (avail >= min_free) {
752 753
			list_move_tail(&device->dev_list, &private_devs);
			index++;
754 755
			if (type & BTRFS_BLOCK_GROUP_DUP)
				index++;
756 757 758 759 760 761 762 763 764 765 766 767 768
		}
		if (cur == dev_list)
			break;
	}
	if (index < num_stripes) {
		list_splice(&private_devs, dev_list);
		if (!looped && max_avail > 0) {
			looped = 1;
			calc_size = max_avail;
			goto again;
		}
		return -ENOSPC;
	}
769

770 771 772 773
	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
	key.type = BTRFS_CHUNK_ITEM_KEY;
	ret = find_next_chunk(chunk_root, BTRFS_FIRST_CHUNK_TREE_OBJECTID,
			      &key.offset);
774 775 776 777 778 779 780
	if (ret)
		return ret;

	chunk = kmalloc(btrfs_chunk_item_size(num_stripes), GFP_NOFS);
	if (!chunk)
		return -ENOMEM;

781 782 783 784 785 786
	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
	if (!map) {
		kfree(chunk);
		return -ENOMEM;
	}

787
	stripes = &chunk->stripe;
788 789
	*num_bytes = chunk_bytes_by_type(type, calc_size,
					 num_stripes, sub_stripes);
790

791

792
	index = 0;
793
printk("new chunk type %Lu start %Lu size %Lu\n", type, key.offset, *num_bytes);
794
	while(index < num_stripes) {
795
		struct btrfs_stripe *stripe;
796 797 798
		BUG_ON(list_empty(&private_devs));
		cur = private_devs.next;
		device = list_entry(cur, struct btrfs_device, dev_list);
799 800 801 802 803

		/* loop over this device again if we're doing a dup group */
		if (!(type & BTRFS_BLOCK_GROUP_DUP) ||
		    (index == num_stripes - 1))
			list_move_tail(&device->dev_list, dev_list);
804 805

		ret = btrfs_alloc_dev_extent(trans, device,
806 807 808
			     info->chunk_root->root_key.objectid,
			     BTRFS_FIRST_CHUNK_TREE_OBJECTID, key.offset,
			     calc_size, &dev_offset);
809
		BUG_ON(ret);
810
printk("alloc chunk start %Lu size %Lu from dev %Lu type %Lu\n", key.offset, calc_size, device->devid, type);
811 812 813 814
		device->bytes_used += calc_size;
		ret = btrfs_update_device(trans, device);
		BUG_ON(ret);

815 816
		map->stripes[index].dev = device;
		map->stripes[index].physical = dev_offset;
817 818 819 820
		stripe = stripes + index;
		btrfs_set_stack_stripe_devid(stripe, device->devid);
		btrfs_set_stack_stripe_offset(stripe, dev_offset);
		memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
821 822 823
		physical = dev_offset;
		index++;
	}
824
	BUG_ON(!list_empty(&private_devs));
825

826 827
	/* key was set above */
	btrfs_set_stack_chunk_length(chunk, *num_bytes);
828
	btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
829
	btrfs_set_stack_chunk_stripe_len(chunk, stripe_len);
830 831
	btrfs_set_stack_chunk_type(chunk, type);
	btrfs_set_stack_chunk_num_stripes(chunk, num_stripes);
832 833
	btrfs_set_stack_chunk_io_align(chunk, stripe_len);
	btrfs_set_stack_chunk_io_width(chunk, stripe_len);
834
	btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
C
Chris Mason 已提交
835
	btrfs_set_stack_chunk_sub_stripes(chunk, sub_stripes);
836 837 838 839 840 841
	map->sector_size = extent_root->sectorsize;
	map->stripe_len = stripe_len;
	map->io_align = stripe_len;
	map->io_width = stripe_len;
	map->type = type;
	map->num_stripes = num_stripes;
C
Chris Mason 已提交
842
	map->sub_stripes = sub_stripes;
843 844 845 846

	ret = btrfs_insert_item(trans, chunk_root, &key, chunk,
				btrfs_chunk_item_size(num_stripes));
	BUG_ON(ret);
847
	*start = key.offset;;
848 849 850 851 852

	em = alloc_extent_map(GFP_NOFS);
	if (!em)
		return -ENOMEM;
	em->bdev = (struct block_device *)map;
853 854
	em->start = key.offset;
	em->len = *num_bytes;
855 856 857 858 859 860 861 862
	em->block_start = 0;

	kfree(chunk);

	em_tree = &extent_root->fs_info->mapping_tree.map_tree;
	spin_lock(&em_tree->lock);
	ret = add_extent_mapping(em_tree, em);
	spin_unlock(&em_tree->lock);
863
	BUG_ON(ret);
864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892
	free_extent_map(em);
	return ret;
}

void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
{
	extent_map_tree_init(&tree->map_tree, GFP_NOFS);
}

void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
{
	struct extent_map *em;

	while(1) {
		spin_lock(&tree->map_tree.lock);
		em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
		if (em)
			remove_extent_mapping(&tree->map_tree, em);
		spin_unlock(&tree->map_tree.lock);
		if (!em)
			break;
		kfree(em->bdev);
		/* once for us */
		free_extent_map(em);
		/* once for the tree */
		free_extent_map(em);
	}
}

893 894 895 896 897 898 899 900 901
int btrfs_num_copies(struct btrfs_mapping_tree *map_tree, u64 logical, u64 len)
{
	struct extent_map *em;
	struct map_lookup *map;
	struct extent_map_tree *em_tree = &map_tree->map_tree;
	int ret;

	spin_lock(&em_tree->lock);
	em = lookup_extent_mapping(em_tree, logical, len);
902
	spin_unlock(&em_tree->lock);
903 904 905 906 907 908
	BUG_ON(!em);

	BUG_ON(em->start > logical || em->start + em->len < logical);
	map = (struct map_lookup *)em->bdev;
	if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
		ret = map->num_stripes;
C
Chris Mason 已提交
909 910
	else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
		ret = map->sub_stripes;
911 912 913 914 915 916
	else
		ret = 1;
	free_extent_map(em);
	return ret;
}

917
int btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
918
		    u64 logical, u64 *length,
919
		    struct btrfs_multi_bio **multi_ret, int mirror_num)
920 921 922 923 924
{
	struct extent_map *em;
	struct map_lookup *map;
	struct extent_map_tree *em_tree = &map_tree->map_tree;
	u64 offset;
925 926
	u64 stripe_offset;
	u64 stripe_nr;
927
	int stripes_allocated = 8;
C
Chris Mason 已提交
928
	int stripes_required = 1;
929
	int stripe_index;
930 931
	int i;
	struct btrfs_multi_bio *multi = NULL;
932

933 934 935 936 937 938 939 940 941 942
	if (multi_ret && !(rw & (1 << BIO_RW))) {
		stripes_allocated = 1;
	}
again:
	if (multi_ret) {
		multi = kzalloc(btrfs_multi_bio_size(stripes_allocated),
				GFP_NOFS);
		if (!multi)
			return -ENOMEM;
	}
943 944 945

	spin_lock(&em_tree->lock);
	em = lookup_extent_mapping(em_tree, logical, *length);
946
	spin_unlock(&em_tree->lock);
947 948 949
	if (!em) {
		printk("unable to find logical %Lu\n", logical);
	}
950 951 952 953 954
	BUG_ON(!em);

	BUG_ON(em->start > logical || em->start + em->len < logical);
	map = (struct map_lookup *)em->bdev;
	offset = logical - em->start;
955

956 957 958
	if (mirror_num > map->num_stripes)
		mirror_num = 0;

959
	/* if our multi bio struct is too small, back off and try again */
C
Chris Mason 已提交
960 961 962 963 964 965 966 967 968 969
	if (rw & (1 << BIO_RW)) {
		if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
				 BTRFS_BLOCK_GROUP_DUP)) {
			stripes_required = map->num_stripes;
		} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
			stripes_required = map->sub_stripes;
		}
	}
	if (multi_ret && rw == WRITE &&
	    stripes_allocated < stripes_required) {
970 971 972 973 974
		stripes_allocated = map->num_stripes;
		free_extent_map(em);
		kfree(multi);
		goto again;
	}
975 976 977 978 979 980 981 982 983 984 985 986 987
	stripe_nr = offset;
	/*
	 * stripe_nr counts the total number of stripes we have to stride
	 * to get to this block
	 */
	do_div(stripe_nr, map->stripe_len);

	stripe_offset = stripe_nr * map->stripe_len;
	BUG_ON(offset < stripe_offset);

	/* stripe_offset is the offset of this block in its stripe*/
	stripe_offset = offset - stripe_offset;

988
	if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 |
C
Chris Mason 已提交
989
			 BTRFS_BLOCK_GROUP_RAID10 |
990 991 992 993 994 995 996 997 998 999 1000 1001
			 BTRFS_BLOCK_GROUP_DUP)) {
		/* we limit the length of each bio to what fits in a stripe */
		*length = min_t(u64, em->len - offset,
			      map->stripe_len - stripe_offset);
	} else {
		*length = em->len - offset;
	}
	if (!multi_ret)
		goto out;

	multi->num_stripes = 1;
	stripe_index = 0;
1002 1003
	if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
		if (rw & (1 << BIO_RW))
1004
			multi->num_stripes = map->num_stripes;
1005 1006 1007
		else if (mirror_num) {
			stripe_index = mirror_num - 1;
		} else {
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
			int i;
			u64 least = (u64)-1;
			struct btrfs_device *cur;

			for (i = 0; i < map->num_stripes; i++) {
				cur = map->stripes[i].dev;
				spin_lock(&cur->io_lock);
				if (cur->total_ios < least) {
					least = cur->total_ios;
					stripe_index = i;
				}
				spin_unlock(&cur->io_lock);
			}
		}
1022
	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
1023 1024
		if (rw & (1 << BIO_RW))
			multi->num_stripes = map->num_stripes;
1025 1026
		else if (mirror_num)
			stripe_index = mirror_num - 1;
C
Chris Mason 已提交
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
		int factor = map->num_stripes / map->sub_stripes;
		int orig_stripe_nr = stripe_nr;

		stripe_index = do_div(stripe_nr, factor);
		stripe_index *= map->sub_stripes;

		if (rw & (1 << BIO_RW))
			multi->num_stripes = map->sub_stripes;
		else if (mirror_num)
			stripe_index += mirror_num - 1;
		else
			stripe_index += orig_stripe_nr % map->sub_stripes;
1040 1041 1042 1043 1044 1045 1046 1047
	} else {
		/*
		 * after this do_div call, stripe_nr is the number of stripes
		 * on this device we have to walk to find the data, and
		 * stripe_index is the number of our device in the stripe array
		 */
		stripe_index = do_div(stripe_nr, map->num_stripes);
	}
1048
	BUG_ON(stripe_index >= map->num_stripes);
1049 1050 1051 1052 1053 1054 1055

	for (i = 0; i < multi->num_stripes; i++) {
		multi->stripes[i].physical =
			map->stripes[stripe_index].physical + stripe_offset +
			stripe_nr * map->stripe_len;
		multi->stripes[i].dev = map->stripes[stripe_index].dev;
		stripe_index++;
1056
	}
1057 1058
	*multi_ret = multi;
out:
1059 1060 1061 1062
	free_extent_map(em);
	return 0;
}

1063 1064 1065 1066 1067 1068 1069
#if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
static void end_bio_multi_stripe(struct bio *bio, int err)
#else
static int end_bio_multi_stripe(struct bio *bio,
				   unsigned int bytes_done, int err)
#endif
{
1070
	struct btrfs_multi_bio *multi = bio->bi_private;
1071 1072 1073 1074 1075 1076 1077 1078

#if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
	if (bio->bi_size)
		return 1;
#endif
	if (err)
		multi->error = err;

1079
	if (atomic_dec_and_test(&multi->stripes_pending)) {
1080 1081 1082 1083 1084 1085 1086
		bio->bi_private = multi->private;
		bio->bi_end_io = multi->end_io;

		if (!err && multi->error)
			err = multi->error;
		kfree(multi);

1087 1088 1089
#if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
		bio_endio(bio, bio->bi_size, err);
#else
1090
		bio_endio(bio, err);
1091
#endif
1092 1093 1094 1095 1096 1097 1098 1099
	} else {
		bio_put(bio);
	}
#if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
	return 0;
#endif
}

1100 1101
int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
		  int mirror_num)
1102 1103 1104
{
	struct btrfs_mapping_tree *map_tree;
	struct btrfs_device *dev;
1105
	struct bio *first_bio = bio;
1106 1107 1108 1109
	u64 logical = bio->bi_sector << 9;
	u64 length = 0;
	u64 map_length;
	struct bio_vec *bvec;
1110
	struct btrfs_multi_bio *multi = NULL;
1111 1112
	int i;
	int ret;
1113 1114
	int dev_nr = 0;
	int total_devs = 1;
1115 1116 1117 1118

	bio_for_each_segment(bvec, bio, i) {
		length += bvec->bv_len;
	}
1119

1120 1121
	map_tree = &root->fs_info->mapping_tree;
	map_length = length;
1122

1123 1124
	ret = btrfs_map_block(map_tree, rw, logical, &map_length, &multi,
			      mirror_num);
1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
	BUG_ON(ret);

	total_devs = multi->num_stripes;
	if (map_length < length) {
		printk("mapping failed logical %Lu bio len %Lu "
		       "len %Lu\n", logical, length, map_length);
		BUG();
	}
	multi->end_io = first_bio->bi_end_io;
	multi->private = first_bio->bi_private;
	atomic_set(&multi->stripes_pending, multi->num_stripes);

1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
	while(dev_nr < total_devs) {
		if (total_devs > 1) {
			if (dev_nr < total_devs - 1) {
				bio = bio_clone(first_bio, GFP_NOFS);
				BUG_ON(!bio);
			} else {
				bio = first_bio;
			}
			bio->bi_private = multi;
			bio->bi_end_io = end_bio_multi_stripe;
		}
1148 1149
		bio->bi_sector = multi->stripes[dev_nr].physical >> 9;
		dev = multi->stripes[dev_nr].dev;
1150 1151 1152 1153 1154 1155 1156
		bio->bi_bdev = dev->bdev;
		spin_lock(&dev->io_lock);
		dev->total_ios++;
		spin_unlock(&dev->io_lock);
		submit_bio(rw, bio);
		dev_nr++;
	}
1157 1158
	if (total_devs == 1)
		kfree(multi);
1159 1160 1161
	return 0;
}

1162 1163
struct btrfs_device *btrfs_find_device(struct btrfs_root *root, u64 devid,
				       u8 *uuid)
1164
{
1165
	struct list_head *head = &root->fs_info->fs_devices->devices;
1166

1167
	return __find_device(head, devid, uuid);
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
}

static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
			  struct extent_buffer *leaf,
			  struct btrfs_chunk *chunk)
{
	struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
	struct map_lookup *map;
	struct extent_map *em;
	u64 logical;
	u64 length;
	u64 devid;
1180
	u8 uuid[BTRFS_UUID_SIZE];
1181
	int num_stripes;
1182
	int ret;
1183
	int i;
1184

1185 1186
	logical = key->offset;
	length = btrfs_chunk_length(leaf, chunk);
1187 1188
	spin_lock(&map_tree->map_tree.lock);
	em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
1189
	spin_unlock(&map_tree->map_tree.lock);
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205

	/* already mapped? */
	if (em && em->start <= logical && em->start + em->len > logical) {
		free_extent_map(em);
		return 0;
	} else if (em) {
		free_extent_map(em);
	}

	map = kzalloc(sizeof(*map), GFP_NOFS);
	if (!map)
		return -ENOMEM;

	em = alloc_extent_map(GFP_NOFS);
	if (!em)
		return -ENOMEM;
1206 1207
	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
	if (!map) {
		free_extent_map(em);
		return -ENOMEM;
	}

	em->bdev = (struct block_device *)map;
	em->start = logical;
	em->len = length;
	em->block_start = 0;

1218 1219 1220 1221 1222 1223
	map->num_stripes = num_stripes;
	map->io_width = btrfs_chunk_io_width(leaf, chunk);
	map->io_align = btrfs_chunk_io_align(leaf, chunk);
	map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
	map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
	map->type = btrfs_chunk_type(leaf, chunk);
C
Chris Mason 已提交
1224
	map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
1225 1226 1227 1228
	for (i = 0; i < num_stripes; i++) {
		map->stripes[i].physical =
			btrfs_stripe_offset_nr(leaf, chunk, i);
		devid = btrfs_stripe_devid_nr(leaf, chunk, i);
1229 1230 1231 1232
		read_extent_buffer(leaf, uuid, (unsigned long)
				   btrfs_stripe_dev_uuid_nr(chunk, i),
				   BTRFS_UUID_SIZE);
		map->stripes[i].dev = btrfs_find_device(root, devid, uuid);
1233 1234 1235 1236 1237
		if (!map->stripes[i].dev) {
			kfree(map);
			free_extent_map(em);
			return -EIO;
		}
1238 1239 1240 1241 1242
	}

	spin_lock(&map_tree->map_tree.lock);
	ret = add_extent_mapping(&map_tree->map_tree, em);
	spin_unlock(&map_tree->map_tree.lock);
1243
	BUG_ON(ret);
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
	free_extent_map(em);

	return 0;
}

static int fill_device_from_item(struct extent_buffer *leaf,
				 struct btrfs_dev_item *dev_item,
				 struct btrfs_device *device)
{
	unsigned long ptr;

	device->devid = btrfs_device_id(leaf, dev_item);
	device->total_bytes = btrfs_device_total_bytes(leaf, dev_item);
	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
	device->type = btrfs_device_type(leaf, dev_item);
	device->io_align = btrfs_device_io_align(leaf, dev_item);
	device->io_width = btrfs_device_io_width(leaf, dev_item);
	device->sector_size = btrfs_device_sector_size(leaf, dev_item);

	ptr = (unsigned long)btrfs_device_uuid(dev_item);
1264
	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1265 1266 1267 1268

	return 0;
}

1269
static int read_one_dev(struct btrfs_root *root,
1270 1271 1272 1273 1274 1275
			struct extent_buffer *leaf,
			struct btrfs_dev_item *dev_item)
{
	struct btrfs_device *device;
	u64 devid;
	int ret;
1276 1277
	u8 dev_uuid[BTRFS_UUID_SIZE];

1278
	devid = btrfs_device_id(leaf, dev_item);
1279 1280 1281 1282
	read_extent_buffer(leaf, dev_uuid,
			   (unsigned long)btrfs_device_uuid(dev_item),
			   BTRFS_UUID_SIZE);
	device = btrfs_find_device(root, devid, dev_uuid);
1283
	if (!device) {
1284
		printk("warning devid %Lu not found already\n", devid);
1285
		device = kzalloc(sizeof(*device), GFP_NOFS);
1286 1287
		if (!device)
			return -ENOMEM;
1288 1289
		list_add(&device->dev_list,
			 &root->fs_info->fs_devices->devices);
1290
		device->barriers = 1;
1291
		spin_lock_init(&device->io_lock);
1292
	}
1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305

	fill_device_from_item(leaf, dev_item, device);
	device->dev_root = root->fs_info->dev_root;
	ret = 0;
#if 0
	ret = btrfs_open_device(device);
	if (ret) {
		kfree(device);
	}
#endif
	return ret;
}

1306 1307 1308 1309 1310 1311 1312 1313 1314
int btrfs_read_super_device(struct btrfs_root *root, struct extent_buffer *buf)
{
	struct btrfs_dev_item *dev_item;

	dev_item = (struct btrfs_dev_item *)offsetof(struct btrfs_super_block,
						     dev_item);
	return read_one_dev(root, buf, dev_item);
}

1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
int btrfs_read_sys_array(struct btrfs_root *root)
{
	struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
	struct extent_buffer *sb = root->fs_info->sb_buffer;
	struct btrfs_disk_key *disk_key;
	struct btrfs_chunk *chunk;
	struct btrfs_key key;
	u32 num_stripes;
	u32 array_size;
	u32 len = 0;
	u8 *ptr;
	unsigned long sb_ptr;
	u32 cur;
	int ret;

	array_size = btrfs_super_sys_array_size(super_copy);

	/*
	 * we do this loop twice, once for the device items and
	 * once for all of the chunks.  This way there are device
	 * structs filled in for every chunk
	 */
	ptr = super_copy->sys_chunk_array;
	sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array);
	cur = 0;

	while (cur < array_size) {
		disk_key = (struct btrfs_disk_key *)ptr;
		btrfs_disk_key_to_cpu(&key, disk_key);

		len = sizeof(*disk_key);
		ptr += len;
		sb_ptr += len;
		cur += len;

1350
		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
1351
			chunk = (struct btrfs_chunk *)sb_ptr;
1352 1353
			ret = read_one_chunk(root, &key, sb, chunk);
			BUG_ON(ret);
1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
			num_stripes = btrfs_chunk_num_stripes(sb, chunk);
			len = btrfs_chunk_item_size(num_stripes);
		} else {
			BUG();
		}
		ptr += len;
		sb_ptr += len;
		cur += len;
	}
	return 0;
}

int btrfs_read_chunk_tree(struct btrfs_root *root)
{
	struct btrfs_path *path;
	struct extent_buffer *leaf;
	struct btrfs_key key;
	struct btrfs_key found_key;
	int ret;
	int slot;

	root = root->fs_info->chunk_root;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	/* first we search for all of the device items, and then we
	 * read in all of the chunk items.  This way we can create chunk
	 * mappings that reference all of the devices that are afound
	 */
	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
	key.offset = 0;
	key.type = 0;
again:
	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	while(1) {
		leaf = path->nodes[0];
		slot = path->slots[0];
		if (slot >= btrfs_header_nritems(leaf)) {
			ret = btrfs_next_leaf(root, path);
			if (ret == 0)
				continue;
			if (ret < 0)
				goto error;
			break;
		}
		btrfs_item_key_to_cpu(leaf, &found_key, slot);
		if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
			if (found_key.objectid != BTRFS_DEV_ITEMS_OBJECTID)
				break;
			if (found_key.type == BTRFS_DEV_ITEM_KEY) {
				struct btrfs_dev_item *dev_item;
				dev_item = btrfs_item_ptr(leaf, slot,
						  struct btrfs_dev_item);
1409
				ret = read_one_dev(root, leaf, dev_item);
1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430
				BUG_ON(ret);
			}
		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
			struct btrfs_chunk *chunk;
			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
			ret = read_one_chunk(root, &found_key, leaf, chunk);
		}
		path->slots[0]++;
	}
	if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
		key.objectid = 0;
		btrfs_release_path(root, path);
		goto again;
	}

	btrfs_free_path(path);
	ret = 0;
error:
	return ret;
}