volumes.c 56.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/*
 * Copyright (C) 2007 Oracle.  All rights reserved.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public
 * License v2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with this program; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 021110-1307, USA.
 */
#include <linux/sched.h>
#include <linux/bio.h>
20
#include <linux/buffer_head.h>
21
#include <linux/blkdev.h>
22
#include <linux/random.h>
23
#include <asm/div64.h>
24 25 26 27 28 29 30
#include "ctree.h"
#include "extent_map.h"
#include "disk-io.h"
#include "transaction.h"
#include "print-tree.h"
#include "volumes.h"

31 32 33 34 35 36 37
struct map_lookup {
	u64 type;
	int io_align;
	int io_width;
	int stripe_len;
	int sector_size;
	int num_stripes;
C
Chris Mason 已提交
38
	int sub_stripes;
39
	struct btrfs_bio_stripe stripes[];
40 41 42
};

#define map_lookup_size(n) (sizeof(struct map_lookup) + \
43
			    (sizeof(struct btrfs_bio_stripe) * (n)))
44

45 46 47
static DEFINE_MUTEX(uuid_mutex);
static LIST_HEAD(fs_uuids);

48 49 50 51 52 53 54 55 56 57
void btrfs_lock_volumes(void)
{
	mutex_lock(&uuid_mutex);
}

void btrfs_unlock_volumes(void)
{
	mutex_unlock(&uuid_mutex);
}

58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
int btrfs_cleanup_fs_uuids(void)
{
	struct btrfs_fs_devices *fs_devices;
	struct list_head *uuid_cur;
	struct list_head *devices_cur;
	struct btrfs_device *dev;

	list_for_each(uuid_cur, &fs_uuids) {
		fs_devices = list_entry(uuid_cur, struct btrfs_fs_devices,
					list);
		while(!list_empty(&fs_devices->devices)) {
			devices_cur = fs_devices->devices.next;
			dev = list_entry(devices_cur, struct btrfs_device,
					 dev_list);
			if (dev->bdev) {
				close_bdev_excl(dev->bdev);
			}
			list_del(&dev->dev_list);
76
			kfree(dev->name);
77 78 79 80 81 82
			kfree(dev);
		}
	}
	return 0;
}

83 84
static struct btrfs_device *__find_device(struct list_head *head, u64 devid,
					  u8 *uuid)
85 86 87 88 89 90
{
	struct btrfs_device *dev;
	struct list_head *cur;

	list_for_each(cur, head) {
		dev = list_entry(cur, struct btrfs_device, dev_list);
91
		if (dev->devid == devid &&
92
		    (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
93
			return dev;
94
		}
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
	}
	return NULL;
}

static struct btrfs_fs_devices *find_fsid(u8 *fsid)
{
	struct list_head *cur;
	struct btrfs_fs_devices *fs_devices;

	list_for_each(cur, &fs_uuids) {
		fs_devices = list_entry(cur, struct btrfs_fs_devices, list);
		if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
			return fs_devices;
	}
	return NULL;
}

static int device_list_add(const char *path,
			   struct btrfs_super_block *disk_super,
			   u64 devid, struct btrfs_fs_devices **fs_devices_ret)
{
	struct btrfs_device *device;
	struct btrfs_fs_devices *fs_devices;
	u64 found_transid = btrfs_super_generation(disk_super);

	fs_devices = find_fsid(disk_super->fsid);
	if (!fs_devices) {
		fs_devices = kmalloc(sizeof(*fs_devices), GFP_NOFS);
		if (!fs_devices)
			return -ENOMEM;
		INIT_LIST_HEAD(&fs_devices->devices);
126
		INIT_LIST_HEAD(&fs_devices->alloc_list);
127 128 129 130 131 132 133
		list_add(&fs_devices->list, &fs_uuids);
		memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
		fs_devices->latest_devid = devid;
		fs_devices->latest_trans = found_transid;
		fs_devices->num_devices = 0;
		device = NULL;
	} else {
134 135
		device = __find_device(&fs_devices->devices, devid,
				       disk_super->dev_item.uuid);
136 137 138 139 140 141 142 143
	}
	if (!device) {
		device = kzalloc(sizeof(*device), GFP_NOFS);
		if (!device) {
			/* we can safely leave the fs_devices entry around */
			return -ENOMEM;
		}
		device->devid = devid;
144 145
		memcpy(device->uuid, disk_super->dev_item.uuid,
		       BTRFS_UUID_SIZE);
146
		device->barriers = 1;
147
		spin_lock_init(&device->io_lock);
148 149 150 151 152 153
		device->name = kstrdup(path, GFP_NOFS);
		if (!device->name) {
			kfree(device);
			return -ENOMEM;
		}
		list_add(&device->dev_list, &fs_devices->devices);
154
		list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
155 156 157 158 159 160 161 162 163 164 165
		fs_devices->num_devices++;
	}

	if (found_transid > fs_devices->latest_trans) {
		fs_devices->latest_devid = devid;
		fs_devices->latest_trans = found_transid;
	}
	*fs_devices_ret = fs_devices;
	return 0;
}

166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
int btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices)
{
	struct list_head *head = &fs_devices->devices;
	struct list_head *cur;
	struct btrfs_device *device;

	mutex_lock(&uuid_mutex);
again:
	list_for_each(cur, head) {
		device = list_entry(cur, struct btrfs_device, dev_list);
		if (!device->in_fs_metadata) {
printk("getting rid of extra dev %s\n", device->name);
			if (device->bdev)
				close_bdev_excl(device->bdev);
			list_del(&device->dev_list);
			list_del(&device->dev_alloc_list);
			fs_devices->num_devices--;
			kfree(device->name);
			kfree(device);
			goto again;
		}
	}
	mutex_unlock(&uuid_mutex);
	return 0;
}
191 192 193 194 195 196 197 198 199 200 201 202 203
int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
{
	struct list_head *head = &fs_devices->devices;
	struct list_head *cur;
	struct btrfs_device *device;

	mutex_lock(&uuid_mutex);
	list_for_each(cur, head) {
		device = list_entry(cur, struct btrfs_device, dev_list);
		if (device->bdev) {
			close_bdev_excl(device->bdev);
		}
		device->bdev = NULL;
204
		device->in_fs_metadata = 0;
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
	}
	mutex_unlock(&uuid_mutex);
	return 0;
}

int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
		       int flags, void *holder)
{
	struct block_device *bdev;
	struct list_head *head = &fs_devices->devices;
	struct list_head *cur;
	struct btrfs_device *device;
	int ret;

	mutex_lock(&uuid_mutex);
	list_for_each(cur, head) {
		device = list_entry(cur, struct btrfs_device, dev_list);
222 223 224
		if (device->bdev)
			continue;

225 226 227
		if (!device->name)
			continue;

228
		bdev = open_bdev_excl(device->name, flags, holder);
229

230 231 232 233 234
		if (IS_ERR(bdev)) {
			printk("open %s failed\n", device->name);
			ret = PTR_ERR(bdev);
			goto fail;
		}
235
		set_blocksize(bdev, 4096);
236 237 238
		if (device->devid == fs_devices->latest_devid)
			fs_devices->latest_bdev = bdev;
		device->bdev = bdev;
239
		device->in_fs_metadata = 0;
240

241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
	}
	mutex_unlock(&uuid_mutex);
	return 0;
fail:
	mutex_unlock(&uuid_mutex);
	btrfs_close_devices(fs_devices);
	return ret;
}

int btrfs_scan_one_device(const char *path, int flags, void *holder,
			  struct btrfs_fs_devices **fs_devices_ret)
{
	struct btrfs_super_block *disk_super;
	struct block_device *bdev;
	struct buffer_head *bh;
	int ret;
	u64 devid;
258
	u64 transid;
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279

	mutex_lock(&uuid_mutex);

	bdev = open_bdev_excl(path, flags, holder);

	if (IS_ERR(bdev)) {
		ret = PTR_ERR(bdev);
		goto error;
	}

	ret = set_blocksize(bdev, 4096);
	if (ret)
		goto error_close;
	bh = __bread(bdev, BTRFS_SUPER_INFO_OFFSET / 4096, 4096);
	if (!bh) {
		ret = -EIO;
		goto error_close;
	}
	disk_super = (struct btrfs_super_block *)bh->b_data;
	if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
	    sizeof(disk_super->magic))) {
280
		ret = -EINVAL;
281 282 283
		goto error_brelse;
	}
	devid = le64_to_cpu(disk_super->dev_item.devid);
284
	transid = btrfs_super_generation(disk_super);
285 286 287 288 289 290 291 292 293
	if (disk_super->label[0])
		printk("device label %s ", disk_super->label);
	else {
		/* FIXME, make a readl uuid parser */
		printk("device fsid %llx-%llx ",
		       *(unsigned long long *)disk_super->fsid,
		       *(unsigned long long *)(disk_super->fsid + 8));
	}
	printk("devid %Lu transid %Lu %s\n", devid, transid, path);
294 295 296 297 298 299 300 301 302 303
	ret = device_list_add(path, disk_super, devid, fs_devices_ret);

error_brelse:
	brelse(bh);
error_close:
	close_bdev_excl(bdev);
error:
	mutex_unlock(&uuid_mutex);
	return ret;
}
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331

/*
 * this uses a pretty simple search, the expectation is that it is
 * called very infrequently and that a given device has a small number
 * of extents
 */
static int find_free_dev_extent(struct btrfs_trans_handle *trans,
				struct btrfs_device *device,
				struct btrfs_path *path,
				u64 num_bytes, u64 *start)
{
	struct btrfs_key key;
	struct btrfs_root *root = device->dev_root;
	struct btrfs_dev_extent *dev_extent = NULL;
	u64 hole_size = 0;
	u64 last_byte = 0;
	u64 search_start = 0;
	u64 search_end = device->total_bytes;
	int ret;
	int slot = 0;
	int start_found;
	struct extent_buffer *l;

	start_found = 0;
	path->reada = 2;

	/* FIXME use last free of some kind */

332 333 334 335
	/* we don't want to overwrite the superblock on the drive,
	 * so we make sure to start at an offset of at least 1MB
	 */
	search_start = max((u64)1024 * 1024, search_start);
336 337 338 339

	if (root->fs_info->alloc_start + num_bytes <= device->total_bytes)
		search_start = max(root->fs_info->alloc_start, search_start);

340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
	key.objectid = device->devid;
	key.offset = search_start;
	key.type = BTRFS_DEV_EXTENT_KEY;
	ret = btrfs_search_slot(trans, root, &key, path, 0, 0);
	if (ret < 0)
		goto error;
	ret = btrfs_previous_item(root, path, 0, key.type);
	if (ret < 0)
		goto error;
	l = path->nodes[0];
	btrfs_item_key_to_cpu(l, &key, path->slots[0]);
	while (1) {
		l = path->nodes[0];
		slot = path->slots[0];
		if (slot >= btrfs_header_nritems(l)) {
			ret = btrfs_next_leaf(root, path);
			if (ret == 0)
				continue;
			if (ret < 0)
				goto error;
no_more_items:
			if (!start_found) {
				if (search_start >= search_end) {
					ret = -ENOSPC;
					goto error;
				}
				*start = search_start;
				start_found = 1;
				goto check_pending;
			}
			*start = last_byte > search_start ?
				last_byte : search_start;
			if (search_end <= *start) {
				ret = -ENOSPC;
				goto error;
			}
			goto check_pending;
		}
		btrfs_item_key_to_cpu(l, &key, slot);

		if (key.objectid < device->devid)
			goto next;

		if (key.objectid > device->devid)
			goto no_more_items;

		if (key.offset >= search_start && key.offset > last_byte &&
		    start_found) {
			if (last_byte < search_start)
				last_byte = search_start;
			hole_size = key.offset - last_byte;
			if (key.offset > last_byte &&
			    hole_size >= num_bytes) {
				*start = last_byte;
				goto check_pending;
			}
		}
		if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY) {
			goto next;
		}

		start_found = 1;
		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
		last_byte = key.offset + btrfs_dev_extent_length(l, dev_extent);
next:
		path->slots[0]++;
		cond_resched();
	}
check_pending:
	/* we have to make sure we didn't find an extent that has already
	 * been allocated by the map tree or the original allocation
	 */
	btrfs_release_path(root, path);
	BUG_ON(*start < search_start);

415
	if (*start + num_bytes > search_end) {
416 417 418 419 420 421 422 423 424 425 426
		ret = -ENOSPC;
		goto error;
	}
	/* check for pending inserts here */
	return 0;

error:
	btrfs_release_path(root, path);
	return ret;
}

427 428 429 430 431 432 433 434
int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
			  struct btrfs_device *device,
			  u64 start)
{
	int ret;
	struct btrfs_path *path;
	struct btrfs_root *root = device->dev_root;
	struct btrfs_key key;
435 436 437
	struct btrfs_key found_key;
	struct extent_buffer *leaf = NULL;
	struct btrfs_dev_extent *extent = NULL;
438 439 440 441 442 443 444 445 446 447

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	key.objectid = device->devid;
	key.offset = start;
	key.type = BTRFS_DEV_EXTENT_KEY;

	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
	if (ret > 0) {
		ret = btrfs_previous_item(root, path, key.objectid,
					  BTRFS_DEV_EXTENT_KEY);
		BUG_ON(ret);
		leaf = path->nodes[0];
		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
		extent = btrfs_item_ptr(leaf, path->slots[0],
					struct btrfs_dev_extent);
		BUG_ON(found_key.offset > start || found_key.offset +
		       btrfs_dev_extent_length(leaf, extent) < start);
		ret = 0;
	} else if (ret == 0) {
		leaf = path->nodes[0];
		extent = btrfs_item_ptr(leaf, path->slots[0],
					struct btrfs_dev_extent);
	}
464 465
	BUG_ON(ret);

466 467
	if (device->bytes_used > 0)
		device->bytes_used -= btrfs_dev_extent_length(leaf, extent);
468 469 470 471 472 473 474
	ret = btrfs_del_item(trans, root, path);
	BUG_ON(ret);

	btrfs_free_path(path);
	return ret;
}

475 476
int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
			   struct btrfs_device *device,
477 478 479
			   u64 chunk_tree, u64 chunk_objectid,
			   u64 chunk_offset,
			   u64 num_bytes, u64 *start)
480 481 482 483 484 485 486 487
{
	int ret;
	struct btrfs_path *path;
	struct btrfs_root *root = device->dev_root;
	struct btrfs_dev_extent *extent;
	struct extent_buffer *leaf;
	struct btrfs_key key;

488
	WARN_ON(!device->in_fs_metadata);
489 490 491 492 493
	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	ret = find_free_dev_extent(trans, device, path, num_bytes, start);
494
	if (ret) {
495
		goto err;
496
	}
497 498 499 500 501 502 503 504 505 506 507

	key.objectid = device->devid;
	key.offset = *start;
	key.type = BTRFS_DEV_EXTENT_KEY;
	ret = btrfs_insert_empty_item(trans, root, path, &key,
				      sizeof(*extent));
	BUG_ON(ret);

	leaf = path->nodes[0];
	extent = btrfs_item_ptr(leaf, path->slots[0],
				struct btrfs_dev_extent);
508 509 510 511 512 513 514 515
	btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
	btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
	btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);

	write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
		    (unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent),
		    BTRFS_UUID_SIZE);

516 517 518 519 520 521 522
	btrfs_set_dev_extent_length(leaf, extent, num_bytes);
	btrfs_mark_buffer_dirty(leaf);
err:
	btrfs_free_path(path);
	return ret;
}

523
static int find_next_chunk(struct btrfs_root *root, u64 objectid, u64 *offset)
524 525 526 527
{
	struct btrfs_path *path;
	int ret;
	struct btrfs_key key;
528
	struct btrfs_chunk *chunk;
529 530 531 532 533
	struct btrfs_key found_key;

	path = btrfs_alloc_path();
	BUG_ON(!path);

534
	key.objectid = objectid;
535 536 537 538 539 540 541 542 543 544 545
	key.offset = (u64)-1;
	key.type = BTRFS_CHUNK_ITEM_KEY;

	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0)
		goto error;

	BUG_ON(ret == 0);

	ret = btrfs_previous_item(root, path, 0, BTRFS_CHUNK_ITEM_KEY);
	if (ret) {
546
		*offset = 0;
547 548 549
	} else {
		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
				      path->slots[0]);
550 551 552 553 554 555 556 557
		if (found_key.objectid != objectid)
			*offset = 0;
		else {
			chunk = btrfs_item_ptr(path->nodes[0], path->slots[0],
					       struct btrfs_chunk);
			*offset = found_key.offset +
				btrfs_chunk_length(path->nodes[0], chunk);
		}
558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610
	}
	ret = 0;
error:
	btrfs_free_path(path);
	return ret;
}

static int find_next_devid(struct btrfs_root *root, struct btrfs_path *path,
			   u64 *objectid)
{
	int ret;
	struct btrfs_key key;
	struct btrfs_key found_key;

	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
	key.type = BTRFS_DEV_ITEM_KEY;
	key.offset = (u64)-1;

	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0)
		goto error;

	BUG_ON(ret == 0);

	ret = btrfs_previous_item(root, path, BTRFS_DEV_ITEMS_OBJECTID,
				  BTRFS_DEV_ITEM_KEY);
	if (ret) {
		*objectid = 1;
	} else {
		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
				      path->slots[0]);
		*objectid = found_key.offset + 1;
	}
	ret = 0;
error:
	btrfs_release_path(root, path);
	return ret;
}

/*
 * the device information is stored in the chunk root
 * the btrfs_device struct should be fully filled in
 */
int btrfs_add_device(struct btrfs_trans_handle *trans,
		     struct btrfs_root *root,
		     struct btrfs_device *device)
{
	int ret;
	struct btrfs_path *path;
	struct btrfs_dev_item *dev_item;
	struct extent_buffer *leaf;
	struct btrfs_key key;
	unsigned long ptr;
611
	u64 free_devid = 0;
612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627

	root = root->fs_info->chunk_root;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	ret = find_next_devid(root, path, &free_devid);
	if (ret)
		goto out;

	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
	key.type = BTRFS_DEV_ITEM_KEY;
	key.offset = free_devid;

	ret = btrfs_insert_empty_item(trans, root, path, &key,
628
				      sizeof(*dev_item));
629 630 631 632 633 634
	if (ret)
		goto out;

	leaf = path->nodes[0];
	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);

635
	device->devid = free_devid;
636 637 638 639 640 641 642
	btrfs_set_device_id(leaf, dev_item, device->devid);
	btrfs_set_device_type(leaf, dev_item, device->type);
	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
	btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
	btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
643 644 645
	btrfs_set_device_group(leaf, dev_item, 0);
	btrfs_set_device_seek_speed(leaf, dev_item, 0);
	btrfs_set_device_bandwidth(leaf, dev_item, 0);
646 647

	ptr = (unsigned long)btrfs_device_uuid(dev_item);
648
	write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
649 650 651 652 653 654 655
	btrfs_mark_buffer_dirty(leaf);
	ret = 0;

out:
	btrfs_free_path(path);
	return ret;
}
656

657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724
static int btrfs_rm_dev_item(struct btrfs_root *root,
			     struct btrfs_device *device)
{
	int ret;
	struct btrfs_path *path;
	struct block_device *bdev = device->bdev;
	struct btrfs_device *next_dev;
	struct btrfs_key key;
	u64 total_bytes;
	struct btrfs_fs_devices *fs_devices;
	struct btrfs_trans_handle *trans;

	root = root->fs_info->chunk_root;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	trans = btrfs_start_transaction(root, 1);
	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
	key.type = BTRFS_DEV_ITEM_KEY;
	key.offset = device->devid;

	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
	if (ret < 0)
		goto out;

	if (ret > 0) {
		ret = -ENOENT;
		goto out;
	}

	ret = btrfs_del_item(trans, root, path);
	if (ret)
		goto out;

	/*
	 * at this point, the device is zero sized.  We want to
	 * remove it from the devices list and zero out the old super
	 */
	list_del_init(&device->dev_list);
	list_del_init(&device->dev_alloc_list);
	fs_devices = root->fs_info->fs_devices;

	next_dev = list_entry(fs_devices->devices.next, struct btrfs_device,
			      dev_list);
	if (bdev == root->fs_info->sb->s_bdev)
		root->fs_info->sb->s_bdev = next_dev->bdev;
	if (bdev == fs_devices->latest_bdev)
		fs_devices->latest_bdev = next_dev->bdev;

	total_bytes = btrfs_super_total_bytes(&root->fs_info->super_copy);
	btrfs_set_super_total_bytes(&root->fs_info->super_copy,
				    total_bytes - device->total_bytes);

	total_bytes = btrfs_super_num_devices(&root->fs_info->super_copy);
	btrfs_set_super_num_devices(&root->fs_info->super_copy,
				    total_bytes - 1);
out:
	btrfs_free_path(path);
	btrfs_commit_transaction(trans, root);
	return ret;
}

int btrfs_rm_device(struct btrfs_root *root, char *device_path)
{
	struct btrfs_device *device;
	struct block_device *bdev;
725
	struct buffer_head *bh = NULL;
726 727 728 729 730 731 732 733 734 735 736 737 738
	struct btrfs_super_block *disk_super;
	u64 all_avail;
	u64 devid;
	int ret = 0;

	mutex_lock(&root->fs_info->fs_mutex);
	mutex_lock(&uuid_mutex);

	all_avail = root->fs_info->avail_data_alloc_bits |
		root->fs_info->avail_system_alloc_bits |
		root->fs_info->avail_metadata_alloc_bits;

	if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) &&
739
	    btrfs_super_num_devices(&root->fs_info->super_copy) <= 4) {
740 741 742 743 744 745
		printk("btrfs: unable to go below four devices on raid10\n");
		ret = -EINVAL;
		goto out;
	}

	if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) &&
746
	    btrfs_super_num_devices(&root->fs_info->super_copy) <= 2) {
747 748 749 750 751
		printk("btrfs: unable to go below two devices on raid1\n");
		ret = -EINVAL;
		goto out;
	}

752 753 754 755
	if (strcmp(device_path, "missing") == 0) {
		struct list_head *cur;
		struct list_head *devices;
		struct btrfs_device *tmp;
756

757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780
		device = NULL;
		devices = &root->fs_info->fs_devices->devices;
		list_for_each(cur, devices) {
			tmp = list_entry(cur, struct btrfs_device, dev_list);
			if (tmp->in_fs_metadata && !tmp->bdev) {
				device = tmp;
				break;
			}
		}
		bdev = NULL;
		bh = NULL;
		disk_super = NULL;
		if (!device) {
			printk("btrfs: no missing devices found to remove\n");
			goto out;
		}

	} else {
		bdev = open_bdev_excl(device_path, 0,
				      root->fs_info->bdev_holder);
		if (IS_ERR(bdev)) {
			ret = PTR_ERR(bdev);
			goto out;
		}
781

782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805
		bh = __bread(bdev, BTRFS_SUPER_INFO_OFFSET / 4096, 4096);
		if (!bh) {
			ret = -EIO;
			goto error_close;
		}
		disk_super = (struct btrfs_super_block *)bh->b_data;
		if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
		    sizeof(disk_super->magic))) {
			ret = -ENOENT;
			goto error_brelse;
		}
		if (memcmp(disk_super->fsid, root->fs_info->fsid,
			   BTRFS_FSID_SIZE)) {
			ret = -ENOENT;
			goto error_brelse;
		}
		devid = le64_to_cpu(disk_super->dev_item.devid);
		device = btrfs_find_device(root, devid, NULL);
		if (!device) {
			ret = -ENOENT;
			goto error_brelse;
		}

	}
806 807 808 809 810 811 812 813 814 815 816
	root->fs_info->fs_devices->num_devices--;

	ret = btrfs_shrink_device(device, 0);
	if (ret)
		goto error_brelse;


	ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
	if (ret)
		goto error_brelse;

817 818 819 820 821 822 823
	if (bh) {
		/* make sure this device isn't detected as part of
		 * the FS anymore
		 */
		memset(&disk_super->magic, 0, sizeof(disk_super->magic));
		set_buffer_dirty(bh);
		sync_dirty_buffer(bh);
824

825 826
		brelse(bh);
	}
827

828 829 830 831 832 833 834 835
	if (device->bdev) {
		/* one close for the device struct or super_block */
		close_bdev_excl(device->bdev);
	}
	if (bdev) {
		/* one close for us */
		close_bdev_excl(bdev);
	}
836 837 838 839 840 841 842 843
	kfree(device->name);
	kfree(device);
	ret = 0;
	goto out;

error_brelse:
	brelse(bh);
error_close:
844 845
	if (bdev)
		close_bdev_excl(bdev);
846 847 848 849 850 851
out:
	mutex_unlock(&uuid_mutex);
	mutex_unlock(&root->fs_info->fs_mutex);
	return ret;
}

852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898
int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
{
	struct btrfs_trans_handle *trans;
	struct btrfs_device *device;
	struct block_device *bdev;
	struct list_head *cur;
	struct list_head *devices;
	u64 total_bytes;
	int ret = 0;


	bdev = open_bdev_excl(device_path, 0, root->fs_info->bdev_holder);
	if (!bdev) {
		return -EIO;
	}
	mutex_lock(&root->fs_info->fs_mutex);
	trans = btrfs_start_transaction(root, 1);
	devices = &root->fs_info->fs_devices->devices;
	list_for_each(cur, devices) {
		device = list_entry(cur, struct btrfs_device, dev_list);
		if (device->bdev == bdev) {
			ret = -EEXIST;
			goto out;
		}
	}

	device = kzalloc(sizeof(*device), GFP_NOFS);
	if (!device) {
		/* we can safely leave the fs_devices entry around */
		ret = -ENOMEM;
		goto out_close_bdev;
	}

	device->barriers = 1;
	generate_random_uuid(device->uuid);
	spin_lock_init(&device->io_lock);
	device->name = kstrdup(device_path, GFP_NOFS);
	if (!device->name) {
		kfree(device);
		goto out_close_bdev;
	}
	device->io_width = root->sectorsize;
	device->io_align = root->sectorsize;
	device->sector_size = root->sectorsize;
	device->total_bytes = i_size_read(bdev->bd_inode);
	device->dev_root = root->fs_info->dev_root;
	device->bdev = bdev;
899
	device->in_fs_metadata = 1;
900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926

	ret = btrfs_add_device(trans, root, device);
	if (ret)
		goto out_close_bdev;

	total_bytes = btrfs_super_total_bytes(&root->fs_info->super_copy);
	btrfs_set_super_total_bytes(&root->fs_info->super_copy,
				    total_bytes + device->total_bytes);

	total_bytes = btrfs_super_num_devices(&root->fs_info->super_copy);
	btrfs_set_super_num_devices(&root->fs_info->super_copy,
				    total_bytes + 1);

	list_add(&device->dev_list, &root->fs_info->fs_devices->devices);
	list_add(&device->dev_alloc_list,
		 &root->fs_info->fs_devices->alloc_list);
	root->fs_info->fs_devices->num_devices++;
out:
	btrfs_end_transaction(trans, root);
	mutex_unlock(&root->fs_info->fs_mutex);
	return ret;

out_close_bdev:
	close_bdev_excl(bdev);
	goto out;
}

927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972
int btrfs_update_device(struct btrfs_trans_handle *trans,
			struct btrfs_device *device)
{
	int ret;
	struct btrfs_path *path;
	struct btrfs_root *root;
	struct btrfs_dev_item *dev_item;
	struct extent_buffer *leaf;
	struct btrfs_key key;

	root = device->dev_root->fs_info->chunk_root;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
	key.type = BTRFS_DEV_ITEM_KEY;
	key.offset = device->devid;

	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
	if (ret < 0)
		goto out;

	if (ret > 0) {
		ret = -ENOENT;
		goto out;
	}

	leaf = path->nodes[0];
	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);

	btrfs_set_device_id(leaf, dev_item, device->devid);
	btrfs_set_device_type(leaf, dev_item, device->type);
	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
	btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
	btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
	btrfs_mark_buffer_dirty(leaf);

out:
	btrfs_free_path(path);
	return ret;
}

973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
int btrfs_grow_device(struct btrfs_trans_handle *trans,
		      struct btrfs_device *device, u64 new_size)
{
	struct btrfs_super_block *super_copy =
		&device->dev_root->fs_info->super_copy;
	u64 old_total = btrfs_super_total_bytes(super_copy);
	u64 diff = new_size - device->total_bytes;

	btrfs_set_super_total_bytes(super_copy, old_total + diff);
	return btrfs_update_device(trans, device);
}

static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
			    struct btrfs_root *root,
			    u64 chunk_tree, u64 chunk_objectid,
			    u64 chunk_offset)
{
	int ret;
	struct btrfs_path *path;
	struct btrfs_key key;

	root = root->fs_info->chunk_root;
	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	key.objectid = chunk_objectid;
	key.offset = chunk_offset;
	key.type = BTRFS_CHUNK_ITEM_KEY;

	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
	BUG_ON(ret);

	ret = btrfs_del_item(trans, root, path);
	BUG_ON(ret);

	btrfs_free_path(path);
	return 0;
}

int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
			chunk_offset)
{
	struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
	struct btrfs_disk_key *disk_key;
	struct btrfs_chunk *chunk;
	u8 *ptr;
	int ret = 0;
	u32 num_stripes;
	u32 array_size;
	u32 len = 0;
	u32 cur;
	struct btrfs_key key;

	array_size = btrfs_super_sys_array_size(super_copy);

	ptr = super_copy->sys_chunk_array;
	cur = 0;

	while (cur < array_size) {
		disk_key = (struct btrfs_disk_key *)ptr;
		btrfs_disk_key_to_cpu(&key, disk_key);

		len = sizeof(*disk_key);

		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
			chunk = (struct btrfs_chunk *)(ptr + len);
			num_stripes = btrfs_stack_chunk_num_stripes(chunk);
			len += btrfs_chunk_item_size(num_stripes);
		} else {
			ret = -EIO;
			break;
		}
		if (key.objectid == chunk_objectid &&
		    key.offset == chunk_offset) {
			memmove(ptr, ptr + len, array_size - (cur + len));
			array_size -= len;
			btrfs_set_super_sys_array_size(super_copy, array_size);
		} else {
			ptr += len;
			cur += len;
		}
	}
	return ret;
}


int btrfs_relocate_chunk(struct btrfs_root *root,
			 u64 chunk_tree, u64 chunk_objectid,
			 u64 chunk_offset)
{
	struct extent_map_tree *em_tree;
	struct btrfs_root *extent_root;
	struct btrfs_trans_handle *trans;
	struct extent_map *em;
	struct map_lookup *map;
	int ret;
	int i;

1072 1073
	printk("btrfs relocating chunk %llu\n",
	       (unsigned long long)chunk_offset);
1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
	root = root->fs_info->chunk_root;
	extent_root = root->fs_info->extent_root;
	em_tree = &root->fs_info->mapping_tree.map_tree;

	/* step one, relocate all the extents inside this chunk */
	ret = btrfs_shrink_extent_tree(extent_root, chunk_offset);
	BUG_ON(ret);

	trans = btrfs_start_transaction(root, 1);
	BUG_ON(!trans);

	/*
	 * step two, delete the device extents and the
	 * chunk tree entries
	 */
	spin_lock(&em_tree->lock);
	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
	spin_unlock(&em_tree->lock);

1093 1094
	BUG_ON(em->start > chunk_offset ||
	       em->start + em->len < chunk_offset);
1095 1096 1097 1098 1099 1100
	map = (struct map_lookup *)em->bdev;

	for (i = 0; i < map->num_stripes; i++) {
		ret = btrfs_free_dev_extent(trans, map->stripes[i].dev,
					    map->stripes[i].physical);
		BUG_ON(ret);
1101

1102 1103 1104 1105
		if (map->stripes[i].dev) {
			ret = btrfs_update_device(trans, map->stripes[i].dev);
			BUG_ON(ret);
		}
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
	}
	ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid,
			       chunk_offset);

	BUG_ON(ret);

	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
		ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
		BUG_ON(ret);
	}

	spin_lock(&em_tree->lock);
	remove_extent_mapping(em_tree, em);
	kfree(map);
	em->bdev = NULL;

	/* once for the tree */
	free_extent_map(em);
	spin_unlock(&em_tree->lock);

	/* once for us */
	free_extent_map(em);

	btrfs_end_transaction(trans, root);
	return 0;
}

1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
static u64 div_factor(u64 num, int factor)
{
	if (factor == 10)
		return num;
	num *= factor;
	do_div(num, 10);
	return num;
}


int btrfs_balance(struct btrfs_root *dev_root)
{
	int ret;
	struct list_head *cur;
	struct list_head *devices = &dev_root->fs_info->fs_devices->devices;
	struct btrfs_device *device;
	u64 old_size;
	u64 size_to_free;
	struct btrfs_path *path;
	struct btrfs_key key;
	struct btrfs_chunk *chunk;
	struct btrfs_root *chunk_root = dev_root->fs_info->chunk_root;
	struct btrfs_trans_handle *trans;
	struct btrfs_key found_key;


	dev_root = dev_root->fs_info->dev_root;

	mutex_lock(&dev_root->fs_info->fs_mutex);
	/* step one make some room on all the devices */
	list_for_each(cur, devices) {
		device = list_entry(cur, struct btrfs_device, dev_list);
		old_size = device->total_bytes;
		size_to_free = div_factor(old_size, 1);
		size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
		if (device->total_bytes - device->bytes_used > size_to_free)
			continue;

		ret = btrfs_shrink_device(device, old_size - size_to_free);
		BUG_ON(ret);

		trans = btrfs_start_transaction(dev_root, 1);
		BUG_ON(!trans);

		ret = btrfs_grow_device(trans, device, old_size);
		BUG_ON(ret);

		btrfs_end_transaction(trans, dev_root);
	}

	/* step two, relocate all the chunks */
	path = btrfs_alloc_path();
	BUG_ON(!path);

	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
	key.offset = (u64)-1;
	key.type = BTRFS_CHUNK_ITEM_KEY;

	while(1) {
		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
		if (ret < 0)
			goto error;

		/*
		 * this shouldn't happen, it means the last relocate
		 * failed
		 */
		if (ret == 0)
			break;

		ret = btrfs_previous_item(chunk_root, path, 0,
					  BTRFS_CHUNK_ITEM_KEY);
		if (ret) {
			break;
		}
		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
				      path->slots[0]);
		if (found_key.objectid != key.objectid)
			break;
		chunk = btrfs_item_ptr(path->nodes[0],
				       path->slots[0],
				       struct btrfs_chunk);
		key.offset = found_key.offset;
		/* chunk zero is special */
		if (key.offset == 0)
			break;

		ret = btrfs_relocate_chunk(chunk_root,
					   chunk_root->root_key.objectid,
					   found_key.objectid,
					   found_key.offset);
		BUG_ON(ret);
		btrfs_release_path(chunk_root, path);
	}
	ret = 0;
error:
	btrfs_free_path(path);
	mutex_unlock(&dev_root->fs_info->fs_mutex);
	return ret;
}

1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
/*
 * shrinking a device means finding all of the device extents past
 * the new size, and then following the back refs to the chunks.
 * The chunk relocation code actually frees the device extent
 */
int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
{
	struct btrfs_trans_handle *trans;
	struct btrfs_root *root = device->dev_root;
	struct btrfs_dev_extent *dev_extent = NULL;
	struct btrfs_path *path;
	u64 length;
	u64 chunk_tree;
	u64 chunk_objectid;
	u64 chunk_offset;
	int ret;
	int slot;
	struct extent_buffer *l;
	struct btrfs_key key;
	struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
	u64 old_total = btrfs_super_total_bytes(super_copy);
	u64 diff = device->total_bytes - new_size;


	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	trans = btrfs_start_transaction(root, 1);
	if (!trans) {
		ret = -ENOMEM;
		goto done;
	}

	path->reada = 2;

	device->total_bytes = new_size;
	ret = btrfs_update_device(trans, device);
	if (ret) {
		btrfs_end_transaction(trans, root);
		goto done;
	}
	WARN_ON(diff > old_total);
	btrfs_set_super_total_bytes(super_copy, old_total - diff);
	btrfs_end_transaction(trans, root);

	key.objectid = device->devid;
	key.offset = (u64)-1;
	key.type = BTRFS_DEV_EXTENT_KEY;

	while (1) {
		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
			goto done;

		ret = btrfs_previous_item(root, path, 0, key.type);
		if (ret < 0)
			goto done;
		if (ret) {
			ret = 0;
			goto done;
		}

		l = path->nodes[0];
		slot = path->slots[0];
		btrfs_item_key_to_cpu(l, &key, path->slots[0]);

		if (key.objectid != device->devid)
			goto done;

		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
		length = btrfs_dev_extent_length(l, dev_extent);

		if (key.offset + length <= new_size)
			goto done;

		chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
		chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
		btrfs_release_path(root, path);

		ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid,
					   chunk_offset);
		if (ret)
			goto done;
	}

done:
	btrfs_free_path(path);
	return ret;
}

1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
int btrfs_add_system_chunk(struct btrfs_trans_handle *trans,
			   struct btrfs_root *root,
			   struct btrfs_key *key,
			   struct btrfs_chunk *chunk, int item_size)
{
	struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
	struct btrfs_disk_key disk_key;
	u32 array_size;
	u8 *ptr;

	array_size = btrfs_super_sys_array_size(super_copy);
	if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
		return -EFBIG;

	ptr = super_copy->sys_chunk_array + array_size;
	btrfs_cpu_key_to_disk(&disk_key, key);
	memcpy(ptr, &disk_key, sizeof(disk_key));
	ptr += sizeof(disk_key);
	memcpy(ptr, chunk, item_size);
	item_size += sizeof(disk_key);
	btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
	return 0;
}

1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
static u64 chunk_bytes_by_type(u64 type, u64 calc_size, int num_stripes,
			       int sub_stripes)
{
	if (type & (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_DUP))
		return calc_size;
	else if (type & BTRFS_BLOCK_GROUP_RAID10)
		return calc_size * (num_stripes / sub_stripes);
	else
		return calc_size * num_stripes;
}


1362 1363
int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
		      struct btrfs_root *extent_root, u64 *start,
1364
		      u64 *num_bytes, u64 type)
1365 1366
{
	u64 dev_offset;
1367
	struct btrfs_fs_info *info = extent_root->fs_info;
1368
	struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
1369
	struct btrfs_path *path;
1370 1371 1372
	struct btrfs_stripe *stripes;
	struct btrfs_device *device = NULL;
	struct btrfs_chunk *chunk;
1373
	struct list_head private_devs;
1374
	struct list_head *dev_list;
1375
	struct list_head *cur;
1376 1377 1378
	struct extent_map_tree *em_tree;
	struct map_lookup *map;
	struct extent_map *em;
1379
	int min_stripe_size = 1 * 1024 * 1024;
1380 1381
	u64 physical;
	u64 calc_size = 1024 * 1024 * 1024;
1382 1383
	u64 max_chunk_size = calc_size;
	u64 min_free;
1384 1385
	u64 avail;
	u64 max_avail = 0;
1386
	u64 percent_max;
1387
	int num_stripes = 1;
1388
	int min_stripes = 1;
C
Chris Mason 已提交
1389
	int sub_stripes = 0;
1390
	int looped = 0;
1391
	int ret;
1392
	int index;
1393
	int stripe_len = 64 * 1024;
1394 1395
	struct btrfs_key key;

1396 1397 1398 1399 1400
	if ((type & BTRFS_BLOCK_GROUP_RAID1) &&
	    (type & BTRFS_BLOCK_GROUP_DUP)) {
		WARN_ON(1);
		type &= ~BTRFS_BLOCK_GROUP_DUP;
	}
1401
	dev_list = &extent_root->fs_info->fs_devices->alloc_list;
1402 1403
	if (list_empty(dev_list))
		return -ENOSPC;
1404

1405
	if (type & (BTRFS_BLOCK_GROUP_RAID0)) {
1406
		num_stripes = btrfs_super_num_devices(&info->super_copy);
1407 1408 1409
		min_stripes = 2;
	}
	if (type & (BTRFS_BLOCK_GROUP_DUP)) {
1410
		num_stripes = 2;
1411 1412
		min_stripes = 2;
	}
1413 1414 1415
	if (type & (BTRFS_BLOCK_GROUP_RAID1)) {
		num_stripes = min_t(u64, 2,
				  btrfs_super_num_devices(&info->super_copy));
1416 1417
		if (num_stripes < 2)
			return -ENOSPC;
1418
		min_stripes = 2;
1419
	}
C
Chris Mason 已提交
1420 1421 1422 1423 1424 1425
	if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
		num_stripes = btrfs_super_num_devices(&info->super_copy);
		if (num_stripes < 4)
			return -ENOSPC;
		num_stripes &= ~(u32)1;
		sub_stripes = 2;
1426
		min_stripes = 4;
C
Chris Mason 已提交
1427
	}
1428 1429 1430

	if (type & BTRFS_BLOCK_GROUP_DATA) {
		max_chunk_size = 10 * calc_size;
1431
		min_stripe_size = 64 * 1024 * 1024;
1432 1433
	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
		max_chunk_size = 4 * calc_size;
1434 1435 1436 1437 1438
		min_stripe_size = 32 * 1024 * 1024;
	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
		calc_size = 8 * 1024 * 1024;
		max_chunk_size = calc_size * 2;
		min_stripe_size = 1 * 1024 * 1024;
1439 1440
	}

1441 1442 1443 1444
	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

1445 1446 1447 1448
	/* we don't want a chunk larger than 10% of the FS */
	percent_max = div_factor(btrfs_super_total_bytes(&info->super_copy), 1);
	max_chunk_size = min(percent_max, max_chunk_size);

1449
again:
1450 1451 1452 1453 1454 1455 1456
	if (calc_size * num_stripes > max_chunk_size) {
		calc_size = max_chunk_size;
		do_div(calc_size, num_stripes);
		do_div(calc_size, stripe_len);
		calc_size *= stripe_len;
	}
	/* we don't want tiny stripes */
1457
	calc_size = max_t(u64, min_stripe_size, calc_size);
1458 1459 1460 1461

	do_div(calc_size, stripe_len);
	calc_size *= stripe_len;

1462 1463 1464
	INIT_LIST_HEAD(&private_devs);
	cur = dev_list->next;
	index = 0;
1465 1466 1467

	if (type & BTRFS_BLOCK_GROUP_DUP)
		min_free = calc_size * 2;
1468 1469
	else
		min_free = calc_size;
1470

1471 1472 1473
	/* we add 1MB because we never use the first 1MB of the device */
	min_free += 1024 * 1024;

1474 1475
	/* build a private list of devices we will allocate from */
	while(index < num_stripes) {
1476
		device = list_entry(cur, struct btrfs_device, dev_alloc_list);
1477

1478 1479 1480 1481
		if (device->total_bytes > device->bytes_used)
			avail = device->total_bytes - device->bytes_used;
		else
			avail = 0;
1482
		cur = cur->next;
1483

1484
		if (device->in_fs_metadata && avail >= min_free) {
1485 1486 1487 1488 1489 1490 1491
			u64 ignored_start = 0;
			ret = find_free_dev_extent(trans, device, path,
						   min_free,
						   &ignored_start);
			if (ret == 0) {
				list_move_tail(&device->dev_alloc_list,
					       &private_devs);
1492
				index++;
1493 1494 1495
				if (type & BTRFS_BLOCK_GROUP_DUP)
					index++;
			}
1496
		} else if (device->in_fs_metadata && avail > max_avail)
1497
			max_avail = avail;
1498 1499 1500 1501 1502
		if (cur == dev_list)
			break;
	}
	if (index < num_stripes) {
		list_splice(&private_devs, dev_list);
1503 1504 1505 1506 1507 1508 1509 1510 1511
		if (index >= min_stripes) {
			num_stripes = index;
			if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
				num_stripes /= sub_stripes;
				num_stripes *= sub_stripes;
			}
			looped = 1;
			goto again;
		}
1512 1513 1514 1515 1516
		if (!looped && max_avail > 0) {
			looped = 1;
			calc_size = max_avail;
			goto again;
		}
1517
		btrfs_free_path(path);
1518 1519
		return -ENOSPC;
	}
1520 1521 1522 1523
	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
	key.type = BTRFS_CHUNK_ITEM_KEY;
	ret = find_next_chunk(chunk_root, BTRFS_FIRST_CHUNK_TREE_OBJECTID,
			      &key.offset);
1524 1525
	if (ret) {
		btrfs_free_path(path);
1526
		return ret;
1527
	}
1528 1529

	chunk = kmalloc(btrfs_chunk_item_size(num_stripes), GFP_NOFS);
1530 1531
	if (!chunk) {
		btrfs_free_path(path);
1532
		return -ENOMEM;
1533
	}
1534

1535 1536 1537
	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
	if (!map) {
		kfree(chunk);
1538
		btrfs_free_path(path);
1539 1540
		return -ENOMEM;
	}
1541 1542
	btrfs_free_path(path);
	path = NULL;
1543

1544
	stripes = &chunk->stripe;
1545 1546
	*num_bytes = chunk_bytes_by_type(type, calc_size,
					 num_stripes, sub_stripes);
1547

1548
	index = 0;
1549
	while(index < num_stripes) {
1550
		struct btrfs_stripe *stripe;
1551 1552
		BUG_ON(list_empty(&private_devs));
		cur = private_devs.next;
1553
		device = list_entry(cur, struct btrfs_device, dev_alloc_list);
1554 1555 1556 1557

		/* loop over this device again if we're doing a dup group */
		if (!(type & BTRFS_BLOCK_GROUP_DUP) ||
		    (index == num_stripes - 1))
1558
			list_move_tail(&device->dev_alloc_list, dev_list);
1559 1560

		ret = btrfs_alloc_dev_extent(trans, device,
1561 1562 1563
			     info->chunk_root->root_key.objectid,
			     BTRFS_FIRST_CHUNK_TREE_OBJECTID, key.offset,
			     calc_size, &dev_offset);
1564 1565 1566 1567 1568
		BUG_ON(ret);
		device->bytes_used += calc_size;
		ret = btrfs_update_device(trans, device);
		BUG_ON(ret);

1569 1570
		map->stripes[index].dev = device;
		map->stripes[index].physical = dev_offset;
1571 1572 1573 1574
		stripe = stripes + index;
		btrfs_set_stack_stripe_devid(stripe, device->devid);
		btrfs_set_stack_stripe_offset(stripe, dev_offset);
		memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
1575 1576 1577
		physical = dev_offset;
		index++;
	}
1578
	BUG_ON(!list_empty(&private_devs));
1579

1580 1581
	/* key was set above */
	btrfs_set_stack_chunk_length(chunk, *num_bytes);
1582
	btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
1583
	btrfs_set_stack_chunk_stripe_len(chunk, stripe_len);
1584 1585
	btrfs_set_stack_chunk_type(chunk, type);
	btrfs_set_stack_chunk_num_stripes(chunk, num_stripes);
1586 1587
	btrfs_set_stack_chunk_io_align(chunk, stripe_len);
	btrfs_set_stack_chunk_io_width(chunk, stripe_len);
1588
	btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
C
Chris Mason 已提交
1589
	btrfs_set_stack_chunk_sub_stripes(chunk, sub_stripes);
1590 1591 1592 1593 1594 1595
	map->sector_size = extent_root->sectorsize;
	map->stripe_len = stripe_len;
	map->io_align = stripe_len;
	map->io_width = stripe_len;
	map->type = type;
	map->num_stripes = num_stripes;
C
Chris Mason 已提交
1596
	map->sub_stripes = sub_stripes;
1597 1598 1599 1600

	ret = btrfs_insert_item(trans, chunk_root, &key, chunk,
				btrfs_chunk_item_size(num_stripes));
	BUG_ON(ret);
1601
	*start = key.offset;;
1602 1603 1604 1605 1606

	em = alloc_extent_map(GFP_NOFS);
	if (!em)
		return -ENOMEM;
	em->bdev = (struct block_device *)map;
1607 1608
	em->start = key.offset;
	em->len = *num_bytes;
1609 1610
	em->block_start = 0;

1611 1612 1613 1614 1615
	if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
		ret = btrfs_add_system_chunk(trans, chunk_root, &key,
				    chunk, btrfs_chunk_item_size(num_stripes));
		BUG_ON(ret);
	}
1616 1617 1618 1619 1620 1621
	kfree(chunk);

	em_tree = &extent_root->fs_info->mapping_tree.map_tree;
	spin_lock(&em_tree->lock);
	ret = add_extent_mapping(em_tree, em);
	spin_unlock(&em_tree->lock);
1622
	BUG_ON(ret);
1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651
	free_extent_map(em);
	return ret;
}

void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
{
	extent_map_tree_init(&tree->map_tree, GFP_NOFS);
}

void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
{
	struct extent_map *em;

	while(1) {
		spin_lock(&tree->map_tree.lock);
		em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
		if (em)
			remove_extent_mapping(&tree->map_tree, em);
		spin_unlock(&tree->map_tree.lock);
		if (!em)
			break;
		kfree(em->bdev);
		/* once for us */
		free_extent_map(em);
		/* once for the tree */
		free_extent_map(em);
	}
}

1652 1653 1654 1655 1656 1657 1658 1659 1660
int btrfs_num_copies(struct btrfs_mapping_tree *map_tree, u64 logical, u64 len)
{
	struct extent_map *em;
	struct map_lookup *map;
	struct extent_map_tree *em_tree = &map_tree->map_tree;
	int ret;

	spin_lock(&em_tree->lock);
	em = lookup_extent_mapping(em_tree, logical, len);
1661
	spin_unlock(&em_tree->lock);
1662 1663 1664 1665 1666 1667
	BUG_ON(!em);

	BUG_ON(em->start > logical || em->start + em->len < logical);
	map = (struct map_lookup *)em->bdev;
	if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
		ret = map->num_stripes;
C
Chris Mason 已提交
1668 1669
	else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
		ret = map->sub_stripes;
1670 1671 1672 1673 1674 1675
	else
		ret = 1;
	free_extent_map(em);
	return ret;
}

1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691
static int find_live_mirror(struct map_lookup *map, int first, int num,
			    int optimal)
{
	int i;
	if (map->stripes[optimal].dev->bdev)
		return optimal;
	for (i = first; i < first + num; i++) {
		if (map->stripes[i].dev->bdev)
			return i;
	}
	/* we couldn't find one that doesn't fail.  Just return something
	 * and the io error handling code will clean up eventually
	 */
	return optimal;
}

1692 1693 1694 1695
static int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
			     u64 logical, u64 *length,
			     struct btrfs_multi_bio **multi_ret,
			     int mirror_num, struct page *unplug_page)
1696 1697 1698 1699 1700
{
	struct extent_map *em;
	struct map_lookup *map;
	struct extent_map_tree *em_tree = &map_tree->map_tree;
	u64 offset;
1701 1702
	u64 stripe_offset;
	u64 stripe_nr;
1703
	int stripes_allocated = 8;
C
Chris Mason 已提交
1704
	int stripes_required = 1;
1705
	int stripe_index;
1706
	int i;
1707
	int num_stripes;
1708
	int max_errors = 0;
1709
	struct btrfs_multi_bio *multi = NULL;
1710

1711 1712 1713 1714 1715 1716 1717 1718 1719
	if (multi_ret && !(rw & (1 << BIO_RW))) {
		stripes_allocated = 1;
	}
again:
	if (multi_ret) {
		multi = kzalloc(btrfs_multi_bio_size(stripes_allocated),
				GFP_NOFS);
		if (!multi)
			return -ENOMEM;
1720 1721

		atomic_set(&multi->error, 0);
1722
	}
1723 1724 1725

	spin_lock(&em_tree->lock);
	em = lookup_extent_mapping(em_tree, logical, *length);
1726
	spin_unlock(&em_tree->lock);
1727 1728 1729 1730

	if (!em && unplug_page)
		return 0;

1731
	if (!em) {
1732
		printk("unable to find logical %Lu len %Lu\n", logical, *length);
1733
		BUG();
1734
	}
1735 1736 1737 1738

	BUG_ON(em->start > logical || em->start + em->len < logical);
	map = (struct map_lookup *)em->bdev;
	offset = logical - em->start;
1739

1740 1741 1742
	if (mirror_num > map->num_stripes)
		mirror_num = 0;

1743
	/* if our multi bio struct is too small, back off and try again */
C
Chris Mason 已提交
1744 1745 1746 1747
	if (rw & (1 << BIO_RW)) {
		if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
				 BTRFS_BLOCK_GROUP_DUP)) {
			stripes_required = map->num_stripes;
1748
			max_errors = 1;
C
Chris Mason 已提交
1749 1750
		} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
			stripes_required = map->sub_stripes;
1751
			max_errors = 1;
C
Chris Mason 已提交
1752 1753 1754 1755
		}
	}
	if (multi_ret && rw == WRITE &&
	    stripes_allocated < stripes_required) {
1756 1757 1758 1759 1760
		stripes_allocated = map->num_stripes;
		free_extent_map(em);
		kfree(multi);
		goto again;
	}
1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773
	stripe_nr = offset;
	/*
	 * stripe_nr counts the total number of stripes we have to stride
	 * to get to this block
	 */
	do_div(stripe_nr, map->stripe_len);

	stripe_offset = stripe_nr * map->stripe_len;
	BUG_ON(offset < stripe_offset);

	/* stripe_offset is the offset of this block in its stripe*/
	stripe_offset = offset - stripe_offset;

1774
	if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 |
C
Chris Mason 已提交
1775
			 BTRFS_BLOCK_GROUP_RAID10 |
1776 1777 1778 1779 1780 1781 1782
			 BTRFS_BLOCK_GROUP_DUP)) {
		/* we limit the length of each bio to what fits in a stripe */
		*length = min_t(u64, em->len - offset,
			      map->stripe_len - stripe_offset);
	} else {
		*length = em->len - offset;
	}
1783 1784

	if (!multi_ret && !unplug_page)
1785 1786
		goto out;

1787
	num_stripes = 1;
1788
	stripe_index = 0;
1789
	if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
1790 1791
		if (unplug_page || (rw & (1 << BIO_RW)))
			num_stripes = map->num_stripes;
1792
		else if (mirror_num)
1793
			stripe_index = mirror_num - 1;
1794 1795 1796 1797 1798
		else {
			stripe_index = find_live_mirror(map, 0,
					    map->num_stripes,
					    current->pid % map->num_stripes);
		}
1799

1800
	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
1801
		if (rw & (1 << BIO_RW))
1802
			num_stripes = map->num_stripes;
1803 1804
		else if (mirror_num)
			stripe_index = mirror_num - 1;
1805

C
Chris Mason 已提交
1806 1807 1808 1809 1810 1811
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
		int factor = map->num_stripes / map->sub_stripes;

		stripe_index = do_div(stripe_nr, factor);
		stripe_index *= map->sub_stripes;

1812 1813
		if (unplug_page || (rw & (1 << BIO_RW)))
			num_stripes = map->sub_stripes;
C
Chris Mason 已提交
1814 1815
		else if (mirror_num)
			stripe_index += mirror_num - 1;
1816 1817 1818 1819 1820
		else {
			stripe_index = find_live_mirror(map, stripe_index,
					      map->sub_stripes, stripe_index +
					      current->pid % map->sub_stripes);
		}
1821 1822 1823 1824 1825 1826 1827 1828
	} else {
		/*
		 * after this do_div call, stripe_nr is the number of stripes
		 * on this device we have to walk to find the data, and
		 * stripe_index is the number of our device in the stripe array
		 */
		stripe_index = do_div(stripe_nr, map->num_stripes);
	}
1829
	BUG_ON(stripe_index >= map->num_stripes);
1830

1831 1832 1833 1834 1835 1836
	for (i = 0; i < num_stripes; i++) {
		if (unplug_page) {
			struct btrfs_device *device;
			struct backing_dev_info *bdi;

			device = map->stripes[stripe_index].dev;
1837 1838 1839 1840 1841
			if (device->bdev) {
				bdi = blk_get_backing_dev_info(device->bdev);
				if (bdi->unplug_io_fn) {
					bdi->unplug_io_fn(bdi, unplug_page);
				}
1842 1843 1844 1845 1846 1847 1848
			}
		} else {
			multi->stripes[i].physical =
				map->stripes[stripe_index].physical +
				stripe_offset + stripe_nr * map->stripe_len;
			multi->stripes[i].dev = map->stripes[stripe_index].dev;
		}
1849
		stripe_index++;
1850
	}
1851 1852 1853
	if (multi_ret) {
		*multi_ret = multi;
		multi->num_stripes = num_stripes;
1854
		multi->max_errors = max_errors;
1855
	}
1856
out:
1857 1858 1859 1860
	free_extent_map(em);
	return 0;
}

1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877
int btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
		      u64 logical, u64 *length,
		      struct btrfs_multi_bio **multi_ret, int mirror_num)
{
	return __btrfs_map_block(map_tree, rw, logical, length, multi_ret,
				 mirror_num, NULL);
}

int btrfs_unplug_page(struct btrfs_mapping_tree *map_tree,
		      u64 logical, struct page *page)
{
	u64 length = PAGE_CACHE_SIZE;
	return __btrfs_map_block(map_tree, READ, logical, &length,
				 NULL, 0, page);
}


1878 1879 1880 1881 1882 1883 1884
#if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
static void end_bio_multi_stripe(struct bio *bio, int err)
#else
static int end_bio_multi_stripe(struct bio *bio,
				   unsigned int bytes_done, int err)
#endif
{
1885
	struct btrfs_multi_bio *multi = bio->bi_private;
1886 1887 1888 1889 1890 1891

#if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
	if (bio->bi_size)
		return 1;
#endif
	if (err)
1892
		atomic_inc(&multi->error);
1893

1894
	if (atomic_dec_and_test(&multi->stripes_pending)) {
1895 1896
		bio->bi_private = multi->private;
		bio->bi_end_io = multi->end_io;
1897 1898 1899
		/* only send an error to the higher layers if it is
		 * beyond the tolerance of the multi-bio
		 */
1900
		if (atomic_read(&multi->error) > multi->max_errors) {
1901
			err = -EIO;
1902 1903 1904 1905 1906 1907
		} else if (err) {
			/*
			 * this bio is actually up to date, we didn't
			 * go over the max number of errors
			 */
			set_bit(BIO_UPTODATE, &bio->bi_flags);
1908
			err = 0;
1909
		}
1910 1911
		kfree(multi);

1912 1913 1914
#if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
		bio_endio(bio, bio->bi_size, err);
#else
1915
		bio_endio(bio, err);
1916
#endif
1917 1918 1919 1920 1921 1922 1923 1924
	} else {
		bio_put(bio);
	}
#if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
	return 0;
#endif
}

1925 1926
int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
		  int mirror_num)
1927 1928 1929
{
	struct btrfs_mapping_tree *map_tree;
	struct btrfs_device *dev;
1930
	struct bio *first_bio = bio;
1931 1932 1933
	u64 logical = bio->bi_sector << 9;
	u64 length = 0;
	u64 map_length;
1934
	struct btrfs_multi_bio *multi = NULL;
1935
	int ret;
1936 1937
	int dev_nr = 0;
	int total_devs = 1;
1938

1939
	length = bio->bi_size;
1940 1941
	map_tree = &root->fs_info->mapping_tree;
	map_length = length;
1942

1943 1944
	ret = btrfs_map_block(map_tree, rw, logical, &map_length, &multi,
			      mirror_num);
1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956
	BUG_ON(ret);

	total_devs = multi->num_stripes;
	if (map_length < length) {
		printk("mapping failed logical %Lu bio len %Lu "
		       "len %Lu\n", logical, length, map_length);
		BUG();
	}
	multi->end_io = first_bio->bi_end_io;
	multi->private = first_bio->bi_private;
	atomic_set(&multi->stripes_pending, multi->num_stripes);

1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
	while(dev_nr < total_devs) {
		if (total_devs > 1) {
			if (dev_nr < total_devs - 1) {
				bio = bio_clone(first_bio, GFP_NOFS);
				BUG_ON(!bio);
			} else {
				bio = first_bio;
			}
			bio->bi_private = multi;
			bio->bi_end_io = end_bio_multi_stripe;
		}
1968 1969
		bio->bi_sector = multi->stripes[dev_nr].physical >> 9;
		dev = multi->stripes[dev_nr].dev;
1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984
		if (dev && dev->bdev) {
			bio->bi_bdev = dev->bdev;
			spin_lock(&dev->io_lock);
			dev->total_ios++;
			spin_unlock(&dev->io_lock);
			submit_bio(rw, bio);
		} else {
			bio->bi_bdev = root->fs_info->fs_devices->latest_bdev;
			bio->bi_sector = logical >> 9;
#if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
			bio_endio(bio, bio->bi_size, -EIO);
#else
			bio_endio(bio, -EIO);
#endif
		}
1985 1986
		dev_nr++;
	}
1987 1988
	if (total_devs == 1)
		kfree(multi);
1989 1990 1991
	return 0;
}

1992 1993
struct btrfs_device *btrfs_find_device(struct btrfs_root *root, u64 devid,
				       u8 *uuid)
1994
{
1995
	struct list_head *head = &root->fs_info->fs_devices->devices;
1996

1997
	return __find_device(head, devid, uuid);
1998 1999
}

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
					    u64 devid, u8 *dev_uuid)
{
	struct btrfs_device *device;
	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;

	device = kzalloc(sizeof(*device), GFP_NOFS);
	list_add(&device->dev_list,
		 &fs_devices->devices);
	list_add(&device->dev_alloc_list,
		 &fs_devices->alloc_list);
	device->barriers = 1;
	device->dev_root = root->fs_info->dev_root;
	device->devid = devid;
	fs_devices->num_devices++;
	spin_lock_init(&device->io_lock);
	memcpy(device->uuid, dev_uuid, BTRFS_UUID_SIZE);
	return device;
}


2021 2022 2023 2024 2025 2026 2027 2028 2029 2030
static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
			  struct extent_buffer *leaf,
			  struct btrfs_chunk *chunk)
{
	struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
	struct map_lookup *map;
	struct extent_map *em;
	u64 logical;
	u64 length;
	u64 devid;
2031
	u8 uuid[BTRFS_UUID_SIZE];
2032
	int num_stripes;
2033
	int ret;
2034
	int i;
2035

2036 2037
	logical = key->offset;
	length = btrfs_chunk_length(leaf, chunk);
2038

2039 2040
	spin_lock(&map_tree->map_tree.lock);
	em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
2041
	spin_unlock(&map_tree->map_tree.lock);
2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057

	/* already mapped? */
	if (em && em->start <= logical && em->start + em->len > logical) {
		free_extent_map(em);
		return 0;
	} else if (em) {
		free_extent_map(em);
	}

	map = kzalloc(sizeof(*map), GFP_NOFS);
	if (!map)
		return -ENOMEM;

	em = alloc_extent_map(GFP_NOFS);
	if (!em)
		return -ENOMEM;
2058 2059
	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
2060 2061 2062 2063 2064 2065 2066 2067 2068 2069
	if (!map) {
		free_extent_map(em);
		return -ENOMEM;
	}

	em->bdev = (struct block_device *)map;
	em->start = logical;
	em->len = length;
	em->block_start = 0;

2070 2071 2072 2073 2074 2075
	map->num_stripes = num_stripes;
	map->io_width = btrfs_chunk_io_width(leaf, chunk);
	map->io_align = btrfs_chunk_io_align(leaf, chunk);
	map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
	map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
	map->type = btrfs_chunk_type(leaf, chunk);
C
Chris Mason 已提交
2076
	map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
2077 2078 2079 2080
	for (i = 0; i < num_stripes; i++) {
		map->stripes[i].physical =
			btrfs_stripe_offset_nr(leaf, chunk, i);
		devid = btrfs_stripe_devid_nr(leaf, chunk, i);
2081 2082 2083 2084
		read_extent_buffer(leaf, uuid, (unsigned long)
				   btrfs_stripe_dev_uuid_nr(chunk, i),
				   BTRFS_UUID_SIZE);
		map->stripes[i].dev = btrfs_find_device(root, devid, uuid);
2085 2086

		if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
2087 2088 2089 2090
			kfree(map);
			free_extent_map(em);
			return -EIO;
		}
2091 2092 2093 2094 2095 2096 2097 2098 2099 2100
		if (!map->stripes[i].dev) {
			map->stripes[i].dev =
				add_missing_dev(root, devid, uuid);
			if (!map->stripes[i].dev) {
				kfree(map);
				free_extent_map(em);
				return -EIO;
			}
		}
		map->stripes[i].dev->in_fs_metadata = 1;
2101 2102 2103 2104 2105
	}

	spin_lock(&map_tree->map_tree.lock);
	ret = add_extent_mapping(&map_tree->map_tree, em);
	spin_unlock(&map_tree->map_tree.lock);
2106
	BUG_ON(ret);
2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126
	free_extent_map(em);

	return 0;
}

static int fill_device_from_item(struct extent_buffer *leaf,
				 struct btrfs_dev_item *dev_item,
				 struct btrfs_device *device)
{
	unsigned long ptr;

	device->devid = btrfs_device_id(leaf, dev_item);
	device->total_bytes = btrfs_device_total_bytes(leaf, dev_item);
	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
	device->type = btrfs_device_type(leaf, dev_item);
	device->io_align = btrfs_device_io_align(leaf, dev_item);
	device->io_width = btrfs_device_io_width(leaf, dev_item);
	device->sector_size = btrfs_device_sector_size(leaf, dev_item);

	ptr = (unsigned long)btrfs_device_uuid(dev_item);
2127
	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
2128 2129 2130 2131

	return 0;
}

2132
static int read_one_dev(struct btrfs_root *root,
2133 2134 2135 2136 2137 2138
			struct extent_buffer *leaf,
			struct btrfs_dev_item *dev_item)
{
	struct btrfs_device *device;
	u64 devid;
	int ret;
2139 2140
	u8 dev_uuid[BTRFS_UUID_SIZE];

2141
	devid = btrfs_device_id(leaf, dev_item);
2142 2143 2144 2145
	read_extent_buffer(leaf, dev_uuid,
			   (unsigned long)btrfs_device_uuid(dev_item),
			   BTRFS_UUID_SIZE);
	device = btrfs_find_device(root, devid, dev_uuid);
2146
	if (!device) {
2147 2148
		printk("warning devid %Lu missing\n", devid);
		device = add_missing_dev(root, devid, dev_uuid);
2149 2150 2151
		if (!device)
			return -ENOMEM;
	}
2152 2153 2154

	fill_device_from_item(leaf, dev_item, device);
	device->dev_root = root->fs_info->dev_root;
2155
	device->in_fs_metadata = 1;
2156 2157 2158 2159 2160 2161 2162 2163 2164 2165
	ret = 0;
#if 0
	ret = btrfs_open_device(device);
	if (ret) {
		kfree(device);
	}
#endif
	return ret;
}

2166 2167 2168 2169 2170 2171 2172 2173 2174
int btrfs_read_super_device(struct btrfs_root *root, struct extent_buffer *buf)
{
	struct btrfs_dev_item *dev_item;

	dev_item = (struct btrfs_dev_item *)offsetof(struct btrfs_super_block,
						     dev_item);
	return read_one_dev(root, buf, dev_item);
}

2175 2176 2177
int btrfs_read_sys_array(struct btrfs_root *root)
{
	struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
2178
	struct extent_buffer *sb;
2179 2180
	struct btrfs_disk_key *disk_key;
	struct btrfs_chunk *chunk;
2181 2182 2183
	u8 *ptr;
	unsigned long sb_ptr;
	int ret = 0;
2184 2185 2186 2187
	u32 num_stripes;
	u32 array_size;
	u32 len = 0;
	u32 cur;
2188
	struct btrfs_key key;
2189

2190 2191 2192 2193 2194 2195
	sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET,
					  BTRFS_SUPER_INFO_SIZE);
	if (!sb)
		return -ENOMEM;
	btrfs_set_buffer_uptodate(sb);
	write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
2196 2197 2198 2199 2200 2201 2202 2203 2204 2205
	array_size = btrfs_super_sys_array_size(super_copy);

	ptr = super_copy->sys_chunk_array;
	sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array);
	cur = 0;

	while (cur < array_size) {
		disk_key = (struct btrfs_disk_key *)ptr;
		btrfs_disk_key_to_cpu(&key, disk_key);

2206
		len = sizeof(*disk_key); ptr += len;
2207 2208 2209
		sb_ptr += len;
		cur += len;

2210
		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2211
			chunk = (struct btrfs_chunk *)sb_ptr;
2212
			ret = read_one_chunk(root, &key, sb, chunk);
2213 2214
			if (ret)
				break;
2215 2216 2217
			num_stripes = btrfs_chunk_num_stripes(sb, chunk);
			len = btrfs_chunk_item_size(num_stripes);
		} else {
2218 2219
			ret = -EIO;
			break;
2220 2221 2222 2223 2224
		}
		ptr += len;
		sb_ptr += len;
		cur += len;
	}
2225
	free_extent_buffer(sb);
2226
	return ret;
2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271
}

int btrfs_read_chunk_tree(struct btrfs_root *root)
{
	struct btrfs_path *path;
	struct extent_buffer *leaf;
	struct btrfs_key key;
	struct btrfs_key found_key;
	int ret;
	int slot;

	root = root->fs_info->chunk_root;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	/* first we search for all of the device items, and then we
	 * read in all of the chunk items.  This way we can create chunk
	 * mappings that reference all of the devices that are afound
	 */
	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
	key.offset = 0;
	key.type = 0;
again:
	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	while(1) {
		leaf = path->nodes[0];
		slot = path->slots[0];
		if (slot >= btrfs_header_nritems(leaf)) {
			ret = btrfs_next_leaf(root, path);
			if (ret == 0)
				continue;
			if (ret < 0)
				goto error;
			break;
		}
		btrfs_item_key_to_cpu(leaf, &found_key, slot);
		if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
			if (found_key.objectid != BTRFS_DEV_ITEMS_OBJECTID)
				break;
			if (found_key.type == BTRFS_DEV_ITEM_KEY) {
				struct btrfs_dev_item *dev_item;
				dev_item = btrfs_item_ptr(leaf, slot,
						  struct btrfs_dev_item);
2272
				ret = read_one_dev(root, leaf, dev_item);
2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293
				BUG_ON(ret);
			}
		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
			struct btrfs_chunk *chunk;
			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
			ret = read_one_chunk(root, &found_key, leaf, chunk);
		}
		path->slots[0]++;
	}
	if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
		key.objectid = 0;
		btrfs_release_path(root, path);
		goto again;
	}

	btrfs_free_path(path);
	ret = 0;
error:
	return ret;
}