volumes.c 44.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/*
 * Copyright (C) 2007 Oracle.  All rights reserved.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public
 * License v2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with this program; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 021110-1307, USA.
 */
#include <linux/sched.h>
#include <linux/bio.h>
20
#include <linux/buffer_head.h>
21
#include <linux/blkdev.h>
22
#include <asm/div64.h>
23 24 25 26 27 28 29
#include "ctree.h"
#include "extent_map.h"
#include "disk-io.h"
#include "transaction.h"
#include "print-tree.h"
#include "volumes.h"

30 31 32 33 34 35 36
struct map_lookup {
	u64 type;
	int io_align;
	int io_width;
	int stripe_len;
	int sector_size;
	int num_stripes;
C
Chris Mason 已提交
37
	int sub_stripes;
38
	struct btrfs_bio_stripe stripes[];
39 40 41
};

#define map_lookup_size(n) (sizeof(struct map_lookup) + \
42
			    (sizeof(struct btrfs_bio_stripe) * (n)))
43

44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
static DEFINE_MUTEX(uuid_mutex);
static LIST_HEAD(fs_uuids);

int btrfs_cleanup_fs_uuids(void)
{
	struct btrfs_fs_devices *fs_devices;
	struct list_head *uuid_cur;
	struct list_head *devices_cur;
	struct btrfs_device *dev;

	list_for_each(uuid_cur, &fs_uuids) {
		fs_devices = list_entry(uuid_cur, struct btrfs_fs_devices,
					list);
		while(!list_empty(&fs_devices->devices)) {
			devices_cur = fs_devices->devices.next;
			dev = list_entry(devices_cur, struct btrfs_device,
					 dev_list);
			if (dev->bdev) {
				close_bdev_excl(dev->bdev);
			}
			list_del(&dev->dev_list);
			kfree(dev);
		}
	}
	return 0;
}

71 72
static struct btrfs_device *__find_device(struct list_head *head, u64 devid,
					  u8 *uuid)
73 74 75 76 77 78
{
	struct btrfs_device *dev;
	struct list_head *cur;

	list_for_each(cur, head) {
		dev = list_entry(cur, struct btrfs_device, dev_list);
79
		if (dev->devid == devid &&
80
		    (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
81
			return dev;
82
		}
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
	}
	return NULL;
}

static struct btrfs_fs_devices *find_fsid(u8 *fsid)
{
	struct list_head *cur;
	struct btrfs_fs_devices *fs_devices;

	list_for_each(cur, &fs_uuids) {
		fs_devices = list_entry(cur, struct btrfs_fs_devices, list);
		if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
			return fs_devices;
	}
	return NULL;
}

static int device_list_add(const char *path,
			   struct btrfs_super_block *disk_super,
			   u64 devid, struct btrfs_fs_devices **fs_devices_ret)
{
	struct btrfs_device *device;
	struct btrfs_fs_devices *fs_devices;
	u64 found_transid = btrfs_super_generation(disk_super);

	fs_devices = find_fsid(disk_super->fsid);
	if (!fs_devices) {
		fs_devices = kmalloc(sizeof(*fs_devices), GFP_NOFS);
		if (!fs_devices)
			return -ENOMEM;
		INIT_LIST_HEAD(&fs_devices->devices);
114
		INIT_LIST_HEAD(&fs_devices->alloc_list);
115 116 117 118 119 120 121 122
		list_add(&fs_devices->list, &fs_uuids);
		memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
		fs_devices->latest_devid = devid;
		fs_devices->latest_trans = found_transid;
		fs_devices->lowest_devid = (u64)-1;
		fs_devices->num_devices = 0;
		device = NULL;
	} else {
123 124
		device = __find_device(&fs_devices->devices, devid,
				       disk_super->dev_item.uuid);
125 126 127 128 129 130 131 132
	}
	if (!device) {
		device = kzalloc(sizeof(*device), GFP_NOFS);
		if (!device) {
			/* we can safely leave the fs_devices entry around */
			return -ENOMEM;
		}
		device->devid = devid;
133 134
		memcpy(device->uuid, disk_super->dev_item.uuid,
		       BTRFS_UUID_SIZE);
135
		device->barriers = 1;
136
		spin_lock_init(&device->io_lock);
137 138 139 140 141 142
		device->name = kstrdup(path, GFP_NOFS);
		if (!device->name) {
			kfree(device);
			return -ENOMEM;
		}
		list_add(&device->dev_list, &fs_devices->devices);
143
		list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
		fs_devices->num_devices++;
	}

	if (found_transid > fs_devices->latest_trans) {
		fs_devices->latest_devid = devid;
		fs_devices->latest_trans = found_transid;
	}
	if (fs_devices->lowest_devid > devid) {
		fs_devices->lowest_devid = devid;
	}
	*fs_devices_ret = fs_devices;
	return 0;
}

int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
{
	struct list_head *head = &fs_devices->devices;
	struct list_head *cur;
	struct btrfs_device *device;

	mutex_lock(&uuid_mutex);
	list_for_each(cur, head) {
		device = list_entry(cur, struct btrfs_device, dev_list);
		if (device->bdev) {
			close_bdev_excl(device->bdev);
		}
		device->bdev = NULL;
	}
	mutex_unlock(&uuid_mutex);
	return 0;
}

int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
		       int flags, void *holder)
{
	struct block_device *bdev;
	struct list_head *head = &fs_devices->devices;
	struct list_head *cur;
	struct btrfs_device *device;
	int ret;

	mutex_lock(&uuid_mutex);
	list_for_each(cur, head) {
		device = list_entry(cur, struct btrfs_device, dev_list);
		bdev = open_bdev_excl(device->name, flags, holder);
189

190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
		if (IS_ERR(bdev)) {
			printk("open %s failed\n", device->name);
			ret = PTR_ERR(bdev);
			goto fail;
		}
		if (device->devid == fs_devices->latest_devid)
			fs_devices->latest_bdev = bdev;
		if (device->devid == fs_devices->lowest_devid) {
			fs_devices->lowest_bdev = bdev;
		}
		device->bdev = bdev;
	}
	mutex_unlock(&uuid_mutex);
	return 0;
fail:
	mutex_unlock(&uuid_mutex);
	btrfs_close_devices(fs_devices);
	return ret;
}

int btrfs_scan_one_device(const char *path, int flags, void *holder,
			  struct btrfs_fs_devices **fs_devices_ret)
{
	struct btrfs_super_block *disk_super;
	struct block_device *bdev;
	struct buffer_head *bh;
	int ret;
	u64 devid;
218
	u64 transid;
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239

	mutex_lock(&uuid_mutex);

	bdev = open_bdev_excl(path, flags, holder);

	if (IS_ERR(bdev)) {
		ret = PTR_ERR(bdev);
		goto error;
	}

	ret = set_blocksize(bdev, 4096);
	if (ret)
		goto error_close;
	bh = __bread(bdev, BTRFS_SUPER_INFO_OFFSET / 4096, 4096);
	if (!bh) {
		ret = -EIO;
		goto error_close;
	}
	disk_super = (struct btrfs_super_block *)bh->b_data;
	if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
	    sizeof(disk_super->magic))) {
240
		ret = -EINVAL;
241 242 243
		goto error_brelse;
	}
	devid = le64_to_cpu(disk_super->dev_item.devid);
244
	transid = btrfs_super_generation(disk_super);
245 246 247 248 249 250 251 252 253
	if (disk_super->label[0])
		printk("device label %s ", disk_super->label);
	else {
		/* FIXME, make a readl uuid parser */
		printk("device fsid %llx-%llx ",
		       *(unsigned long long *)disk_super->fsid,
		       *(unsigned long long *)(disk_super->fsid + 8));
	}
	printk("devid %Lu transid %Lu %s\n", devid, transid, path);
254 255 256 257 258 259 260 261 262 263
	ret = device_list_add(path, disk_super, devid, fs_devices_ret);

error_brelse:
	brelse(bh);
error_close:
	close_bdev_excl(bdev);
error:
	mutex_unlock(&uuid_mutex);
	return ret;
}
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291

/*
 * this uses a pretty simple search, the expectation is that it is
 * called very infrequently and that a given device has a small number
 * of extents
 */
static int find_free_dev_extent(struct btrfs_trans_handle *trans,
				struct btrfs_device *device,
				struct btrfs_path *path,
				u64 num_bytes, u64 *start)
{
	struct btrfs_key key;
	struct btrfs_root *root = device->dev_root;
	struct btrfs_dev_extent *dev_extent = NULL;
	u64 hole_size = 0;
	u64 last_byte = 0;
	u64 search_start = 0;
	u64 search_end = device->total_bytes;
	int ret;
	int slot = 0;
	int start_found;
	struct extent_buffer *l;

	start_found = 0;
	path->reada = 2;

	/* FIXME use last free of some kind */

292 293 294 295
	/* we don't want to overwrite the superblock on the drive,
	 * so we make sure to start at an offset of at least 1MB
	 */
	search_start = max((u64)1024 * 1024, search_start);
296 297 298 299

	if (root->fs_info->alloc_start + num_bytes <= device->total_bytes)
		search_start = max(root->fs_info->alloc_start, search_start);

300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
	key.objectid = device->devid;
	key.offset = search_start;
	key.type = BTRFS_DEV_EXTENT_KEY;
	ret = btrfs_search_slot(trans, root, &key, path, 0, 0);
	if (ret < 0)
		goto error;
	ret = btrfs_previous_item(root, path, 0, key.type);
	if (ret < 0)
		goto error;
	l = path->nodes[0];
	btrfs_item_key_to_cpu(l, &key, path->slots[0]);
	while (1) {
		l = path->nodes[0];
		slot = path->slots[0];
		if (slot >= btrfs_header_nritems(l)) {
			ret = btrfs_next_leaf(root, path);
			if (ret == 0)
				continue;
			if (ret < 0)
				goto error;
no_more_items:
			if (!start_found) {
				if (search_start >= search_end) {
					ret = -ENOSPC;
					goto error;
				}
				*start = search_start;
				start_found = 1;
				goto check_pending;
			}
			*start = last_byte > search_start ?
				last_byte : search_start;
			if (search_end <= *start) {
				ret = -ENOSPC;
				goto error;
			}
			goto check_pending;
		}
		btrfs_item_key_to_cpu(l, &key, slot);

		if (key.objectid < device->devid)
			goto next;

		if (key.objectid > device->devid)
			goto no_more_items;

		if (key.offset >= search_start && key.offset > last_byte &&
		    start_found) {
			if (last_byte < search_start)
				last_byte = search_start;
			hole_size = key.offset - last_byte;
			if (key.offset > last_byte &&
			    hole_size >= num_bytes) {
				*start = last_byte;
				goto check_pending;
			}
		}
		if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY) {
			goto next;
		}

		start_found = 1;
		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
		last_byte = key.offset + btrfs_dev_extent_length(l, dev_extent);
next:
		path->slots[0]++;
		cond_resched();
	}
check_pending:
	/* we have to make sure we didn't find an extent that has already
	 * been allocated by the map tree or the original allocation
	 */
	btrfs_release_path(root, path);
	BUG_ON(*start < search_start);

375
	if (*start + num_bytes > search_end) {
376 377 378 379 380 381 382 383 384 385 386
		ret = -ENOSPC;
		goto error;
	}
	/* check for pending inserts here */
	return 0;

error:
	btrfs_release_path(root, path);
	return ret;
}

387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
			  struct btrfs_device *device,
			  u64 start)
{
	int ret;
	struct btrfs_path *path;
	struct btrfs_root *root = device->dev_root;
	struct btrfs_key key;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	key.objectid = device->devid;
	key.offset = start;
	key.type = BTRFS_DEV_EXTENT_KEY;

	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
	BUG_ON(ret);

	ret = btrfs_del_item(trans, root, path);
	BUG_ON(ret);

	btrfs_free_path(path);
	return ret;
}

414 415
int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
			   struct btrfs_device *device,
416 417 418
			   u64 chunk_tree, u64 chunk_objectid,
			   u64 chunk_offset,
			   u64 num_bytes, u64 *start)
419 420 421 422 423 424 425 426 427 428 429 430 431
{
	int ret;
	struct btrfs_path *path;
	struct btrfs_root *root = device->dev_root;
	struct btrfs_dev_extent *extent;
	struct extent_buffer *leaf;
	struct btrfs_key key;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	ret = find_free_dev_extent(trans, device, path, num_bytes, start);
432
	if (ret) {
433
		goto err;
434
	}
435 436 437 438 439 440 441 442 443 444 445

	key.objectid = device->devid;
	key.offset = *start;
	key.type = BTRFS_DEV_EXTENT_KEY;
	ret = btrfs_insert_empty_item(trans, root, path, &key,
				      sizeof(*extent));
	BUG_ON(ret);

	leaf = path->nodes[0];
	extent = btrfs_item_ptr(leaf, path->slots[0],
				struct btrfs_dev_extent);
446 447 448 449 450 451 452 453
	btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
	btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
	btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);

	write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
		    (unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent),
		    BTRFS_UUID_SIZE);

454 455 456 457 458 459 460
	btrfs_set_dev_extent_length(leaf, extent, num_bytes);
	btrfs_mark_buffer_dirty(leaf);
err:
	btrfs_free_path(path);
	return ret;
}

461
static int find_next_chunk(struct btrfs_root *root, u64 objectid, u64 *offset)
462 463 464 465
{
	struct btrfs_path *path;
	int ret;
	struct btrfs_key key;
466
	struct btrfs_chunk *chunk;
467 468 469 470 471
	struct btrfs_key found_key;

	path = btrfs_alloc_path();
	BUG_ON(!path);

472
	key.objectid = objectid;
473 474 475 476 477 478 479 480 481 482 483
	key.offset = (u64)-1;
	key.type = BTRFS_CHUNK_ITEM_KEY;

	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0)
		goto error;

	BUG_ON(ret == 0);

	ret = btrfs_previous_item(root, path, 0, BTRFS_CHUNK_ITEM_KEY);
	if (ret) {
484
		*offset = 0;
485 486 487
	} else {
		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
				      path->slots[0]);
488 489 490 491 492 493 494 495
		if (found_key.objectid != objectid)
			*offset = 0;
		else {
			chunk = btrfs_item_ptr(path->nodes[0], path->slots[0],
					       struct btrfs_chunk);
			*offset = found_key.offset +
				btrfs_chunk_length(path->nodes[0], chunk);
		}
496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
	}
	ret = 0;
error:
	btrfs_free_path(path);
	return ret;
}

static int find_next_devid(struct btrfs_root *root, struct btrfs_path *path,
			   u64 *objectid)
{
	int ret;
	struct btrfs_key key;
	struct btrfs_key found_key;

	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
	key.type = BTRFS_DEV_ITEM_KEY;
	key.offset = (u64)-1;

	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0)
		goto error;

	BUG_ON(ret == 0);

	ret = btrfs_previous_item(root, path, BTRFS_DEV_ITEMS_OBJECTID,
				  BTRFS_DEV_ITEM_KEY);
	if (ret) {
		*objectid = 1;
	} else {
		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
				      path->slots[0]);
		*objectid = found_key.offset + 1;
	}
	ret = 0;
error:
	btrfs_release_path(root, path);
	return ret;
}

/*
 * the device information is stored in the chunk root
 * the btrfs_device struct should be fully filled in
 */
int btrfs_add_device(struct btrfs_trans_handle *trans,
		     struct btrfs_root *root,
		     struct btrfs_device *device)
{
	int ret;
	struct btrfs_path *path;
	struct btrfs_dev_item *dev_item;
	struct extent_buffer *leaf;
	struct btrfs_key key;
	unsigned long ptr;
	u64 free_devid;

	root = root->fs_info->chunk_root;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	ret = find_next_devid(root, path, &free_devid);
	if (ret)
		goto out;

	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
	key.type = BTRFS_DEV_ITEM_KEY;
	key.offset = free_devid;

	ret = btrfs_insert_empty_item(trans, root, path, &key,
566
				      sizeof(*dev_item));
567 568 569 570 571 572
	if (ret)
		goto out;

	leaf = path->nodes[0];
	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);

573
	device->devid = free_devid;
574 575 576 577 578 579 580
	btrfs_set_device_id(leaf, dev_item, device->devid);
	btrfs_set_device_type(leaf, dev_item, device->type);
	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
	btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
	btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
581 582 583
	btrfs_set_device_group(leaf, dev_item, 0);
	btrfs_set_device_seek_speed(leaf, dev_item, 0);
	btrfs_set_device_bandwidth(leaf, dev_item, 0);
584 585

	ptr = (unsigned long)btrfs_device_uuid(dev_item);
586
	write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
587 588 589 590 591 592 593
	btrfs_mark_buffer_dirty(leaf);
	ret = 0;

out:
	btrfs_free_path(path);
	return ret;
}
594

595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
int btrfs_update_device(struct btrfs_trans_handle *trans,
			struct btrfs_device *device)
{
	int ret;
	struct btrfs_path *path;
	struct btrfs_root *root;
	struct btrfs_dev_item *dev_item;
	struct extent_buffer *leaf;
	struct btrfs_key key;

	root = device->dev_root->fs_info->chunk_root;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
	key.type = BTRFS_DEV_ITEM_KEY;
	key.offset = device->devid;

	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
	if (ret < 0)
		goto out;

	if (ret > 0) {
		ret = -ENOENT;
		goto out;
	}

	leaf = path->nodes[0];
	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);

	btrfs_set_device_id(leaf, dev_item, device->devid);
	btrfs_set_device_type(leaf, dev_item, device->type);
	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
	btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
	btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
	btrfs_mark_buffer_dirty(leaf);

out:
	btrfs_free_path(path);
	return ret;
}

641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888
int btrfs_grow_device(struct btrfs_trans_handle *trans,
		      struct btrfs_device *device, u64 new_size)
{
	struct btrfs_super_block *super_copy =
		&device->dev_root->fs_info->super_copy;
	u64 old_total = btrfs_super_total_bytes(super_copy);
	u64 diff = new_size - device->total_bytes;

	btrfs_set_super_total_bytes(super_copy, old_total + diff);
	return btrfs_update_device(trans, device);
}

static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
			    struct btrfs_root *root,
			    u64 chunk_tree, u64 chunk_objectid,
			    u64 chunk_offset)
{
	int ret;
	struct btrfs_path *path;
	struct btrfs_key key;

	root = root->fs_info->chunk_root;
	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	key.objectid = chunk_objectid;
	key.offset = chunk_offset;
	key.type = BTRFS_CHUNK_ITEM_KEY;

	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
	BUG_ON(ret);

	ret = btrfs_del_item(trans, root, path);
	BUG_ON(ret);

	btrfs_free_path(path);
	return 0;
}

int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
			chunk_offset)
{
	struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
	struct btrfs_disk_key *disk_key;
	struct btrfs_chunk *chunk;
	u8 *ptr;
	int ret = 0;
	u32 num_stripes;
	u32 array_size;
	u32 len = 0;
	u32 cur;
	struct btrfs_key key;

	array_size = btrfs_super_sys_array_size(super_copy);

	ptr = super_copy->sys_chunk_array;
	cur = 0;

	while (cur < array_size) {
		disk_key = (struct btrfs_disk_key *)ptr;
		btrfs_disk_key_to_cpu(&key, disk_key);

		len = sizeof(*disk_key);

		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
			chunk = (struct btrfs_chunk *)(ptr + len);
			num_stripes = btrfs_stack_chunk_num_stripes(chunk);
			len += btrfs_chunk_item_size(num_stripes);
		} else {
			ret = -EIO;
			break;
		}
		if (key.objectid == chunk_objectid &&
		    key.offset == chunk_offset) {
			memmove(ptr, ptr + len, array_size - (cur + len));
			array_size -= len;
			btrfs_set_super_sys_array_size(super_copy, array_size);
		} else {
			ptr += len;
			cur += len;
		}
	}
	return ret;
}


int btrfs_relocate_chunk(struct btrfs_root *root,
			 u64 chunk_tree, u64 chunk_objectid,
			 u64 chunk_offset)
{
	struct extent_map_tree *em_tree;
	struct btrfs_root *extent_root;
	struct btrfs_trans_handle *trans;
	struct extent_map *em;
	struct map_lookup *map;
	int ret;
	int i;

	root = root->fs_info->chunk_root;
	extent_root = root->fs_info->extent_root;
	em_tree = &root->fs_info->mapping_tree.map_tree;

	/* step one, relocate all the extents inside this chunk */
	ret = btrfs_shrink_extent_tree(extent_root, chunk_offset);
	BUG_ON(ret);

	trans = btrfs_start_transaction(root, 1);
	BUG_ON(!trans);

	/*
	 * step two, delete the device extents and the
	 * chunk tree entries
	 */
	spin_lock(&em_tree->lock);
	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
	spin_unlock(&em_tree->lock);

	BUG_ON(em->start > chunk_offset || em->start + em->len < chunk_offset);
	map = (struct map_lookup *)em->bdev;

	for (i = 0; i < map->num_stripes; i++) {
		ret = btrfs_free_dev_extent(trans, map->stripes[i].dev,
					    map->stripes[i].physical);
		BUG_ON(ret);
	}
	ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid,
			       chunk_offset);

	BUG_ON(ret);

	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
		ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
		BUG_ON(ret);
		goto out;
	}



	spin_lock(&em_tree->lock);
	remove_extent_mapping(em_tree, em);
	kfree(map);
	em->bdev = NULL;

	/* once for the tree */
	free_extent_map(em);
	spin_unlock(&em_tree->lock);

out:
	/* once for us */
	free_extent_map(em);

	btrfs_end_transaction(trans, root);
	return 0;
}

/*
 * shrinking a device means finding all of the device extents past
 * the new size, and then following the back refs to the chunks.
 * The chunk relocation code actually frees the device extent
 */
int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
{
	struct btrfs_trans_handle *trans;
	struct btrfs_root *root = device->dev_root;
	struct btrfs_dev_extent *dev_extent = NULL;
	struct btrfs_path *path;
	u64 length;
	u64 chunk_tree;
	u64 chunk_objectid;
	u64 chunk_offset;
	int ret;
	int slot;
	struct extent_buffer *l;
	struct btrfs_key key;
	struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
	u64 old_total = btrfs_super_total_bytes(super_copy);
	u64 diff = device->total_bytes - new_size;


	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	trans = btrfs_start_transaction(root, 1);
	if (!trans) {
		ret = -ENOMEM;
		goto done;
	}

	path->reada = 2;

	device->total_bytes = new_size;
	ret = btrfs_update_device(trans, device);
	if (ret) {
		btrfs_end_transaction(trans, root);
		goto done;
	}
	WARN_ON(diff > old_total);
	btrfs_set_super_total_bytes(super_copy, old_total - diff);
	btrfs_end_transaction(trans, root);

	key.objectid = device->devid;
	key.offset = (u64)-1;
	key.type = BTRFS_DEV_EXTENT_KEY;

	while (1) {
		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
			goto done;

		ret = btrfs_previous_item(root, path, 0, key.type);
		if (ret < 0)
			goto done;
		if (ret) {
			ret = 0;
			goto done;
		}

		l = path->nodes[0];
		slot = path->slots[0];
		btrfs_item_key_to_cpu(l, &key, path->slots[0]);

		if (key.objectid != device->devid)
			goto done;

		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
		length = btrfs_dev_extent_length(l, dev_extent);

		if (key.offset + length <= new_size)
			goto done;

		chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
		chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
		btrfs_release_path(root, path);

		ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid,
					   chunk_offset);
		if (ret)
			goto done;
	}

done:
	btrfs_free_path(path);
	return ret;
}

889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912
int btrfs_add_system_chunk(struct btrfs_trans_handle *trans,
			   struct btrfs_root *root,
			   struct btrfs_key *key,
			   struct btrfs_chunk *chunk, int item_size)
{
	struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
	struct btrfs_disk_key disk_key;
	u32 array_size;
	u8 *ptr;

	array_size = btrfs_super_sys_array_size(super_copy);
	if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
		return -EFBIG;

	ptr = super_copy->sys_chunk_array + array_size;
	btrfs_cpu_key_to_disk(&disk_key, key);
	memcpy(ptr, &disk_key, sizeof(disk_key));
	ptr += sizeof(disk_key);
	memcpy(ptr, chunk, item_size);
	item_size += sizeof(disk_key);
	btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
	return 0;
}

913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933
static u64 div_factor(u64 num, int factor)
{
	if (factor == 10)
		return num;
	num *= factor;
	do_div(num, 10);
	return num;
}

static u64 chunk_bytes_by_type(u64 type, u64 calc_size, int num_stripes,
			       int sub_stripes)
{
	if (type & (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_DUP))
		return calc_size;
	else if (type & BTRFS_BLOCK_GROUP_RAID10)
		return calc_size * (num_stripes / sub_stripes);
	else
		return calc_size * num_stripes;
}


934 935
int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
		      struct btrfs_root *extent_root, u64 *start,
936
		      u64 *num_bytes, u64 type)
937 938
{
	u64 dev_offset;
939
	struct btrfs_fs_info *info = extent_root->fs_info;
940
	struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
941
	struct btrfs_path *path;
942 943 944
	struct btrfs_stripe *stripes;
	struct btrfs_device *device = NULL;
	struct btrfs_chunk *chunk;
945
	struct list_head private_devs;
946
	struct list_head *dev_list;
947
	struct list_head *cur;
948 949 950
	struct extent_map_tree *em_tree;
	struct map_lookup *map;
	struct extent_map *em;
951
	int min_stripe_size = 1 * 1024 * 1024;
952 953
	u64 physical;
	u64 calc_size = 1024 * 1024 * 1024;
954 955
	u64 max_chunk_size = calc_size;
	u64 min_free;
956 957
	u64 avail;
	u64 max_avail = 0;
958
	u64 percent_max;
959
	int num_stripes = 1;
960
	int min_stripes = 1;
C
Chris Mason 已提交
961
	int sub_stripes = 0;
962
	int looped = 0;
963
	int ret;
964
	int index;
965
	int stripe_len = 64 * 1024;
966 967
	struct btrfs_key key;

968
	dev_list = &extent_root->fs_info->fs_devices->alloc_list;
969 970
	if (list_empty(dev_list))
		return -ENOSPC;
971

972
	if (type & (BTRFS_BLOCK_GROUP_RAID0)) {
973
		num_stripes = btrfs_super_num_devices(&info->super_copy);
974 975 976
		min_stripes = 2;
	}
	if (type & (BTRFS_BLOCK_GROUP_DUP)) {
977
		num_stripes = 2;
978 979
		min_stripes = 2;
	}
980 981 982
	if (type & (BTRFS_BLOCK_GROUP_RAID1)) {
		num_stripes = min_t(u64, 2,
				  btrfs_super_num_devices(&info->super_copy));
983 984
		if (num_stripes < 2)
			return -ENOSPC;
985
		min_stripes = 2;
986
	}
C
Chris Mason 已提交
987 988 989 990 991 992
	if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
		num_stripes = btrfs_super_num_devices(&info->super_copy);
		if (num_stripes < 4)
			return -ENOSPC;
		num_stripes &= ~(u32)1;
		sub_stripes = 2;
993
		min_stripes = 4;
C
Chris Mason 已提交
994
	}
995 996 997

	if (type & BTRFS_BLOCK_GROUP_DATA) {
		max_chunk_size = 10 * calc_size;
998
		min_stripe_size = 64 * 1024 * 1024;
999 1000
	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
		max_chunk_size = 4 * calc_size;
1001 1002 1003 1004 1005
		min_stripe_size = 32 * 1024 * 1024;
	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
		calc_size = 8 * 1024 * 1024;
		max_chunk_size = calc_size * 2;
		min_stripe_size = 1 * 1024 * 1024;
1006 1007
	}

1008 1009 1010 1011
	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

1012 1013 1014 1015
	/* we don't want a chunk larger than 10% of the FS */
	percent_max = div_factor(btrfs_super_total_bytes(&info->super_copy), 1);
	max_chunk_size = min(percent_max, max_chunk_size);

1016
again:
1017 1018 1019 1020 1021 1022 1023
	if (calc_size * num_stripes > max_chunk_size) {
		calc_size = max_chunk_size;
		do_div(calc_size, num_stripes);
		do_div(calc_size, stripe_len);
		calc_size *= stripe_len;
	}
	/* we don't want tiny stripes */
1024
	calc_size = max_t(u64, min_stripe_size, calc_size);
1025 1026 1027 1028

	do_div(calc_size, stripe_len);
	calc_size *= stripe_len;

1029 1030 1031
	INIT_LIST_HEAD(&private_devs);
	cur = dev_list->next;
	index = 0;
1032 1033 1034

	if (type & BTRFS_BLOCK_GROUP_DUP)
		min_free = calc_size * 2;
1035 1036
	else
		min_free = calc_size;
1037

1038 1039 1040
	/* we add 1MB because we never use the first 1MB of the device */
	min_free += 1024 * 1024;

1041 1042
	/* build a private list of devices we will allocate from */
	while(index < num_stripes) {
1043
		device = list_entry(cur, struct btrfs_device, dev_alloc_list);
1044

1045 1046
		avail = device->total_bytes - device->bytes_used;
		cur = cur->next;
1047

1048
		if (avail >= min_free) {
1049 1050 1051 1052 1053 1054 1055
			u64 ignored_start = 0;
			ret = find_free_dev_extent(trans, device, path,
						   min_free,
						   &ignored_start);
			if (ret == 0) {
				list_move_tail(&device->dev_alloc_list,
					       &private_devs);
1056
				index++;
1057 1058 1059
				if (type & BTRFS_BLOCK_GROUP_DUP)
					index++;
			}
1060 1061
		} else if (avail > max_avail)
			max_avail = avail;
1062 1063 1064 1065 1066
		if (cur == dev_list)
			break;
	}
	if (index < num_stripes) {
		list_splice(&private_devs, dev_list);
1067 1068 1069 1070 1071 1072 1073 1074 1075
		if (index >= min_stripes) {
			num_stripes = index;
			if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
				num_stripes /= sub_stripes;
				num_stripes *= sub_stripes;
			}
			looped = 1;
			goto again;
		}
1076 1077 1078 1079 1080
		if (!looped && max_avail > 0) {
			looped = 1;
			calc_size = max_avail;
			goto again;
		}
1081
		btrfs_free_path(path);
1082 1083
		return -ENOSPC;
	}
1084 1085 1086 1087
	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
	key.type = BTRFS_CHUNK_ITEM_KEY;
	ret = find_next_chunk(chunk_root, BTRFS_FIRST_CHUNK_TREE_OBJECTID,
			      &key.offset);
1088 1089
	if (ret) {
		btrfs_free_path(path);
1090
		return ret;
1091
	}
1092 1093

	chunk = kmalloc(btrfs_chunk_item_size(num_stripes), GFP_NOFS);
1094 1095
	if (!chunk) {
		btrfs_free_path(path);
1096
		return -ENOMEM;
1097
	}
1098

1099 1100 1101
	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
	if (!map) {
		kfree(chunk);
1102
		btrfs_free_path(path);
1103 1104
		return -ENOMEM;
	}
1105 1106
	btrfs_free_path(path);
	path = NULL;
1107

1108
	stripes = &chunk->stripe;
1109 1110
	*num_bytes = chunk_bytes_by_type(type, calc_size,
					 num_stripes, sub_stripes);
1111

1112
	index = 0;
1113
printk("new chunk type %Lu start %Lu size %Lu\n", type, key.offset, *num_bytes);
1114
	while(index < num_stripes) {
1115
		struct btrfs_stripe *stripe;
1116 1117
		BUG_ON(list_empty(&private_devs));
		cur = private_devs.next;
1118
		device = list_entry(cur, struct btrfs_device, dev_alloc_list);
1119 1120 1121 1122

		/* loop over this device again if we're doing a dup group */
		if (!(type & BTRFS_BLOCK_GROUP_DUP) ||
		    (index == num_stripes - 1))
1123
			list_move_tail(&device->dev_alloc_list, dev_list);
1124 1125

		ret = btrfs_alloc_dev_extent(trans, device,
1126 1127 1128
			     info->chunk_root->root_key.objectid,
			     BTRFS_FIRST_CHUNK_TREE_OBJECTID, key.offset,
			     calc_size, &dev_offset);
1129
		BUG_ON(ret);
1130
printk("alloc chunk start %Lu size %Lu from dev %Lu type %Lu\n", key.offset, calc_size, device->devid, type);
1131 1132 1133 1134
		device->bytes_used += calc_size;
		ret = btrfs_update_device(trans, device);
		BUG_ON(ret);

1135 1136
		map->stripes[index].dev = device;
		map->stripes[index].physical = dev_offset;
1137 1138 1139 1140
		stripe = stripes + index;
		btrfs_set_stack_stripe_devid(stripe, device->devid);
		btrfs_set_stack_stripe_offset(stripe, dev_offset);
		memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
1141 1142 1143
		physical = dev_offset;
		index++;
	}
1144
	BUG_ON(!list_empty(&private_devs));
1145

1146 1147
	/* key was set above */
	btrfs_set_stack_chunk_length(chunk, *num_bytes);
1148
	btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
1149
	btrfs_set_stack_chunk_stripe_len(chunk, stripe_len);
1150 1151
	btrfs_set_stack_chunk_type(chunk, type);
	btrfs_set_stack_chunk_num_stripes(chunk, num_stripes);
1152 1153
	btrfs_set_stack_chunk_io_align(chunk, stripe_len);
	btrfs_set_stack_chunk_io_width(chunk, stripe_len);
1154
	btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
C
Chris Mason 已提交
1155
	btrfs_set_stack_chunk_sub_stripes(chunk, sub_stripes);
1156 1157 1158 1159 1160 1161
	map->sector_size = extent_root->sectorsize;
	map->stripe_len = stripe_len;
	map->io_align = stripe_len;
	map->io_width = stripe_len;
	map->type = type;
	map->num_stripes = num_stripes;
C
Chris Mason 已提交
1162
	map->sub_stripes = sub_stripes;
1163 1164 1165 1166

	ret = btrfs_insert_item(trans, chunk_root, &key, chunk,
				btrfs_chunk_item_size(num_stripes));
	BUG_ON(ret);
1167
	*start = key.offset;;
1168 1169 1170 1171 1172

	em = alloc_extent_map(GFP_NOFS);
	if (!em)
		return -ENOMEM;
	em->bdev = (struct block_device *)map;
1173 1174
	em->start = key.offset;
	em->len = *num_bytes;
1175 1176
	em->block_start = 0;

1177 1178 1179 1180 1181
	if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
		ret = btrfs_add_system_chunk(trans, chunk_root, &key,
				    chunk, btrfs_chunk_item_size(num_stripes));
		BUG_ON(ret);
	}
1182 1183 1184 1185 1186 1187
	kfree(chunk);

	em_tree = &extent_root->fs_info->mapping_tree.map_tree;
	spin_lock(&em_tree->lock);
	ret = add_extent_mapping(em_tree, em);
	spin_unlock(&em_tree->lock);
1188
	BUG_ON(ret);
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
	free_extent_map(em);
	return ret;
}

void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
{
	extent_map_tree_init(&tree->map_tree, GFP_NOFS);
}

void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
{
	struct extent_map *em;

	while(1) {
		spin_lock(&tree->map_tree.lock);
		em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
		if (em)
			remove_extent_mapping(&tree->map_tree, em);
		spin_unlock(&tree->map_tree.lock);
		if (!em)
			break;
		kfree(em->bdev);
		/* once for us */
		free_extent_map(em);
		/* once for the tree */
		free_extent_map(em);
	}
}

1218 1219 1220 1221 1222 1223 1224 1225 1226
int btrfs_num_copies(struct btrfs_mapping_tree *map_tree, u64 logical, u64 len)
{
	struct extent_map *em;
	struct map_lookup *map;
	struct extent_map_tree *em_tree = &map_tree->map_tree;
	int ret;

	spin_lock(&em_tree->lock);
	em = lookup_extent_mapping(em_tree, logical, len);
1227
	spin_unlock(&em_tree->lock);
1228 1229 1230 1231 1232 1233
	BUG_ON(!em);

	BUG_ON(em->start > logical || em->start + em->len < logical);
	map = (struct map_lookup *)em->bdev;
	if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
		ret = map->num_stripes;
C
Chris Mason 已提交
1234 1235
	else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
		ret = map->sub_stripes;
1236 1237 1238 1239 1240 1241
	else
		ret = 1;
	free_extent_map(em);
	return ret;
}

1242 1243 1244 1245
static int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
			     u64 logical, u64 *length,
			     struct btrfs_multi_bio **multi_ret,
			     int mirror_num, struct page *unplug_page)
1246 1247 1248 1249 1250
{
	struct extent_map *em;
	struct map_lookup *map;
	struct extent_map_tree *em_tree = &map_tree->map_tree;
	u64 offset;
1251 1252
	u64 stripe_offset;
	u64 stripe_nr;
1253
	int stripes_allocated = 8;
C
Chris Mason 已提交
1254
	int stripes_required = 1;
1255
	int stripe_index;
1256
	int i;
1257
	int num_stripes;
1258
	struct btrfs_multi_bio *multi = NULL;
1259

1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
	if (multi_ret && !(rw & (1 << BIO_RW))) {
		stripes_allocated = 1;
	}
again:
	if (multi_ret) {
		multi = kzalloc(btrfs_multi_bio_size(stripes_allocated),
				GFP_NOFS);
		if (!multi)
			return -ENOMEM;
	}
1270 1271 1272

	spin_lock(&em_tree->lock);
	em = lookup_extent_mapping(em_tree, logical, *length);
1273
	spin_unlock(&em_tree->lock);
1274 1275 1276 1277

	if (!em && unplug_page)
		return 0;

1278 1279
	if (!em) {
		printk("unable to find logical %Lu\n", logical);
1280
		BUG();
1281
	}
1282 1283 1284 1285

	BUG_ON(em->start > logical || em->start + em->len < logical);
	map = (struct map_lookup *)em->bdev;
	offset = logical - em->start;
1286

1287 1288 1289
	if (mirror_num > map->num_stripes)
		mirror_num = 0;

1290
	/* if our multi bio struct is too small, back off and try again */
C
Chris Mason 已提交
1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
	if (rw & (1 << BIO_RW)) {
		if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
				 BTRFS_BLOCK_GROUP_DUP)) {
			stripes_required = map->num_stripes;
		} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
			stripes_required = map->sub_stripes;
		}
	}
	if (multi_ret && rw == WRITE &&
	    stripes_allocated < stripes_required) {
1301 1302 1303 1304 1305
		stripes_allocated = map->num_stripes;
		free_extent_map(em);
		kfree(multi);
		goto again;
	}
1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318
	stripe_nr = offset;
	/*
	 * stripe_nr counts the total number of stripes we have to stride
	 * to get to this block
	 */
	do_div(stripe_nr, map->stripe_len);

	stripe_offset = stripe_nr * map->stripe_len;
	BUG_ON(offset < stripe_offset);

	/* stripe_offset is the offset of this block in its stripe*/
	stripe_offset = offset - stripe_offset;

1319
	if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 |
C
Chris Mason 已提交
1320
			 BTRFS_BLOCK_GROUP_RAID10 |
1321 1322 1323 1324 1325 1326 1327
			 BTRFS_BLOCK_GROUP_DUP)) {
		/* we limit the length of each bio to what fits in a stripe */
		*length = min_t(u64, em->len - offset,
			      map->stripe_len - stripe_offset);
	} else {
		*length = em->len - offset;
	}
1328 1329

	if (!multi_ret && !unplug_page)
1330 1331
		goto out;

1332
	num_stripes = 1;
1333
	stripe_index = 0;
1334
	if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
1335 1336
		if (unplug_page || (rw & (1 << BIO_RW)))
			num_stripes = map->num_stripes;
1337 1338 1339
		else if (mirror_num) {
			stripe_index = mirror_num - 1;
		} else {
1340 1341
			u64 orig_stripe_nr = stripe_nr;
			stripe_index = do_div(orig_stripe_nr, num_stripes);
1342
		}
1343
	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
1344
		if (rw & (1 << BIO_RW))
1345
			num_stripes = map->num_stripes;
1346 1347
		else if (mirror_num)
			stripe_index = mirror_num - 1;
C
Chris Mason 已提交
1348 1349 1350 1351 1352 1353
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
		int factor = map->num_stripes / map->sub_stripes;

		stripe_index = do_div(stripe_nr, factor);
		stripe_index *= map->sub_stripes;

1354 1355
		if (unplug_page || (rw & (1 << BIO_RW)))
			num_stripes = map->sub_stripes;
C
Chris Mason 已提交
1356 1357
		else if (mirror_num)
			stripe_index += mirror_num - 1;
1358 1359 1360 1361 1362
		else {
			u64 orig_stripe_nr = stripe_nr;
			stripe_index += do_div(orig_stripe_nr,
					       map->sub_stripes);
		}
1363 1364 1365 1366 1367 1368 1369 1370
	} else {
		/*
		 * after this do_div call, stripe_nr is the number of stripes
		 * on this device we have to walk to find the data, and
		 * stripe_index is the number of our device in the stripe array
		 */
		stripe_index = do_div(stripe_nr, map->num_stripes);
	}
1371
	BUG_ON(stripe_index >= map->num_stripes);
1372

1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
	for (i = 0; i < num_stripes; i++) {
		if (unplug_page) {
			struct btrfs_device *device;
			struct backing_dev_info *bdi;

			device = map->stripes[stripe_index].dev;
			bdi = blk_get_backing_dev_info(device->bdev);
			if (bdi->unplug_io_fn) {
				bdi->unplug_io_fn(bdi, unplug_page);
			}
		} else {
			multi->stripes[i].physical =
				map->stripes[stripe_index].physical +
				stripe_offset + stripe_nr * map->stripe_len;
			multi->stripes[i].dev = map->stripes[stripe_index].dev;
		}
1389
		stripe_index++;
1390
	}
1391 1392 1393 1394
	if (multi_ret) {
		*multi_ret = multi;
		multi->num_stripes = num_stripes;
	}
1395
out:
1396 1397 1398 1399
	free_extent_map(em);
	return 0;
}

1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
int btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
		      u64 logical, u64 *length,
		      struct btrfs_multi_bio **multi_ret, int mirror_num)
{
	return __btrfs_map_block(map_tree, rw, logical, length, multi_ret,
				 mirror_num, NULL);
}

int btrfs_unplug_page(struct btrfs_mapping_tree *map_tree,
		      u64 logical, struct page *page)
{
	u64 length = PAGE_CACHE_SIZE;
	return __btrfs_map_block(map_tree, READ, logical, &length,
				 NULL, 0, page);
}


1417 1418 1419 1420 1421 1422 1423
#if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
static void end_bio_multi_stripe(struct bio *bio, int err)
#else
static int end_bio_multi_stripe(struct bio *bio,
				   unsigned int bytes_done, int err)
#endif
{
1424
	struct btrfs_multi_bio *multi = bio->bi_private;
1425 1426 1427 1428 1429 1430 1431 1432

#if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
	if (bio->bi_size)
		return 1;
#endif
	if (err)
		multi->error = err;

1433
	if (atomic_dec_and_test(&multi->stripes_pending)) {
1434 1435 1436 1437 1438 1439 1440
		bio->bi_private = multi->private;
		bio->bi_end_io = multi->end_io;

		if (!err && multi->error)
			err = multi->error;
		kfree(multi);

1441 1442 1443
#if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
		bio_endio(bio, bio->bi_size, err);
#else
1444
		bio_endio(bio, err);
1445
#endif
1446 1447 1448 1449 1450 1451 1452 1453
	} else {
		bio_put(bio);
	}
#if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
	return 0;
#endif
}

1454 1455
int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
		  int mirror_num)
1456 1457 1458
{
	struct btrfs_mapping_tree *map_tree;
	struct btrfs_device *dev;
1459
	struct bio *first_bio = bio;
1460 1461 1462
	u64 logical = bio->bi_sector << 9;
	u64 length = 0;
	u64 map_length;
1463
	struct btrfs_multi_bio *multi = NULL;
1464
	int ret;
1465 1466
	int dev_nr = 0;
	int total_devs = 1;
1467

1468
	length = bio->bi_size;
1469 1470
	map_tree = &root->fs_info->mapping_tree;
	map_length = length;
1471

1472 1473
	ret = btrfs_map_block(map_tree, rw, logical, &map_length, &multi,
			      mirror_num);
1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
	BUG_ON(ret);

	total_devs = multi->num_stripes;
	if (map_length < length) {
		printk("mapping failed logical %Lu bio len %Lu "
		       "len %Lu\n", logical, length, map_length);
		BUG();
	}
	multi->end_io = first_bio->bi_end_io;
	multi->private = first_bio->bi_private;
	atomic_set(&multi->stripes_pending, multi->num_stripes);

1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
	while(dev_nr < total_devs) {
		if (total_devs > 1) {
			if (dev_nr < total_devs - 1) {
				bio = bio_clone(first_bio, GFP_NOFS);
				BUG_ON(!bio);
			} else {
				bio = first_bio;
			}
			bio->bi_private = multi;
			bio->bi_end_io = end_bio_multi_stripe;
		}
1497 1498
		bio->bi_sector = multi->stripes[dev_nr].physical >> 9;
		dev = multi->stripes[dev_nr].dev;
1499

1500 1501 1502 1503 1504 1505 1506
		bio->bi_bdev = dev->bdev;
		spin_lock(&dev->io_lock);
		dev->total_ios++;
		spin_unlock(&dev->io_lock);
		submit_bio(rw, bio);
		dev_nr++;
	}
1507 1508
	if (total_devs == 1)
		kfree(multi);
1509 1510 1511
	return 0;
}

1512 1513
struct btrfs_device *btrfs_find_device(struct btrfs_root *root, u64 devid,
				       u8 *uuid)
1514
{
1515
	struct list_head *head = &root->fs_info->fs_devices->devices;
1516

1517
	return __find_device(head, devid, uuid);
1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529
}

static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
			  struct extent_buffer *leaf,
			  struct btrfs_chunk *chunk)
{
	struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
	struct map_lookup *map;
	struct extent_map *em;
	u64 logical;
	u64 length;
	u64 devid;
1530
	u8 uuid[BTRFS_UUID_SIZE];
1531
	int num_stripes;
1532
	int ret;
1533
	int i;
1534

1535 1536
	logical = key->offset;
	length = btrfs_chunk_length(leaf, chunk);
1537 1538
	spin_lock(&map_tree->map_tree.lock);
	em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
1539
	spin_unlock(&map_tree->map_tree.lock);
1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555

	/* already mapped? */
	if (em && em->start <= logical && em->start + em->len > logical) {
		free_extent_map(em);
		return 0;
	} else if (em) {
		free_extent_map(em);
	}

	map = kzalloc(sizeof(*map), GFP_NOFS);
	if (!map)
		return -ENOMEM;

	em = alloc_extent_map(GFP_NOFS);
	if (!em)
		return -ENOMEM;
1556 1557
	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
	if (!map) {
		free_extent_map(em);
		return -ENOMEM;
	}

	em->bdev = (struct block_device *)map;
	em->start = logical;
	em->len = length;
	em->block_start = 0;

1568 1569 1570 1571 1572 1573
	map->num_stripes = num_stripes;
	map->io_width = btrfs_chunk_io_width(leaf, chunk);
	map->io_align = btrfs_chunk_io_align(leaf, chunk);
	map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
	map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
	map->type = btrfs_chunk_type(leaf, chunk);
C
Chris Mason 已提交
1574
	map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
1575 1576 1577 1578
	for (i = 0; i < num_stripes; i++) {
		map->stripes[i].physical =
			btrfs_stripe_offset_nr(leaf, chunk, i);
		devid = btrfs_stripe_devid_nr(leaf, chunk, i);
1579 1580 1581 1582
		read_extent_buffer(leaf, uuid, (unsigned long)
				   btrfs_stripe_dev_uuid_nr(chunk, i),
				   BTRFS_UUID_SIZE);
		map->stripes[i].dev = btrfs_find_device(root, devid, uuid);
1583 1584 1585 1586 1587
		if (!map->stripes[i].dev) {
			kfree(map);
			free_extent_map(em);
			return -EIO;
		}
1588 1589 1590 1591 1592
	}

	spin_lock(&map_tree->map_tree.lock);
	ret = add_extent_mapping(&map_tree->map_tree, em);
	spin_unlock(&map_tree->map_tree.lock);
1593
	BUG_ON(ret);
1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613
	free_extent_map(em);

	return 0;
}

static int fill_device_from_item(struct extent_buffer *leaf,
				 struct btrfs_dev_item *dev_item,
				 struct btrfs_device *device)
{
	unsigned long ptr;

	device->devid = btrfs_device_id(leaf, dev_item);
	device->total_bytes = btrfs_device_total_bytes(leaf, dev_item);
	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
	device->type = btrfs_device_type(leaf, dev_item);
	device->io_align = btrfs_device_io_align(leaf, dev_item);
	device->io_width = btrfs_device_io_width(leaf, dev_item);
	device->sector_size = btrfs_device_sector_size(leaf, dev_item);

	ptr = (unsigned long)btrfs_device_uuid(dev_item);
1614
	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1615 1616 1617 1618

	return 0;
}

1619
static int read_one_dev(struct btrfs_root *root,
1620 1621 1622 1623 1624 1625
			struct extent_buffer *leaf,
			struct btrfs_dev_item *dev_item)
{
	struct btrfs_device *device;
	u64 devid;
	int ret;
1626 1627
	u8 dev_uuid[BTRFS_UUID_SIZE];

1628
	devid = btrfs_device_id(leaf, dev_item);
1629 1630 1631 1632
	read_extent_buffer(leaf, dev_uuid,
			   (unsigned long)btrfs_device_uuid(dev_item),
			   BTRFS_UUID_SIZE);
	device = btrfs_find_device(root, devid, dev_uuid);
1633
	if (!device) {
1634
		printk("warning devid %Lu not found already\n", devid);
1635
		device = kzalloc(sizeof(*device), GFP_NOFS);
1636 1637
		if (!device)
			return -ENOMEM;
1638 1639
		list_add(&device->dev_list,
			 &root->fs_info->fs_devices->devices);
1640 1641
		list_add(&device->dev_alloc_list,
			 &root->fs_info->fs_devices->alloc_list);
1642
		device->barriers = 1;
1643
		spin_lock_init(&device->io_lock);
1644
	}
1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657

	fill_device_from_item(leaf, dev_item, device);
	device->dev_root = root->fs_info->dev_root;
	ret = 0;
#if 0
	ret = btrfs_open_device(device);
	if (ret) {
		kfree(device);
	}
#endif
	return ret;
}

1658 1659 1660 1661 1662 1663 1664 1665 1666
int btrfs_read_super_device(struct btrfs_root *root, struct extent_buffer *buf)
{
	struct btrfs_dev_item *dev_item;

	dev_item = (struct btrfs_dev_item *)offsetof(struct btrfs_super_block,
						     dev_item);
	return read_one_dev(root, buf, dev_item);
}

1667 1668 1669 1670 1671 1672
int btrfs_read_sys_array(struct btrfs_root *root)
{
	struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
	struct extent_buffer *sb = root->fs_info->sb_buffer;
	struct btrfs_disk_key *disk_key;
	struct btrfs_chunk *chunk;
1673 1674 1675
	u8 *ptr;
	unsigned long sb_ptr;
	int ret = 0;
1676 1677 1678 1679
	u32 num_stripes;
	u32 array_size;
	u32 len = 0;
	u32 cur;
1680
	struct btrfs_key key;
1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696

	array_size = btrfs_super_sys_array_size(super_copy);

	ptr = super_copy->sys_chunk_array;
	sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array);
	cur = 0;

	while (cur < array_size) {
		disk_key = (struct btrfs_disk_key *)ptr;
		btrfs_disk_key_to_cpu(&key, disk_key);

		len = sizeof(*disk_key);
		ptr += len;
		sb_ptr += len;
		cur += len;

1697
		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
1698
			chunk = (struct btrfs_chunk *)sb_ptr;
1699
			ret = read_one_chunk(root, &key, sb, chunk);
1700 1701
			if (ret)
				break;
1702 1703 1704
			num_stripes = btrfs_chunk_num_stripes(sb, chunk);
			len = btrfs_chunk_item_size(num_stripes);
		} else {
1705 1706
			ret = -EIO;
			break;
1707 1708 1709 1710 1711
		}
		ptr += len;
		sb_ptr += len;
		cur += len;
	}
1712
	return ret;
1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757
}

int btrfs_read_chunk_tree(struct btrfs_root *root)
{
	struct btrfs_path *path;
	struct extent_buffer *leaf;
	struct btrfs_key key;
	struct btrfs_key found_key;
	int ret;
	int slot;

	root = root->fs_info->chunk_root;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	/* first we search for all of the device items, and then we
	 * read in all of the chunk items.  This way we can create chunk
	 * mappings that reference all of the devices that are afound
	 */
	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
	key.offset = 0;
	key.type = 0;
again:
	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	while(1) {
		leaf = path->nodes[0];
		slot = path->slots[0];
		if (slot >= btrfs_header_nritems(leaf)) {
			ret = btrfs_next_leaf(root, path);
			if (ret == 0)
				continue;
			if (ret < 0)
				goto error;
			break;
		}
		btrfs_item_key_to_cpu(leaf, &found_key, slot);
		if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
			if (found_key.objectid != BTRFS_DEV_ITEMS_OBJECTID)
				break;
			if (found_key.type == BTRFS_DEV_ITEM_KEY) {
				struct btrfs_dev_item *dev_item;
				dev_item = btrfs_item_ptr(leaf, slot,
						  struct btrfs_dev_item);
1758
				ret = read_one_dev(root, leaf, dev_item);
1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779
				BUG_ON(ret);
			}
		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
			struct btrfs_chunk *chunk;
			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
			ret = read_one_chunk(root, &found_key, leaf, chunk);
		}
		path->slots[0]++;
	}
	if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
		key.objectid = 0;
		btrfs_release_path(root, path);
		goto again;
	}

	btrfs_free_path(path);
	ret = 0;
error:
	return ret;
}