sched_fair.c 27.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
 *
 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *
 *  Interactivity improvements by Mike Galbraith
 *  (C) 2007 Mike Galbraith <efault@gmx.de>
 *
 *  Various enhancements by Dmitry Adamushko.
 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
 *
 *  Group scheduling enhancements by Srivatsa Vaddagiri
 *  Copyright IBM Corporation, 2007
 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
 *
 *  Scaled math optimizations by Thomas Gleixner
 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 19 20
 *
 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 22 23
 */

/*
24
 * Targeted preemption latency for CPU-bound tasks:
I
Ingo Molnar 已提交
25
 * (default: 20ms * ilog(ncpus), units: nanoseconds)
26
 *
27
 * NOTE: this latency value is not the same as the concept of
I
Ingo Molnar 已提交
28 29 30
 * 'timeslice length' - timeslices in CFS are of variable length
 * and have no persistent notion like in traditional, time-slice
 * based scheduling concepts.
31
 *
I
Ingo Molnar 已提交
32 33
 * (to see the precise effective timeslice length of your workload,
 *  run vmstat and monitor the context-switches (cs) field)
34
 */
I
Ingo Molnar 已提交
35
unsigned int sysctl_sched_latency = 20000000ULL;
36 37

/*
38
 * Minimal preemption granularity for CPU-bound tasks:
I
Ingo Molnar 已提交
39
 * (default: 1 msec * ilog(ncpus), units: nanoseconds)
40
 */
I
Ingo Molnar 已提交
41
unsigned int sysctl_sched_min_granularity = 1000000ULL;
42 43

/*
44 45
 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
 */
I
Ingo Molnar 已提交
46
unsigned int sched_nr_latency = 20;
47 48 49 50

/*
 * After fork, child runs first. (default) If set to 0 then
 * parent will (try to) run first.
51
 */
52
const_debug unsigned int sysctl_sched_child_runs_first = 1;
53

54 55 56 57 58 59 60 61
/*
 * sys_sched_yield() compat mode
 *
 * This option switches the agressive yield implementation of the
 * old scheduler back on.
 */
unsigned int __read_mostly sysctl_sched_compat_yield;

62 63
/*
 * SCHED_BATCH wake-up granularity.
I
Ingo Molnar 已提交
64
 * (default: 10 msec * ilog(ncpus), units: nanoseconds)
65 66 67 68 69
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
 */
I
Ingo Molnar 已提交
70
unsigned int sysctl_sched_batch_wakeup_granularity = 10000000UL;
71 72 73

/*
 * SCHED_OTHER wake-up granularity.
I
Ingo Molnar 已提交
74
 * (default: 10 msec * ilog(ncpus), units: nanoseconds)
75 76 77 78 79
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
 */
I
Ingo Molnar 已提交
80
unsigned int sysctl_sched_wakeup_granularity = 10000000UL;
81

82 83
const_debug unsigned int sysctl_sched_migration_cost = 500000UL;

84 85 86 87
/**************************************************************
 * CFS operations on generic schedulable entities:
 */

88
#ifdef CONFIG_FAIR_GROUP_SCHED
89

90
/* cpu runqueue to which this cfs_rq is attached */
91 92
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
93
	return cfs_rq->rq;
94 95
}

96 97
/* An entity is a task if it doesn't "own" a runqueue */
#define entity_is_task(se)	(!se->my_q)
98

99
#else	/* CONFIG_FAIR_GROUP_SCHED */
100

101 102 103
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
	return container_of(cfs_rq, struct rq, cfs);
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
}

#define entity_is_task(se)	1

#endif	/* CONFIG_FAIR_GROUP_SCHED */

static inline struct task_struct *task_of(struct sched_entity *se)
{
	return container_of(se, struct task_struct, se);
}


/**************************************************************
 * Scheduling class tree data structure manipulation methods:
 */

120
static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
121
{
122 123
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta > 0)
124 125 126 127 128
		min_vruntime = vruntime;

	return min_vruntime;
}

129
static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
P
Peter Zijlstra 已提交
130 131 132 133 134 135 136 137
{
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta < 0)
		min_vruntime = vruntime;

	return min_vruntime;
}

138
static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
139
{
140
	return se->vruntime - cfs_rq->min_vruntime;
141 142
}

143 144 145
/*
 * Enqueue an entity into the rb-tree:
 */
146
static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
147 148 149 150
{
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
	struct rb_node *parent = NULL;
	struct sched_entity *entry;
151
	s64 key = entity_key(cfs_rq, se);
152 153 154 155 156 157 158 159 160 161 162 163
	int leftmost = 1;

	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct sched_entity, run_node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same key stay together.
		 */
164
		if (key < entity_key(cfs_rq, entry)) {
165 166 167 168 169 170 171 172 173 174 175 176
			link = &parent->rb_left;
		} else {
			link = &parent->rb_right;
			leftmost = 0;
		}
	}

	/*
	 * Maintain a cache of leftmost tree entries (it is frequently
	 * used):
	 */
	if (leftmost)
I
Ingo Molnar 已提交
177
		cfs_rq->rb_leftmost = &se->run_node;
178 179 180 181 182

	rb_link_node(&se->run_node, parent, link);
	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
}

183
static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
184 185
{
	if (cfs_rq->rb_leftmost == &se->run_node)
I
Ingo Molnar 已提交
186
		cfs_rq->rb_leftmost = rb_next(&se->run_node);
I
Ingo Molnar 已提交
187

188 189 190 191 192 193 194 195 196 197 198 199 200
	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
}

static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
{
	return cfs_rq->rb_leftmost;
}

static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
{
	return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
}

201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
{
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
	struct sched_entity *se = NULL;
	struct rb_node *parent;

	while (*link) {
		parent = *link;
		se = rb_entry(parent, struct sched_entity, run_node);
		link = &parent->rb_right;
	}

	return se;
}

216 217 218 219
/**************************************************************
 * Scheduling class statistics methods:
 */

220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
#ifdef CONFIG_SCHED_DEBUG
int sched_nr_latency_handler(struct ctl_table *table, int write,
		struct file *filp, void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
					sysctl_sched_min_granularity);

	return 0;
}
#endif
236 237 238 239 240 241 242 243 244

/*
 * The idea is to set a period in which each task runs once.
 *
 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
 * this period because otherwise the slices get too small.
 *
 * p = (nr <= nl) ? l : l*nr/nl
 */
245 246 247
static u64 __sched_period(unsigned long nr_running)
{
	u64 period = sysctl_sched_latency;
248
	unsigned long nr_latency = sched_nr_latency;
249 250 251 252 253 254 255 256 257

	if (unlikely(nr_running > nr_latency)) {
		period *= nr_running;
		do_div(period, nr_latency);
	}

	return period;
}

258 259 260 261 262 263
/*
 * We calculate the wall-time slice from the period by taking a part
 * proportional to the weight.
 *
 * s = p*w/rw
 */
P
Peter Zijlstra 已提交
264
static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
265
{
266
	u64 slice = __sched_period(cfs_rq->nr_running);
267

268 269
	slice *= se->load.weight;
	do_div(slice, cfs_rq->load.weight);
270

271
	return slice;
272 273
}

274 275 276 277 278 279
/*
 * We calculate the vruntime slice.
 *
 * vs = s/w = p/rw
 */
static u64 __sched_vslice(unsigned long rq_weight, unsigned long nr_running)
P
Peter Zijlstra 已提交
280
{
281
	u64 vslice = __sched_period(nr_running);
P
Peter Zijlstra 已提交
282

P
Peter Zijlstra 已提交
283
	vslice *= NICE_0_LOAD;
284
	do_div(vslice, rq_weight);
P
Peter Zijlstra 已提交
285

286 287
	return vslice;
}
288

289 290 291 292 293 294 295 296 297
static u64 sched_vslice(struct cfs_rq *cfs_rq)
{
	return __sched_vslice(cfs_rq->load.weight, cfs_rq->nr_running);
}

static u64 sched_vslice_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	return __sched_vslice(cfs_rq->load.weight + se->load.weight,
			cfs_rq->nr_running + 1);
P
Peter Zijlstra 已提交
298 299
}

300 301 302 303 304
/*
 * Update the current task's runtime statistics. Skip current tasks that
 * are not in our scheduling class.
 */
static inline void
I
Ingo Molnar 已提交
305 306
__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
	      unsigned long delta_exec)
307
{
308
	unsigned long delta_exec_weighted;
P
Peter Zijlstra 已提交
309
	u64 vruntime;
310

311
	schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
312 313

	curr->sum_exec_runtime += delta_exec;
314
	schedstat_add(cfs_rq, exec_clock, delta_exec);
I
Ingo Molnar 已提交
315 316 317 318 319 320
	delta_exec_weighted = delta_exec;
	if (unlikely(curr->load.weight != NICE_0_LOAD)) {
		delta_exec_weighted = calc_delta_fair(delta_exec_weighted,
							&curr->load);
	}
	curr->vruntime += delta_exec_weighted;
321 322 323 324 325 326

	/*
	 * maintain cfs_rq->min_vruntime to be a monotonic increasing
	 * value tracking the leftmost vruntime in the tree.
	 */
	if (first_fair(cfs_rq)) {
P
Peter Zijlstra 已提交
327 328
		vruntime = min_vruntime(curr->vruntime,
				__pick_next_entity(cfs_rq)->vruntime);
329
	} else
P
Peter Zijlstra 已提交
330
		vruntime = curr->vruntime;
331 332

	cfs_rq->min_vruntime =
P
Peter Zijlstra 已提交
333
		max_vruntime(cfs_rq->min_vruntime, vruntime);
334 335
}

336
static void update_curr(struct cfs_rq *cfs_rq)
337
{
338
	struct sched_entity *curr = cfs_rq->curr;
I
Ingo Molnar 已提交
339
	u64 now = rq_of(cfs_rq)->clock;
340 341 342 343 344 345 346 347 348 349
	unsigned long delta_exec;

	if (unlikely(!curr))
		return;

	/*
	 * Get the amount of time the current task was running
	 * since the last time we changed load (this cannot
	 * overflow on 32 bits):
	 */
I
Ingo Molnar 已提交
350
	delta_exec = (unsigned long)(now - curr->exec_start);
351

I
Ingo Molnar 已提交
352 353
	__update_curr(cfs_rq, curr, delta_exec);
	curr->exec_start = now;
354 355 356
}

static inline void
357
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
358
{
359
	schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
360 361 362 363 364
}

/*
 * Task is being enqueued - update stats:
 */
365
static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
366 367 368 369 370
{
	/*
	 * Are we enqueueing a waiting task? (for current tasks
	 * a dequeue/enqueue event is a NOP)
	 */
371
	if (se != cfs_rq->curr)
372
		update_stats_wait_start(cfs_rq, se);
373 374 375
}

static void
376
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
377
{
378 379
	schedstat_set(se->wait_max, max(se->wait_max,
			rq_of(cfs_rq)->clock - se->wait_start));
I
Ingo Molnar 已提交
380
	schedstat_set(se->wait_start, 0);
381 382 383
}

static inline void
384
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
385 386 387 388 389
{
	/*
	 * Mark the end of the wait period if dequeueing a
	 * waiting task:
	 */
390
	if (se != cfs_rq->curr)
391
		update_stats_wait_end(cfs_rq, se);
392 393 394 395 396 397
}

/*
 * We are picking a new current task - update its stats:
 */
static inline void
398
update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
399 400 401 402
{
	/*
	 * We are starting a new run period:
	 */
403
	se->exec_start = rq_of(cfs_rq)->clock;
404 405 406 407 408 409
}

/**************************************************
 * Scheduling class queueing methods:
 */

410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
static void
account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_add(&cfs_rq->load, se->load.weight);
	cfs_rq->nr_running++;
	se->on_rq = 1;
}

static void
account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_sub(&cfs_rq->load, se->load.weight);
	cfs_rq->nr_running--;
	se->on_rq = 0;
}

426
static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
427 428 429
{
#ifdef CONFIG_SCHEDSTATS
	if (se->sleep_start) {
430
		u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
431 432 433 434 435 436 437 438 439 440 441

		if ((s64)delta < 0)
			delta = 0;

		if (unlikely(delta > se->sleep_max))
			se->sleep_max = delta;

		se->sleep_start = 0;
		se->sum_sleep_runtime += delta;
	}
	if (se->block_start) {
442
		u64 delta = rq_of(cfs_rq)->clock - se->block_start;
443 444 445 446 447 448 449 450 451

		if ((s64)delta < 0)
			delta = 0;

		if (unlikely(delta > se->block_max))
			se->block_max = delta;

		se->block_start = 0;
		se->sum_sleep_runtime += delta;
I
Ingo Molnar 已提交
452 453 454 455 456 457 458

		/*
		 * Blocking time is in units of nanosecs, so shift by 20 to
		 * get a milliseconds-range estimation of the amount of
		 * time that the task spent sleeping:
		 */
		if (unlikely(prof_on == SLEEP_PROFILING)) {
I
Ingo Molnar 已提交
459 460
			struct task_struct *tsk = task_of(se);

I
Ingo Molnar 已提交
461 462 463
			profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
				     delta >> 20);
		}
464 465 466 467
	}
#endif
}

P
Peter Zijlstra 已提交
468 469 470 471 472 473 474 475 476 477 478 479 480
static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	s64 d = se->vruntime - cfs_rq->min_vruntime;

	if (d < 0)
		d = -d;

	if (d > 3*sysctl_sched_latency)
		schedstat_inc(cfs_rq, nr_spread_over);
#endif
}

481 482 483
static void
place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
{
P
Peter Zijlstra 已提交
484
	u64 vruntime;
485

P
Peter Zijlstra 已提交
486
	vruntime = cfs_rq->min_vruntime;
P
Peter Zijlstra 已提交
487

488
	if (sched_feat(TREE_AVG)) {
P
Peter Zijlstra 已提交
489 490
		struct sched_entity *last = __pick_last_entity(cfs_rq);
		if (last) {
P
Peter Zijlstra 已提交
491 492
			vruntime += last->vruntime;
			vruntime >>= 1;
P
Peter Zijlstra 已提交
493
		}
P
Peter Zijlstra 已提交
494
	} else if (sched_feat(APPROX_AVG) && cfs_rq->nr_running)
495
		vruntime += sched_vslice(cfs_rq)/2;
P
Peter Zijlstra 已提交
496

497 498 499 500 501 502
	/*
	 * The 'current' period is already promised to the current tasks,
	 * however the extra weight of the new task will slow them down a
	 * little, place the new task so that it fits in the slot that
	 * stays open at the end.
	 */
P
Peter Zijlstra 已提交
503
	if (initial && sched_feat(START_DEBIT))
504
		vruntime += sched_vslice_add(cfs_rq, se);
505

I
Ingo Molnar 已提交
506
	if (!initial) {
507
		/* sleeps upto a single latency don't count. */
508 509
		if (sched_feat(NEW_FAIR_SLEEPERS) && entity_is_task(se) &&
				task_of(se)->policy != SCHED_BATCH)
510 511
			vruntime -= sysctl_sched_latency;

512 513
		/* ensure we never gain time by being placed backwards. */
		vruntime = max_vruntime(se->vruntime, vruntime);
514 515
	}

P
Peter Zijlstra 已提交
516
	se->vruntime = vruntime;
517 518
}

519
static void
520
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
521 522
{
	/*
523
	 * Update run-time statistics of the 'current'.
524
	 */
525
	update_curr(cfs_rq);
526

I
Ingo Molnar 已提交
527
	if (wakeup) {
528
		place_entity(cfs_rq, se, 0);
529
		enqueue_sleeper(cfs_rq, se);
I
Ingo Molnar 已提交
530
	}
531

532
	update_stats_enqueue(cfs_rq, se);
P
Peter Zijlstra 已提交
533
	check_spread(cfs_rq, se);
534 535
	if (se != cfs_rq->curr)
		__enqueue_entity(cfs_rq, se);
536
	account_entity_enqueue(cfs_rq, se);
537 538 539
}

static void
540
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
541
{
542 543 544 545 546
	/*
	 * Update run-time statistics of the 'current'.
	 */
	update_curr(cfs_rq);

547
	update_stats_dequeue(cfs_rq, se);
548
	if (sleep) {
549
		se->peer_preempt = 0;
P
Peter Zijlstra 已提交
550
#ifdef CONFIG_SCHEDSTATS
551 552 553 554
		if (entity_is_task(se)) {
			struct task_struct *tsk = task_of(se);

			if (tsk->state & TASK_INTERRUPTIBLE)
555
				se->sleep_start = rq_of(cfs_rq)->clock;
556
			if (tsk->state & TASK_UNINTERRUPTIBLE)
557
				se->block_start = rq_of(cfs_rq)->clock;
558
		}
559
#endif
P
Peter Zijlstra 已提交
560 561
	}

562
	if (se != cfs_rq->curr)
563 564
		__dequeue_entity(cfs_rq, se);
	account_entity_dequeue(cfs_rq, se);
565 566 567 568 569
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
570
static void
I
Ingo Molnar 已提交
571
check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
572
{
573 574
	unsigned long ideal_runtime, delta_exec;

P
Peter Zijlstra 已提交
575
	ideal_runtime = sched_slice(cfs_rq, curr);
576
	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
577 578
	if (delta_exec > ideal_runtime ||
			(sched_feat(PREEMPT_RESTRICT) && curr->peer_preempt))
579
		resched_task(rq_of(cfs_rq)->curr);
580
	curr->peer_preempt = 0;
581 582
}

583
static void
584
set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
585
{
586 587 588 589 590 591 592 593 594 595 596
	/* 'current' is not kept within the tree. */
	if (se->on_rq) {
		/*
		 * Any task has to be enqueued before it get to execute on
		 * a CPU. So account for the time it spent waiting on the
		 * runqueue.
		 */
		update_stats_wait_end(cfs_rq, se);
		__dequeue_entity(cfs_rq, se);
	}

597
	update_stats_curr_start(cfs_rq, se);
598
	cfs_rq->curr = se;
I
Ingo Molnar 已提交
599 600 601 602 603 604
#ifdef CONFIG_SCHEDSTATS
	/*
	 * Track our maximum slice length, if the CPU's load is at
	 * least twice that of our own weight (i.e. dont track it
	 * when there are only lesser-weight tasks around):
	 */
605
	if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
I
Ingo Molnar 已提交
606 607 608 609
		se->slice_max = max(se->slice_max,
			se->sum_exec_runtime - se->prev_sum_exec_runtime);
	}
#endif
610
	se->prev_sum_exec_runtime = se->sum_exec_runtime;
611 612
}

613
static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
614
{
D
Dmitry Adamushko 已提交
615
	struct sched_entity *se = NULL;
616

D
Dmitry Adamushko 已提交
617 618 619 620
	if (first_fair(cfs_rq)) {
		se = __pick_next_entity(cfs_rq);
		set_next_entity(cfs_rq, se);
	}
621 622 623 624

	return se;
}

625
static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
626 627 628 629 630 631
{
	/*
	 * If still on the runqueue then deactivate_task()
	 * was not called and update_curr() has to be done:
	 */
	if (prev->on_rq)
632
		update_curr(cfs_rq);
633

P
Peter Zijlstra 已提交
634
	check_spread(cfs_rq, prev);
635
	if (prev->on_rq) {
636
		update_stats_wait_start(cfs_rq, prev);
637 638 639
		/* Put 'current' back into the tree. */
		__enqueue_entity(cfs_rq, prev);
	}
640
	cfs_rq->curr = NULL;
641 642 643 644 645
}

static void entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
{
	/*
646
	 * Update run-time statistics of the 'current'.
647
	 */
648
	update_curr(cfs_rq);
649

650
	if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
I
Ingo Molnar 已提交
651
		check_preempt_tick(cfs_rq, curr);
652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685
}

/**************************************************
 * CFS operations on tasks:
 */

#ifdef CONFIG_FAIR_GROUP_SCHED

/* Walk up scheduling entities hierarchy */
#define for_each_sched_entity(se) \
		for (; se; se = se->parent)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return p->se.cfs_rq;
}

/* runqueue on which this entity is (to be) queued */
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	return se->cfs_rq;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return grp->my_q;
}

/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
 * another cpu ('this_cpu')
 */
static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
{
S
Srivatsa Vaddagiri 已提交
686
	return cfs_rq->tg->cfs_rq[this_cpu];
687 688 689 690 691 692
}

/* Iterate thr' all leaf cfs_rq's on a runqueue */
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
	list_for_each_entry(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)

693 694 695
/* Do the two (enqueued) entities belong to the same group ? */
static inline int
is_same_group(struct sched_entity *se, struct sched_entity *pse)
696
{
697
	if (se->cfs_rq == pse->cfs_rq)
698 699 700 701 702
		return 1;

	return 0;
}

703 704 705 706 707
static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return se->parent;
}

708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739
#else	/* CONFIG_FAIR_GROUP_SCHED */

#define for_each_sched_entity(se) \
		for (; se; se = NULL)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return &task_rq(p)->cfs;
}

static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	struct task_struct *p = task_of(se);
	struct rq *rq = task_rq(p);

	return &rq->cfs;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return NULL;
}

static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
{
	return &cpu_rq(this_cpu)->cfs;
}

#define for_each_leaf_cfs_rq(rq, cfs_rq) \
		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)

740 741
static inline int
is_same_group(struct sched_entity *se, struct sched_entity *pse)
742 743 744 745
{
	return 1;
}

746 747 748 749 750
static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return NULL;
}

751 752 753 754 755 756 757
#endif	/* CONFIG_FAIR_GROUP_SCHED */

/*
 * The enqueue_task method is called before nr_running is
 * increased. Here we update the fair scheduling stats and
 * then put the task into the rbtree:
 */
758
static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
759 760 761 762 763 764 765 766
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &p->se;

	for_each_sched_entity(se) {
		if (se->on_rq)
			break;
		cfs_rq = cfs_rq_of(se);
767
		enqueue_entity(cfs_rq, se, wakeup);
768
		wakeup = 1;
769 770 771 772 773 774 775 776
	}
}

/*
 * The dequeue_task method is called before nr_running is
 * decreased. We remove the task from the rbtree and
 * update the fair scheduling stats:
 */
777
static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
778 779 780 781 782 783
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &p->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
784
		dequeue_entity(cfs_rq, se, sleep);
785 786 787
		/* Don't dequeue parent if it has other entities besides us */
		if (cfs_rq->load.weight)
			break;
788
		sleep = 1;
789 790 791 792
	}
}

/*
793 794 795
 * sched_yield() support is very simple - we dequeue and enqueue.
 *
 * If compat_yield is turned on then we requeue to the end of the tree.
796
 */
797
static void yield_task_fair(struct rq *rq)
798
{
S
Srivatsa Vaddagiri 已提交
799
	struct cfs_rq *cfs_rq = task_cfs_rq(rq->curr);
800
	struct sched_entity *rightmost, *se = &rq->curr->se;
801 802

	/*
803 804 805 806 807 808 809 810
	 * Are we the only task in the tree?
	 */
	if (unlikely(cfs_rq->nr_running == 1))
		return;

	if (likely(!sysctl_sched_compat_yield)) {
		__update_rq_clock(rq);
		/*
811
		 * Update run-time statistics of the 'current'.
812
		 */
D
Dmitry Adamushko 已提交
813
		update_curr(cfs_rq);
814 815 816 817 818

		return;
	}
	/*
	 * Find the rightmost entry in the rbtree:
819
	 */
D
Dmitry Adamushko 已提交
820
	rightmost = __pick_last_entity(cfs_rq);
821 822 823
	/*
	 * Already in the rightmost position?
	 */
D
Dmitry Adamushko 已提交
824
	if (unlikely(rightmost->vruntime < se->vruntime))
825 826 827 828
		return;

	/*
	 * Minimally necessary key value to be last in the tree:
D
Dmitry Adamushko 已提交
829 830
	 * Upon rescheduling, sched_class::put_prev_task() will place
	 * 'current' within the tree based on its new key value.
831
	 */
832
	se->vruntime = rightmost->vruntime + 1;
833 834 835 836 837
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
I
Ingo Molnar 已提交
838
static void check_preempt_wakeup(struct rq *rq, struct task_struct *p)
839 840
{
	struct task_struct *curr = rq->curr;
841
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
842
	struct sched_entity *se = &curr->se, *pse = &p->se;
843
	s64 delta, gran;
844 845

	if (unlikely(rt_prio(p->prio))) {
I
Ingo Molnar 已提交
846
		update_rq_clock(rq);
847
		update_curr(cfs_rq);
848 849 850
		resched_task(curr);
		return;
	}
851 852 853 854 855 856
	/*
	 * Batch tasks do not preempt (their preemption is driven by
	 * the tick):
	 */
	if (unlikely(p->policy == SCHED_BATCH))
		return;
857

858 859 860 861 862
	if (sched_feat(WAKEUP_PREEMPT)) {
		while (!is_same_group(se, pse)) {
			se = parent_entity(se);
			pse = parent_entity(pse);
		}
863

864 865 866 867
		delta = se->vruntime - pse->vruntime;
		gran = sysctl_sched_wakeup_granularity;
		if (unlikely(se->load.weight != NICE_0_LOAD))
			gran = calc_delta_fair(gran, &se->load);
868

869 870 871 872 873 874
		if (delta > gran) {
			int now = !sched_feat(PREEMPT_RESTRICT);

			if (now || p->prio < curr->prio || !se->peer_preempt++)
				resched_task(curr);
		}
875
	}
876 877
}

878
static struct task_struct *pick_next_task_fair(struct rq *rq)
879 880 881 882 883 884 885 886
{
	struct cfs_rq *cfs_rq = &rq->cfs;
	struct sched_entity *se;

	if (unlikely(!cfs_rq->nr_running))
		return NULL;

	do {
887
		se = pick_next_entity(cfs_rq);
888 889 890 891 892 893 894 895 896
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

	return task_of(se);
}

/*
 * Account for a descheduled task:
 */
897
static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
898 899 900 901 902 903
{
	struct sched_entity *se = &prev->se;
	struct cfs_rq *cfs_rq;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
904
		put_prev_entity(cfs_rq, se);
905 906 907
	}
}

908
#ifdef CONFIG_SMP
909 910 911 912 913 914 915 916 917 918 919
/**************************************************
 * Fair scheduling class load-balancing methods:
 */

/*
 * Load-balancing iterator. Note: while the runqueue stays locked
 * during the whole iteration, the current task might be
 * dequeued so the iterator has to be dequeue-safe. Here we
 * achieve that by always pre-iterating before returning
 * the current task:
 */
A
Alexey Dobriyan 已提交
920
static struct task_struct *
921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947
__load_balance_iterator(struct cfs_rq *cfs_rq, struct rb_node *curr)
{
	struct task_struct *p;

	if (!curr)
		return NULL;

	p = rb_entry(curr, struct task_struct, se.run_node);
	cfs_rq->rb_load_balance_curr = rb_next(curr);

	return p;
}

static struct task_struct *load_balance_start_fair(void *arg)
{
	struct cfs_rq *cfs_rq = arg;

	return __load_balance_iterator(cfs_rq, first_fair(cfs_rq));
}

static struct task_struct *load_balance_next_fair(void *arg)
{
	struct cfs_rq *cfs_rq = arg;

	return __load_balance_iterator(cfs_rq, cfs_rq->rb_load_balance_curr);
}

948
#ifdef CONFIG_FAIR_GROUP_SCHED
949 950 951 952 953 954 955 956
static int cfs_rq_best_prio(struct cfs_rq *cfs_rq)
{
	struct sched_entity *curr;
	struct task_struct *p;

	if (!cfs_rq->nr_running)
		return MAX_PRIO;

957 958 959 960
	curr = cfs_rq->curr;
	if (!curr)
		curr = __pick_next_entity(cfs_rq);

961 962 963 964
	p = task_of(curr);

	return p->prio;
}
965
#endif
966

P
Peter Williams 已提交
967
static unsigned long
968
load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
969
		  unsigned long max_load_move,
970 971
		  struct sched_domain *sd, enum cpu_idle_type idle,
		  int *all_pinned, int *this_best_prio)
972 973 974 975 976 977 978 979 980
{
	struct cfs_rq *busy_cfs_rq;
	long rem_load_move = max_load_move;
	struct rq_iterator cfs_rq_iterator;

	cfs_rq_iterator.start = load_balance_start_fair;
	cfs_rq_iterator.next = load_balance_next_fair;

	for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
981
#ifdef CONFIG_FAIR_GROUP_SCHED
982
		struct cfs_rq *this_cfs_rq;
983
		long imbalance;
984 985 986 987
		unsigned long maxload;

		this_cfs_rq = cpu_cfs_rq(busy_cfs_rq, this_cpu);

988
		imbalance = busy_cfs_rq->load.weight - this_cfs_rq->load.weight;
989 990 991 992 993 994 995 996
		/* Don't pull if this_cfs_rq has more load than busy_cfs_rq */
		if (imbalance <= 0)
			continue;

		/* Don't pull more than imbalance/2 */
		imbalance /= 2;
		maxload = min(rem_load_move, imbalance);

997 998
		*this_best_prio = cfs_rq_best_prio(this_cfs_rq);
#else
999
# define maxload rem_load_move
1000
#endif
1001 1002
		/*
		 * pass busy_cfs_rq argument into
1003 1004 1005
		 * load_balance_[start|next]_fair iterators
		 */
		cfs_rq_iterator.arg = busy_cfs_rq;
1006 1007 1008 1009
		rem_load_move -= balance_tasks(this_rq, this_cpu, busiest,
					       maxload, sd, idle, all_pinned,
					       this_best_prio,
					       &cfs_rq_iterator);
1010

1011
		if (rem_load_move <= 0)
1012 1013 1014
			break;
	}

P
Peter Williams 已提交
1015
	return max_load_move - rem_load_move;
1016 1017
}

1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
static int
move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle)
{
	struct cfs_rq *busy_cfs_rq;
	struct rq_iterator cfs_rq_iterator;

	cfs_rq_iterator.start = load_balance_start_fair;
	cfs_rq_iterator.next = load_balance_next_fair;

	for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
		/*
		 * pass busy_cfs_rq argument into
		 * load_balance_[start|next]_fair iterators
		 */
		cfs_rq_iterator.arg = busy_cfs_rq;
		if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
				       &cfs_rq_iterator))
		    return 1;
	}

	return 0;
}
1041
#endif
1042

1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
/*
 * scheduler tick hitting a task of our scheduling class:
 */
static void task_tick_fair(struct rq *rq, struct task_struct *curr)
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &curr->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
		entity_tick(cfs_rq, se);
	}
}

1057
#define swap(a, b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
1058

1059 1060 1061 1062 1063 1064 1065
/*
 * Share the fairness runtime between parent and child, thus the
 * total amount of pressure for CPU stays equal - new tasks
 * get a chance to run but frequent forkers are not allowed to
 * monopolize the CPU. Note: the parent runqueue is locked,
 * the child is not running yet.
 */
1066
static void task_new_fair(struct rq *rq, struct task_struct *p)
1067 1068
{
	struct cfs_rq *cfs_rq = task_cfs_rq(p);
1069
	struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
1070
	int this_cpu = smp_processor_id();
1071 1072 1073

	sched_info_queued(p);

1074
	update_curr(cfs_rq);
1075
	place_entity(cfs_rq, se, 1);
1076

1077
	if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
1078
			curr->vruntime < se->vruntime) {
D
Dmitry Adamushko 已提交
1079
		/*
1080 1081 1082
		 * Upon rescheduling, sched_class::put_prev_task() will place
		 * 'current' within the tree based on its new key value.
		 */
1083 1084
		swap(curr->vruntime, se->vruntime);
	}
1085

1086
	se->peer_preempt = 0;
1087
	enqueue_task_fair(rq, p, 0);
1088
	resched_task(rq->curr);
1089 1090
}

1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
/* Account for a task changing its policy or group.
 *
 * This routine is mostly called to set cfs_rq->curr field when a task
 * migrates between groups/classes.
 */
static void set_curr_task_fair(struct rq *rq)
{
	struct sched_entity *se = &rq->curr->se;

	for_each_sched_entity(se)
		set_next_entity(cfs_rq_of(se), se);
}

1104 1105 1106
/*
 * All the scheduling class methods:
 */
1107 1108
static const struct sched_class fair_sched_class = {
	.next			= &idle_sched_class,
1109 1110 1111 1112
	.enqueue_task		= enqueue_task_fair,
	.dequeue_task		= dequeue_task_fair,
	.yield_task		= yield_task_fair,

I
Ingo Molnar 已提交
1113
	.check_preempt_curr	= check_preempt_wakeup,
1114 1115 1116 1117

	.pick_next_task		= pick_next_task_fair,
	.put_prev_task		= put_prev_task_fair,

1118
#ifdef CONFIG_SMP
1119
	.load_balance		= load_balance_fair,
1120
	.move_one_task		= move_one_task_fair,
1121
#endif
1122

1123
	.set_curr_task          = set_curr_task_fair,
1124 1125 1126 1127 1128
	.task_tick		= task_tick_fair,
	.task_new		= task_new_fair,
};

#ifdef CONFIG_SCHED_DEBUG
1129
static void print_cfs_stats(struct seq_file *m, int cpu)
1130 1131 1132
{
	struct cfs_rq *cfs_rq;

S
Srivatsa Vaddagiri 已提交
1133 1134 1135
#ifdef CONFIG_FAIR_GROUP_SCHED
	print_cfs_rq(m, cpu, &cpu_rq(cpu)->cfs);
#endif
1136
	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
1137
		print_cfs_rq(m, cpu, cfs_rq);
1138 1139
}
#endif