vmscan.c 80.6 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/*
 *  linux/mm/vmscan.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *
 *  Swap reorganised 29.12.95, Stephen Tweedie.
 *  kswapd added: 7.1.96  sct
 *  Removed kswapd_ctl limits, and swap out as many pages as needed
 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
 *  Multiqueue VM started 5.8.00, Rik van Riel.
 */

#include <linux/mm.h>
#include <linux/module.h>
16
#include <linux/gfp.h>
L
Linus Torvalds 已提交
17 18 19 20 21
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
#include <linux/init.h>
#include <linux/highmem.h>
22
#include <linux/vmstat.h>
L
Linus Torvalds 已提交
23 24 25 26 27 28 29 30 31 32 33 34 35 36
#include <linux/file.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>	/* for try_to_release_page(),
					buffer_heads_over_limit */
#include <linux/mm_inline.h>
#include <linux/pagevec.h>
#include <linux/backing-dev.h>
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/notifier.h>
#include <linux/rwsem.h>
37
#include <linux/delay.h>
38
#include <linux/kthread.h>
39
#include <linux/freezer.h>
40
#include <linux/memcontrol.h>
41
#include <linux/delayacct.h>
42
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
43 44 45 46 47 48

#include <asm/tlbflush.h>
#include <asm/div64.h>

#include <linux/swapops.h>

49 50
#include "internal.h"

L
Linus Torvalds 已提交
51 52 53 54
struct scan_control {
	/* Incremented by the number of inactive pages that were scanned */
	unsigned long nr_scanned;

55 56 57
	/* Number of pages freed so far during a call to shrink_zones() */
	unsigned long nr_reclaimed;

58 59 60
	/* How many pages shrink_list() should reclaim */
	unsigned long nr_to_reclaim;

61 62
	unsigned long hibernation_mode;

L
Linus Torvalds 已提交
63
	/* This context's GFP mask */
A
Al Viro 已提交
64
	gfp_t gfp_mask;
L
Linus Torvalds 已提交
65 66 67

	int may_writepage;

68 69
	/* Can mapped pages be reclaimed? */
	int may_unmap;
70

71 72 73
	/* Can pages be swapped as part of reclaim? */
	int may_swap;

74
	int swappiness;
75 76

	int all_unreclaimable;
A
Andy Whitcroft 已提交
77 78

	int order;
79

80 81 82 83 84 85
	/*
	 * Intend to reclaim enough contenious memory rather than to reclaim
	 * enough amount memory. I.e, it's the mode for high order allocation.
	 */
	bool lumpy_reclaim_mode;

86 87 88
	/* Which cgroup do we reclaim from */
	struct mem_cgroup *mem_cgroup;

89 90 91 92 93 94
	/*
	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
	 * are scanned.
	 */
	nodemask_t	*nodemask;

95 96 97 98
	/* Pluggable isolate pages callback */
	unsigned long (*isolate_pages)(unsigned long nr, struct list_head *dst,
			unsigned long *scanned, int order, int mode,
			struct zone *z, struct mem_cgroup *mem_cont,
99
			int active, int file);
L
Linus Torvalds 已提交
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
};

#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))

#ifdef ARCH_HAS_PREFETCH
#define prefetch_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetch(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

#ifdef ARCH_HAS_PREFETCHW
#define prefetchw_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetchw(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

/*
 * From 0 .. 100.  Higher means more swappy.
 */
int vm_swappiness = 60;
136
long vm_total_pages;	/* The total number of pages which the VM controls */
L
Linus Torvalds 已提交
137 138 139 140

static LIST_HEAD(shrinker_list);
static DECLARE_RWSEM(shrinker_rwsem);

141
#ifdef CONFIG_CGROUP_MEM_RES_CTLR
142
#define scanning_global_lru(sc)	(!(sc)->mem_cgroup)
143
#else
144
#define scanning_global_lru(sc)	(1)
145 146
#endif

147 148 149
static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
						  struct scan_control *sc)
{
150
	if (!scanning_global_lru(sc))
K
KOSAKI Motohiro 已提交
151 152
		return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);

153 154 155
	return &zone->reclaim_stat;
}

156 157
static unsigned long zone_nr_lru_pages(struct zone *zone,
				struct scan_control *sc, enum lru_list lru)
158
{
159
	if (!scanning_global_lru(sc))
160 161
		return mem_cgroup_zone_nr_pages(sc->mem_cgroup, zone, lru);

162 163 164 165
	return zone_page_state(zone, NR_LRU_BASE + lru);
}


L
Linus Torvalds 已提交
166 167 168
/*
 * Add a shrinker callback to be called from the vm
 */
169
void register_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
170
{
171 172 173 174
	shrinker->nr = 0;
	down_write(&shrinker_rwsem);
	list_add_tail(&shrinker->list, &shrinker_list);
	up_write(&shrinker_rwsem);
L
Linus Torvalds 已提交
175
}
176
EXPORT_SYMBOL(register_shrinker);
L
Linus Torvalds 已提交
177 178 179 180

/*
 * Remove one
 */
181
void unregister_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
182 183 184 185 186
{
	down_write(&shrinker_rwsem);
	list_del(&shrinker->list);
	up_write(&shrinker_rwsem);
}
187
EXPORT_SYMBOL(unregister_shrinker);
L
Linus Torvalds 已提交
188 189 190 191 192 193 194 195 196 197

#define SHRINK_BATCH 128
/*
 * Call the shrink functions to age shrinkable caches
 *
 * Here we assume it costs one seek to replace a lru page and that it also
 * takes a seek to recreate a cache object.  With this in mind we age equal
 * percentages of the lru and ageable caches.  This should balance the seeks
 * generated by these structures.
 *
S
Simon Arlott 已提交
198
 * If the vm encountered mapped pages on the LRU it increase the pressure on
L
Linus Torvalds 已提交
199 200 201 202 203 204 205
 * slab to avoid swapping.
 *
 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
 *
 * `lru_pages' represents the number of on-LRU pages in all the zones which
 * are eligible for the caller's allocation attempt.  It is used for balancing
 * slab reclaim versus page reclaim.
206 207
 *
 * Returns the number of slab objects which we shrunk.
L
Linus Torvalds 已提交
208
 */
209 210
unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
			unsigned long lru_pages)
L
Linus Torvalds 已提交
211 212
{
	struct shrinker *shrinker;
213
	unsigned long ret = 0;
L
Linus Torvalds 已提交
214 215 216 217 218

	if (scanned == 0)
		scanned = SWAP_CLUSTER_MAX;

	if (!down_read_trylock(&shrinker_rwsem))
219
		return 1;	/* Assume we'll be able to shrink next time */
L
Linus Torvalds 已提交
220 221 222 223

	list_for_each_entry(shrinker, &shrinker_list, list) {
		unsigned long long delta;
		unsigned long total_scan;
224
		unsigned long max_pass = (*shrinker->shrink)(0, gfp_mask);
L
Linus Torvalds 已提交
225 226

		delta = (4 * scanned) / shrinker->seeks;
227
		delta *= max_pass;
L
Linus Torvalds 已提交
228 229
		do_div(delta, lru_pages + 1);
		shrinker->nr += delta;
230
		if (shrinker->nr < 0) {
231 232 233
			printk(KERN_ERR "shrink_slab: %pF negative objects to "
			       "delete nr=%ld\n",
			       shrinker->shrink, shrinker->nr);
234 235 236 237 238 239 240 241 242 243
			shrinker->nr = max_pass;
		}

		/*
		 * Avoid risking looping forever due to too large nr value:
		 * never try to free more than twice the estimate number of
		 * freeable entries.
		 */
		if (shrinker->nr > max_pass * 2)
			shrinker->nr = max_pass * 2;
L
Linus Torvalds 已提交
244 245 246 247 248 249 250

		total_scan = shrinker->nr;
		shrinker->nr = 0;

		while (total_scan >= SHRINK_BATCH) {
			long this_scan = SHRINK_BATCH;
			int shrink_ret;
251
			int nr_before;
L
Linus Torvalds 已提交
252

253 254
			nr_before = (*shrinker->shrink)(0, gfp_mask);
			shrink_ret = (*shrinker->shrink)(this_scan, gfp_mask);
L
Linus Torvalds 已提交
255 256
			if (shrink_ret == -1)
				break;
257 258
			if (shrink_ret < nr_before)
				ret += nr_before - shrink_ret;
259
			count_vm_events(SLABS_SCANNED, this_scan);
L
Linus Torvalds 已提交
260 261 262 263 264 265 266 267
			total_scan -= this_scan;

			cond_resched();
		}

		shrinker->nr += total_scan;
	}
	up_read(&shrinker_rwsem);
268
	return ret;
L
Linus Torvalds 已提交
269 270 271 272
}

static inline int is_page_cache_freeable(struct page *page)
{
273 274 275 276 277
	/*
	 * A freeable page cache page is referenced only by the caller
	 * that isolated the page, the page cache radix tree and
	 * optional buffer heads at page->private.
	 */
278
	return page_count(page) - page_has_private(page) == 2;
L
Linus Torvalds 已提交
279 280 281 282
}

static int may_write_to_queue(struct backing_dev_info *bdi)
{
283
	if (current->flags & PF_SWAPWRITE)
L
Linus Torvalds 已提交
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
		return 1;
	if (!bdi_write_congested(bdi))
		return 1;
	if (bdi == current->backing_dev_info)
		return 1;
	return 0;
}

/*
 * We detected a synchronous write error writing a page out.  Probably
 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 * fsync(), msync() or close().
 *
 * The tricky part is that after writepage we cannot touch the mapping: nothing
 * prevents it from being freed up.  But we have a ref on the page and once
 * that page is locked, the mapping is pinned.
 *
 * We're allowed to run sleeping lock_page() here because we know the caller has
 * __GFP_FS.
 */
static void handle_write_error(struct address_space *mapping,
				struct page *page, int error)
{
	lock_page(page);
308 309
	if (page_mapping(page) == mapping)
		mapping_set_error(mapping, error);
L
Linus Torvalds 已提交
310 311 312
	unlock_page(page);
}

313 314 315 316 317 318
/* Request for sync pageout. */
enum pageout_io {
	PAGEOUT_IO_ASYNC,
	PAGEOUT_IO_SYNC,
};

319 320 321 322 323 324 325 326 327 328 329 330
/* possible outcome of pageout() */
typedef enum {
	/* failed to write page out, page is locked */
	PAGE_KEEP,
	/* move page to the active list, page is locked */
	PAGE_ACTIVATE,
	/* page has been sent to the disk successfully, page is unlocked */
	PAGE_SUCCESS,
	/* page is clean and locked */
	PAGE_CLEAN,
} pageout_t;

L
Linus Torvalds 已提交
331
/*
A
Andrew Morton 已提交
332 333
 * pageout is called by shrink_page_list() for each dirty page.
 * Calls ->writepage().
L
Linus Torvalds 已提交
334
 */
335 336
static pageout_t pageout(struct page *page, struct address_space *mapping,
						enum pageout_io sync_writeback)
L
Linus Torvalds 已提交
337 338 339 340 341 342 343 344
{
	/*
	 * If the page is dirty, only perform writeback if that write
	 * will be non-blocking.  To prevent this allocation from being
	 * stalled by pagecache activity.  But note that there may be
	 * stalls if we need to run get_block().  We could test
	 * PagePrivate for that.
	 *
345
	 * If this process is currently in __generic_file_aio_write() against
L
Linus Torvalds 已提交
346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
	 * this page's queue, we can perform writeback even if that
	 * will block.
	 *
	 * If the page is swapcache, write it back even if that would
	 * block, for some throttling. This happens by accident, because
	 * swap_backing_dev_info is bust: it doesn't reflect the
	 * congestion state of the swapdevs.  Easy to fix, if needed.
	 */
	if (!is_page_cache_freeable(page))
		return PAGE_KEEP;
	if (!mapping) {
		/*
		 * Some data journaling orphaned pages can have
		 * page->mapping == NULL while being dirty with clean buffers.
		 */
361
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
362 363
			if (try_to_free_buffers(page)) {
				ClearPageDirty(page);
364
				printk("%s: orphaned page\n", __func__);
L
Linus Torvalds 已提交
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
				return PAGE_CLEAN;
			}
		}
		return PAGE_KEEP;
	}
	if (mapping->a_ops->writepage == NULL)
		return PAGE_ACTIVATE;
	if (!may_write_to_queue(mapping->backing_dev_info))
		return PAGE_KEEP;

	if (clear_page_dirty_for_io(page)) {
		int res;
		struct writeback_control wbc = {
			.sync_mode = WB_SYNC_NONE,
			.nr_to_write = SWAP_CLUSTER_MAX,
380 381
			.range_start = 0,
			.range_end = LLONG_MAX,
L
Linus Torvalds 已提交
382 383 384 385 386 387 388 389
			.nonblocking = 1,
			.for_reclaim = 1,
		};

		SetPageReclaim(page);
		res = mapping->a_ops->writepage(page, &wbc);
		if (res < 0)
			handle_write_error(mapping, page, res);
390
		if (res == AOP_WRITEPAGE_ACTIVATE) {
L
Linus Torvalds 已提交
391 392 393
			ClearPageReclaim(page);
			return PAGE_ACTIVATE;
		}
394 395 396 397 398 399 400 401 402

		/*
		 * Wait on writeback if requested to. This happens when
		 * direct reclaiming a large contiguous area and the
		 * first attempt to free a range of pages fails.
		 */
		if (PageWriteback(page) && sync_writeback == PAGEOUT_IO_SYNC)
			wait_on_page_writeback(page);

L
Linus Torvalds 已提交
403 404 405 406
		if (!PageWriteback(page)) {
			/* synchronous write or broken a_ops? */
			ClearPageReclaim(page);
		}
407
		inc_zone_page_state(page, NR_VMSCAN_WRITE);
L
Linus Torvalds 已提交
408 409 410 411 412 413
		return PAGE_SUCCESS;
	}

	return PAGE_CLEAN;
}

414
/*
N
Nick Piggin 已提交
415 416
 * Same as remove_mapping, but if the page is removed from the mapping, it
 * gets returned with a refcount of 0.
417
 */
N
Nick Piggin 已提交
418
static int __remove_mapping(struct address_space *mapping, struct page *page)
419
{
420 421
	BUG_ON(!PageLocked(page));
	BUG_ON(mapping != page_mapping(page));
422

N
Nick Piggin 已提交
423
	spin_lock_irq(&mapping->tree_lock);
424
	/*
N
Nick Piggin 已提交
425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
	 * The non racy check for a busy page.
	 *
	 * Must be careful with the order of the tests. When someone has
	 * a ref to the page, it may be possible that they dirty it then
	 * drop the reference. So if PageDirty is tested before page_count
	 * here, then the following race may occur:
	 *
	 * get_user_pages(&page);
	 * [user mapping goes away]
	 * write_to(page);
	 *				!PageDirty(page)    [good]
	 * SetPageDirty(page);
	 * put_page(page);
	 *				!page_count(page)   [good, discard it]
	 *
	 * [oops, our write_to data is lost]
	 *
	 * Reversing the order of the tests ensures such a situation cannot
	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
	 * load is not satisfied before that of page->_count.
	 *
	 * Note that if SetPageDirty is always performed via set_page_dirty,
	 * and thus under tree_lock, then this ordering is not required.
448
	 */
N
Nick Piggin 已提交
449
	if (!page_freeze_refs(page, 2))
450
		goto cannot_free;
N
Nick Piggin 已提交
451 452 453
	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
	if (unlikely(PageDirty(page))) {
		page_unfreeze_refs(page, 2);
454
		goto cannot_free;
N
Nick Piggin 已提交
455
	}
456 457 458 459

	if (PageSwapCache(page)) {
		swp_entry_t swap = { .val = page_private(page) };
		__delete_from_swap_cache(page);
N
Nick Piggin 已提交
460
		spin_unlock_irq(&mapping->tree_lock);
461
		swapcache_free(swap, page);
N
Nick Piggin 已提交
462 463
	} else {
		__remove_from_page_cache(page);
N
Nick Piggin 已提交
464
		spin_unlock_irq(&mapping->tree_lock);
465
		mem_cgroup_uncharge_cache_page(page);
466 467 468 469 470
	}

	return 1;

cannot_free:
N
Nick Piggin 已提交
471
	spin_unlock_irq(&mapping->tree_lock);
472 473 474
	return 0;
}

N
Nick Piggin 已提交
475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
/*
 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 * someone else has a ref on the page, abort and return 0.  If it was
 * successfully detached, return 1.  Assumes the caller has a single ref on
 * this page.
 */
int remove_mapping(struct address_space *mapping, struct page *page)
{
	if (__remove_mapping(mapping, page)) {
		/*
		 * Unfreezing the refcount with 1 rather than 2 effectively
		 * drops the pagecache ref for us without requiring another
		 * atomic operation.
		 */
		page_unfreeze_refs(page, 1);
		return 1;
	}
	return 0;
}

L
Lee Schermerhorn 已提交
495 496 497 498 499 500 501 502 503 504 505 506 507
/**
 * putback_lru_page - put previously isolated page onto appropriate LRU list
 * @page: page to be put back to appropriate lru list
 *
 * Add previously isolated @page to appropriate LRU list.
 * Page may still be unevictable for other reasons.
 *
 * lru_lock must not be held, interrupts must be enabled.
 */
void putback_lru_page(struct page *page)
{
	int lru;
	int active = !!TestClearPageActive(page);
508
	int was_unevictable = PageUnevictable(page);
L
Lee Schermerhorn 已提交
509 510 511 512 513 514 515 516 517 518 519 520 521

	VM_BUG_ON(PageLRU(page));

redo:
	ClearPageUnevictable(page);

	if (page_evictable(page, NULL)) {
		/*
		 * For evictable pages, we can use the cache.
		 * In event of a race, worst case is we end up with an
		 * unevictable page on [in]active list.
		 * We know how to handle that.
		 */
522
		lru = active + page_lru_base_type(page);
L
Lee Schermerhorn 已提交
523 524 525 526 527 528 529 530
		lru_cache_add_lru(page, lru);
	} else {
		/*
		 * Put unevictable pages directly on zone's unevictable
		 * list.
		 */
		lru = LRU_UNEVICTABLE;
		add_page_to_unevictable_list(page);
531 532 533 534 535 536 537 538 539 540
		/*
		 * When racing with an mlock clearing (page is
		 * unlocked), make sure that if the other thread does
		 * not observe our setting of PG_lru and fails
		 * isolation, we see PG_mlocked cleared below and move
		 * the page back to the evictable list.
		 *
		 * The other side is TestClearPageMlocked().
		 */
		smp_mb();
L
Lee Schermerhorn 已提交
541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
	}

	/*
	 * page's status can change while we move it among lru. If an evictable
	 * page is on unevictable list, it never be freed. To avoid that,
	 * check after we added it to the list, again.
	 */
	if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
		if (!isolate_lru_page(page)) {
			put_page(page);
			goto redo;
		}
		/* This means someone else dropped this page from LRU
		 * So, it will be freed or putback to LRU again. There is
		 * nothing to do here.
		 */
	}

559 560 561 562 563
	if (was_unevictable && lru != LRU_UNEVICTABLE)
		count_vm_event(UNEVICTABLE_PGRESCUED);
	else if (!was_unevictable && lru == LRU_UNEVICTABLE)
		count_vm_event(UNEVICTABLE_PGCULLED);

L
Lee Schermerhorn 已提交
564 565 566
	put_page(page);		/* drop ref from isolate */
}

567 568 569
enum page_references {
	PAGEREF_RECLAIM,
	PAGEREF_RECLAIM_CLEAN,
570
	PAGEREF_KEEP,
571 572 573 574 575 576
	PAGEREF_ACTIVATE,
};

static enum page_references page_check_references(struct page *page,
						  struct scan_control *sc)
{
577
	int referenced_ptes, referenced_page;
578 579
	unsigned long vm_flags;

580 581
	referenced_ptes = page_referenced(page, 1, sc->mem_cgroup, &vm_flags);
	referenced_page = TestClearPageReferenced(page);
582 583

	/* Lumpy reclaim - ignore references */
584
	if (sc->lumpy_reclaim_mode)
585 586 587 588 589 590 591 592 593
		return PAGEREF_RECLAIM;

	/*
	 * Mlock lost the isolation race with us.  Let try_to_unmap()
	 * move the page to the unevictable list.
	 */
	if (vm_flags & VM_LOCKED)
		return PAGEREF_RECLAIM;

594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617
	if (referenced_ptes) {
		if (PageAnon(page))
			return PAGEREF_ACTIVATE;
		/*
		 * All mapped pages start out with page table
		 * references from the instantiating fault, so we need
		 * to look twice if a mapped file page is used more
		 * than once.
		 *
		 * Mark it and spare it for another trip around the
		 * inactive list.  Another page table reference will
		 * lead to its activation.
		 *
		 * Note: the mark is set for activated pages as well
		 * so that recently deactivated but used pages are
		 * quickly recovered.
		 */
		SetPageReferenced(page);

		if (referenced_page)
			return PAGEREF_ACTIVATE;

		return PAGEREF_KEEP;
	}
618 619

	/* Reclaim if clean, defer dirty pages to writeback */
620 621 622 623
	if (referenced_page)
		return PAGEREF_RECLAIM_CLEAN;

	return PAGEREF_RECLAIM;
624 625
}

L
Linus Torvalds 已提交
626
/*
A
Andrew Morton 已提交
627
 * shrink_page_list() returns the number of reclaimed pages
L
Linus Torvalds 已提交
628
 */
A
Andrew Morton 已提交
629
static unsigned long shrink_page_list(struct list_head *page_list,
630 631
					struct scan_control *sc,
					enum pageout_io sync_writeback)
L
Linus Torvalds 已提交
632 633 634 635
{
	LIST_HEAD(ret_pages);
	struct pagevec freed_pvec;
	int pgactivate = 0;
636
	unsigned long nr_reclaimed = 0;
L
Linus Torvalds 已提交
637 638 639 640 641

	cond_resched();

	pagevec_init(&freed_pvec, 1);
	while (!list_empty(page_list)) {
642
		enum page_references references;
L
Linus Torvalds 已提交
643 644 645 646 647 648 649 650 651
		struct address_space *mapping;
		struct page *page;
		int may_enter_fs;

		cond_resched();

		page = lru_to_page(page_list);
		list_del(&page->lru);

N
Nick Piggin 已提交
652
		if (!trylock_page(page))
L
Linus Torvalds 已提交
653 654
			goto keep;

N
Nick Piggin 已提交
655
		VM_BUG_ON(PageActive(page));
L
Linus Torvalds 已提交
656 657

		sc->nr_scanned++;
658

N
Nick Piggin 已提交
659 660
		if (unlikely(!page_evictable(page, NULL)))
			goto cull_mlocked;
L
Lee Schermerhorn 已提交
661

662
		if (!sc->may_unmap && page_mapped(page))
663 664
			goto keep_locked;

L
Linus Torvalds 已提交
665 666 667 668
		/* Double the slab pressure for mapped and swapcache pages */
		if (page_mapped(page) || PageSwapCache(page))
			sc->nr_scanned++;

669 670 671 672 673 674 675 676 677 678 679 680 681 682
		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));

		if (PageWriteback(page)) {
			/*
			 * Synchronous reclaim is performed in two passes,
			 * first an asynchronous pass over the list to
			 * start parallel writeback, and a second synchronous
			 * pass to wait for the IO to complete.  Wait here
			 * for any page for which writeback has already
			 * started.
			 */
			if (sync_writeback == PAGEOUT_IO_SYNC && may_enter_fs)
				wait_on_page_writeback(page);
683
			else
684 685
				goto keep_locked;
		}
L
Linus Torvalds 已提交
686

687 688 689
		references = page_check_references(page, sc);
		switch (references) {
		case PAGEREF_ACTIVATE:
L
Linus Torvalds 已提交
690
			goto activate_locked;
691 692
		case PAGEREF_KEEP:
			goto keep_locked;
693 694 695 696
		case PAGEREF_RECLAIM:
		case PAGEREF_RECLAIM_CLEAN:
			; /* try to reclaim the page below */
		}
L
Linus Torvalds 已提交
697 698 699 700 701

		/*
		 * Anonymous process memory has backing store?
		 * Try to allocate it some swap space here.
		 */
N
Nick Piggin 已提交
702
		if (PageAnon(page) && !PageSwapCache(page)) {
703 704
			if (!(sc->gfp_mask & __GFP_IO))
				goto keep_locked;
705
			if (!add_to_swap(page))
L
Linus Torvalds 已提交
706
				goto activate_locked;
707
			may_enter_fs = 1;
N
Nick Piggin 已提交
708
		}
L
Linus Torvalds 已提交
709 710 711 712 713 714 715 716

		mapping = page_mapping(page);

		/*
		 * The page is mapped into the page tables of one or more
		 * processes. Try to unmap it here.
		 */
		if (page_mapped(page) && mapping) {
717
			switch (try_to_unmap(page, TTU_UNMAP)) {
L
Linus Torvalds 已提交
718 719 720 721
			case SWAP_FAIL:
				goto activate_locked;
			case SWAP_AGAIN:
				goto keep_locked;
N
Nick Piggin 已提交
722 723
			case SWAP_MLOCK:
				goto cull_mlocked;
L
Linus Torvalds 已提交
724 725 726 727 728 729
			case SWAP_SUCCESS:
				; /* try to free the page below */
			}
		}

		if (PageDirty(page)) {
730
			if (references == PAGEREF_RECLAIM_CLEAN)
L
Linus Torvalds 已提交
731
				goto keep_locked;
732
			if (!may_enter_fs)
L
Linus Torvalds 已提交
733
				goto keep_locked;
734
			if (!sc->may_writepage)
L
Linus Torvalds 已提交
735 736 737
				goto keep_locked;

			/* Page is dirty, try to write it out here */
738
			switch (pageout(page, mapping, sync_writeback)) {
L
Linus Torvalds 已提交
739 740 741 742 743
			case PAGE_KEEP:
				goto keep_locked;
			case PAGE_ACTIVATE:
				goto activate_locked;
			case PAGE_SUCCESS:
744
				if (PageWriteback(page) || PageDirty(page))
L
Linus Torvalds 已提交
745 746 747 748 749
					goto keep;
				/*
				 * A synchronous write - probably a ramdisk.  Go
				 * ahead and try to reclaim the page.
				 */
N
Nick Piggin 已提交
750
				if (!trylock_page(page))
L
Linus Torvalds 已提交
751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769
					goto keep;
				if (PageDirty(page) || PageWriteback(page))
					goto keep_locked;
				mapping = page_mapping(page);
			case PAGE_CLEAN:
				; /* try to free the page below */
			}
		}

		/*
		 * If the page has buffers, try to free the buffer mappings
		 * associated with this page. If we succeed we try to free
		 * the page as well.
		 *
		 * We do this even if the page is PageDirty().
		 * try_to_release_page() does not perform I/O, but it is
		 * possible for a page to have PageDirty set, but it is actually
		 * clean (all its buffers are clean).  This happens if the
		 * buffers were written out directly, with submit_bh(). ext3
L
Lee Schermerhorn 已提交
770
		 * will do this, as well as the blockdev mapping.
L
Linus Torvalds 已提交
771 772 773 774 775 776 777 778 779 780
		 * try_to_release_page() will discover that cleanness and will
		 * drop the buffers and mark the page clean - it can be freed.
		 *
		 * Rarely, pages can have buffers and no ->mapping.  These are
		 * the pages which were not successfully invalidated in
		 * truncate_complete_page().  We try to drop those buffers here
		 * and if that worked, and the page is no longer mapped into
		 * process address space (page_count == 1) it can be freed.
		 * Otherwise, leave the page on the LRU so it is swappable.
		 */
781
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
782 783
			if (!try_to_release_page(page, sc->gfp_mask))
				goto activate_locked;
N
Nick Piggin 已提交
784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799
			if (!mapping && page_count(page) == 1) {
				unlock_page(page);
				if (put_page_testzero(page))
					goto free_it;
				else {
					/*
					 * rare race with speculative reference.
					 * the speculative reference will free
					 * this page shortly, so we may
					 * increment nr_reclaimed here (and
					 * leave it off the LRU).
					 */
					nr_reclaimed++;
					continue;
				}
			}
L
Linus Torvalds 已提交
800 801
		}

N
Nick Piggin 已提交
802
		if (!mapping || !__remove_mapping(mapping, page))
803
			goto keep_locked;
L
Linus Torvalds 已提交
804

N
Nick Piggin 已提交
805 806 807 808 809 810 811 812
		/*
		 * At this point, we have no other references and there is
		 * no way to pick any more up (removed from LRU, removed
		 * from pagecache). Can use non-atomic bitops now (and
		 * we obviously don't have to worry about waking up a process
		 * waiting on the page lock, because there are no references.
		 */
		__clear_page_locked(page);
N
Nick Piggin 已提交
813
free_it:
814
		nr_reclaimed++;
N
Nick Piggin 已提交
815 816 817 818
		if (!pagevec_add(&freed_pvec, page)) {
			__pagevec_free(&freed_pvec);
			pagevec_reinit(&freed_pvec);
		}
L
Linus Torvalds 已提交
819 820
		continue;

N
Nick Piggin 已提交
821
cull_mlocked:
822 823
		if (PageSwapCache(page))
			try_to_free_swap(page);
N
Nick Piggin 已提交
824 825 826 827
		unlock_page(page);
		putback_lru_page(page);
		continue;

L
Linus Torvalds 已提交
828
activate_locked:
829 830
		/* Not a candidate for swapping, so reclaim swap space. */
		if (PageSwapCache(page) && vm_swap_full())
831
			try_to_free_swap(page);
L
Lee Schermerhorn 已提交
832
		VM_BUG_ON(PageActive(page));
L
Linus Torvalds 已提交
833 834 835 836 837 838
		SetPageActive(page);
		pgactivate++;
keep_locked:
		unlock_page(page);
keep:
		list_add(&page->lru, &ret_pages);
N
Nick Piggin 已提交
839
		VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
L
Linus Torvalds 已提交
840 841 842
	}
	list_splice(&ret_pages, page_list);
	if (pagevec_count(&freed_pvec))
N
Nick Piggin 已提交
843
		__pagevec_free(&freed_pvec);
844
	count_vm_events(PGACTIVATE, pgactivate);
845
	return nr_reclaimed;
L
Linus Torvalds 已提交
846 847
}

A
Andy Whitcroft 已提交
848 849 850 851 852 853 854 855 856 857
/*
 * Attempt to remove the specified page from its LRU.  Only take this page
 * if it is of the appropriate PageActive status.  Pages which are being
 * freed elsewhere are also ignored.
 *
 * page:	page to consider
 * mode:	one of the LRU isolation modes defined above
 *
 * returns 0 on success, -ve errno on failure.
 */
858
int __isolate_lru_page(struct page *page, int mode, int file)
A
Andy Whitcroft 已提交
859 860 861 862 863 864 865 866 867 868 869 870 871 872 873
{
	int ret = -EINVAL;

	/* Only take pages on the LRU. */
	if (!PageLRU(page))
		return ret;

	/*
	 * When checking the active state, we need to be sure we are
	 * dealing with comparible boolean values.  Take the logical not
	 * of each.
	 */
	if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
		return ret;

874
	if (mode != ISOLATE_BOTH && page_is_file_cache(page) != file)
875 876
		return ret;

L
Lee Schermerhorn 已提交
877 878 879 880 881 882 883 884
	/*
	 * When this function is being called for lumpy reclaim, we
	 * initially look into all LRU pages, active, inactive and
	 * unevictable; only give shrink_page_list evictable pages.
	 */
	if (PageUnevictable(page))
		return ret;

A
Andy Whitcroft 已提交
885
	ret = -EBUSY;
K
KAMEZAWA Hiroyuki 已提交
886

A
Andy Whitcroft 已提交
887 888 889 890 891 892 893 894 895 896 897 898 899
	if (likely(get_page_unless_zero(page))) {
		/*
		 * Be careful not to clear PageLRU until after we're
		 * sure the page is not being freed elsewhere -- the
		 * page release code relies on it.
		 */
		ClearPageLRU(page);
		ret = 0;
	}

	return ret;
}

L
Linus Torvalds 已提交
900 901 902 903 904 905 906 907 908 909 910 911 912 913
/*
 * zone->lru_lock is heavily contended.  Some of the functions that
 * shrink the lists perform better by taking out a batch of pages
 * and working on them outside the LRU lock.
 *
 * For pagecache intensive workloads, this function is the hottest
 * spot in the kernel (apart from copy_*_user functions).
 *
 * Appropriate locks must be held before calling this function.
 *
 * @nr_to_scan:	The number of pages to look through on the list.
 * @src:	The LRU list to pull pages off.
 * @dst:	The temp list to put pages on to.
 * @scanned:	The number of pages that were scanned.
A
Andy Whitcroft 已提交
914 915
 * @order:	The caller's attempted allocation order
 * @mode:	One of the LRU isolation modes
916
 * @file:	True [1] if isolating file [!anon] pages
L
Linus Torvalds 已提交
917 918 919
 *
 * returns how many pages were moved onto *@dst.
 */
920 921
static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
		struct list_head *src, struct list_head *dst,
922
		unsigned long *scanned, int order, int mode, int file)
L
Linus Torvalds 已提交
923
{
924
	unsigned long nr_taken = 0;
925
	unsigned long scan;
L
Linus Torvalds 已提交
926

927
	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
A
Andy Whitcroft 已提交
928 929 930 931 932 933
		struct page *page;
		unsigned long pfn;
		unsigned long end_pfn;
		unsigned long page_pfn;
		int zone_id;

L
Linus Torvalds 已提交
934 935 936
		page = lru_to_page(src);
		prefetchw_prev_lru_page(page, src, flags);

N
Nick Piggin 已提交
937
		VM_BUG_ON(!PageLRU(page));
N
Nick Piggin 已提交
938

939
		switch (__isolate_lru_page(page, mode, file)) {
A
Andy Whitcroft 已提交
940 941
		case 0:
			list_move(&page->lru, dst);
942
			mem_cgroup_del_lru(page);
943
			nr_taken++;
A
Andy Whitcroft 已提交
944 945 946 947 948
			break;

		case -EBUSY:
			/* else it is being freed elsewhere */
			list_move(&page->lru, src);
949
			mem_cgroup_rotate_lru_list(page, page_lru(page));
A
Andy Whitcroft 已提交
950
			continue;
951

A
Andy Whitcroft 已提交
952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983
		default:
			BUG();
		}

		if (!order)
			continue;

		/*
		 * Attempt to take all pages in the order aligned region
		 * surrounding the tag page.  Only take those pages of
		 * the same active state as that tag page.  We may safely
		 * round the target page pfn down to the requested order
		 * as the mem_map is guarenteed valid out to MAX_ORDER,
		 * where that page is in a different zone we will detect
		 * it from its zone id and abort this block scan.
		 */
		zone_id = page_zone_id(page);
		page_pfn = page_to_pfn(page);
		pfn = page_pfn & ~((1 << order) - 1);
		end_pfn = pfn + (1 << order);
		for (; pfn < end_pfn; pfn++) {
			struct page *cursor_page;

			/* The target page is in the block, ignore it. */
			if (unlikely(pfn == page_pfn))
				continue;

			/* Avoid holes within the zone. */
			if (unlikely(!pfn_valid_within(pfn)))
				break;

			cursor_page = pfn_to_page(pfn);
984

A
Andy Whitcroft 已提交
985 986 987
			/* Check that we have not crossed a zone boundary. */
			if (unlikely(page_zone_id(cursor_page) != zone_id))
				continue;
988 989 990 991 992 993 994 995 996 997

			/*
			 * If we don't have enough swap space, reclaiming of
			 * anon page which don't already have a swap slot is
			 * pointless.
			 */
			if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
					!PageSwapCache(cursor_page))
				continue;

998
			if (__isolate_lru_page(cursor_page, mode, file) == 0) {
A
Andy Whitcroft 已提交
999
				list_move(&cursor_page->lru, dst);
1000
				mem_cgroup_del_lru(cursor_page);
A
Andy Whitcroft 已提交
1001 1002 1003 1004
				nr_taken++;
				scan++;
			}
		}
L
Linus Torvalds 已提交
1005 1006 1007 1008 1009 1010
	}

	*scanned = scan;
	return nr_taken;
}

1011 1012 1013 1014 1015
static unsigned long isolate_pages_global(unsigned long nr,
					struct list_head *dst,
					unsigned long *scanned, int order,
					int mode, struct zone *z,
					struct mem_cgroup *mem_cont,
1016
					int active, int file)
1017
{
1018
	int lru = LRU_BASE;
1019
	if (active)
1020 1021 1022 1023
		lru += LRU_ACTIVE;
	if (file)
		lru += LRU_FILE;
	return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
1024
								mode, file);
1025 1026
}

A
Andy Whitcroft 已提交
1027 1028 1029 1030
/*
 * clear_active_flags() is a helper for shrink_active_list(), clearing
 * any active bits from the pages in the list.
 */
1031 1032
static unsigned long clear_active_flags(struct list_head *page_list,
					unsigned int *count)
A
Andy Whitcroft 已提交
1033 1034
{
	int nr_active = 0;
1035
	int lru;
A
Andy Whitcroft 已提交
1036 1037
	struct page *page;

1038
	list_for_each_entry(page, page_list, lru) {
1039
		lru = page_lru_base_type(page);
A
Andy Whitcroft 已提交
1040
		if (PageActive(page)) {
1041
			lru += LRU_ACTIVE;
A
Andy Whitcroft 已提交
1042 1043 1044
			ClearPageActive(page);
			nr_active++;
		}
1045 1046
		count[lru]++;
	}
A
Andy Whitcroft 已提交
1047 1048 1049 1050

	return nr_active;
}

1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
/**
 * isolate_lru_page - tries to isolate a page from its LRU list
 * @page: page to isolate from its LRU list
 *
 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
 * vmstat statistic corresponding to whatever LRU list the page was on.
 *
 * Returns 0 if the page was removed from an LRU list.
 * Returns -EBUSY if the page was not on an LRU list.
 *
 * The returned page will have PageLRU() cleared.  If it was found on
L
Lee Schermerhorn 已提交
1062 1063 1064
 * the active list, it will have PageActive set.  If it was found on
 * the unevictable list, it will have the PageUnevictable bit set. That flag
 * may need to be cleared by the caller before letting the page go.
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
 *
 * The vmstat statistic corresponding to the list on which the page was
 * found will be decremented.
 *
 * Restrictions:
 * (1) Must be called with an elevated refcount on the page. This is a
 *     fundamentnal difference from isolate_lru_pages (which is called
 *     without a stable reference).
 * (2) the lru_lock must not be held.
 * (3) interrupts must be enabled.
 */
int isolate_lru_page(struct page *page)
{
	int ret = -EBUSY;

	if (PageLRU(page)) {
		struct zone *zone = page_zone(page);

		spin_lock_irq(&zone->lru_lock);
		if (PageLRU(page) && get_page_unless_zero(page)) {
L
Lee Schermerhorn 已提交
1085
			int lru = page_lru(page);
1086 1087
			ret = 0;
			ClearPageLRU(page);
1088 1089

			del_page_from_lru_list(zone, page, lru);
1090 1091 1092 1093 1094 1095
		}
		spin_unlock_irq(&zone->lru_lock);
	}
	return ret;
}

1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
/*
 * Are there way too many processes in the direct reclaim path already?
 */
static int too_many_isolated(struct zone *zone, int file,
		struct scan_control *sc)
{
	unsigned long inactive, isolated;

	if (current_is_kswapd())
		return 0;

	if (!scanning_global_lru(sc))
		return 0;

	if (file) {
		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
	} else {
		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
	}

	return isolated > inactive;
}

L
Linus Torvalds 已提交
1121
/*
A
Andrew Morton 已提交
1122 1123
 * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
 * of reclaimed pages
L
Linus Torvalds 已提交
1124
 */
A
Andrew Morton 已提交
1125
static unsigned long shrink_inactive_list(unsigned long max_scan,
R
Rik van Riel 已提交
1126 1127
			struct zone *zone, struct scan_control *sc,
			int priority, int file)
L
Linus Torvalds 已提交
1128 1129 1130
{
	LIST_HEAD(page_list);
	struct pagevec pvec;
1131
	unsigned long nr_scanned = 0;
1132
	unsigned long nr_reclaimed = 0;
1133
	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1134

1135
	while (unlikely(too_many_isolated(zone, file, sc))) {
1136
		congestion_wait(BLK_RW_ASYNC, HZ/10);
1137 1138 1139 1140 1141 1142

		/* We are about to die and free our memory. Return now. */
		if (fatal_signal_pending(current))
			return SWAP_CLUSTER_MAX;
	}

L
Linus Torvalds 已提交
1143 1144 1145 1146 1147

	pagevec_init(&pvec, 1);

	lru_add_drain();
	spin_lock_irq(&zone->lru_lock);
1148
	do {
L
Linus Torvalds 已提交
1149
		struct page *page;
1150 1151 1152
		unsigned long nr_taken;
		unsigned long nr_scan;
		unsigned long nr_freed;
A
Andy Whitcroft 已提交
1153
		unsigned long nr_active;
1154
		unsigned int count[NR_LRU_LISTS] = { 0, };
1155
		int mode = sc->lumpy_reclaim_mode ? ISOLATE_BOTH : ISOLATE_INACTIVE;
K
KOSAKI Motohiro 已提交
1156 1157
		unsigned long nr_anon;
		unsigned long nr_file;
L
Linus Torvalds 已提交
1158

K
KOSAKI Motohiro 已提交
1159
		nr_taken = sc->isolate_pages(SWAP_CLUSTER_MAX,
1160 1161
			     &page_list, &nr_scan, sc->order, mode,
				zone, sc->mem_cgroup, 0, file);
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175

		if (scanning_global_lru(sc)) {
			zone->pages_scanned += nr_scan;
			if (current_is_kswapd())
				__count_zone_vm_events(PGSCAN_KSWAPD, zone,
						       nr_scan);
			else
				__count_zone_vm_events(PGSCAN_DIRECT, zone,
						       nr_scan);
		}

		if (nr_taken == 0)
			goto done;

1176
		nr_active = clear_active_flags(&page_list, count);
1177
		__count_vm_events(PGDEACTIVATE, nr_active);
A
Andy Whitcroft 已提交
1178

1179 1180 1181 1182 1183 1184 1185 1186 1187
		__mod_zone_page_state(zone, NR_ACTIVE_FILE,
						-count[LRU_ACTIVE_FILE]);
		__mod_zone_page_state(zone, NR_INACTIVE_FILE,
						-count[LRU_INACTIVE_FILE]);
		__mod_zone_page_state(zone, NR_ACTIVE_ANON,
						-count[LRU_ACTIVE_ANON]);
		__mod_zone_page_state(zone, NR_INACTIVE_ANON,
						-count[LRU_INACTIVE_ANON]);

K
KOSAKI Motohiro 已提交
1188 1189 1190 1191
		nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
		nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
		__mod_zone_page_state(zone, NR_ISOLATED_ANON, nr_anon);
		__mod_zone_page_state(zone, NR_ISOLATED_FILE, nr_file);
K
KOSAKI Motohiro 已提交
1192

H
Huang Shijie 已提交
1193 1194
		reclaim_stat->recent_scanned[0] += nr_anon;
		reclaim_stat->recent_scanned[1] += nr_file;
K
KOSAKI Motohiro 已提交
1195

L
Linus Torvalds 已提交
1196 1197
		spin_unlock_irq(&zone->lru_lock);

1198
		nr_scanned += nr_scan;
1199 1200 1201 1202 1203 1204 1205 1206 1207
		nr_freed = shrink_page_list(&page_list, sc, PAGEOUT_IO_ASYNC);

		/*
		 * If we are direct reclaiming for contiguous pages and we do
		 * not reclaim everything in the list, try again and wait
		 * for IO to complete. This will stall high-order allocations
		 * but that should be acceptable to the caller
		 */
		if (nr_freed < nr_taken && !current_is_kswapd() &&
1208
		    sc->lumpy_reclaim_mode) {
1209
			congestion_wait(BLK_RW_ASYNC, HZ/10);
1210 1211 1212 1213 1214

			/*
			 * The attempt at page out may have made some
			 * of the pages active, mark them inactive again.
			 */
1215
			nr_active = clear_active_flags(&page_list, count);
1216 1217 1218 1219 1220 1221
			count_vm_events(PGDEACTIVATE, nr_active);

			nr_freed += shrink_page_list(&page_list, sc,
							PAGEOUT_IO_SYNC);
		}

1222
		nr_reclaimed += nr_freed;
1223

N
Nick Piggin 已提交
1224
		local_irq_disable();
1225
		if (current_is_kswapd())
1226
			__count_vm_events(KSWAPD_STEAL, nr_freed);
S
Shantanu Goel 已提交
1227
		__count_zone_vm_events(PGSTEAL, zone, nr_freed);
N
Nick Piggin 已提交
1228 1229

		spin_lock(&zone->lru_lock);
L
Linus Torvalds 已提交
1230 1231 1232 1233
		/*
		 * Put back any unfreeable pages.
		 */
		while (!list_empty(&page_list)) {
L
Lee Schermerhorn 已提交
1234
			int lru;
L
Linus Torvalds 已提交
1235
			page = lru_to_page(&page_list);
N
Nick Piggin 已提交
1236
			VM_BUG_ON(PageLRU(page));
L
Linus Torvalds 已提交
1237
			list_del(&page->lru);
L
Lee Schermerhorn 已提交
1238 1239 1240 1241 1242 1243 1244 1245 1246
			if (unlikely(!page_evictable(page, NULL))) {
				spin_unlock_irq(&zone->lru_lock);
				putback_lru_page(page);
				spin_lock_irq(&zone->lru_lock);
				continue;
			}
			SetPageLRU(page);
			lru = page_lru(page);
			add_page_to_lru_list(zone, page, lru);
1247
			if (is_active_lru(lru)) {
1248
				int file = is_file_lru(lru);
1249
				reclaim_stat->recent_rotated[file]++;
1250
			}
L
Linus Torvalds 已提交
1251 1252 1253 1254 1255 1256
			if (!pagevec_add(&pvec, page)) {
				spin_unlock_irq(&zone->lru_lock);
				__pagevec_release(&pvec);
				spin_lock_irq(&zone->lru_lock);
			}
		}
K
KOSAKI Motohiro 已提交
1257 1258 1259
		__mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
		__mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);

1260
  	} while (nr_scanned < max_scan);
1261

L
Linus Torvalds 已提交
1262
done:
1263
	spin_unlock_irq(&zone->lru_lock);
L
Linus Torvalds 已提交
1264
	pagevec_release(&pvec);
1265
	return nr_reclaimed;
L
Linus Torvalds 已提交
1266 1267
}

1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
/*
 * We are about to scan this zone at a certain priority level.  If that priority
 * level is smaller (ie: more urgent) than the previous priority, then note
 * that priority level within the zone.  This is done so that when the next
 * process comes in to scan this zone, it will immediately start out at this
 * priority level rather than having to build up its own scanning priority.
 * Here, this priority affects only the reclaim-mapped threshold.
 */
static inline void note_zone_scanning_priority(struct zone *zone, int priority)
{
	if (priority < zone->prev_priority)
		zone->prev_priority = priority;
}

L
Linus Torvalds 已提交
1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298
/*
 * This moves pages from the active list to the inactive list.
 *
 * We move them the other way if the page is referenced by one or more
 * processes, from rmap.
 *
 * If the pages are mostly unmapped, the processing is fast and it is
 * appropriate to hold zone->lru_lock across the whole operation.  But if
 * the pages are mapped, the processing is slow (page_referenced()) so we
 * should drop zone->lru_lock around each page.  It's impossible to balance
 * this, so instead we remove the pages from the LRU while processing them.
 * It is safe to rely on PG_active against the non-LRU pages in here because
 * nobody will play with that bit on a non-LRU page.
 *
 * The downside is that we have to touch page->_count against each page.
 * But we had to alter page->flags anyway.
 */
1299

1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331
static void move_active_pages_to_lru(struct zone *zone,
				     struct list_head *list,
				     enum lru_list lru)
{
	unsigned long pgmoved = 0;
	struct pagevec pvec;
	struct page *page;

	pagevec_init(&pvec, 1);

	while (!list_empty(list)) {
		page = lru_to_page(list);

		VM_BUG_ON(PageLRU(page));
		SetPageLRU(page);

		list_move(&page->lru, &zone->lru[lru].list);
		mem_cgroup_add_lru_list(page, lru);
		pgmoved++;

		if (!pagevec_add(&pvec, page) || list_empty(list)) {
			spin_unlock_irq(&zone->lru_lock);
			if (buffer_heads_over_limit)
				pagevec_strip(&pvec);
			__pagevec_release(&pvec);
			spin_lock_irq(&zone->lru_lock);
		}
	}
	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
	if (!is_active_lru(lru))
		__count_vm_events(PGDEACTIVATE, pgmoved);
}
1332

A
Andrew Morton 已提交
1333
static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1334
			struct scan_control *sc, int priority, int file)
L
Linus Torvalds 已提交
1335
{
1336
	unsigned long nr_taken;
1337
	unsigned long pgscanned;
1338
	unsigned long vm_flags;
L
Linus Torvalds 已提交
1339
	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1340
	LIST_HEAD(l_active);
1341
	LIST_HEAD(l_inactive);
L
Linus Torvalds 已提交
1342
	struct page *page;
1343
	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1344
	unsigned long nr_rotated = 0;
L
Linus Torvalds 已提交
1345 1346 1347

	lru_add_drain();
	spin_lock_irq(&zone->lru_lock);
1348
	nr_taken = sc->isolate_pages(nr_pages, &l_hold, &pgscanned, sc->order,
1349
					ISOLATE_ACTIVE, zone,
1350
					sc->mem_cgroup, 1, file);
1351 1352 1353 1354
	/*
	 * zone->pages_scanned is used for detect zone's oom
	 * mem_cgroup remembers nr_scan by itself.
	 */
1355
	if (scanning_global_lru(sc)) {
1356
		zone->pages_scanned += pgscanned;
1357
	}
1358
	reclaim_stat->recent_scanned[file] += nr_taken;
1359

1360
	__count_zone_vm_events(PGREFILL, zone, pgscanned);
1361
	if (file)
1362
		__mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1363
	else
1364
		__mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
K
KOSAKI Motohiro 已提交
1365
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
L
Linus Torvalds 已提交
1366 1367 1368 1369 1370 1371
	spin_unlock_irq(&zone->lru_lock);

	while (!list_empty(&l_hold)) {
		cond_resched();
		page = lru_to_page(&l_hold);
		list_del(&page->lru);
1372

L
Lee Schermerhorn 已提交
1373 1374 1375 1376 1377
		if (unlikely(!page_evictable(page, NULL))) {
			putback_lru_page(page);
			continue;
		}

1378
		if (page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
1379
			nr_rotated++;
1380 1381 1382 1383 1384 1385 1386 1387 1388
			/*
			 * Identify referenced, file-backed active pages and
			 * give them one more trip around the active list. So
			 * that executable code get better chances to stay in
			 * memory under moderate memory pressure.  Anon pages
			 * are not likely to be evicted by use-once streaming
			 * IO, plus JVM can create lots of anon VM_EXEC pages,
			 * so we ignore them here.
			 */
1389
			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1390 1391 1392 1393
				list_add(&page->lru, &l_active);
				continue;
			}
		}
1394

1395
		ClearPageActive(page);	/* we are de-activating */
L
Linus Torvalds 已提交
1396 1397 1398
		list_add(&page->lru, &l_inactive);
	}

1399
	/*
1400
	 * Move pages back to the lru list.
1401
	 */
1402
	spin_lock_irq(&zone->lru_lock);
1403
	/*
1404 1405 1406 1407
	 * Count referenced pages from currently used mappings as rotated,
	 * even though only some of them are actually re-activated.  This
	 * helps balance scan pressure between file and anonymous pages in
	 * get_scan_ratio.
1408
	 */
1409
	reclaim_stat->recent_rotated[file] += nr_rotated;
1410

1411 1412 1413 1414
	move_active_pages_to_lru(zone, &l_active,
						LRU_ACTIVE + file * LRU_FILE);
	move_active_pages_to_lru(zone, &l_inactive,
						LRU_BASE   + file * LRU_FILE);
K
KOSAKI Motohiro 已提交
1415
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1416
	spin_unlock_irq(&zone->lru_lock);
L
Linus Torvalds 已提交
1417 1418
}

1419
static int inactive_anon_is_low_global(struct zone *zone)
1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
{
	unsigned long active, inactive;

	active = zone_page_state(zone, NR_ACTIVE_ANON);
	inactive = zone_page_state(zone, NR_INACTIVE_ANON);

	if (inactive * zone->inactive_ratio < active)
		return 1;

	return 0;
}

1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443
/**
 * inactive_anon_is_low - check if anonymous pages need to be deactivated
 * @zone: zone to check
 * @sc:   scan control of this context
 *
 * Returns true if the zone does not have enough inactive anon pages,
 * meaning some active anon pages need to be deactivated.
 */
static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
{
	int low;

1444
	if (scanning_global_lru(sc))
1445 1446
		low = inactive_anon_is_low_global(zone);
	else
1447
		low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
1448 1449 1450
	return low;
}

1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
static int inactive_file_is_low_global(struct zone *zone)
{
	unsigned long active, inactive;

	active = zone_page_state(zone, NR_ACTIVE_FILE);
	inactive = zone_page_state(zone, NR_INACTIVE_FILE);

	return (active > inactive);
}

/**
 * inactive_file_is_low - check if file pages need to be deactivated
 * @zone: zone to check
 * @sc:   scan control of this context
 *
 * When the system is doing streaming IO, memory pressure here
 * ensures that active file pages get deactivated, until more
 * than half of the file pages are on the inactive list.
 *
 * Once we get to that situation, protect the system's working
 * set from being evicted by disabling active file page aging.
 *
 * This uses a different ratio than the anonymous pages, because
 * the page cache uses a use-once replacement algorithm.
 */
static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
{
	int low;

	if (scanning_global_lru(sc))
		low = inactive_file_is_low_global(zone);
	else
		low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup);
	return low;
}

1487 1488 1489 1490 1491 1492 1493 1494 1495
static int inactive_list_is_low(struct zone *zone, struct scan_control *sc,
				int file)
{
	if (file)
		return inactive_file_is_low(zone, sc);
	else
		return inactive_anon_is_low(zone, sc);
}

1496
static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1497 1498
	struct zone *zone, struct scan_control *sc, int priority)
{
1499 1500
	int file = is_file_lru(lru);

1501 1502 1503
	if (is_active_lru(lru)) {
		if (inactive_list_is_low(zone, sc, file))
		    shrink_active_list(nr_to_scan, zone, sc, priority, file);
1504 1505 1506
		return 0;
	}

R
Rik van Riel 已提交
1507
	return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1508 1509
}

1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529
/*
 * Smallish @nr_to_scan's are deposited in @nr_saved_scan,
 * until we collected @swap_cluster_max pages to scan.
 */
static unsigned long nr_scan_try_batch(unsigned long nr_to_scan,
				       unsigned long *nr_saved_scan)
{
	unsigned long nr;

	*nr_saved_scan += nr_to_scan;
	nr = *nr_saved_scan;

	if (nr >= SWAP_CLUSTER_MAX)
		*nr_saved_scan = 0;
	else
		nr = 0;

	return nr;
}

1530 1531 1532 1533 1534 1535
/*
 * Determine how aggressively the anon and file LRU lists should be
 * scanned.  The relative value of each set of LRU lists is determined
 * by looking at the fraction of the pages scanned we did rotate back
 * onto the active list instead of evict.
 *
1536
 * nr[0] = anon pages to scan; nr[1] = file pages to scan
1537
 */
1538 1539
static void get_scan_count(struct zone *zone, struct scan_control *sc,
					unsigned long *nr, int priority)
1540 1541 1542 1543
{
	unsigned long anon, file, free;
	unsigned long anon_prio, file_prio;
	unsigned long ap, fp;
1544
	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
	u64 fraction[2], denominator;
	enum lru_list l;
	int noswap = 0;

	/* If we have no swap space, do not bother scanning anon pages. */
	if (!sc->may_swap || (nr_swap_pages <= 0)) {
		noswap = 1;
		fraction[0] = 0;
		fraction[1] = 1;
		denominator = 1;
		goto out;
	}
1557

1558 1559 1560 1561
	anon  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
		zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
	file  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
		zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1562

1563
	if (scanning_global_lru(sc)) {
1564 1565 1566
		free  = zone_page_state(zone, NR_FREE_PAGES);
		/* If we have very few page cache pages,
		   force-scan anon pages. */
1567
		if (unlikely(file + free <= high_wmark_pages(zone))) {
1568 1569 1570 1571
			fraction[0] = 1;
			fraction[1] = 0;
			denominator = 1;
			goto out;
1572
		}
1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
	}

	/*
	 * OK, so we have swap space and a fair amount of page cache
	 * pages.  We use the recently rotated / recently scanned
	 * ratios to determine how valuable each cache is.
	 *
	 * Because workloads change over time (and to avoid overflow)
	 * we keep these statistics as a floating average, which ends
	 * up weighing recent references more than old ones.
	 *
	 * anon in [0], file in [1]
	 */
1586
	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1587
		spin_lock_irq(&zone->lru_lock);
1588 1589
		reclaim_stat->recent_scanned[0] /= 2;
		reclaim_stat->recent_rotated[0] /= 2;
1590 1591 1592
		spin_unlock_irq(&zone->lru_lock);
	}

1593
	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1594
		spin_lock_irq(&zone->lru_lock);
1595 1596
		reclaim_stat->recent_scanned[1] /= 2;
		reclaim_stat->recent_rotated[1] /= 2;
1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
		spin_unlock_irq(&zone->lru_lock);
	}

	/*
	 * With swappiness at 100, anonymous and file have the same priority.
	 * This scanning priority is essentially the inverse of IO cost.
	 */
	anon_prio = sc->swappiness;
	file_prio = 200 - sc->swappiness;

	/*
1608 1609 1610
	 * The amount of pressure on anon vs file pages is inversely
	 * proportional to the fraction of recently scanned pages on
	 * each list that were recently referenced and in active use.
1611
	 */
1612 1613
	ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
	ap /= reclaim_stat->recent_rotated[0] + 1;
1614

1615 1616
	fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
	fp /= reclaim_stat->recent_rotated[1] + 1;
1617

1618 1619 1620 1621 1622 1623 1624
	fraction[0] = ap;
	fraction[1] = fp;
	denominator = ap + fp + 1;
out:
	for_each_evictable_lru(l) {
		int file = is_file_lru(l);
		unsigned long scan;
1625

1626 1627 1628 1629 1630 1631 1632 1633
		scan = zone_nr_lru_pages(zone, sc, l);
		if (priority || noswap) {
			scan >>= priority;
			scan = div64_u64(scan * fraction[file], denominator);
		}
		nr[l] = nr_scan_try_batch(scan,
					  &reclaim_stat->nr_saved_scan[l]);
	}
1634
}
1635

1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650
static void set_lumpy_reclaim_mode(int priority, struct scan_control *sc)
{
	/*
	 * If we need a large contiguous chunk of memory, or have
	 * trouble getting a small set of contiguous pages, we
	 * will reclaim both active and inactive pages.
	 */
	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
		sc->lumpy_reclaim_mode = 1;
	else if (sc->order && priority < DEF_PRIORITY - 2)
		sc->lumpy_reclaim_mode = 1;
	else
		sc->lumpy_reclaim_mode = 0;
}

L
Linus Torvalds 已提交
1651 1652 1653
/*
 * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
 */
1654
static void shrink_zone(int priority, struct zone *zone,
1655
				struct scan_control *sc)
L
Linus Torvalds 已提交
1656
{
1657
	unsigned long nr[NR_LRU_LISTS];
1658
	unsigned long nr_to_scan;
1659
	enum lru_list l;
1660
	unsigned long nr_reclaimed = sc->nr_reclaimed;
1661
	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1662

1663
	get_scan_count(zone, sc, nr, priority);
L
Linus Torvalds 已提交
1664

1665 1666
	set_lumpy_reclaim_mode(priority, sc);

1667 1668
	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
					nr[LRU_INACTIVE_FILE]) {
L
Lee Schermerhorn 已提交
1669
		for_each_evictable_lru(l) {
1670
			if (nr[l]) {
K
KOSAKI Motohiro 已提交
1671 1672
				nr_to_scan = min_t(unsigned long,
						   nr[l], SWAP_CLUSTER_MAX);
1673
				nr[l] -= nr_to_scan;
L
Linus Torvalds 已提交
1674

1675 1676
				nr_reclaimed += shrink_list(l, nr_to_scan,
							    zone, sc, priority);
1677
			}
L
Linus Torvalds 已提交
1678
		}
1679 1680 1681 1682 1683 1684 1685 1686
		/*
		 * On large memory systems, scan >> priority can become
		 * really large. This is fine for the starting priority;
		 * we want to put equal scanning pressure on each zone.
		 * However, if the VM has a harder time of freeing pages,
		 * with multiple processes reclaiming pages, the total
		 * freeing target can get unreasonably large.
		 */
1687
		if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
1688
			break;
L
Linus Torvalds 已提交
1689 1690
	}

1691 1692
	sc->nr_reclaimed = nr_reclaimed;

1693 1694 1695 1696
	/*
	 * Even if we did not try to evict anon pages at all, we want to
	 * rebalance the anon lru active/inactive ratio.
	 */
1697
	if (inactive_anon_is_low(zone, sc) && nr_swap_pages > 0)
1698 1699
		shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);

1700
	throttle_vm_writeout(sc->gfp_mask);
L
Linus Torvalds 已提交
1701 1702 1703 1704 1705 1706 1707
}

/*
 * This is the direct reclaim path, for page-allocating processes.  We only
 * try to reclaim pages from zones which will satisfy the caller's allocation
 * request.
 *
1708 1709
 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
 * Because:
L
Linus Torvalds 已提交
1710 1711
 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
 *    allocation or
1712 1713 1714
 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
 *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
 *    zone defense algorithm.
L
Linus Torvalds 已提交
1715 1716 1717 1718
 *
 * If a zone is deemed to be full of pinned pages then just give it a light
 * scan then give up on it.
 */
1719
static void shrink_zones(int priority, struct zonelist *zonelist,
1720
					struct scan_control *sc)
L
Linus Torvalds 已提交
1721
{
1722
	enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1723
	struct zoneref *z;
1724
	struct zone *zone;
1725

1726
	sc->all_unreclaimable = 1;
1727 1728
	for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
					sc->nodemask) {
1729
		if (!populated_zone(zone))
L
Linus Torvalds 已提交
1730
			continue;
1731 1732 1733 1734
		/*
		 * Take care memory controller reclaiming has small influence
		 * to global LRU.
		 */
1735
		if (scanning_global_lru(sc)) {
1736 1737 1738
			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
				continue;
			note_zone_scanning_priority(zone, priority);
L
Linus Torvalds 已提交
1739

1740
			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751
				continue;	/* Let kswapd poll it */
			sc->all_unreclaimable = 0;
		} else {
			/*
			 * Ignore cpuset limitation here. We just want to reduce
			 * # of used pages by us regardless of memory shortage.
			 */
			sc->all_unreclaimable = 0;
			mem_cgroup_note_reclaim_priority(sc->mem_cgroup,
							priority);
		}
1752

1753
		shrink_zone(priority, zone, sc);
L
Linus Torvalds 已提交
1754 1755
	}
}
1756

L
Linus Torvalds 已提交
1757 1758 1759 1760 1761 1762 1763 1764
/*
 * This is the main entry point to direct page reclaim.
 *
 * If a full scan of the inactive list fails to free enough memory then we
 * are "out of memory" and something needs to be killed.
 *
 * If the caller is !__GFP_FS then the probability of a failure is reasonably
 * high - the zone may be full of dirty or under-writeback pages, which this
1765 1766 1767 1768
 * caller can't do much about.  We kick the writeback threads and take explicit
 * naps in the hope that some of these pages can be written.  But if the
 * allocating task holds filesystem locks which prevent writeout this might not
 * work, and the allocation attempt will fail.
1769 1770 1771
 *
 * returns:	0, if no pages reclaimed
 * 		else, the number of pages reclaimed
L
Linus Torvalds 已提交
1772
 */
1773
static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
1774
					struct scan_control *sc)
L
Linus Torvalds 已提交
1775 1776
{
	int priority;
1777
	unsigned long ret = 0;
1778
	unsigned long total_scanned = 0;
L
Linus Torvalds 已提交
1779 1780
	struct reclaim_state *reclaim_state = current->reclaim_state;
	unsigned long lru_pages = 0;
1781
	struct zoneref *z;
1782
	struct zone *zone;
1783
	enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1784
	unsigned long writeback_threshold;
L
Linus Torvalds 已提交
1785

1786
	get_mems_allowed();
1787 1788
	delayacct_freepages_start();

1789
	if (scanning_global_lru(sc))
1790 1791 1792 1793
		count_vm_event(ALLOCSTALL);
	/*
	 * mem_cgroup will not do shrink_slab.
	 */
1794
	if (scanning_global_lru(sc)) {
1795
		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
L
Linus Torvalds 已提交
1796

1797 1798
			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
				continue;
L
Linus Torvalds 已提交
1799

1800
			lru_pages += zone_reclaimable_pages(zone);
1801
		}
L
Linus Torvalds 已提交
1802 1803 1804
	}

	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1805
		sc->nr_scanned = 0;
1806 1807
		if (!priority)
			disable_swap_token();
1808
		shrink_zones(priority, zonelist, sc);
1809 1810 1811 1812
		/*
		 * Don't shrink slabs when reclaiming memory from
		 * over limit cgroups
		 */
1813
		if (scanning_global_lru(sc)) {
1814
			shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages);
1815
			if (reclaim_state) {
1816
				sc->nr_reclaimed += reclaim_state->reclaimed_slab;
1817 1818
				reclaim_state->reclaimed_slab = 0;
			}
L
Linus Torvalds 已提交
1819
		}
1820
		total_scanned += sc->nr_scanned;
1821
		if (sc->nr_reclaimed >= sc->nr_to_reclaim) {
1822
			ret = sc->nr_reclaimed;
L
Linus Torvalds 已提交
1823 1824 1825 1826 1827 1828 1829 1830 1831 1832
			goto out;
		}

		/*
		 * Try to write back as many pages as we just scanned.  This
		 * tends to cause slow streaming writers to write data to the
		 * disk smoothly, at the dirtying rate, which is nice.   But
		 * that's undesirable in laptop mode, where we *want* lumpy
		 * writeout.  So in laptop mode, write out the whole world.
		 */
1833 1834
		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
		if (total_scanned > writeback_threshold) {
1835
			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned);
1836
			sc->may_writepage = 1;
L
Linus Torvalds 已提交
1837 1838 1839
		}

		/* Take a nap, wait for some writeback to complete */
1840 1841
		if (!sc->hibernation_mode && sc->nr_scanned &&
		    priority < DEF_PRIORITY - 2)
1842
			congestion_wait(BLK_RW_ASYNC, HZ/10);
L
Linus Torvalds 已提交
1843
	}
1844
	/* top priority shrink_zones still had more to do? don't OOM, then */
1845
	if (!sc->all_unreclaimable && scanning_global_lru(sc))
1846
		ret = sc->nr_reclaimed;
L
Linus Torvalds 已提交
1847
out:
1848 1849 1850 1851 1852 1853 1854 1855 1856
	/*
	 * Now that we've scanned all the zones at this priority level, note
	 * that level within the zone so that the next thread which performs
	 * scanning of this zone will immediately start out at this priority
	 * level.  This affects only the decision whether or not to bring
	 * mapped pages onto the inactive list.
	 */
	if (priority < 0)
		priority = 0;
L
Linus Torvalds 已提交
1857

1858
	if (scanning_global_lru(sc)) {
1859
		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1860 1861 1862 1863 1864 1865 1866 1867

			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
				continue;

			zone->prev_priority = priority;
		}
	} else
		mem_cgroup_record_reclaim_priority(sc->mem_cgroup, priority);
L
Linus Torvalds 已提交
1868

1869
	delayacct_freepages_end();
1870
	put_mems_allowed();
1871

L
Linus Torvalds 已提交
1872 1873 1874
	return ret;
}

1875
unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
1876
				gfp_t gfp_mask, nodemask_t *nodemask)
1877 1878 1879 1880
{
	struct scan_control sc = {
		.gfp_mask = gfp_mask,
		.may_writepage = !laptop_mode,
1881
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
1882
		.may_unmap = 1,
1883
		.may_swap = 1,
1884 1885 1886 1887
		.swappiness = vm_swappiness,
		.order = order,
		.mem_cgroup = NULL,
		.isolate_pages = isolate_pages_global,
1888
		.nodemask = nodemask,
1889 1890
	};

1891
	return do_try_to_free_pages(zonelist, &sc);
1892 1893
}

1894
#ifdef CONFIG_CGROUP_MEM_RES_CTLR
1895

1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927
unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
						gfp_t gfp_mask, bool noswap,
						unsigned int swappiness,
						struct zone *zone, int nid)
{
	struct scan_control sc = {
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
		.may_swap = !noswap,
		.swappiness = swappiness,
		.order = 0,
		.mem_cgroup = mem,
		.isolate_pages = mem_cgroup_isolate_pages,
	};
	nodemask_t nm  = nodemask_of_node(nid);

	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
	sc.nodemask = &nm;
	sc.nr_reclaimed = 0;
	sc.nr_scanned = 0;
	/*
	 * NOTE: Although we can get the priority field, using it
	 * here is not a good idea, since it limits the pages we can scan.
	 * if we don't reclaim here, the shrink_zone from balance_pgdat
	 * will pick up pages from other mem cgroup's as well. We hack
	 * the priority and make it zero.
	 */
	shrink_zone(0, zone, &sc);
	return sc.nr_reclaimed;
}

1928
unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
K
KOSAKI Motohiro 已提交
1929 1930 1931
					   gfp_t gfp_mask,
					   bool noswap,
					   unsigned int swappiness)
1932
{
1933
	struct zonelist *zonelist;
1934 1935
	struct scan_control sc = {
		.may_writepage = !laptop_mode,
1936
		.may_unmap = 1,
1937
		.may_swap = !noswap,
1938
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
K
KOSAKI Motohiro 已提交
1939
		.swappiness = swappiness,
1940 1941 1942
		.order = 0,
		.mem_cgroup = mem_cont,
		.isolate_pages = mem_cgroup_isolate_pages,
1943
		.nodemask = NULL, /* we don't care the placement */
1944 1945
	};

1946 1947 1948 1949
	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
	zonelist = NODE_DATA(numa_node_id())->node_zonelists;
	return do_try_to_free_pages(zonelist, &sc);
1950 1951 1952
}
#endif

1953
/* is kswapd sleeping prematurely? */
1954
static int sleeping_prematurely(pg_data_t *pgdat, int order, long remaining)
1955
{
1956
	int i;
1957 1958 1959 1960 1961 1962

	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
	if (remaining)
		return 1;

	/* If after HZ/10, a zone is below the high mark, it's premature */
1963 1964 1965 1966 1967 1968
	for (i = 0; i < pgdat->nr_zones; i++) {
		struct zone *zone = pgdat->node_zones + i;

		if (!populated_zone(zone))
			continue;

1969
		if (zone->all_unreclaimable)
1970 1971
			continue;

1972 1973 1974
		if (!zone_watermark_ok(zone, order, high_wmark_pages(zone),
								0, 0))
			return 1;
1975
	}
1976 1977 1978 1979

	return 0;
}

L
Linus Torvalds 已提交
1980 1981
/*
 * For kswapd, balance_pgdat() will work across all this node's zones until
1982
 * they are all at high_wmark_pages(zone).
L
Linus Torvalds 已提交
1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994
 *
 * Returns the number of pages which were actually freed.
 *
 * There is special handling here for zones which are full of pinned pages.
 * This can happen if the pages are all mlocked, or if they are all used by
 * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
 * What we do is to detect the case where all pages in the zone have been
 * scanned twice and there has been zero successful reclaim.  Mark the zone as
 * dead and from now on, only perform a short scan.  Basically we're polling
 * the zone for when the problem goes away.
 *
 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
1995 1996 1997 1998 1999
 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
 * lower zones regardless of the number of free pages in the lower zones. This
 * interoperates with the page allocator fallback scheme to ensure that aging
 * of pages is balanced across the zones.
L
Linus Torvalds 已提交
2000
 */
2001
static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
L
Linus Torvalds 已提交
2002 2003 2004 2005
{
	int all_zones_ok;
	int priority;
	int i;
2006
	unsigned long total_scanned;
L
Linus Torvalds 已提交
2007
	struct reclaim_state *reclaim_state = current->reclaim_state;
2008 2009
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
2010
		.may_unmap = 1,
2011
		.may_swap = 1,
2012 2013 2014 2015 2016
		/*
		 * kswapd doesn't want to be bailed out while reclaim. because
		 * we want to put equal scanning pressure on each zone.
		 */
		.nr_to_reclaim = ULONG_MAX,
2017
		.swappiness = vm_swappiness,
A
Andy Whitcroft 已提交
2018
		.order = order,
2019 2020
		.mem_cgroup = NULL,
		.isolate_pages = isolate_pages_global,
2021
	};
2022 2023
	/*
	 * temp_priority is used to remember the scanning priority at which
2024 2025
	 * this zone was successfully refilled to
	 * free_pages == high_wmark_pages(zone).
2026 2027
	 */
	int temp_priority[MAX_NR_ZONES];
L
Linus Torvalds 已提交
2028 2029 2030

loop_again:
	total_scanned = 0;
2031
	sc.nr_reclaimed = 0;
C
Christoph Lameter 已提交
2032
	sc.may_writepage = !laptop_mode;
2033
	count_vm_event(PAGEOUTRUN);
L
Linus Torvalds 已提交
2034

2035 2036
	for (i = 0; i < pgdat->nr_zones; i++)
		temp_priority[i] = DEF_PRIORITY;
L
Linus Torvalds 已提交
2037 2038 2039 2040

	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
		int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
		unsigned long lru_pages = 0;
2041
		int has_under_min_watermark_zone = 0;
L
Linus Torvalds 已提交
2042

2043 2044 2045 2046
		/* The swap token gets in the way of swapout... */
		if (!priority)
			disable_swap_token();

L
Linus Torvalds 已提交
2047 2048
		all_zones_ok = 1;

2049 2050 2051 2052 2053 2054
		/*
		 * Scan in the highmem->dma direction for the highest
		 * zone which needs scanning
		 */
		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
			struct zone *zone = pgdat->node_zones + i;
L
Linus Torvalds 已提交
2055

2056 2057
			if (!populated_zone(zone))
				continue;
L
Linus Torvalds 已提交
2058

2059
			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2060
				continue;
L
Linus Torvalds 已提交
2061

2062 2063 2064 2065
			/*
			 * Do some background aging of the anon list, to give
			 * pages a chance to be referenced before reclaiming.
			 */
2066
			if (inactive_anon_is_low(zone, &sc))
2067 2068 2069
				shrink_active_list(SWAP_CLUSTER_MAX, zone,
							&sc, priority, 0);

2070 2071
			if (!zone_watermark_ok(zone, order,
					high_wmark_pages(zone), 0, 0)) {
2072
				end_zone = i;
A
Andrew Morton 已提交
2073
				break;
L
Linus Torvalds 已提交
2074 2075
			}
		}
A
Andrew Morton 已提交
2076 2077 2078
		if (i < 0)
			goto out;

L
Linus Torvalds 已提交
2079 2080 2081
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;

2082
			lru_pages += zone_reclaimable_pages(zone);
L
Linus Torvalds 已提交
2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095
		}

		/*
		 * Now scan the zone in the dma->highmem direction, stopping
		 * at the last zone which needs scanning.
		 *
		 * We do this because the page allocator works in the opposite
		 * direction.  This prevents the page allocator from allocating
		 * pages behind kswapd's direction of progress, which would
		 * cause too much scanning of the lower zones.
		 */
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;
2096
			int nr_slab;
2097
			int nid, zid;
L
Linus Torvalds 已提交
2098

2099
			if (!populated_zone(zone))
L
Linus Torvalds 已提交
2100 2101
				continue;

2102
			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
L
Linus Torvalds 已提交
2103 2104
				continue;

2105
			temp_priority[i] = priority;
L
Linus Torvalds 已提交
2106
			sc.nr_scanned = 0;
2107
			note_zone_scanning_priority(zone, priority);
2108 2109 2110 2111 2112 2113 2114 2115 2116

			nid = pgdat->node_id;
			zid = zone_idx(zone);
			/*
			 * Call soft limit reclaim before calling shrink_zone.
			 * For now we ignore the return value
			 */
			mem_cgroup_soft_limit_reclaim(zone, order, sc.gfp_mask,
							nid, zid);
2117 2118 2119 2120
			/*
			 * We put equal pressure on every zone, unless one
			 * zone has way too many pages free already.
			 */
2121 2122
			if (!zone_watermark_ok(zone, order,
					8*high_wmark_pages(zone), end_zone, 0))
2123
				shrink_zone(priority, zone, &sc);
L
Linus Torvalds 已提交
2124
			reclaim_state->reclaimed_slab = 0;
2125 2126
			nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
						lru_pages);
2127
			sc.nr_reclaimed += reclaim_state->reclaimed_slab;
L
Linus Torvalds 已提交
2128
			total_scanned += sc.nr_scanned;
2129
			if (zone->all_unreclaimable)
L
Linus Torvalds 已提交
2130
				continue;
2131 2132 2133
			if (nr_slab == 0 &&
			    zone->pages_scanned >= (zone_reclaimable_pages(zone) * 6))
				zone->all_unreclaimable = 1;
L
Linus Torvalds 已提交
2134 2135 2136 2137 2138 2139
			/*
			 * If we've done a decent amount of scanning and
			 * the reclaim ratio is low, start doing writepage
			 * even in laptop mode
			 */
			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2140
			    total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
L
Linus Torvalds 已提交
2141
				sc.may_writepage = 1;
2142

2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154
			if (!zone_watermark_ok(zone, order,
					high_wmark_pages(zone), end_zone, 0)) {
				all_zones_ok = 0;
				/*
				 * We are still under min water mark.  This
				 * means that we have a GFP_ATOMIC allocation
				 * failure risk. Hurry up!
				 */
				if (!zone_watermark_ok(zone, order,
					    min_wmark_pages(zone), end_zone, 0))
					has_under_min_watermark_zone = 1;
			}
2155

L
Linus Torvalds 已提交
2156 2157 2158 2159 2160 2161 2162
		}
		if (all_zones_ok)
			break;		/* kswapd: all done */
		/*
		 * OK, kswapd is getting into trouble.  Take a nap, then take
		 * another pass across the zones.
		 */
2163 2164 2165 2166 2167 2168
		if (total_scanned && (priority < DEF_PRIORITY - 2)) {
			if (has_under_min_watermark_zone)
				count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
			else
				congestion_wait(BLK_RW_ASYNC, HZ/10);
		}
L
Linus Torvalds 已提交
2169 2170 2171 2172 2173 2174 2175

		/*
		 * We do this so kswapd doesn't build up large priorities for
		 * example when it is freeing in parallel with allocators. It
		 * matches the direct reclaim path behaviour in terms of impact
		 * on zone->*_priority.
		 */
2176
		if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
L
Linus Torvalds 已提交
2177 2178 2179
			break;
	}
out:
2180 2181 2182 2183 2184
	/*
	 * Note within each zone the priority level at which this zone was
	 * brought into a happy state.  So that the next thread which scans this
	 * zone will start out at that priority level.
	 */
L
Linus Torvalds 已提交
2185 2186 2187
	for (i = 0; i < pgdat->nr_zones; i++) {
		struct zone *zone = pgdat->node_zones + i;

2188
		zone->prev_priority = temp_priority[i];
L
Linus Torvalds 已提交
2189 2190 2191
	}
	if (!all_zones_ok) {
		cond_resched();
2192 2193 2194

		try_to_freeze();

2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211
		/*
		 * Fragmentation may mean that the system cannot be
		 * rebalanced for high-order allocations in all zones.
		 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
		 * it means the zones have been fully scanned and are still
		 * not balanced. For high-order allocations, there is
		 * little point trying all over again as kswapd may
		 * infinite loop.
		 *
		 * Instead, recheck all watermarks at order-0 as they
		 * are the most important. If watermarks are ok, kswapd will go
		 * back to sleep. High-order users can still perform direct
		 * reclaim if they wish.
		 */
		if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
			order = sc.order = 0;

L
Linus Torvalds 已提交
2212 2213 2214
		goto loop_again;
	}

2215
	return sc.nr_reclaimed;
L
Linus Torvalds 已提交
2216 2217 2218 2219
}

/*
 * The background pageout daemon, started as a kernel thread
2220
 * from the init process.
L
Linus Torvalds 已提交
2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239
 *
 * This basically trickles out pages so that we have _some_
 * free memory available even if there is no other activity
 * that frees anything up. This is needed for things like routing
 * etc, where we otherwise might have all activity going on in
 * asynchronous contexts that cannot page things out.
 *
 * If there are applications that are active memory-allocators
 * (most normal use), this basically shouldn't matter.
 */
static int kswapd(void *p)
{
	unsigned long order;
	pg_data_t *pgdat = (pg_data_t*)p;
	struct task_struct *tsk = current;
	DEFINE_WAIT(wait);
	struct reclaim_state reclaim_state = {
		.reclaimed_slab = 0,
	};
2240
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
L
Linus Torvalds 已提交
2241

2242 2243
	lockdep_set_current_reclaim_state(GFP_KERNEL);

R
Rusty Russell 已提交
2244
	if (!cpumask_empty(cpumask))
2245
		set_cpus_allowed_ptr(tsk, cpumask);
L
Linus Torvalds 已提交
2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259
	current->reclaim_state = &reclaim_state;

	/*
	 * Tell the memory management that we're a "memory allocator",
	 * and that if we need more memory we should get access to it
	 * regardless (see "__alloc_pages()"). "kswapd" should
	 * never get caught in the normal page freeing logic.
	 *
	 * (Kswapd normally doesn't need memory anyway, but sometimes
	 * you need a small amount of memory in order to be able to
	 * page out something else, and this flag essentially protects
	 * us from recursively trying to free more memory as we're
	 * trying to free the first piece of memory in the first place).
	 */
2260
	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2261
	set_freezable();
L
Linus Torvalds 已提交
2262 2263 2264 2265

	order = 0;
	for ( ; ; ) {
		unsigned long new_order;
2266
		int ret;
2267

L
Linus Torvalds 已提交
2268 2269 2270 2271 2272 2273 2274 2275 2276 2277
		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
		new_order = pgdat->kswapd_max_order;
		pgdat->kswapd_max_order = 0;
		if (order < new_order) {
			/*
			 * Don't sleep if someone wants a larger 'order'
			 * allocation
			 */
			order = new_order;
		} else {
2278 2279 2280 2281
			if (!freezing(current) && !kthread_should_stop()) {
				long remaining = 0;

				/* Try to sleep for a short interval */
2282
				if (!sleeping_prematurely(pgdat, order, remaining)) {
2283 2284 2285 2286 2287 2288 2289 2290 2291 2292
					remaining = schedule_timeout(HZ/10);
					finish_wait(&pgdat->kswapd_wait, &wait);
					prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
				}

				/*
				 * After a short sleep, check if it was a
				 * premature sleep. If not, then go fully
				 * to sleep until explicitly woken up
				 */
2293
				if (!sleeping_prematurely(pgdat, order, remaining))
2294 2295 2296
					schedule();
				else {
					if (remaining)
2297
						count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2298
					else
2299
						count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2300 2301
				}
			}
2302

L
Linus Torvalds 已提交
2303 2304 2305 2306
			order = pgdat->kswapd_max_order;
		}
		finish_wait(&pgdat->kswapd_wait, &wait);

2307 2308 2309 2310 2311 2312 2313 2314 2315
		ret = try_to_freeze();
		if (kthread_should_stop())
			break;

		/*
		 * We can speed up thawing tasks if we don't call balance_pgdat
		 * after returning from the refrigerator
		 */
		if (!ret)
2316
			balance_pgdat(pgdat, order);
L
Linus Torvalds 已提交
2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327
	}
	return 0;
}

/*
 * A zone is low on free memory, so wake its kswapd task to service it.
 */
void wakeup_kswapd(struct zone *zone, int order)
{
	pg_data_t *pgdat;

2328
	if (!populated_zone(zone))
L
Linus Torvalds 已提交
2329 2330 2331
		return;

	pgdat = zone->zone_pgdat;
2332
	if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0, 0))
L
Linus Torvalds 已提交
2333 2334 2335
		return;
	if (pgdat->kswapd_max_order < order)
		pgdat->kswapd_max_order = order;
2336
	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
L
Linus Torvalds 已提交
2337
		return;
2338
	if (!waitqueue_active(&pgdat->kswapd_wait))
L
Linus Torvalds 已提交
2339
		return;
2340
	wake_up_interruptible(&pgdat->kswapd_wait);
L
Linus Torvalds 已提交
2341 2342
}

2343 2344 2345 2346 2347 2348 2349 2350
/*
 * The reclaimable count would be mostly accurate.
 * The less reclaimable pages may be
 * - mlocked pages, which will be moved to unevictable list when encountered
 * - mapped pages, which may require several travels to be reclaimed
 * - dirty pages, which is not "instantly" reclaimable
 */
unsigned long global_reclaimable_pages(void)
2351
{
2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375
	int nr;

	nr = global_page_state(NR_ACTIVE_FILE) +
	     global_page_state(NR_INACTIVE_FILE);

	if (nr_swap_pages > 0)
		nr += global_page_state(NR_ACTIVE_ANON) +
		      global_page_state(NR_INACTIVE_ANON);

	return nr;
}

unsigned long zone_reclaimable_pages(struct zone *zone)
{
	int nr;

	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
	     zone_page_state(zone, NR_INACTIVE_FILE);

	if (nr_swap_pages > 0)
		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
		      zone_page_state(zone, NR_INACTIVE_ANON);

	return nr;
2376 2377
}

2378
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
2379
/*
2380
 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
2381 2382 2383 2384 2385
 * freed pages.
 *
 * Rather than trying to age LRUs the aim is to preserve the overall
 * LRU order by reclaiming preferentially
 * inactive > active > active referenced > active mapped
L
Linus Torvalds 已提交
2386
 */
2387
unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
L
Linus Torvalds 已提交
2388
{
2389 2390
	struct reclaim_state reclaim_state;
	struct scan_control sc = {
2391 2392 2393
		.gfp_mask = GFP_HIGHUSER_MOVABLE,
		.may_swap = 1,
		.may_unmap = 1,
2394
		.may_writepage = 1,
2395 2396 2397 2398
		.nr_to_reclaim = nr_to_reclaim,
		.hibernation_mode = 1,
		.swappiness = vm_swappiness,
		.order = 0,
2399
		.isolate_pages = isolate_pages_global,
L
Linus Torvalds 已提交
2400
	};
2401 2402 2403
	struct zonelist * zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
	struct task_struct *p = current;
	unsigned long nr_reclaimed;
L
Linus Torvalds 已提交
2404

2405 2406 2407 2408
	p->flags |= PF_MEMALLOC;
	lockdep_set_current_reclaim_state(sc.gfp_mask);
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
2409

2410
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2411

2412 2413 2414
	p->reclaim_state = NULL;
	lockdep_clear_current_reclaim_state();
	p->flags &= ~PF_MEMALLOC;
2415

2416
	return nr_reclaimed;
L
Linus Torvalds 已提交
2417
}
2418
#endif /* CONFIG_HIBERNATION */
L
Linus Torvalds 已提交
2419 2420 2421 2422 2423

/* It's optimal to keep kswapds on the same CPUs as their memory, but
   not required for correctness.  So if the last cpu in a node goes
   away, we get changed to run anywhere: as the first one comes back,
   restore their cpu bindings. */
2424
static int __devinit cpu_callback(struct notifier_block *nfb,
2425
				  unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
2426
{
2427
	int nid;
L
Linus Torvalds 已提交
2428

2429
	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2430
		for_each_node_state(nid, N_HIGH_MEMORY) {
2431
			pg_data_t *pgdat = NODE_DATA(nid);
2432 2433 2434
			const struct cpumask *mask;

			mask = cpumask_of_node(pgdat->node_id);
2435

2436
			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
L
Linus Torvalds 已提交
2437
				/* One of our CPUs online: restore mask */
2438
				set_cpus_allowed_ptr(pgdat->kswapd, mask);
L
Linus Torvalds 已提交
2439 2440 2441 2442 2443
		}
	}
	return NOTIFY_OK;
}

2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465
/*
 * This kswapd start function will be called by init and node-hot-add.
 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
 */
int kswapd_run(int nid)
{
	pg_data_t *pgdat = NODE_DATA(nid);
	int ret = 0;

	if (pgdat->kswapd)
		return 0;

	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
	if (IS_ERR(pgdat->kswapd)) {
		/* failure at boot is fatal */
		BUG_ON(system_state == SYSTEM_BOOTING);
		printk("Failed to start kswapd on node %d\n",nid);
		ret = -1;
	}
	return ret;
}

2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476
/*
 * Called by memory hotplug when all memory in a node is offlined.
 */
void kswapd_stop(int nid)
{
	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;

	if (kswapd)
		kthread_stop(kswapd);
}

L
Linus Torvalds 已提交
2477 2478
static int __init kswapd_init(void)
{
2479
	int nid;
2480

L
Linus Torvalds 已提交
2481
	swap_setup();
2482
	for_each_node_state(nid, N_HIGH_MEMORY)
2483
 		kswapd_run(nid);
L
Linus Torvalds 已提交
2484 2485 2486 2487 2488
	hotcpu_notifier(cpu_callback, 0);
	return 0;
}

module_init(kswapd_init)
2489 2490 2491 2492 2493 2494 2495 2496 2497 2498

#ifdef CONFIG_NUMA
/*
 * Zone reclaim mode
 *
 * If non-zero call zone_reclaim when the number of free pages falls below
 * the watermarks.
 */
int zone_reclaim_mode __read_mostly;

2499
#define RECLAIM_OFF 0
2500
#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
2501 2502 2503
#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
#define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */

2504 2505 2506 2507 2508 2509 2510
/*
 * Priority for ZONE_RECLAIM. This determines the fraction of pages
 * of a node considered for each zone_reclaim. 4 scans 1/16th of
 * a zone.
 */
#define ZONE_RECLAIM_PRIORITY 4

2511 2512 2513 2514 2515 2516
/*
 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
 * occur.
 */
int sysctl_min_unmapped_ratio = 1;

2517 2518 2519 2520 2521 2522
/*
 * If the number of slab pages in a zone grows beyond this percentage then
 * slab reclaim needs to occur.
 */
int sysctl_min_slab_ratio = 5;

2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564
static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
{
	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
		zone_page_state(zone, NR_ACTIVE_FILE);

	/*
	 * It's possible for there to be more file mapped pages than
	 * accounted for by the pages on the file LRU lists because
	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
	 */
	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
}

/* Work out how many page cache pages we can reclaim in this reclaim_mode */
static long zone_pagecache_reclaimable(struct zone *zone)
{
	long nr_pagecache_reclaimable;
	long delta = 0;

	/*
	 * If RECLAIM_SWAP is set, then all file pages are considered
	 * potentially reclaimable. Otherwise, we have to worry about
	 * pages like swapcache and zone_unmapped_file_pages() provides
	 * a better estimate
	 */
	if (zone_reclaim_mode & RECLAIM_SWAP)
		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
	else
		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);

	/* If we can't clean pages, remove dirty pages from consideration */
	if (!(zone_reclaim_mode & RECLAIM_WRITE))
		delta += zone_page_state(zone, NR_FILE_DIRTY);

	/* Watch for any possible underflows due to delta */
	if (unlikely(delta > nr_pagecache_reclaimable))
		delta = nr_pagecache_reclaimable;

	return nr_pagecache_reclaimable - delta;
}

2565 2566 2567
/*
 * Try to free up some pages from this zone through reclaim.
 */
2568
static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2569
{
2570
	/* Minimum pages needed in order to stay on node */
2571
	const unsigned long nr_pages = 1 << order;
2572 2573
	struct task_struct *p = current;
	struct reclaim_state reclaim_state;
2574
	int priority;
2575 2576
	struct scan_control sc = {
		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
2577
		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2578
		.may_swap = 1,
2579 2580
		.nr_to_reclaim = max_t(unsigned long, nr_pages,
				       SWAP_CLUSTER_MAX),
2581
		.gfp_mask = gfp_mask,
2582
		.swappiness = vm_swappiness,
2583
		.order = order,
2584
		.isolate_pages = isolate_pages_global,
2585
	};
2586
	unsigned long slab_reclaimable;
2587 2588 2589

	disable_swap_token();
	cond_resched();
2590 2591 2592 2593 2594 2595
	/*
	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
	 * and we also need to be able to write out pages for RECLAIM_WRITE
	 * and RECLAIM_SWAP.
	 */
	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
2596
	lockdep_set_current_reclaim_state(gfp_mask);
2597 2598
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
2599

2600
	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
2601 2602 2603 2604 2605 2606
		/*
		 * Free memory by calling shrink zone with increasing
		 * priorities until we have enough memory freed.
		 */
		priority = ZONE_RECLAIM_PRIORITY;
		do {
2607
			note_zone_scanning_priority(zone, priority);
2608
			shrink_zone(priority, zone, &sc);
2609
			priority--;
2610
		} while (priority >= 0 && sc.nr_reclaimed < nr_pages);
2611
	}
2612

2613 2614
	slab_reclaimable = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
	if (slab_reclaimable > zone->min_slab_pages) {
2615
		/*
2616
		 * shrink_slab() does not currently allow us to determine how
2617 2618 2619 2620
		 * many pages were freed in this zone. So we take the current
		 * number of slab pages and shake the slab until it is reduced
		 * by the same nr_pages that we used for reclaiming unmapped
		 * pages.
2621
		 *
2622 2623
		 * Note that shrink_slab will free memory on all zones and may
		 * take a long time.
2624
		 */
2625
		while (shrink_slab(sc.nr_scanned, gfp_mask, order) &&
2626 2627
			zone_page_state(zone, NR_SLAB_RECLAIMABLE) >
				slab_reclaimable - nr_pages)
2628
			;
2629 2630 2631 2632 2633

		/*
		 * Update nr_reclaimed by the number of slab pages we
		 * reclaimed from this zone.
		 */
2634
		sc.nr_reclaimed += slab_reclaimable -
2635
			zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2636 2637
	}

2638
	p->reclaim_state = NULL;
2639
	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
2640
	lockdep_clear_current_reclaim_state();
2641
	return sc.nr_reclaimed >= nr_pages;
2642
}
2643 2644 2645 2646

int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
{
	int node_id;
2647
	int ret;
2648 2649

	/*
2650 2651
	 * Zone reclaim reclaims unmapped file backed pages and
	 * slab pages if we are over the defined limits.
2652
	 *
2653 2654 2655 2656 2657
	 * A small portion of unmapped file backed pages is needed for
	 * file I/O otherwise pages read by file I/O will be immediately
	 * thrown out if the zone is overallocated. So we do not reclaim
	 * if less than a specified percentage of the zone is used by
	 * unmapped file backed pages.
2658
	 */
2659 2660
	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
2661
		return ZONE_RECLAIM_FULL;
2662

2663
	if (zone->all_unreclaimable)
2664
		return ZONE_RECLAIM_FULL;
2665

2666
	/*
2667
	 * Do not scan if the allocation should not be delayed.
2668
	 */
2669
	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
2670
		return ZONE_RECLAIM_NOSCAN;
2671 2672 2673 2674 2675 2676 2677

	/*
	 * Only run zone reclaim on the local zone or on zones that do not
	 * have associated processors. This will favor the local processor
	 * over remote processors and spread off node memory allocations
	 * as wide as possible.
	 */
2678
	node_id = zone_to_nid(zone);
2679
	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
2680
		return ZONE_RECLAIM_NOSCAN;
2681 2682

	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
2683 2684
		return ZONE_RECLAIM_NOSCAN;

2685 2686 2687
	ret = __zone_reclaim(zone, gfp_mask, order);
	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);

2688 2689 2690
	if (!ret)
		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);

2691
	return ret;
2692
}
2693
#endif
L
Lee Schermerhorn 已提交
2694 2695 2696 2697 2698 2699 2700

/*
 * page_evictable - test whether a page is evictable
 * @page: the page to test
 * @vma: the VMA in which the page is or will be mapped, may be NULL
 *
 * Test whether page is evictable--i.e., should be placed on active/inactive
N
Nick Piggin 已提交
2701 2702
 * lists vs unevictable list.  The vma argument is !NULL when called from the
 * fault path to determine how to instantate a new page.
L
Lee Schermerhorn 已提交
2703 2704
 *
 * Reasons page might not be evictable:
2705
 * (1) page's mapping marked unevictable
N
Nick Piggin 已提交
2706
 * (2) page is part of an mlocked VMA
2707
 *
L
Lee Schermerhorn 已提交
2708 2709 2710 2711
 */
int page_evictable(struct page *page, struct vm_area_struct *vma)
{

2712 2713 2714
	if (mapping_unevictable(page_mapping(page)))
		return 0;

N
Nick Piggin 已提交
2715 2716
	if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
		return 0;
L
Lee Schermerhorn 已提交
2717 2718 2719

	return 1;
}
2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738

/**
 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
 * @page: page to check evictability and move to appropriate lru list
 * @zone: zone page is in
 *
 * Checks a page for evictability and moves the page to the appropriate
 * zone lru list.
 *
 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
 * have PageUnevictable set.
 */
static void check_move_unevictable_page(struct page *page, struct zone *zone)
{
	VM_BUG_ON(PageActive(page));

retry:
	ClearPageUnevictable(page);
	if (page_evictable(page, NULL)) {
2739
		enum lru_list l = page_lru_base_type(page);
2740

2741 2742
		__dec_zone_state(zone, NR_UNEVICTABLE);
		list_move(&page->lru, &zone->lru[l].list);
K
KAMEZAWA Hiroyuki 已提交
2743
		mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
2744 2745 2746 2747 2748 2749 2750 2751
		__inc_zone_state(zone, NR_INACTIVE_ANON + l);
		__count_vm_event(UNEVICTABLE_PGRESCUED);
	} else {
		/*
		 * rotate unevictable list
		 */
		SetPageUnevictable(page);
		list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
K
KAMEZAWA Hiroyuki 已提交
2752
		mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811
		if (page_evictable(page, NULL))
			goto retry;
	}
}

/**
 * scan_mapping_unevictable_pages - scan an address space for evictable pages
 * @mapping: struct address_space to scan for evictable pages
 *
 * Scan all pages in mapping.  Check unevictable pages for
 * evictability and move them to the appropriate zone lru list.
 */
void scan_mapping_unevictable_pages(struct address_space *mapping)
{
	pgoff_t next = 0;
	pgoff_t end   = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
			 PAGE_CACHE_SHIFT;
	struct zone *zone;
	struct pagevec pvec;

	if (mapping->nrpages == 0)
		return;

	pagevec_init(&pvec, 0);
	while (next < end &&
		pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
		int i;
		int pg_scanned = 0;

		zone = NULL;

		for (i = 0; i < pagevec_count(&pvec); i++) {
			struct page *page = pvec.pages[i];
			pgoff_t page_index = page->index;
			struct zone *pagezone = page_zone(page);

			pg_scanned++;
			if (page_index > next)
				next = page_index;
			next++;

			if (pagezone != zone) {
				if (zone)
					spin_unlock_irq(&zone->lru_lock);
				zone = pagezone;
				spin_lock_irq(&zone->lru_lock);
			}

			if (PageLRU(page) && PageUnevictable(page))
				check_move_unevictable_page(page, zone);
		}
		if (zone)
			spin_unlock_irq(&zone->lru_lock);
		pagevec_release(&pvec);

		count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
	}

}
2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823

/**
 * scan_zone_unevictable_pages - check unevictable list for evictable pages
 * @zone - zone of which to scan the unevictable list
 *
 * Scan @zone's unevictable LRU lists to check for pages that have become
 * evictable.  Move those that have to @zone's inactive list where they
 * become candidates for reclaim, unless shrink_inactive_zone() decides
 * to reactivate them.  Pages that are still unevictable are rotated
 * back onto @zone's unevictable list.
 */
#define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
2824
static void scan_zone_unevictable_pages(struct zone *zone)
2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865
{
	struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
	unsigned long scan;
	unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);

	while (nr_to_scan > 0) {
		unsigned long batch_size = min(nr_to_scan,
						SCAN_UNEVICTABLE_BATCH_SIZE);

		spin_lock_irq(&zone->lru_lock);
		for (scan = 0;  scan < batch_size; scan++) {
			struct page *page = lru_to_page(l_unevictable);

			if (!trylock_page(page))
				continue;

			prefetchw_prev_lru_page(page, l_unevictable, flags);

			if (likely(PageLRU(page) && PageUnevictable(page)))
				check_move_unevictable_page(page, zone);

			unlock_page(page);
		}
		spin_unlock_irq(&zone->lru_lock);

		nr_to_scan -= batch_size;
	}
}


/**
 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
 *
 * A really big hammer:  scan all zones' unevictable LRU lists to check for
 * pages that have become evictable.  Move those back to the zones'
 * inactive list where they become candidates for reclaim.
 * This occurs when, e.g., we have unswappable pages on the unevictable lists,
 * and we add swap to the system.  As such, it runs in the context of a task
 * that has possibly/probably made some previously unevictable pages
 * evictable.
 */
2866
static void scan_all_zones_unevictable_pages(void)
2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881
{
	struct zone *zone;

	for_each_zone(zone) {
		scan_zone_unevictable_pages(zone);
	}
}

/*
 * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
 * all nodes' unevictable lists for evictable pages
 */
unsigned long scan_unevictable_pages;

int scan_unevictable_handler(struct ctl_table *table, int write,
2882
			   void __user *buffer,
2883 2884
			   size_t *length, loff_t *ppos)
{
2885
	proc_doulongvec_minmax(table, write, buffer, length, ppos);
2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940

	if (write && *(unsigned long *)table->data)
		scan_all_zones_unevictable_pages();

	scan_unevictable_pages = 0;
	return 0;
}

/*
 * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
 * a specified node's per zone unevictable lists for evictable pages.
 */

static ssize_t read_scan_unevictable_node(struct sys_device *dev,
					  struct sysdev_attribute *attr,
					  char *buf)
{
	return sprintf(buf, "0\n");	/* always zero; should fit... */
}

static ssize_t write_scan_unevictable_node(struct sys_device *dev,
					   struct sysdev_attribute *attr,
					const char *buf, size_t count)
{
	struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
	struct zone *zone;
	unsigned long res;
	unsigned long req = strict_strtoul(buf, 10, &res);

	if (!req)
		return 1;	/* zero is no-op */

	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
		if (!populated_zone(zone))
			continue;
		scan_zone_unevictable_pages(zone);
	}
	return 1;
}


static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
			read_scan_unevictable_node,
			write_scan_unevictable_node);

int scan_unevictable_register_node(struct node *node)
{
	return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
}

void scan_unevictable_unregister_node(struct node *node)
{
	sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
}