compaction.c 32.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/*
 * linux/mm/compaction.c
 *
 * Memory compaction for the reduction of external fragmentation. Note that
 * this heavily depends upon page migration to do all the real heavy
 * lifting
 *
 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
 */
#include <linux/swap.h>
#include <linux/migrate.h>
#include <linux/compaction.h>
#include <linux/mm_inline.h>
#include <linux/backing-dev.h>
15
#include <linux/sysctl.h>
16
#include <linux/sysfs.h>
17
#include <linux/balloon_compaction.h>
18
#include <linux/page-isolation.h>
19 20
#include "internal.h"

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
#ifdef CONFIG_COMPACTION
static inline void count_compact_event(enum vm_event_item item)
{
	count_vm_event(item);
}

static inline void count_compact_events(enum vm_event_item item, long delta)
{
	count_vm_events(item, delta);
}
#else
#define count_compact_event(item) do { } while (0)
#define count_compact_events(item, delta) do { } while (0)
#endif

36 37
#if defined CONFIG_COMPACTION || defined CONFIG_CMA

38 39 40
#define CREATE_TRACE_POINTS
#include <trace/events/compaction.h>

41 42 43 44 45 46 47 48 49 50 51 52 53 54
static unsigned long release_freepages(struct list_head *freelist)
{
	struct page *page, *next;
	unsigned long count = 0;

	list_for_each_entry_safe(page, next, freelist, lru) {
		list_del(&page->lru);
		__free_page(page);
		count++;
	}

	return count;
}

55 56 57 58 59 60 61 62 63 64
static void map_pages(struct list_head *list)
{
	struct page *page;

	list_for_each_entry(page, list, lru) {
		arch_alloc_page(page, 0);
		kernel_map_pages(page, 1, 1);
	}
}

65 66 67 68 69
static inline bool migrate_async_suitable(int migratetype)
{
	return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
}

70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
#ifdef CONFIG_COMPACTION
/* Returns true if the pageblock should be scanned for pages to isolate. */
static inline bool isolation_suitable(struct compact_control *cc,
					struct page *page)
{
	if (cc->ignore_skip_hint)
		return true;

	return !get_pageblock_skip(page);
}

/*
 * This function is called to clear all cached information on pageblocks that
 * should be skipped for page isolation when the migrate and free page scanner
 * meet.
 */
86
static void __reset_isolation_suitable(struct zone *zone)
87 88
{
	unsigned long start_pfn = zone->zone_start_pfn;
89
	unsigned long end_pfn = zone_end_pfn(zone);
90 91
	unsigned long pfn;

92 93
	zone->compact_cached_migrate_pfn = start_pfn;
	zone->compact_cached_free_pfn = end_pfn;
94
	zone->compact_blockskip_flush = false;
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112

	/* Walk the zone and mark every pageblock as suitable for isolation */
	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
		struct page *page;

		cond_resched();

		if (!pfn_valid(pfn))
			continue;

		page = pfn_to_page(pfn);
		if (zone != page_zone(page))
			continue;

		clear_pageblock_skip(page);
	}
}

113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
void reset_isolation_suitable(pg_data_t *pgdat)
{
	int zoneid;

	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
		struct zone *zone = &pgdat->node_zones[zoneid];
		if (!populated_zone(zone))
			continue;

		/* Only flush if a full compaction finished recently */
		if (zone->compact_blockskip_flush)
			__reset_isolation_suitable(zone);
	}
}

128 129
/*
 * If no pages were isolated then mark this pageblock to be skipped in the
130
 * future. The information is later cleared by __reset_isolation_suitable().
131
 */
132 133 134
static void update_pageblock_skip(struct compact_control *cc,
			struct page *page, unsigned long nr_isolated,
			bool migrate_scanner)
135
{
136
	struct zone *zone = cc->zone;
137 138 139
	if (!page)
		return;

140 141
	if (!nr_isolated) {
		unsigned long pfn = page_to_pfn(page);
142
		set_pageblock_skip(page);
143 144 145 146 147 148 149 150 151 152 153 154

		/* Update where compaction should restart */
		if (migrate_scanner) {
			if (!cc->finished_update_migrate &&
			    pfn > zone->compact_cached_migrate_pfn)
				zone->compact_cached_migrate_pfn = pfn;
		} else {
			if (!cc->finished_update_free &&
			    pfn < zone->compact_cached_free_pfn)
				zone->compact_cached_free_pfn = pfn;
		}
	}
155 156 157 158 159 160 161 162
}
#else
static inline bool isolation_suitable(struct compact_control *cc,
					struct page *page)
{
	return true;
}

163 164 165
static void update_pageblock_skip(struct compact_control *cc,
			struct page *page, unsigned long nr_isolated,
			bool migrate_scanner)
166 167 168 169
{
}
#endif /* CONFIG_COMPACTION */

170 171 172 173 174
static inline bool should_release_lock(spinlock_t *lock)
{
	return need_resched() || spin_is_contended(lock);
}

175 176 177 178 179 180 181 182 183 184 185 186
/*
 * Compaction requires the taking of some coarse locks that are potentially
 * very heavily contended. Check if the process needs to be scheduled or
 * if the lock is contended. For async compaction, back out in the event
 * if contention is severe. For sync compaction, schedule.
 *
 * Returns true if the lock is held.
 * Returns false if the lock is released and compaction should abort
 */
static bool compact_checklock_irqsave(spinlock_t *lock, unsigned long *flags,
				      bool locked, struct compact_control *cc)
{
187
	if (should_release_lock(lock)) {
188 189 190 191 192 193 194
		if (locked) {
			spin_unlock_irqrestore(lock, *flags);
			locked = false;
		}

		/* async aborts if taking too long or contended */
		if (!cc->sync) {
195
			cc->contended = true;
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
			return false;
		}

		cond_resched();
	}

	if (!locked)
		spin_lock_irqsave(lock, *flags);
	return true;
}

static inline bool compact_trylock_irqsave(spinlock_t *lock,
			unsigned long *flags, struct compact_control *cc)
{
	return compact_checklock_irqsave(lock, flags, false, cc);
}

213 214 215 216 217 218
/* Returns true if the page is within a block suitable for migration to */
static bool suitable_migration_target(struct page *page)
{
	int migratetype = get_pageblock_migratetype(page);

	/* Don't interfere with memory hot-remove or the min_free_kbytes blocks */
219 220 221 222
	if (migratetype == MIGRATE_RESERVE)
		return false;

	if (is_migrate_isolate(migratetype))
223 224 225 226 227 228 229 230 231 232 233 234 235 236
		return false;

	/* If the page is a large free page, then allow migration */
	if (PageBuddy(page) && page_order(page) >= pageblock_order)
		return true;

	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
	if (migrate_async_suitable(migratetype))
		return true;

	/* Otherwise skip the block */
	return false;
}

237 238 239 240 241 242
/*
 * Isolate free pages onto a private freelist. Caller must hold zone->lock.
 * If @strict is true, will abort returning 0 on any invalid PFNs or non-free
 * pages inside of the pageblock (even though it may still end up isolating
 * some pages).
 */
243 244
static unsigned long isolate_freepages_block(struct compact_control *cc,
				unsigned long blockpfn,
245 246 247
				unsigned long end_pfn,
				struct list_head *freelist,
				bool strict)
248
{
249
	int nr_scanned = 0, total_isolated = 0;
250
	struct page *cursor, *valid_page = NULL;
251 252 253
	unsigned long nr_strict_required = end_pfn - blockpfn;
	unsigned long flags;
	bool locked = false;
254 255 256

	cursor = pfn_to_page(blockpfn);

257
	/* Isolate free pages. */
258 259 260 261
	for (; blockpfn < end_pfn; blockpfn++, cursor++) {
		int isolated, i;
		struct page *page = cursor;

262
		nr_scanned++;
263 264
		if (!pfn_valid_within(blockpfn))
			continue;
265 266
		if (!valid_page)
			valid_page = page;
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
		if (!PageBuddy(page))
			continue;

		/*
		 * The zone lock must be held to isolate freepages.
		 * Unfortunately this is a very coarse lock and can be
		 * heavily contended if there are parallel allocations
		 * or parallel compactions. For async compaction do not
		 * spin on the lock and we acquire the lock as late as
		 * possible.
		 */
		locked = compact_checklock_irqsave(&cc->zone->lock, &flags,
								locked, cc);
		if (!locked)
			break;

		/* Recheck this is a suitable migration target under lock */
		if (!strict && !suitable_migration_target(page))
			break;
286

287 288
		/* Recheck this is a buddy page under lock */
		if (!PageBuddy(page))
289 290 291 292
			continue;

		/* Found a free page, break it into order-0 pages */
		isolated = split_free_page(page);
293
		if (!isolated && strict)
294
			break;
295 296 297 298 299 300 301 302 303 304 305 306 307
		total_isolated += isolated;
		for (i = 0; i < isolated; i++) {
			list_add(&page->lru, freelist);
			page++;
		}

		/* If a page was split, advance to the end of it */
		if (isolated) {
			blockpfn += isolated - 1;
			cursor += isolated - 1;
		}
	}

308
	trace_mm_compaction_isolate_freepages(nr_scanned, total_isolated);
309 310 311 312 313 314

	/*
	 * If strict isolation is requested by CMA then check that all the
	 * pages requested were isolated. If there were any failures, 0 is
	 * returned and CMA will fail.
	 */
315
	if (strict && nr_strict_required > total_isolated)
316 317 318 319 320
		total_isolated = 0;

	if (locked)
		spin_unlock_irqrestore(&cc->zone->lock, flags);

321 322
	/* Update the pageblock-skip if the whole pageblock was scanned */
	if (blockpfn == end_pfn)
323
		update_pageblock_skip(cc, valid_page, total_isolated, false);
324

325
	count_compact_events(COMPACTFREE_SCANNED, nr_scanned);
326
	if (total_isolated)
327
		count_compact_events(COMPACTISOLATED, total_isolated);
328 329 330
	return total_isolated;
}

331 332 333 334 335 336 337 338 339 340 341 342 343
/**
 * isolate_freepages_range() - isolate free pages.
 * @start_pfn: The first PFN to start isolating.
 * @end_pfn:   The one-past-last PFN.
 *
 * Non-free pages, invalid PFNs, or zone boundaries within the
 * [start_pfn, end_pfn) range are considered errors, cause function to
 * undo its actions and return zero.
 *
 * Otherwise, function returns one-past-the-last PFN of isolated page
 * (which may be greater then end_pfn if end fell in a middle of
 * a free page).
 */
344
unsigned long
345 346
isolate_freepages_range(struct compact_control *cc,
			unsigned long start_pfn, unsigned long end_pfn)
347
{
348
	unsigned long isolated, pfn, block_end_pfn;
349 350 351
	LIST_HEAD(freelist);

	for (pfn = start_pfn; pfn < end_pfn; pfn += isolated) {
352
		if (!pfn_valid(pfn) || cc->zone != page_zone(pfn_to_page(pfn)))
353 354 355 356 357 358 359 360 361
			break;

		/*
		 * On subsequent iterations ALIGN() is actually not needed,
		 * but we keep it that we not to complicate the code.
		 */
		block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
		block_end_pfn = min(block_end_pfn, end_pfn);

362
		isolated = isolate_freepages_block(cc, pfn, block_end_pfn,
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
						   &freelist, true);

		/*
		 * In strict mode, isolate_freepages_block() returns 0 if
		 * there are any holes in the block (ie. invalid PFNs or
		 * non-free pages).
		 */
		if (!isolated)
			break;

		/*
		 * If we managed to isolate pages, it is always (1 << n) *
		 * pageblock_nr_pages for some non-negative n.  (Max order
		 * page may span two pageblocks).
		 */
	}

	/* split_free_page does not map the pages */
	map_pages(&freelist);

	if (pfn < end_pfn) {
		/* Loop terminated early, cleanup. */
		release_freepages(&freelist);
		return 0;
	}

	/* We don't use freelists for anything. */
	return pfn;
}

393
/* Update the number of anon and file isolated pages in the zone */
394
static void acct_isolated(struct zone *zone, bool locked, struct compact_control *cc)
395 396
{
	struct page *page;
397
	unsigned int count[2] = { 0, };
398

399 400
	list_for_each_entry(page, &cc->migratepages, lru)
		count[!!page_is_file_cache(page)]++;
401

402 403 404 405 406 407 408 409
	/* If locked we can use the interrupt unsafe versions */
	if (locked) {
		__mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
		__mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
	} else {
		mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
		mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
	}
410 411 412 413 414
}

/* Similar to reclaim, but different enough that they don't share logic */
static bool too_many_isolated(struct zone *zone)
{
415
	unsigned long active, inactive, isolated;
416 417 418

	inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
					zone_page_state(zone, NR_INACTIVE_ANON);
419 420
	active = zone_page_state(zone, NR_ACTIVE_FILE) +
					zone_page_state(zone, NR_ACTIVE_ANON);
421 422 423
	isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
					zone_page_state(zone, NR_ISOLATED_ANON);

424
	return isolated > (inactive + active) / 2;
425 426
}

427 428 429 430 431 432
/**
 * isolate_migratepages_range() - isolate all migrate-able pages in range.
 * @zone:	Zone pages are in.
 * @cc:		Compaction control structure.
 * @low_pfn:	The first PFN of the range.
 * @end_pfn:	The one-past-the-last PFN of the range.
M
Minchan Kim 已提交
433
 * @unevictable: true if it allows to isolate unevictable pages
434 435 436 437 438 439 440 441 442 443 444 445
 *
 * Isolate all pages that can be migrated from the range specified by
 * [low_pfn, end_pfn).  Returns zero if there is a fatal signal
 * pending), otherwise PFN of the first page that was not scanned
 * (which may be both less, equal to or more then end_pfn).
 *
 * Assumes that cc->migratepages is empty and cc->nr_migratepages is
 * zero.
 *
 * Apart from cc->migratepages and cc->nr_migratetypes this function
 * does not modify any cc's fields, in particular it does not modify
 * (or read for that matter) cc->migrate_pfn.
446
 */
447
unsigned long
448
isolate_migratepages_range(struct zone *zone, struct compact_control *cc,
M
Minchan Kim 已提交
449
		unsigned long low_pfn, unsigned long end_pfn, bool unevictable)
450
{
451
	unsigned long last_pageblock_nr = 0, pageblock_nr;
452
	unsigned long nr_scanned = 0, nr_isolated = 0;
453
	struct list_head *migratelist = &cc->migratepages;
454
	isolate_mode_t mode = 0;
455
	struct lruvec *lruvec;
456
	unsigned long flags;
457
	bool locked = false;
458
	struct page *page = NULL, *valid_page = NULL;
459 460 461 462 463 464 465

	/*
	 * Ensure that there are not too many pages isolated from the LRU
	 * list by either parallel reclaimers or compaction. If there are,
	 * delay for some time until fewer pages are isolated
	 */
	while (unlikely(too_many_isolated(zone))) {
466
		/* async migration should just abort */
467
		if (!cc->sync)
468
			return 0;
469

470 471 472
		congestion_wait(BLK_RW_ASYNC, HZ/10);

		if (fatal_signal_pending(current))
473
			return 0;
474 475 476
	}

	/* Time to isolate some pages for migration */
477
	cond_resched();
478
	for (; low_pfn < end_pfn; low_pfn++) {
479
		/* give a chance to irqs before checking need_resched() */
480 481 482 483 484
		if (locked && !((low_pfn+1) % SWAP_CLUSTER_MAX)) {
			if (should_release_lock(&zone->lru_lock)) {
				spin_unlock_irqrestore(&zone->lru_lock, flags);
				locked = false;
			}
485
		}
486

487 488 489 490 491 492 493 494 495 496 497 498 499
		/*
		 * migrate_pfn does not necessarily start aligned to a
		 * pageblock. Ensure that pfn_valid is called when moving
		 * into a new MAX_ORDER_NR_PAGES range in case of large
		 * memory holes within the zone
		 */
		if ((low_pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
			if (!pfn_valid(low_pfn)) {
				low_pfn += MAX_ORDER_NR_PAGES - 1;
				continue;
			}
		}

500 501
		if (!pfn_valid_within(low_pfn))
			continue;
502
		nr_scanned++;
503

504 505 506 507 508 509
		/*
		 * Get the page and ensure the page is within the same zone.
		 * See the comment in isolate_freepages about overlapping
		 * nodes. It is deliberate that the new zone lock is not taken
		 * as memory compaction should not move pages between nodes.
		 */
510
		page = pfn_to_page(low_pfn);
511 512 513
		if (page_zone(page) != zone)
			continue;

514 515 516 517 518 519 520 521
		if (!valid_page)
			valid_page = page;

		/* If isolation recently failed, do not retry */
		pageblock_nr = low_pfn >> pageblock_order;
		if (!isolation_suitable(cc, page))
			goto next_pageblock;

522
		/* Skip if free */
523 524 525
		if (PageBuddy(page))
			continue;

526 527 528 529 530
		/*
		 * For async migration, also only scan in MOVABLE blocks. Async
		 * migration is optimistic to see if the minimum amount of work
		 * satisfies the allocation
		 */
531
		if (!cc->sync && last_pageblock_nr != pageblock_nr &&
532
		    !migrate_async_suitable(get_pageblock_migratetype(page))) {
533
			cc->finished_update_migrate = true;
534
			goto next_pageblock;
535 536
		}

537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
		/*
		 * Check may be lockless but that's ok as we recheck later.
		 * It's possible to migrate LRU pages and balloon pages
		 * Skip any other type of page
		 */
		if (!PageLRU(page)) {
			if (unlikely(balloon_page_movable(page))) {
				if (locked && balloon_page_isolate(page)) {
					/* Successfully isolated */
					cc->finished_update_migrate = true;
					list_add(&page->lru, migratelist);
					cc->nr_migratepages++;
					nr_isolated++;
					goto check_compact_cluster;
				}
			}
553
			continue;
554
		}
555 556

		/*
557 558 559 560 561 562 563 564
		 * PageLRU is set. lru_lock normally excludes isolation
		 * splitting and collapsing (collapsing has already happened
		 * if PageLRU is set) but the lock is not necessarily taken
		 * here and it is wasteful to take it just to check transhuge.
		 * Check TransHuge without lock and skip the whole pageblock if
		 * it's either a transhuge or hugetlbfs page, as calling
		 * compound_order() without preventing THP from splitting the
		 * page underneath us may return surprising results.
565
		 */
566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
		if (PageTransHuge(page)) {
			if (!locked)
				goto next_pageblock;
			low_pfn += (1 << compound_order(page)) - 1;
			continue;
		}

		/* Check if it is ok to still hold the lock */
		locked = compact_checklock_irqsave(&zone->lru_lock, &flags,
								locked, cc);
		if (!locked || fatal_signal_pending(current))
			break;

		/* Recheck PageLRU and PageTransHuge under lock */
		if (!PageLRU(page))
			continue;
582 583 584 585 586
		if (PageTransHuge(page)) {
			low_pfn += (1 << compound_order(page)) - 1;
			continue;
		}

587
		if (!cc->sync)
588 589
			mode |= ISOLATE_ASYNC_MIGRATE;

M
Minchan Kim 已提交
590 591 592
		if (unevictable)
			mode |= ISOLATE_UNEVICTABLE;

593 594
		lruvec = mem_cgroup_page_lruvec(page, zone);

595
		/* Try isolate the page */
596
		if (__isolate_lru_page(page, mode) != 0)
597 598
			continue;

599 600
		VM_BUG_ON(PageTransCompound(page));

601
		/* Successfully isolated */
602
		cc->finished_update_migrate = true;
603
		del_page_from_lru_list(page, lruvec, page_lru(page));
604 605
		list_add(&page->lru, migratelist);
		cc->nr_migratepages++;
606
		nr_isolated++;
607

608
check_compact_cluster:
609
		/* Avoid isolating too much */
610 611
		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
			++low_pfn;
612
			break;
613
		}
614 615 616 617

		continue;

next_pageblock:
618
		low_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages) - 1;
619
		last_pageblock_nr = pageblock_nr;
620 621
	}

622
	acct_isolated(zone, locked, cc);
623

624 625
	if (locked)
		spin_unlock_irqrestore(&zone->lru_lock, flags);
626

627 628
	/* Update the pageblock-skip if the whole pageblock was scanned */
	if (low_pfn == end_pfn)
629
		update_pageblock_skip(cc, valid_page, nr_isolated, true);
630

631 632
	trace_mm_compaction_isolate_migratepages(nr_scanned, nr_isolated);

633
	count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned);
634
	if (nr_isolated)
635
		count_compact_events(COMPACTISOLATED, nr_isolated);
636

637 638 639
	return low_pfn;
}

640 641
#endif /* CONFIG_COMPACTION || CONFIG_CMA */
#ifdef CONFIG_COMPACTION
642
/*
643 644
 * Based on information in the current compact_control, find blocks
 * suitable for isolating free pages from and then isolate them.
645
 */
646 647
static void isolate_freepages(struct zone *zone,
				struct compact_control *cc)
648
{
649
	struct page *page;
650
	unsigned long high_pfn, low_pfn, pfn, z_end_pfn, end_pfn;
651 652
	int nr_freepages = cc->nr_freepages;
	struct list_head *freelist = &cc->freepages;
653

654 655 656 657 658 659 660
	/*
	 * Initialise the free scanner. The starting point is where we last
	 * scanned from (or the end of the zone if starting). The low point
	 * is the end of the pageblock the migration scanner is using.
	 */
	pfn = cc->free_pfn;
	low_pfn = cc->migrate_pfn + pageblock_nr_pages;
661

662 663 664 665 666 667
	/*
	 * Take care that if the migration scanner is at the end of the zone
	 * that the free scanner does not accidentally move to the next zone
	 * in the next isolation cycle.
	 */
	high_pfn = min(low_pfn, pfn);
668

669
	z_end_pfn = zone_end_pfn(zone);
670

671 672 673 674 675 676 677 678
	/*
	 * Isolate free pages until enough are available to migrate the
	 * pages on cc->migratepages. We stop searching if the migrate
	 * and free page scanners meet or enough free pages are isolated.
	 */
	for (; pfn > low_pfn && cc->nr_migratepages > nr_freepages;
					pfn -= pageblock_nr_pages) {
		unsigned long isolated;
679

680 681
		if (!pfn_valid(pfn))
			continue;
682

683 684 685 686 687 688 689 690 691 692 693 694
		/*
		 * Check for overlapping nodes/zones. It's possible on some
		 * configurations to have a setup like
		 * node0 node1 node0
		 * i.e. it's possible that all pages within a zones range of
		 * pages do not belong to a single zone.
		 */
		page = pfn_to_page(pfn);
		if (page_zone(page) != zone)
			continue;

		/* Check the block is suitable for migration */
695
		if (!suitable_migration_target(page))
696
			continue;
697

698 699 700 701
		/* If isolation recently failed, do not retry */
		if (!isolation_suitable(cc, page))
			continue;

702
		/* Found a block suitable for isolating free pages from */
703
		isolated = 0;
704 705 706 707 708 709 710 711

		/*
		 * As pfn may not start aligned, pfn+pageblock_nr_page
		 * may cross a MAX_ORDER_NR_PAGES boundary and miss
		 * a pfn_valid check. Ensure isolate_freepages_block()
		 * only scans within a pageblock
		 */
		end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
712
		end_pfn = min(end_pfn, z_end_pfn);
713 714 715
		isolated = isolate_freepages_block(cc, pfn, end_pfn,
						   freelist, false);
		nr_freepages += isolated;
716 717 718 719 720 721

		/*
		 * Record the highest PFN we isolated pages from. When next
		 * looking for free pages, the search will restart here as
		 * page migration may have returned some pages to the allocator
		 */
722 723
		if (isolated) {
			cc->finished_update_free = true;
724
			high_pfn = max(high_pfn, pfn);
725
		}
726 727 728 729 730 731 732
	}

	/* split_free_page does not map the pages */
	map_pages(freelist);

	cc->free_pfn = high_pfn;
	cc->nr_freepages = nr_freepages;
733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780
}

/*
 * This is a migrate-callback that "allocates" freepages by taking pages
 * from the isolated freelists in the block we are migrating to.
 */
static struct page *compaction_alloc(struct page *migratepage,
					unsigned long data,
					int **result)
{
	struct compact_control *cc = (struct compact_control *)data;
	struct page *freepage;

	/* Isolate free pages if necessary */
	if (list_empty(&cc->freepages)) {
		isolate_freepages(cc->zone, cc);

		if (list_empty(&cc->freepages))
			return NULL;
	}

	freepage = list_entry(cc->freepages.next, struct page, lru);
	list_del(&freepage->lru);
	cc->nr_freepages--;

	return freepage;
}

/*
 * We cannot control nr_migratepages and nr_freepages fully when migration is
 * running as migrate_pages() has no knowledge of compact_control. When
 * migration is complete, we count the number of pages on the lists by hand.
 */
static void update_nr_listpages(struct compact_control *cc)
{
	int nr_migratepages = 0;
	int nr_freepages = 0;
	struct page *page;

	list_for_each_entry(page, &cc->migratepages, lru)
		nr_migratepages++;
	list_for_each_entry(page, &cc->freepages, lru)
		nr_freepages++;

	cc->nr_migratepages = nr_migratepages;
	cc->nr_freepages = nr_freepages;
}

781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800
/* possible outcome of isolate_migratepages */
typedef enum {
	ISOLATE_ABORT,		/* Abort compaction now */
	ISOLATE_NONE,		/* No pages isolated, continue scanning */
	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
} isolate_migrate_t;

/*
 * Isolate all pages that can be migrated from the block pointed to by
 * the migrate scanner within compact_control.
 */
static isolate_migrate_t isolate_migratepages(struct zone *zone,
					struct compact_control *cc)
{
	unsigned long low_pfn, end_pfn;

	/* Do not scan outside zone boundaries */
	low_pfn = max(cc->migrate_pfn, zone->zone_start_pfn);

	/* Only scan within a pageblock boundary */
801
	end_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages);
802 803 804 805 806 807 808 809

	/* Do not cross the free scanner or scan within a memory hole */
	if (end_pfn > cc->free_pfn || !pfn_valid(low_pfn)) {
		cc->migrate_pfn = end_pfn;
		return ISOLATE_NONE;
	}

	/* Perform the isolation */
M
Minchan Kim 已提交
810
	low_pfn = isolate_migratepages_range(zone, cc, low_pfn, end_pfn, false);
811
	if (!low_pfn || cc->contended)
812 813 814 815 816 817 818
		return ISOLATE_ABORT;

	cc->migrate_pfn = low_pfn;

	return ISOLATE_SUCCESS;
}

819
static int compact_finished(struct zone *zone,
820
			    struct compact_control *cc)
821
{
822
	unsigned int order;
823
	unsigned long watermark;
824

825 826 827
	if (fatal_signal_pending(current))
		return COMPACT_PARTIAL;

828
	/* Compaction run completes if the migrate and free scanner meet */
829
	if (cc->free_pfn <= cc->migrate_pfn) {
830 831 832 833 834 835 836 837 838
		/*
		 * Mark that the PG_migrate_skip information should be cleared
		 * by kswapd when it goes to sleep. kswapd does not set the
		 * flag itself as the decision to be clear should be directly
		 * based on an allocation request.
		 */
		if (!current_is_kswapd())
			zone->compact_blockskip_flush = true;

839
		return COMPACT_COMPLETE;
840
	}
841

842 843 844 845
	/*
	 * order == -1 is expected when compacting via
	 * /proc/sys/vm/compact_memory
	 */
846 847 848
	if (cc->order == -1)
		return COMPACT_CONTINUE;

849 850 851 852 853 854 855
	/* Compaction run is not finished if the watermark is not met */
	watermark = low_wmark_pages(zone);
	watermark += (1 << cc->order);

	if (!zone_watermark_ok(zone, cc->order, watermark, 0, 0))
		return COMPACT_CONTINUE;

856
	/* Direct compactor: Is a suitable page free? */
857 858 859 860 861 862 863 864 865
	for (order = cc->order; order < MAX_ORDER; order++) {
		struct free_area *area = &zone->free_area[order];

		/* Job done if page is free of the right migratetype */
		if (!list_empty(&area->free_list[cc->migratetype]))
			return COMPACT_PARTIAL;

		/* Job done if allocation would set block type */
		if (cc->order >= pageblock_order && area->nr_free)
866 867 868
			return COMPACT_PARTIAL;
	}

869 870 871
	return COMPACT_CONTINUE;
}

872 873 874 875 876 877 878 879 880 881 882 883
/*
 * compaction_suitable: Is this suitable to run compaction on this zone now?
 * Returns
 *   COMPACT_SKIPPED  - If there are too few free pages for compaction
 *   COMPACT_PARTIAL  - If the allocation would succeed without compaction
 *   COMPACT_CONTINUE - If compaction should run now
 */
unsigned long compaction_suitable(struct zone *zone, int order)
{
	int fragindex;
	unsigned long watermark;

884 885 886 887 888 889 890
	/*
	 * order == -1 is expected when compacting via
	 * /proc/sys/vm/compact_memory
	 */
	if (order == -1)
		return COMPACT_CONTINUE;

891 892 893 894 895 896 897 898 899 900 901 902 903
	/*
	 * Watermarks for order-0 must be met for compaction. Note the 2UL.
	 * This is because during migration, copies of pages need to be
	 * allocated and for a short time, the footprint is higher
	 */
	watermark = low_wmark_pages(zone) + (2UL << order);
	if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
		return COMPACT_SKIPPED;

	/*
	 * fragmentation index determines if allocation failures are due to
	 * low memory or external fragmentation
	 *
904 905
	 * index of -1000 implies allocations might succeed depending on
	 * watermarks
906 907 908 909 910 911 912 913 914
	 * index towards 0 implies failure is due to lack of memory
	 * index towards 1000 implies failure is due to fragmentation
	 *
	 * Only compact if a failure would be due to fragmentation.
	 */
	fragindex = fragmentation_index(zone, order);
	if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
		return COMPACT_SKIPPED;

915 916
	if (fragindex == -1000 && zone_watermark_ok(zone, order, watermark,
	    0, 0))
917 918 919 920 921
		return COMPACT_PARTIAL;

	return COMPACT_CONTINUE;
}

922 923 924
static int compact_zone(struct zone *zone, struct compact_control *cc)
{
	int ret;
925
	unsigned long start_pfn = zone->zone_start_pfn;
926
	unsigned long end_pfn = zone_end_pfn(zone);
927

928 929 930 931 932 933 934 935 936 937 938
	ret = compaction_suitable(zone, cc->order);
	switch (ret) {
	case COMPACT_PARTIAL:
	case COMPACT_SKIPPED:
		/* Compaction is likely to fail */
		return ret;
	case COMPACT_CONTINUE:
		/* Fall through to compaction */
		;
	}

939 940 941 942 943 944 945 946 947 948 949 950 951 952 953
	/*
	 * Setup to move all movable pages to the end of the zone. Used cached
	 * information on where the scanners should start but check that it
	 * is initialised by ensuring the values are within zone boundaries.
	 */
	cc->migrate_pfn = zone->compact_cached_migrate_pfn;
	cc->free_pfn = zone->compact_cached_free_pfn;
	if (cc->free_pfn < start_pfn || cc->free_pfn > end_pfn) {
		cc->free_pfn = end_pfn & ~(pageblock_nr_pages-1);
		zone->compact_cached_free_pfn = cc->free_pfn;
	}
	if (cc->migrate_pfn < start_pfn || cc->migrate_pfn > end_pfn) {
		cc->migrate_pfn = start_pfn;
		zone->compact_cached_migrate_pfn = cc->migrate_pfn;
	}
954

955 956 957 958 959 960 961
	/*
	 * Clear pageblock skip if there were failures recently and compaction
	 * is about to be retried after being deferred. kswapd does not do
	 * this reset as it'll reset the cached information when going to sleep.
	 */
	if (compaction_restarting(zone, cc->order) && !current_is_kswapd())
		__reset_isolation_suitable(zone);
962

963 964 965 966
	migrate_prep_local();

	while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) {
		unsigned long nr_migrate, nr_remaining;
967
		int err;
968

969 970 971
		switch (isolate_migratepages(zone, cc)) {
		case ISOLATE_ABORT:
			ret = COMPACT_PARTIAL;
972
			putback_movable_pages(&cc->migratepages);
973
			cc->nr_migratepages = 0;
974 975
			goto out;
		case ISOLATE_NONE:
976
			continue;
977 978 979
		case ISOLATE_SUCCESS:
			;
		}
980 981

		nr_migrate = cc->nr_migratepages;
982
		err = migrate_pages(&cc->migratepages, compaction_alloc,
983
				(unsigned long)cc,
984 985
				cc->sync ? MIGRATE_SYNC_LIGHT : MIGRATE_ASYNC,
				MR_COMPACTION);
986 987 988
		update_nr_listpages(cc);
		nr_remaining = cc->nr_migratepages;

989 990
		trace_mm_compaction_migratepages(nr_migrate - nr_remaining,
						nr_remaining);
991

992
		/* Release isolated pages not migrated */
993
		if (err) {
994
			putback_movable_pages(&cc->migratepages);
995
			cc->nr_migratepages = 0;
996 997 998 999
			if (err == -ENOMEM) {
				ret = COMPACT_PARTIAL;
				goto out;
			}
1000 1001 1002
		}
	}

1003
out:
1004 1005 1006 1007 1008 1009
	/* Release free pages and check accounting */
	cc->nr_freepages -= release_freepages(&cc->freepages);
	VM_BUG_ON(cc->nr_freepages != 0);

	return ret;
}
1010

1011
static unsigned long compact_zone_order(struct zone *zone,
1012
				 int order, gfp_t gfp_mask,
1013
				 bool sync, bool *contended)
1014
{
1015
	unsigned long ret;
1016 1017 1018 1019 1020 1021
	struct compact_control cc = {
		.nr_freepages = 0,
		.nr_migratepages = 0,
		.order = order,
		.migratetype = allocflags_to_migratetype(gfp_mask),
		.zone = zone,
1022
		.sync = sync,
1023 1024 1025 1026
	};
	INIT_LIST_HEAD(&cc.freepages);
	INIT_LIST_HEAD(&cc.migratepages);

1027 1028 1029 1030 1031 1032 1033
	ret = compact_zone(zone, &cc);

	VM_BUG_ON(!list_empty(&cc.freepages));
	VM_BUG_ON(!list_empty(&cc.migratepages));

	*contended = cc.contended;
	return ret;
1034 1035
}

1036 1037
int sysctl_extfrag_threshold = 500;

1038 1039 1040 1041 1042 1043
/**
 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
 * @zonelist: The zonelist used for the current allocation
 * @order: The order of the current allocation
 * @gfp_mask: The GFP mask of the current allocation
 * @nodemask: The allowed nodes to allocate from
1044
 * @sync: Whether migration is synchronous or not
1045 1046
 * @contended: Return value that is true if compaction was aborted due to lock contention
 * @page: Optionally capture a free page of the requested order during compaction
1047 1048 1049 1050
 *
 * This is the main entry point for direct page compaction.
 */
unsigned long try_to_compact_pages(struct zonelist *zonelist,
1051
			int order, gfp_t gfp_mask, nodemask_t *nodemask,
1052
			bool sync, bool *contended)
1053 1054 1055 1056 1057 1058 1059
{
	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
	int may_enter_fs = gfp_mask & __GFP_FS;
	int may_perform_io = gfp_mask & __GFP_IO;
	struct zoneref *z;
	struct zone *zone;
	int rc = COMPACT_SKIPPED;
1060
	int alloc_flags = 0;
1061

1062
	/* Check if the GFP flags allow compaction */
1063
	if (!order || !may_enter_fs || !may_perform_io)
1064 1065
		return rc;

1066
	count_compact_event(COMPACTSTALL);
1067

1068 1069 1070 1071
#ifdef CONFIG_CMA
	if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
		alloc_flags |= ALLOC_CMA;
#endif
1072 1073 1074 1075 1076
	/* Compact each zone in the list */
	for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
								nodemask) {
		int status;

1077
		status = compact_zone_order(zone, order, gfp_mask, sync,
1078
						contended);
1079 1080
		rc = max(status, rc);

1081
		/* If a normal allocation would succeed, stop compacting */
1082 1083
		if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0,
				      alloc_flags))
1084 1085 1086 1087 1088 1089 1090
			break;
	}

	return rc;
}


1091
/* Compact all zones within a node */
1092
static void __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
{
	int zoneid;
	struct zone *zone;

	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {

		zone = &pgdat->node_zones[zoneid];
		if (!populated_zone(zone))
			continue;

1103 1104 1105 1106 1107
		cc->nr_freepages = 0;
		cc->nr_migratepages = 0;
		cc->zone = zone;
		INIT_LIST_HEAD(&cc->freepages);
		INIT_LIST_HEAD(&cc->migratepages);
1108

1109
		if (cc->order == -1 || !compaction_deferred(zone, cc->order))
1110
			compact_zone(zone, cc);
1111

1112 1113 1114
		if (cc->order > 0) {
			int ok = zone_watermark_ok(zone, cc->order,
						low_wmark_pages(zone), 0, 0);
1115
			if (ok && cc->order >= zone->compact_order_failed)
1116 1117
				zone->compact_order_failed = cc->order + 1;
			/* Currently async compaction is never deferred. */
1118
			else if (!ok && cc->sync)
1119 1120 1121
				defer_compaction(zone, cc->order);
		}

1122 1123
		VM_BUG_ON(!list_empty(&cc->freepages));
		VM_BUG_ON(!list_empty(&cc->migratepages));
1124 1125 1126
	}
}

1127
void compact_pgdat(pg_data_t *pgdat, int order)
1128 1129 1130
{
	struct compact_control cc = {
		.order = order,
1131
		.sync = false,
1132 1133
	};

1134
	__compact_pgdat(pgdat, &cc);
1135 1136
}

1137
static void compact_node(int nid)
1138 1139 1140
{
	struct compact_control cc = {
		.order = -1,
1141
		.sync = true,
1142 1143
	};

1144
	__compact_pgdat(NODE_DATA(nid), &cc);
1145 1146
}

1147
/* Compact all nodes in the system */
1148
static void compact_nodes(void)
1149 1150 1151
{
	int nid;

1152 1153 1154
	/* Flush pending updates to the LRU lists */
	lru_add_drain_all();

1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
	for_each_online_node(nid)
		compact_node(nid);
}

/* The written value is actually unused, all memory is compacted */
int sysctl_compact_memory;

/* This is the entry point for compacting all nodes via /proc/sys/vm */
int sysctl_compaction_handler(struct ctl_table *table, int write,
			void __user *buffer, size_t *length, loff_t *ppos)
{
	if (write)
1167
		compact_nodes();
1168 1169 1170

	return 0;
}
1171

1172 1173 1174 1175 1176 1177 1178 1179
int sysctl_extfrag_handler(struct ctl_table *table, int write,
			void __user *buffer, size_t *length, loff_t *ppos)
{
	proc_dointvec_minmax(table, write, buffer, length, ppos);

	return 0;
}

1180
#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1181 1182
ssize_t sysfs_compact_node(struct device *dev,
			struct device_attribute *attr,
1183 1184
			const char *buf, size_t count)
{
1185 1186 1187 1188 1189 1190 1191 1192
	int nid = dev->id;

	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
		/* Flush pending updates to the LRU lists */
		lru_add_drain_all();

		compact_node(nid);
	}
1193 1194 1195

	return count;
}
1196
static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1197 1198 1199

int compaction_register_node(struct node *node)
{
1200
	return device_create_file(&node->dev, &dev_attr_compact);
1201 1202 1203 1204
}

void compaction_unregister_node(struct node *node)
{
1205
	return device_remove_file(&node->dev, &dev_attr_compact);
1206 1207
}
#endif /* CONFIG_SYSFS && CONFIG_NUMA */
1208 1209

#endif /* CONFIG_COMPACTION */