compaction.c 27.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/*
 * linux/mm/compaction.c
 *
 * Memory compaction for the reduction of external fragmentation. Note that
 * this heavily depends upon page migration to do all the real heavy
 * lifting
 *
 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
 */
#include <linux/swap.h>
#include <linux/migrate.h>
#include <linux/compaction.h>
#include <linux/mm_inline.h>
#include <linux/backing-dev.h>
15
#include <linux/sysctl.h>
16
#include <linux/sysfs.h>
17 18
#include "internal.h"

19 20
#if defined CONFIG_COMPACTION || defined CONFIG_CMA

21 22 23
#define CREATE_TRACE_POINTS
#include <trace/events/compaction.h>

24 25 26 27 28 29 30 31 32 33 34 35 36 37
static unsigned long release_freepages(struct list_head *freelist)
{
	struct page *page, *next;
	unsigned long count = 0;

	list_for_each_entry_safe(page, next, freelist, lru) {
		list_del(&page->lru);
		__free_page(page);
		count++;
	}

	return count;
}

38 39 40 41 42 43 44 45 46 47
static void map_pages(struct list_head *list)
{
	struct page *page;

	list_for_each_entry(page, list, lru) {
		arch_alloc_page(page, 0);
		kernel_map_pages(page, 1, 1);
	}
}

48 49 50 51 52
static inline bool migrate_async_suitable(int migratetype)
{
	return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
}

53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
/*
 * Compaction requires the taking of some coarse locks that are potentially
 * very heavily contended. Check if the process needs to be scheduled or
 * if the lock is contended. For async compaction, back out in the event
 * if contention is severe. For sync compaction, schedule.
 *
 * Returns true if the lock is held.
 * Returns false if the lock is released and compaction should abort
 */
static bool compact_checklock_irqsave(spinlock_t *lock, unsigned long *flags,
				      bool locked, struct compact_control *cc)
{
	if (need_resched() || spin_is_contended(lock)) {
		if (locked) {
			spin_unlock_irqrestore(lock, *flags);
			locked = false;
		}

		/* async aborts if taking too long or contended */
		if (!cc->sync) {
			if (cc->contended)
				*cc->contended = true;
			return false;
		}

		cond_resched();
		if (fatal_signal_pending(current))
			return false;
	}

	if (!locked)
		spin_lock_irqsave(lock, *flags);
	return true;
}

static inline bool compact_trylock_irqsave(spinlock_t *lock,
			unsigned long *flags, struct compact_control *cc)
{
	return compact_checklock_irqsave(lock, flags, false, cc);
}

94 95 96 97 98 99 100 101 102 103
/*
 * Isolate free pages onto a private freelist. Caller must hold zone->lock.
 * If @strict is true, will abort returning 0 on any invalid PFNs or non-free
 * pages inside of the pageblock (even though it may still end up isolating
 * some pages).
 */
static unsigned long isolate_freepages_block(unsigned long blockpfn,
				unsigned long end_pfn,
				struct list_head *freelist,
				bool strict)
104
{
105
	int nr_scanned = 0, total_isolated = 0;
106 107 108 109 110 111 112 113 114
	struct page *cursor;

	cursor = pfn_to_page(blockpfn);

	/* Isolate free pages. This assumes the block is valid */
	for (; blockpfn < end_pfn; blockpfn++, cursor++) {
		int isolated, i;
		struct page *page = cursor;

115 116 117
		if (!pfn_valid_within(blockpfn)) {
			if (strict)
				return 0;
118
			continue;
119
		}
120
		nr_scanned++;
121

122 123 124
		if (!PageBuddy(page)) {
			if (strict)
				return 0;
125
			continue;
126
		}
127 128 129

		/* Found a free page, break it into order-0 pages */
		isolated = split_free_page(page);
130 131
		if (!isolated && strict)
			return 0;
132 133 134 135 136 137 138 139 140 141 142 143 144
		total_isolated += isolated;
		for (i = 0; i < isolated; i++) {
			list_add(&page->lru, freelist);
			page++;
		}

		/* If a page was split, advance to the end of it */
		if (isolated) {
			blockpfn += isolated - 1;
			cursor += isolated - 1;
		}
	}

145
	trace_mm_compaction_isolate_freepages(nr_scanned, total_isolated);
146 147 148
	return total_isolated;
}

149 150 151 152 153 154 155 156 157 158 159 160 161
/**
 * isolate_freepages_range() - isolate free pages.
 * @start_pfn: The first PFN to start isolating.
 * @end_pfn:   The one-past-last PFN.
 *
 * Non-free pages, invalid PFNs, or zone boundaries within the
 * [start_pfn, end_pfn) range are considered errors, cause function to
 * undo its actions and return zero.
 *
 * Otherwise, function returns one-past-the-last PFN of isolated page
 * (which may be greater then end_pfn if end fell in a middle of
 * a free page).
 */
162
unsigned long
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
isolate_freepages_range(unsigned long start_pfn, unsigned long end_pfn)
{
	unsigned long isolated, pfn, block_end_pfn, flags;
	struct zone *zone = NULL;
	LIST_HEAD(freelist);

	if (pfn_valid(start_pfn))
		zone = page_zone(pfn_to_page(start_pfn));

	for (pfn = start_pfn; pfn < end_pfn; pfn += isolated) {
		if (!pfn_valid(pfn) || zone != page_zone(pfn_to_page(pfn)))
			break;

		/*
		 * On subsequent iterations ALIGN() is actually not needed,
		 * but we keep it that we not to complicate the code.
		 */
		block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
		block_end_pfn = min(block_end_pfn, end_pfn);

		spin_lock_irqsave(&zone->lock, flags);
		isolated = isolate_freepages_block(pfn, block_end_pfn,
						   &freelist, true);
		spin_unlock_irqrestore(&zone->lock, flags);

		/*
		 * In strict mode, isolate_freepages_block() returns 0 if
		 * there are any holes in the block (ie. invalid PFNs or
		 * non-free pages).
		 */
		if (!isolated)
			break;

		/*
		 * If we managed to isolate pages, it is always (1 << n) *
		 * pageblock_nr_pages for some non-negative n.  (Max order
		 * page may span two pageblocks).
		 */
	}

	/* split_free_page does not map the pages */
	map_pages(&freelist);

	if (pfn < end_pfn) {
		/* Loop terminated early, cleanup. */
		release_freepages(&freelist);
		return 0;
	}

	/* We don't use freelists for anything. */
	return pfn;
}

216
/* Update the number of anon and file isolated pages in the zone */
217
static void acct_isolated(struct zone *zone, bool locked, struct compact_control *cc)
218 219
{
	struct page *page;
220
	unsigned int count[2] = { 0, };
221

222 223
	list_for_each_entry(page, &cc->migratepages, lru)
		count[!!page_is_file_cache(page)]++;
224

225 226 227 228 229 230 231 232
	/* If locked we can use the interrupt unsafe versions */
	if (locked) {
		__mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
		__mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
	} else {
		mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
		mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
	}
233 234 235 236 237
}

/* Similar to reclaim, but different enough that they don't share logic */
static bool too_many_isolated(struct zone *zone)
{
238
	unsigned long active, inactive, isolated;
239 240 241

	inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
					zone_page_state(zone, NR_INACTIVE_ANON);
242 243
	active = zone_page_state(zone, NR_ACTIVE_FILE) +
					zone_page_state(zone, NR_ACTIVE_ANON);
244 245 246
	isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
					zone_page_state(zone, NR_ISOLATED_ANON);

247
	return isolated > (inactive + active) / 2;
248 249
}

250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
/**
 * isolate_migratepages_range() - isolate all migrate-able pages in range.
 * @zone:	Zone pages are in.
 * @cc:		Compaction control structure.
 * @low_pfn:	The first PFN of the range.
 * @end_pfn:	The one-past-the-last PFN of the range.
 *
 * Isolate all pages that can be migrated from the range specified by
 * [low_pfn, end_pfn).  Returns zero if there is a fatal signal
 * pending), otherwise PFN of the first page that was not scanned
 * (which may be both less, equal to or more then end_pfn).
 *
 * Assumes that cc->migratepages is empty and cc->nr_migratepages is
 * zero.
 *
 * Apart from cc->migratepages and cc->nr_migratetypes this function
 * does not modify any cc's fields, in particular it does not modify
 * (or read for that matter) cc->migrate_pfn.
268
 */
269
unsigned long
270 271
isolate_migratepages_range(struct zone *zone, struct compact_control *cc,
			   unsigned long low_pfn, unsigned long end_pfn)
272
{
273
	unsigned long last_pageblock_nr = 0, pageblock_nr;
274
	unsigned long nr_scanned = 0, nr_isolated = 0;
275
	struct list_head *migratelist = &cc->migratepages;
276
	isolate_mode_t mode = 0;
277
	struct lruvec *lruvec;
278 279
	unsigned long flags;
	bool locked;
280 281 282 283 284 285 286

	/*
	 * Ensure that there are not too many pages isolated from the LRU
	 * list by either parallel reclaimers or compaction. If there are,
	 * delay for some time until fewer pages are isolated
	 */
	while (unlikely(too_many_isolated(zone))) {
287
		/* async migration should just abort */
288
		if (!cc->sync)
289
			return 0;
290

291 292 293
		congestion_wait(BLK_RW_ASYNC, HZ/10);

		if (fatal_signal_pending(current))
294
			return 0;
295 296 297
	}

	/* Time to isolate some pages for migration */
298
	cond_resched();
299 300
	spin_lock_irqsave(&zone->lru_lock, flags);
	locked = true;
301 302
	for (; low_pfn < end_pfn; low_pfn++) {
		struct page *page;
303 304 305

		/* give a chance to irqs before checking need_resched() */
		if (!((low_pfn+1) % SWAP_CLUSTER_MAX)) {
306
			spin_unlock_irqrestore(&zone->lru_lock, flags);
307 308
			locked = false;
		}
309 310 311 312 313 314

		/* Check if it is ok to still hold the lock */
		locked = compact_checklock_irqsave(&zone->lru_lock, &flags,
								locked, cc);
		if (!locked)
			break;
315

316 317 318 319 320 321 322 323 324 325 326 327 328
		/*
		 * migrate_pfn does not necessarily start aligned to a
		 * pageblock. Ensure that pfn_valid is called when moving
		 * into a new MAX_ORDER_NR_PAGES range in case of large
		 * memory holes within the zone
		 */
		if ((low_pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
			if (!pfn_valid(low_pfn)) {
				low_pfn += MAX_ORDER_NR_PAGES - 1;
				continue;
			}
		}

329 330
		if (!pfn_valid_within(low_pfn))
			continue;
331
		nr_scanned++;
332

333 334 335 336 337 338
		/*
		 * Get the page and ensure the page is within the same zone.
		 * See the comment in isolate_freepages about overlapping
		 * nodes. It is deliberate that the new zone lock is not taken
		 * as memory compaction should not move pages between nodes.
		 */
339
		page = pfn_to_page(low_pfn);
340 341 342 343
		if (page_zone(page) != zone)
			continue;

		/* Skip if free */
344 345 346
		if (PageBuddy(page))
			continue;

347 348 349 350 351 352
		/*
		 * For async migration, also only scan in MOVABLE blocks. Async
		 * migration is optimistic to see if the minimum amount of work
		 * satisfies the allocation
		 */
		pageblock_nr = low_pfn >> pageblock_order;
353
		if (!cc->sync && last_pageblock_nr != pageblock_nr &&
354
		    !migrate_async_suitable(get_pageblock_migratetype(page))) {
355 356 357 358 359 360
			low_pfn += pageblock_nr_pages;
			low_pfn = ALIGN(low_pfn, pageblock_nr_pages) - 1;
			last_pageblock_nr = pageblock_nr;
			continue;
		}

361 362 363 364 365 366 367 368 369 370 371 372 373
		if (!PageLRU(page))
			continue;

		/*
		 * PageLRU is set, and lru_lock excludes isolation,
		 * splitting and collapsing (collapsing has already
		 * happened if PageLRU is set).
		 */
		if (PageTransHuge(page)) {
			low_pfn += (1 << compound_order(page)) - 1;
			continue;
		}

374
		if (!cc->sync)
375 376
			mode |= ISOLATE_ASYNC_MIGRATE;

377 378
		lruvec = mem_cgroup_page_lruvec(page, zone);

379
		/* Try isolate the page */
380
		if (__isolate_lru_page(page, mode) != 0)
381 382
			continue;

383 384
		VM_BUG_ON(PageTransCompound(page));

385
		/* Successfully isolated */
386
		del_page_from_lru_list(page, lruvec, page_lru(page));
387 388
		list_add(&page->lru, migratelist);
		cc->nr_migratepages++;
389
		nr_isolated++;
390 391

		/* Avoid isolating too much */
392 393
		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
			++low_pfn;
394
			break;
395
		}
396 397
	}

398
	acct_isolated(zone, locked, cc);
399

400 401
	if (locked)
		spin_unlock_irqrestore(&zone->lru_lock, flags);
402

403 404
	trace_mm_compaction_isolate_migratepages(nr_scanned, nr_isolated);

405 406 407
	return low_pfn;
}

408 409 410
#endif /* CONFIG_COMPACTION || CONFIG_CMA */
#ifdef CONFIG_COMPACTION

411 412
/* Returns true if the page is within a block suitable for migration to */
static bool suitable_migration_target(struct page *page)
413 414 415 416 417 418
{

	int migratetype = get_pageblock_migratetype(page);

	/* Don't interfere with memory hot-remove or the min_free_kbytes blocks */
	if (migratetype == MIGRATE_ISOLATE || migratetype == MIGRATE_RESERVE)
419
		return false;
420 421 422

	/* If the page is a large free page, then allow migration */
	if (PageBuddy(page) && page_order(page) >= pageblock_order)
423
		return true;
424

425
	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
426 427
	if (migrate_async_suitable(migratetype))
		return true;
428 429

	/* Otherwise skip the block */
430
	return false;
431 432
}

433 434 435 436 437 438 439 440 441 442 443 444 445 446
/*
 * Returns the start pfn of the last page block in a zone.  This is the starting
 * point for full compaction of a zone.  Compaction searches for free pages from
 * the end of each zone, while isolate_freepages_block scans forward inside each
 * page block.
 */
static unsigned long start_free_pfn(struct zone *zone)
{
	unsigned long free_pfn;
	free_pfn = zone->zone_start_pfn + zone->spanned_pages;
	free_pfn &= ~(pageblock_nr_pages-1);
	return free_pfn;
}

447
/*
448 449
 * Based on information in the current compact_control, find blocks
 * suitable for isolating free pages from and then isolate them.
450
 */
451 452
static void isolate_freepages(struct zone *zone,
				struct compact_control *cc)
453
{
454 455 456 457 458
	struct page *page;
	unsigned long high_pfn, low_pfn, pfn, zone_end_pfn, end_pfn;
	unsigned long flags;
	int nr_freepages = cc->nr_freepages;
	struct list_head *freelist = &cc->freepages;
459

460 461 462 463 464 465 466
	/*
	 * Initialise the free scanner. The starting point is where we last
	 * scanned from (or the end of the zone if starting). The low point
	 * is the end of the pageblock the migration scanner is using.
	 */
	pfn = cc->free_pfn;
	low_pfn = cc->migrate_pfn + pageblock_nr_pages;
467

468 469 470 471 472 473
	/*
	 * Take care that if the migration scanner is at the end of the zone
	 * that the free scanner does not accidentally move to the next zone
	 * in the next isolation cycle.
	 */
	high_pfn = min(low_pfn, pfn);
474

475
	zone_end_pfn = zone->zone_start_pfn + zone->spanned_pages;
476

477 478 479 480 481 482 483 484
	/*
	 * Isolate free pages until enough are available to migrate the
	 * pages on cc->migratepages. We stop searching if the migrate
	 * and free page scanners meet or enough free pages are isolated.
	 */
	for (; pfn > low_pfn && cc->nr_migratepages > nr_freepages;
					pfn -= pageblock_nr_pages) {
		unsigned long isolated;
485

486 487
		if (!pfn_valid(pfn))
			continue;
488

489 490 491 492 493 494 495 496 497 498 499 500
		/*
		 * Check for overlapping nodes/zones. It's possible on some
		 * configurations to have a setup like
		 * node0 node1 node0
		 * i.e. it's possible that all pages within a zones range of
		 * pages do not belong to a single zone.
		 */
		page = pfn_to_page(pfn);
		if (page_zone(page) != zone)
			continue;

		/* Check the block is suitable for migration */
501
		if (!suitable_migration_target(page))
502
			continue;
503

504 505 506 507 508 509 510
		/*
		 * Found a block suitable for isolating free pages from. Now
		 * we disabled interrupts, double check things are ok and
		 * isolate the pages. This is to minimise the time IRQs
		 * are disabled
		 */
		isolated = 0;
511 512 513 514 515 516 517 518 519 520

		/*
		 * The zone lock must be held to isolate freepages. This
		 * unfortunately this is a very coarse lock and can be
		 * heavily contended if there are parallel allocations
		 * or parallel compactions. For async compaction do not
		 * spin on the lock
		 */
		if (!compact_trylock_irqsave(&zone->lock, &flags, cc))
			break;
521
		if (suitable_migration_target(page)) {
522 523 524 525
			end_pfn = min(pfn + pageblock_nr_pages, zone_end_pfn);
			isolated = isolate_freepages_block(pfn, end_pfn,
							   freelist, false);
			nr_freepages += isolated;
526
		}
527 528 529 530 531 532 533
		spin_unlock_irqrestore(&zone->lock, flags);

		/*
		 * Record the highest PFN we isolated pages from. When next
		 * looking for free pages, the search will restart here as
		 * page migration may have returned some pages to the allocator
		 */
534
		if (isolated) {
535
			high_pfn = max(high_pfn, pfn);
536 537 538 539 540 541 542 543 544

			/*
			 * If the free scanner has wrapped, update
			 * compact_cached_free_pfn to point to the highest
			 * pageblock with free pages. This reduces excessive
			 * scanning of full pageblocks near the end of the
			 * zone
			 */
			if (cc->order > 0 && cc->wrapped)
545 546
				zone->compact_cached_free_pfn = high_pfn;
		}
547 548 549 550 551 552 553
	}

	/* split_free_page does not map the pages */
	map_pages(freelist);

	cc->free_pfn = high_pfn;
	cc->nr_freepages = nr_freepages;
554 555 556 557 558

	/* If compact_cached_free_pfn is reset then set it now */
	if (cc->order > 0 && !cc->wrapped &&
			zone->compact_cached_free_pfn == start_free_pfn(zone))
		zone->compact_cached_free_pfn = high_pfn;
559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
}

/*
 * This is a migrate-callback that "allocates" freepages by taking pages
 * from the isolated freelists in the block we are migrating to.
 */
static struct page *compaction_alloc(struct page *migratepage,
					unsigned long data,
					int **result)
{
	struct compact_control *cc = (struct compact_control *)data;
	struct page *freepage;

	/* Isolate free pages if necessary */
	if (list_empty(&cc->freepages)) {
		isolate_freepages(cc->zone, cc);

		if (list_empty(&cc->freepages))
			return NULL;
	}

	freepage = list_entry(cc->freepages.next, struct page, lru);
	list_del(&freepage->lru);
	cc->nr_freepages--;

	return freepage;
}

/*
 * We cannot control nr_migratepages and nr_freepages fully when migration is
 * running as migrate_pages() has no knowledge of compact_control. When
 * migration is complete, we count the number of pages on the lists by hand.
 */
static void update_nr_listpages(struct compact_control *cc)
{
	int nr_migratepages = 0;
	int nr_freepages = 0;
	struct page *page;

	list_for_each_entry(page, &cc->migratepages, lru)
		nr_migratepages++;
	list_for_each_entry(page, &cc->freepages, lru)
		nr_freepages++;

	cc->nr_migratepages = nr_migratepages;
	cc->nr_freepages = nr_freepages;
}

607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
/* possible outcome of isolate_migratepages */
typedef enum {
	ISOLATE_ABORT,		/* Abort compaction now */
	ISOLATE_NONE,		/* No pages isolated, continue scanning */
	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
} isolate_migrate_t;

/*
 * Isolate all pages that can be migrated from the block pointed to by
 * the migrate scanner within compact_control.
 */
static isolate_migrate_t isolate_migratepages(struct zone *zone,
					struct compact_control *cc)
{
	unsigned long low_pfn, end_pfn;

	/* Do not scan outside zone boundaries */
	low_pfn = max(cc->migrate_pfn, zone->zone_start_pfn);

	/* Only scan within a pageblock boundary */
	end_pfn = ALIGN(low_pfn + pageblock_nr_pages, pageblock_nr_pages);

	/* Do not cross the free scanner or scan within a memory hole */
	if (end_pfn > cc->free_pfn || !pfn_valid(low_pfn)) {
		cc->migrate_pfn = end_pfn;
		return ISOLATE_NONE;
	}

	/* Perform the isolation */
	low_pfn = isolate_migratepages_range(zone, cc, low_pfn, end_pfn);
	if (!low_pfn)
		return ISOLATE_ABORT;

	cc->migrate_pfn = low_pfn;

	return ISOLATE_SUCCESS;
}

645
static int compact_finished(struct zone *zone,
646
			    struct compact_control *cc)
647
{
648
	unsigned int order;
649
	unsigned long watermark;
650

651 652 653
	if (fatal_signal_pending(current))
		return COMPACT_PARTIAL;

654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673
	/*
	 * A full (order == -1) compaction run starts at the beginning and
	 * end of a zone; it completes when the migrate and free scanner meet.
	 * A partial (order > 0) compaction can start with the free scanner
	 * at a random point in the zone, and may have to restart.
	 */
	if (cc->free_pfn <= cc->migrate_pfn) {
		if (cc->order > 0 && !cc->wrapped) {
			/* We started partway through; restart at the end. */
			unsigned long free_pfn = start_free_pfn(zone);
			zone->compact_cached_free_pfn = free_pfn;
			cc->free_pfn = free_pfn;
			cc->wrapped = 1;
			return COMPACT_CONTINUE;
		}
		return COMPACT_COMPLETE;
	}

	/* We wrapped around and ended up where we started. */
	if (cc->wrapped && cc->free_pfn <= cc->start_free_pfn)
674 675
		return COMPACT_COMPLETE;

676 677 678 679
	/*
	 * order == -1 is expected when compacting via
	 * /proc/sys/vm/compact_memory
	 */
680 681 682
	if (cc->order == -1)
		return COMPACT_CONTINUE;

683 684 685 686 687 688 689
	/* Compaction run is not finished if the watermark is not met */
	watermark = low_wmark_pages(zone);
	watermark += (1 << cc->order);

	if (!zone_watermark_ok(zone, cc->order, watermark, 0, 0))
		return COMPACT_CONTINUE;

690 691 692 693 694 695 696 697 698 699 700
	/* Direct compactor: Is a suitable page free? */
	for (order = cc->order; order < MAX_ORDER; order++) {
		/* Job done if page is free of the right migratetype */
		if (!list_empty(&zone->free_area[order].free_list[cc->migratetype]))
			return COMPACT_PARTIAL;

		/* Job done if allocation would set block type */
		if (order >= pageblock_order && zone->free_area[order].nr_free)
			return COMPACT_PARTIAL;
	}

701 702 703
	return COMPACT_CONTINUE;
}

704 705 706 707 708 709 710 711 712 713 714 715
/*
 * compaction_suitable: Is this suitable to run compaction on this zone now?
 * Returns
 *   COMPACT_SKIPPED  - If there are too few free pages for compaction
 *   COMPACT_PARTIAL  - If the allocation would succeed without compaction
 *   COMPACT_CONTINUE - If compaction should run now
 */
unsigned long compaction_suitable(struct zone *zone, int order)
{
	int fragindex;
	unsigned long watermark;

716 717 718 719 720 721 722
	/*
	 * order == -1 is expected when compacting via
	 * /proc/sys/vm/compact_memory
	 */
	if (order == -1)
		return COMPACT_CONTINUE;

723 724 725 726 727 728 729 730 731 732 733 734 735
	/*
	 * Watermarks for order-0 must be met for compaction. Note the 2UL.
	 * This is because during migration, copies of pages need to be
	 * allocated and for a short time, the footprint is higher
	 */
	watermark = low_wmark_pages(zone) + (2UL << order);
	if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
		return COMPACT_SKIPPED;

	/*
	 * fragmentation index determines if allocation failures are due to
	 * low memory or external fragmentation
	 *
736 737
	 * index of -1000 implies allocations might succeed depending on
	 * watermarks
738 739 740 741 742 743 744 745 746
	 * index towards 0 implies failure is due to lack of memory
	 * index towards 1000 implies failure is due to fragmentation
	 *
	 * Only compact if a failure would be due to fragmentation.
	 */
	fragindex = fragmentation_index(zone, order);
	if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
		return COMPACT_SKIPPED;

747 748
	if (fragindex == -1000 && zone_watermark_ok(zone, order, watermark,
	    0, 0))
749 750 751 752 753
		return COMPACT_PARTIAL;

	return COMPACT_CONTINUE;
}

754 755 756 757
static int compact_zone(struct zone *zone, struct compact_control *cc)
{
	int ret;

758 759 760 761 762 763 764 765 766 767 768
	ret = compaction_suitable(zone, cc->order);
	switch (ret) {
	case COMPACT_PARTIAL:
	case COMPACT_SKIPPED:
		/* Compaction is likely to fail */
		return ret;
	case COMPACT_CONTINUE:
		/* Fall through to compaction */
		;
	}

769 770
	/* Setup to move all movable pages to the end of the zone */
	cc->migrate_pfn = zone->zone_start_pfn;
771 772 773 774 775 776 777 778 779

	if (cc->order > 0) {
		/* Incremental compaction. Start where the last one stopped. */
		cc->free_pfn = zone->compact_cached_free_pfn;
		cc->start_free_pfn = cc->free_pfn;
	} else {
		/* Order == -1 starts at the end of the zone. */
		cc->free_pfn = start_free_pfn(zone);
	}
780 781 782 783 784

	migrate_prep_local();

	while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) {
		unsigned long nr_migrate, nr_remaining;
785
		int err;
786

787 788 789 790 791
		switch (isolate_migratepages(zone, cc)) {
		case ISOLATE_ABORT:
			ret = COMPACT_PARTIAL;
			goto out;
		case ISOLATE_NONE:
792
			continue;
793 794 795
		case ISOLATE_SUCCESS:
			;
		}
796 797

		nr_migrate = cc->nr_migratepages;
798
		err = migrate_pages(&cc->migratepages, compaction_alloc,
799 800
				(unsigned long)cc, false,
				cc->sync ? MIGRATE_SYNC_LIGHT : MIGRATE_ASYNC);
801 802 803 804 805 806 807
		update_nr_listpages(cc);
		nr_remaining = cc->nr_migratepages;

		count_vm_event(COMPACTBLOCKS);
		count_vm_events(COMPACTPAGES, nr_migrate - nr_remaining);
		if (nr_remaining)
			count_vm_events(COMPACTPAGEFAILED, nr_remaining);
808 809
		trace_mm_compaction_migratepages(nr_migrate - nr_remaining,
						nr_remaining);
810 811

		/* Release LRU pages not migrated */
812
		if (err) {
813 814
			putback_lru_pages(&cc->migratepages);
			cc->nr_migratepages = 0;
815 816 817 818
			if (err == -ENOMEM) {
				ret = COMPACT_PARTIAL;
				goto out;
			}
819 820 821
		}
	}

822
out:
823 824 825 826 827 828
	/* Release free pages and check accounting */
	cc->nr_freepages -= release_freepages(&cc->freepages);
	VM_BUG_ON(cc->nr_freepages != 0);

	return ret;
}
829

830
static unsigned long compact_zone_order(struct zone *zone,
831
				 int order, gfp_t gfp_mask,
832
				 bool sync, bool *contended)
833 834 835 836 837 838 839
{
	struct compact_control cc = {
		.nr_freepages = 0,
		.nr_migratepages = 0,
		.order = order,
		.migratetype = allocflags_to_migratetype(gfp_mask),
		.zone = zone,
840
		.sync = sync,
841
		.contended = contended,
842 843 844 845
	};
	INIT_LIST_HEAD(&cc.freepages);
	INIT_LIST_HEAD(&cc.migratepages);

846
	return compact_zone(zone, &cc);
847 848
}

849 850
int sysctl_extfrag_threshold = 500;

851 852 853 854 855 856
/**
 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
 * @zonelist: The zonelist used for the current allocation
 * @order: The order of the current allocation
 * @gfp_mask: The GFP mask of the current allocation
 * @nodemask: The allowed nodes to allocate from
857
 * @sync: Whether migration is synchronous or not
858 859 860 861
 *
 * This is the main entry point for direct page compaction.
 */
unsigned long try_to_compact_pages(struct zonelist *zonelist,
862
			int order, gfp_t gfp_mask, nodemask_t *nodemask,
863
			bool sync, bool *contended)
864 865 866 867 868 869 870 871 872 873 874 875 876
{
	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
	int may_enter_fs = gfp_mask & __GFP_FS;
	int may_perform_io = gfp_mask & __GFP_IO;
	struct zoneref *z;
	struct zone *zone;
	int rc = COMPACT_SKIPPED;

	/*
	 * Check whether it is worth even starting compaction. The order check is
	 * made because an assumption is made that the page allocator can satisfy
	 * the "cheaper" orders without taking special steps
	 */
877
	if (!order || !may_enter_fs || !may_perform_io)
878 879 880 881 882 883 884 885 886
		return rc;

	count_vm_event(COMPACTSTALL);

	/* Compact each zone in the list */
	for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
								nodemask) {
		int status;

887 888
		status = compact_zone_order(zone, order, gfp_mask, sync,
						contended);
889 890
		rc = max(status, rc);

891 892
		/* If a normal allocation would succeed, stop compacting */
		if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0, 0))
893 894 895 896 897 898 899
			break;
	}

	return rc;
}


900
/* Compact all zones within a node */
901
static int __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
902 903 904 905 906 907 908 909 910 911
{
	int zoneid;
	struct zone *zone;

	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {

		zone = &pgdat->node_zones[zoneid];
		if (!populated_zone(zone))
			continue;

912 913 914 915 916
		cc->nr_freepages = 0;
		cc->nr_migratepages = 0;
		cc->zone = zone;
		INIT_LIST_HEAD(&cc->freepages);
		INIT_LIST_HEAD(&cc->migratepages);
917

918
		if (cc->order == -1 || !compaction_deferred(zone, cc->order))
919
			compact_zone(zone, cc);
920

921 922 923
		if (cc->order > 0) {
			int ok = zone_watermark_ok(zone, cc->order,
						low_wmark_pages(zone), 0, 0);
924
			if (ok && cc->order >= zone->compact_order_failed)
925 926
				zone->compact_order_failed = cc->order + 1;
			/* Currently async compaction is never deferred. */
927
			else if (!ok && cc->sync)
928 929 930
				defer_compaction(zone, cc->order);
		}

931 932
		VM_BUG_ON(!list_empty(&cc->freepages));
		VM_BUG_ON(!list_empty(&cc->migratepages));
933 934 935 936 937
	}

	return 0;
}

938 939 940 941
int compact_pgdat(pg_data_t *pgdat, int order)
{
	struct compact_control cc = {
		.order = order,
942
		.sync = false,
943 944 945 946 947 948 949 950 951
	};

	return __compact_pgdat(pgdat, &cc);
}

static int compact_node(int nid)
{
	struct compact_control cc = {
		.order = -1,
952
		.sync = true,
953 954
	};

955
	return __compact_pgdat(NODE_DATA(nid), &cc);
956 957
}

958 959 960 961 962
/* Compact all nodes in the system */
static int compact_nodes(void)
{
	int nid;

963 964 965
	/* Flush pending updates to the LRU lists */
	lru_add_drain_all();

966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983
	for_each_online_node(nid)
		compact_node(nid);

	return COMPACT_COMPLETE;
}

/* The written value is actually unused, all memory is compacted */
int sysctl_compact_memory;

/* This is the entry point for compacting all nodes via /proc/sys/vm */
int sysctl_compaction_handler(struct ctl_table *table, int write,
			void __user *buffer, size_t *length, loff_t *ppos)
{
	if (write)
		return compact_nodes();

	return 0;
}
984

985 986 987 988 989 990 991 992
int sysctl_extfrag_handler(struct ctl_table *table, int write,
			void __user *buffer, size_t *length, loff_t *ppos)
{
	proc_dointvec_minmax(table, write, buffer, length, ppos);

	return 0;
}

993
#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
994 995
ssize_t sysfs_compact_node(struct device *dev,
			struct device_attribute *attr,
996 997
			const char *buf, size_t count)
{
998 999 1000 1001 1002 1003 1004 1005
	int nid = dev->id;

	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
		/* Flush pending updates to the LRU lists */
		lru_add_drain_all();

		compact_node(nid);
	}
1006 1007 1008

	return count;
}
1009
static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1010 1011 1012

int compaction_register_node(struct node *node)
{
1013
	return device_create_file(&node->dev, &dev_attr_compact);
1014 1015 1016 1017
}

void compaction_unregister_node(struct node *node)
{
1018
	return device_remove_file(&node->dev, &dev_attr_compact);
1019 1020
}
#endif /* CONFIG_SYSFS && CONFIG_NUMA */
1021 1022

#endif /* CONFIG_COMPACTION */