compaction.c 34.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/*
 * linux/mm/compaction.c
 *
 * Memory compaction for the reduction of external fragmentation. Note that
 * this heavily depends upon page migration to do all the real heavy
 * lifting
 *
 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
 */
#include <linux/swap.h>
#include <linux/migrate.h>
#include <linux/compaction.h>
#include <linux/mm_inline.h>
#include <linux/backing-dev.h>
15
#include <linux/sysctl.h>
16
#include <linux/sysfs.h>
17
#include <linux/balloon_compaction.h>
18 19
#include "internal.h"

20 21
#if defined CONFIG_COMPACTION || defined CONFIG_CMA

22 23 24
#define CREATE_TRACE_POINTS
#include <trace/events/compaction.h>

25 26 27 28 29 30 31 32 33 34 35 36 37 38
static unsigned long release_freepages(struct list_head *freelist)
{
	struct page *page, *next;
	unsigned long count = 0;

	list_for_each_entry_safe(page, next, freelist, lru) {
		list_del(&page->lru);
		__free_page(page);
		count++;
	}

	return count;
}

39 40 41 42 43 44 45 46 47 48
static void map_pages(struct list_head *list)
{
	struct page *page;

	list_for_each_entry(page, list, lru) {
		arch_alloc_page(page, 0);
		kernel_map_pages(page, 1, 1);
	}
}

49 50 51 52 53
static inline bool migrate_async_suitable(int migratetype)
{
	return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
}

54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
#ifdef CONFIG_COMPACTION
/* Returns true if the pageblock should be scanned for pages to isolate. */
static inline bool isolation_suitable(struct compact_control *cc,
					struct page *page)
{
	if (cc->ignore_skip_hint)
		return true;

	return !get_pageblock_skip(page);
}

/*
 * This function is called to clear all cached information on pageblocks that
 * should be skipped for page isolation when the migrate and free page scanner
 * meet.
 */
70
static void __reset_isolation_suitable(struct zone *zone)
71 72 73 74 75
{
	unsigned long start_pfn = zone->zone_start_pfn;
	unsigned long end_pfn = zone->zone_start_pfn + zone->spanned_pages;
	unsigned long pfn;

76 77
	zone->compact_cached_migrate_pfn = start_pfn;
	zone->compact_cached_free_pfn = end_pfn;
78
	zone->compact_blockskip_flush = false;
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96

	/* Walk the zone and mark every pageblock as suitable for isolation */
	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
		struct page *page;

		cond_resched();

		if (!pfn_valid(pfn))
			continue;

		page = pfn_to_page(pfn);
		if (zone != page_zone(page))
			continue;

		clear_pageblock_skip(page);
	}
}

97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
void reset_isolation_suitable(pg_data_t *pgdat)
{
	int zoneid;

	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
		struct zone *zone = &pgdat->node_zones[zoneid];
		if (!populated_zone(zone))
			continue;

		/* Only flush if a full compaction finished recently */
		if (zone->compact_blockskip_flush)
			__reset_isolation_suitable(zone);
	}
}

112 113
/*
 * If no pages were isolated then mark this pageblock to be skipped in the
114
 * future. The information is later cleared by __reset_isolation_suitable().
115
 */
116 117 118
static void update_pageblock_skip(struct compact_control *cc,
			struct page *page, unsigned long nr_isolated,
			bool migrate_scanner)
119
{
120
	struct zone *zone = cc->zone;
121 122 123
	if (!page)
		return;

124 125
	if (!nr_isolated) {
		unsigned long pfn = page_to_pfn(page);
126
		set_pageblock_skip(page);
127 128 129 130 131 132 133 134 135 136 137 138

		/* Update where compaction should restart */
		if (migrate_scanner) {
			if (!cc->finished_update_migrate &&
			    pfn > zone->compact_cached_migrate_pfn)
				zone->compact_cached_migrate_pfn = pfn;
		} else {
			if (!cc->finished_update_free &&
			    pfn < zone->compact_cached_free_pfn)
				zone->compact_cached_free_pfn = pfn;
		}
	}
139 140 141 142 143 144 145 146
}
#else
static inline bool isolation_suitable(struct compact_control *cc,
					struct page *page)
{
	return true;
}

147 148 149
static void update_pageblock_skip(struct compact_control *cc,
			struct page *page, unsigned long nr_isolated,
			bool migrate_scanner)
150 151 152 153
{
}
#endif /* CONFIG_COMPACTION */

154 155 156 157 158
static inline bool should_release_lock(spinlock_t *lock)
{
	return need_resched() || spin_is_contended(lock);
}

159 160 161 162 163 164 165 166 167 168 169 170
/*
 * Compaction requires the taking of some coarse locks that are potentially
 * very heavily contended. Check if the process needs to be scheduled or
 * if the lock is contended. For async compaction, back out in the event
 * if contention is severe. For sync compaction, schedule.
 *
 * Returns true if the lock is held.
 * Returns false if the lock is released and compaction should abort
 */
static bool compact_checklock_irqsave(spinlock_t *lock, unsigned long *flags,
				      bool locked, struct compact_control *cc)
{
171
	if (should_release_lock(lock)) {
172 173 174 175 176 177 178
		if (locked) {
			spin_unlock_irqrestore(lock, *flags);
			locked = false;
		}

		/* async aborts if taking too long or contended */
		if (!cc->sync) {
179
			cc->contended = true;
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
			return false;
		}

		cond_resched();
	}

	if (!locked)
		spin_lock_irqsave(lock, *flags);
	return true;
}

static inline bool compact_trylock_irqsave(spinlock_t *lock,
			unsigned long *flags, struct compact_control *cc)
{
	return compact_checklock_irqsave(lock, flags, false, cc);
}

197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
/* Returns true if the page is within a block suitable for migration to */
static bool suitable_migration_target(struct page *page)
{
	int migratetype = get_pageblock_migratetype(page);

	/* Don't interfere with memory hot-remove or the min_free_kbytes blocks */
	if (migratetype == MIGRATE_ISOLATE || migratetype == MIGRATE_RESERVE)
		return false;

	/* If the page is a large free page, then allow migration */
	if (PageBuddy(page) && page_order(page) >= pageblock_order)
		return true;

	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
	if (migrate_async_suitable(migratetype))
		return true;

	/* Otherwise skip the block */
	return false;
}

218 219 220 221 222 223
/*
 * Isolate free pages onto a private freelist. Caller must hold zone->lock.
 * If @strict is true, will abort returning 0 on any invalid PFNs or non-free
 * pages inside of the pageblock (even though it may still end up isolating
 * some pages).
 */
224 225
static unsigned long isolate_freepages_block(struct compact_control *cc,
				unsigned long blockpfn,
226 227 228
				unsigned long end_pfn,
				struct list_head *freelist,
				bool strict)
229
{
230
	int nr_scanned = 0, total_isolated = 0;
231
	struct page *cursor, *valid_page = NULL;
232 233 234
	unsigned long nr_strict_required = end_pfn - blockpfn;
	unsigned long flags;
	bool locked = false;
235 236 237

	cursor = pfn_to_page(blockpfn);

238
	/* Isolate free pages. */
239 240 241 242
	for (; blockpfn < end_pfn; blockpfn++, cursor++) {
		int isolated, i;
		struct page *page = cursor;

243
		nr_scanned++;
244 245
		if (!pfn_valid_within(blockpfn))
			continue;
246 247
		if (!valid_page)
			valid_page = page;
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
		if (!PageBuddy(page))
			continue;

		/*
		 * The zone lock must be held to isolate freepages.
		 * Unfortunately this is a very coarse lock and can be
		 * heavily contended if there are parallel allocations
		 * or parallel compactions. For async compaction do not
		 * spin on the lock and we acquire the lock as late as
		 * possible.
		 */
		locked = compact_checklock_irqsave(&cc->zone->lock, &flags,
								locked, cc);
		if (!locked)
			break;

		/* Recheck this is a suitable migration target under lock */
		if (!strict && !suitable_migration_target(page))
			break;
267

268 269
		/* Recheck this is a buddy page under lock */
		if (!PageBuddy(page))
270 271 272 273
			continue;

		/* Found a free page, break it into order-0 pages */
		isolated = split_free_page(page);
274
		if (!isolated && strict)
275
			break;
276 277 278 279 280 281 282 283 284 285 286 287 288
		total_isolated += isolated;
		for (i = 0; i < isolated; i++) {
			list_add(&page->lru, freelist);
			page++;
		}

		/* If a page was split, advance to the end of it */
		if (isolated) {
			blockpfn += isolated - 1;
			cursor += isolated - 1;
		}
	}

289
	trace_mm_compaction_isolate_freepages(nr_scanned, total_isolated);
290 291 292 293 294 295

	/*
	 * If strict isolation is requested by CMA then check that all the
	 * pages requested were isolated. If there were any failures, 0 is
	 * returned and CMA will fail.
	 */
296
	if (strict && nr_strict_required > total_isolated)
297 298 299 300 301
		total_isolated = 0;

	if (locked)
		spin_unlock_irqrestore(&cc->zone->lock, flags);

302 303
	/* Update the pageblock-skip if the whole pageblock was scanned */
	if (blockpfn == end_pfn)
304
		update_pageblock_skip(cc, valid_page, total_isolated, false);
305

306 307 308 309
	count_vm_events(COMPACTFREE_SCANNED, nr_scanned);
	if (total_isolated)
		count_vm_events(COMPACTISOLATED, total_isolated);

310 311 312
	return total_isolated;
}

313 314 315 316 317 318 319 320 321 322 323 324 325
/**
 * isolate_freepages_range() - isolate free pages.
 * @start_pfn: The first PFN to start isolating.
 * @end_pfn:   The one-past-last PFN.
 *
 * Non-free pages, invalid PFNs, or zone boundaries within the
 * [start_pfn, end_pfn) range are considered errors, cause function to
 * undo its actions and return zero.
 *
 * Otherwise, function returns one-past-the-last PFN of isolated page
 * (which may be greater then end_pfn if end fell in a middle of
 * a free page).
 */
326
unsigned long
327 328
isolate_freepages_range(struct compact_control *cc,
			unsigned long start_pfn, unsigned long end_pfn)
329
{
330
	unsigned long isolated, pfn, block_end_pfn;
331 332 333
	LIST_HEAD(freelist);

	for (pfn = start_pfn; pfn < end_pfn; pfn += isolated) {
334
		if (!pfn_valid(pfn) || cc->zone != page_zone(pfn_to_page(pfn)))
335 336 337 338 339 340 341 342 343
			break;

		/*
		 * On subsequent iterations ALIGN() is actually not needed,
		 * but we keep it that we not to complicate the code.
		 */
		block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
		block_end_pfn = min(block_end_pfn, end_pfn);

344
		isolated = isolate_freepages_block(cc, pfn, block_end_pfn,
345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
						   &freelist, true);

		/*
		 * In strict mode, isolate_freepages_block() returns 0 if
		 * there are any holes in the block (ie. invalid PFNs or
		 * non-free pages).
		 */
		if (!isolated)
			break;

		/*
		 * If we managed to isolate pages, it is always (1 << n) *
		 * pageblock_nr_pages for some non-negative n.  (Max order
		 * page may span two pageblocks).
		 */
	}

	/* split_free_page does not map the pages */
	map_pages(&freelist);

	if (pfn < end_pfn) {
		/* Loop terminated early, cleanup. */
		release_freepages(&freelist);
		return 0;
	}

	/* We don't use freelists for anything. */
	return pfn;
}

375
/* Update the number of anon and file isolated pages in the zone */
376
static void acct_isolated(struct zone *zone, bool locked, struct compact_control *cc)
377 378
{
	struct page *page;
379
	unsigned int count[2] = { 0, };
380

381 382
	list_for_each_entry(page, &cc->migratepages, lru)
		count[!!page_is_file_cache(page)]++;
383

384 385 386 387 388 389 390 391
	/* If locked we can use the interrupt unsafe versions */
	if (locked) {
		__mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
		__mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
	} else {
		mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
		mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
	}
392 393 394 395 396
}

/* Similar to reclaim, but different enough that they don't share logic */
static bool too_many_isolated(struct zone *zone)
{
397
	unsigned long active, inactive, isolated;
398 399 400

	inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
					zone_page_state(zone, NR_INACTIVE_ANON);
401 402
	active = zone_page_state(zone, NR_ACTIVE_FILE) +
					zone_page_state(zone, NR_ACTIVE_ANON);
403 404 405
	isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
					zone_page_state(zone, NR_ISOLATED_ANON);

406
	return isolated > (inactive + active) / 2;
407 408
}

409 410 411 412 413 414
/**
 * isolate_migratepages_range() - isolate all migrate-able pages in range.
 * @zone:	Zone pages are in.
 * @cc:		Compaction control structure.
 * @low_pfn:	The first PFN of the range.
 * @end_pfn:	The one-past-the-last PFN of the range.
M
Minchan Kim 已提交
415
 * @unevictable: true if it allows to isolate unevictable pages
416 417 418 419 420 421 422 423 424 425 426 427
 *
 * Isolate all pages that can be migrated from the range specified by
 * [low_pfn, end_pfn).  Returns zero if there is a fatal signal
 * pending), otherwise PFN of the first page that was not scanned
 * (which may be both less, equal to or more then end_pfn).
 *
 * Assumes that cc->migratepages is empty and cc->nr_migratepages is
 * zero.
 *
 * Apart from cc->migratepages and cc->nr_migratetypes this function
 * does not modify any cc's fields, in particular it does not modify
 * (or read for that matter) cc->migrate_pfn.
428
 */
429
unsigned long
430
isolate_migratepages_range(struct zone *zone, struct compact_control *cc,
M
Minchan Kim 已提交
431
		unsigned long low_pfn, unsigned long end_pfn, bool unevictable)
432
{
433
	unsigned long last_pageblock_nr = 0, pageblock_nr;
434
	unsigned long nr_scanned = 0, nr_isolated = 0;
435
	struct list_head *migratelist = &cc->migratepages;
436
	isolate_mode_t mode = 0;
437
	struct lruvec *lruvec;
438
	unsigned long flags;
439
	bool locked = false;
440
	struct page *page = NULL, *valid_page = NULL;
441 442 443 444 445 446 447

	/*
	 * Ensure that there are not too many pages isolated from the LRU
	 * list by either parallel reclaimers or compaction. If there are,
	 * delay for some time until fewer pages are isolated
	 */
	while (unlikely(too_many_isolated(zone))) {
448
		/* async migration should just abort */
449
		if (!cc->sync)
450
			return 0;
451

452 453 454
		congestion_wait(BLK_RW_ASYNC, HZ/10);

		if (fatal_signal_pending(current))
455
			return 0;
456 457 458
	}

	/* Time to isolate some pages for migration */
459
	cond_resched();
460
	for (; low_pfn < end_pfn; low_pfn++) {
461
		/* give a chance to irqs before checking need_resched() */
462 463 464 465 466
		if (locked && !((low_pfn+1) % SWAP_CLUSTER_MAX)) {
			if (should_release_lock(&zone->lru_lock)) {
				spin_unlock_irqrestore(&zone->lru_lock, flags);
				locked = false;
			}
467
		}
468

469 470 471 472 473 474 475 476 477 478 479 480 481
		/*
		 * migrate_pfn does not necessarily start aligned to a
		 * pageblock. Ensure that pfn_valid is called when moving
		 * into a new MAX_ORDER_NR_PAGES range in case of large
		 * memory holes within the zone
		 */
		if ((low_pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
			if (!pfn_valid(low_pfn)) {
				low_pfn += MAX_ORDER_NR_PAGES - 1;
				continue;
			}
		}

482 483
		if (!pfn_valid_within(low_pfn))
			continue;
484
		nr_scanned++;
485

486 487 488 489 490 491
		/*
		 * Get the page and ensure the page is within the same zone.
		 * See the comment in isolate_freepages about overlapping
		 * nodes. It is deliberate that the new zone lock is not taken
		 * as memory compaction should not move pages between nodes.
		 */
492
		page = pfn_to_page(low_pfn);
493 494 495
		if (page_zone(page) != zone)
			continue;

496 497 498 499 500 501 502 503
		if (!valid_page)
			valid_page = page;

		/* If isolation recently failed, do not retry */
		pageblock_nr = low_pfn >> pageblock_order;
		if (!isolation_suitable(cc, page))
			goto next_pageblock;

504
		/* Skip if free */
505 506 507
		if (PageBuddy(page))
			continue;

508 509 510 511 512
		/*
		 * For async migration, also only scan in MOVABLE blocks. Async
		 * migration is optimistic to see if the minimum amount of work
		 * satisfies the allocation
		 */
513
		if (!cc->sync && last_pageblock_nr != pageblock_nr &&
514
		    !migrate_async_suitable(get_pageblock_migratetype(page))) {
515
			cc->finished_update_migrate = true;
516
			goto next_pageblock;
517 518
		}

519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
		/*
		 * Check may be lockless but that's ok as we recheck later.
		 * It's possible to migrate LRU pages and balloon pages
		 * Skip any other type of page
		 */
		if (!PageLRU(page)) {
			if (unlikely(balloon_page_movable(page))) {
				if (locked && balloon_page_isolate(page)) {
					/* Successfully isolated */
					cc->finished_update_migrate = true;
					list_add(&page->lru, migratelist);
					cc->nr_migratepages++;
					nr_isolated++;
					goto check_compact_cluster;
				}
			}
535
			continue;
536
		}
537 538

		/*
539 540 541 542 543 544 545 546
		 * PageLRU is set. lru_lock normally excludes isolation
		 * splitting and collapsing (collapsing has already happened
		 * if PageLRU is set) but the lock is not necessarily taken
		 * here and it is wasteful to take it just to check transhuge.
		 * Check TransHuge without lock and skip the whole pageblock if
		 * it's either a transhuge or hugetlbfs page, as calling
		 * compound_order() without preventing THP from splitting the
		 * page underneath us may return surprising results.
547
		 */
548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
		if (PageTransHuge(page)) {
			if (!locked)
				goto next_pageblock;
			low_pfn += (1 << compound_order(page)) - 1;
			continue;
		}

		/* Check if it is ok to still hold the lock */
		locked = compact_checklock_irqsave(&zone->lru_lock, &flags,
								locked, cc);
		if (!locked || fatal_signal_pending(current))
			break;

		/* Recheck PageLRU and PageTransHuge under lock */
		if (!PageLRU(page))
			continue;
564 565 566 567 568
		if (PageTransHuge(page)) {
			low_pfn += (1 << compound_order(page)) - 1;
			continue;
		}

569
		if (!cc->sync)
570 571
			mode |= ISOLATE_ASYNC_MIGRATE;

M
Minchan Kim 已提交
572 573 574
		if (unevictable)
			mode |= ISOLATE_UNEVICTABLE;

575 576
		lruvec = mem_cgroup_page_lruvec(page, zone);

577
		/* Try isolate the page */
578
		if (__isolate_lru_page(page, mode) != 0)
579 580
			continue;

581 582
		VM_BUG_ON(PageTransCompound(page));

583
		/* Successfully isolated */
584
		cc->finished_update_migrate = true;
585
		del_page_from_lru_list(page, lruvec, page_lru(page));
586 587
		list_add(&page->lru, migratelist);
		cc->nr_migratepages++;
588
		nr_isolated++;
589

590
check_compact_cluster:
591
		/* Avoid isolating too much */
592 593
		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
			++low_pfn;
594
			break;
595
		}
596 597 598 599 600 601 602

		continue;

next_pageblock:
		low_pfn += pageblock_nr_pages;
		low_pfn = ALIGN(low_pfn, pageblock_nr_pages) - 1;
		last_pageblock_nr = pageblock_nr;
603 604
	}

605
	acct_isolated(zone, locked, cc);
606

607 608
	if (locked)
		spin_unlock_irqrestore(&zone->lru_lock, flags);
609

610 611
	/* Update the pageblock-skip if the whole pageblock was scanned */
	if (low_pfn == end_pfn)
612
		update_pageblock_skip(cc, valid_page, nr_isolated, true);
613

614 615
	trace_mm_compaction_isolate_migratepages(nr_scanned, nr_isolated);

616 617 618 619
	count_vm_events(COMPACTMIGRATE_SCANNED, nr_scanned);
	if (nr_isolated)
		count_vm_events(COMPACTISOLATED, nr_isolated);

620 621 622
	return low_pfn;
}

623 624
#endif /* CONFIG_COMPACTION || CONFIG_CMA */
#ifdef CONFIG_COMPACTION
625
/*
626 627
 * Based on information in the current compact_control, find blocks
 * suitable for isolating free pages from and then isolate them.
628
 */
629 630
static void isolate_freepages(struct zone *zone,
				struct compact_control *cc)
631
{
632 633 634 635
	struct page *page;
	unsigned long high_pfn, low_pfn, pfn, zone_end_pfn, end_pfn;
	int nr_freepages = cc->nr_freepages;
	struct list_head *freelist = &cc->freepages;
636

637 638 639 640 641 642 643
	/*
	 * Initialise the free scanner. The starting point is where we last
	 * scanned from (or the end of the zone if starting). The low point
	 * is the end of the pageblock the migration scanner is using.
	 */
	pfn = cc->free_pfn;
	low_pfn = cc->migrate_pfn + pageblock_nr_pages;
644

645 646 647 648 649 650
	/*
	 * Take care that if the migration scanner is at the end of the zone
	 * that the free scanner does not accidentally move to the next zone
	 * in the next isolation cycle.
	 */
	high_pfn = min(low_pfn, pfn);
651

652
	zone_end_pfn = zone->zone_start_pfn + zone->spanned_pages;
653

654 655 656 657 658 659 660 661
	/*
	 * Isolate free pages until enough are available to migrate the
	 * pages on cc->migratepages. We stop searching if the migrate
	 * and free page scanners meet or enough free pages are isolated.
	 */
	for (; pfn > low_pfn && cc->nr_migratepages > nr_freepages;
					pfn -= pageblock_nr_pages) {
		unsigned long isolated;
662

663 664
		if (!pfn_valid(pfn))
			continue;
665

666 667 668 669 670 671 672 673 674 675 676 677
		/*
		 * Check for overlapping nodes/zones. It's possible on some
		 * configurations to have a setup like
		 * node0 node1 node0
		 * i.e. it's possible that all pages within a zones range of
		 * pages do not belong to a single zone.
		 */
		page = pfn_to_page(pfn);
		if (page_zone(page) != zone)
			continue;

		/* Check the block is suitable for migration */
678
		if (!suitable_migration_target(page))
679
			continue;
680

681 682 683 684
		/* If isolation recently failed, do not retry */
		if (!isolation_suitable(cc, page))
			continue;

685
		/* Found a block suitable for isolating free pages from */
686
		isolated = 0;
687 688 689 690 691 692 693 694 695

		/*
		 * As pfn may not start aligned, pfn+pageblock_nr_page
		 * may cross a MAX_ORDER_NR_PAGES boundary and miss
		 * a pfn_valid check. Ensure isolate_freepages_block()
		 * only scans within a pageblock
		 */
		end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
		end_pfn = min(end_pfn, zone_end_pfn);
696 697 698
		isolated = isolate_freepages_block(cc, pfn, end_pfn,
						   freelist, false);
		nr_freepages += isolated;
699 700 701 702 703 704

		/*
		 * Record the highest PFN we isolated pages from. When next
		 * looking for free pages, the search will restart here as
		 * page migration may have returned some pages to the allocator
		 */
705 706
		if (isolated) {
			cc->finished_update_free = true;
707
			high_pfn = max(high_pfn, pfn);
708
		}
709 710 711 712 713 714 715
	}

	/* split_free_page does not map the pages */
	map_pages(freelist);

	cc->free_pfn = high_pfn;
	cc->nr_freepages = nr_freepages;
716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
}

/*
 * This is a migrate-callback that "allocates" freepages by taking pages
 * from the isolated freelists in the block we are migrating to.
 */
static struct page *compaction_alloc(struct page *migratepage,
					unsigned long data,
					int **result)
{
	struct compact_control *cc = (struct compact_control *)data;
	struct page *freepage;

	/* Isolate free pages if necessary */
	if (list_empty(&cc->freepages)) {
		isolate_freepages(cc->zone, cc);

		if (list_empty(&cc->freepages))
			return NULL;
	}

	freepage = list_entry(cc->freepages.next, struct page, lru);
	list_del(&freepage->lru);
	cc->nr_freepages--;

	return freepage;
}

/*
 * We cannot control nr_migratepages and nr_freepages fully when migration is
 * running as migrate_pages() has no knowledge of compact_control. When
 * migration is complete, we count the number of pages on the lists by hand.
 */
static void update_nr_listpages(struct compact_control *cc)
{
	int nr_migratepages = 0;
	int nr_freepages = 0;
	struct page *page;

	list_for_each_entry(page, &cc->migratepages, lru)
		nr_migratepages++;
	list_for_each_entry(page, &cc->freepages, lru)
		nr_freepages++;

	cc->nr_migratepages = nr_migratepages;
	cc->nr_freepages = nr_freepages;
}

764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792
/* possible outcome of isolate_migratepages */
typedef enum {
	ISOLATE_ABORT,		/* Abort compaction now */
	ISOLATE_NONE,		/* No pages isolated, continue scanning */
	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
} isolate_migrate_t;

/*
 * Isolate all pages that can be migrated from the block pointed to by
 * the migrate scanner within compact_control.
 */
static isolate_migrate_t isolate_migratepages(struct zone *zone,
					struct compact_control *cc)
{
	unsigned long low_pfn, end_pfn;

	/* Do not scan outside zone boundaries */
	low_pfn = max(cc->migrate_pfn, zone->zone_start_pfn);

	/* Only scan within a pageblock boundary */
	end_pfn = ALIGN(low_pfn + pageblock_nr_pages, pageblock_nr_pages);

	/* Do not cross the free scanner or scan within a memory hole */
	if (end_pfn > cc->free_pfn || !pfn_valid(low_pfn)) {
		cc->migrate_pfn = end_pfn;
		return ISOLATE_NONE;
	}

	/* Perform the isolation */
M
Minchan Kim 已提交
793
	low_pfn = isolate_migratepages_range(zone, cc, low_pfn, end_pfn, false);
794
	if (!low_pfn || cc->contended)
795 796 797 798 799 800 801
		return ISOLATE_ABORT;

	cc->migrate_pfn = low_pfn;

	return ISOLATE_SUCCESS;
}

802
static int compact_finished(struct zone *zone,
803
			    struct compact_control *cc)
804
{
805
	unsigned long watermark;
806

807 808 809
	if (fatal_signal_pending(current))
		return COMPACT_PARTIAL;

810
	/* Compaction run completes if the migrate and free scanner meet */
811
	if (cc->free_pfn <= cc->migrate_pfn) {
812 813 814 815 816 817 818 819 820
		/*
		 * Mark that the PG_migrate_skip information should be cleared
		 * by kswapd when it goes to sleep. kswapd does not set the
		 * flag itself as the decision to be clear should be directly
		 * based on an allocation request.
		 */
		if (!current_is_kswapd())
			zone->compact_blockskip_flush = true;

821
		return COMPACT_COMPLETE;
822
	}
823

824 825 826 827
	/*
	 * order == -1 is expected when compacting via
	 * /proc/sys/vm/compact_memory
	 */
828 829 830
	if (cc->order == -1)
		return COMPACT_CONTINUE;

831 832 833 834 835 836 837
	/* Compaction run is not finished if the watermark is not met */
	watermark = low_wmark_pages(zone);
	watermark += (1 << cc->order);

	if (!zone_watermark_ok(zone, cc->order, watermark, 0, 0))
		return COMPACT_CONTINUE;

838
	/* Direct compactor: Is a suitable page free? */
839 840 841
	if (cc->page) {
		/* Was a suitable page captured? */
		if (*cc->page)
842
			return COMPACT_PARTIAL;
843 844 845 846 847 848 849 850 851 852 853 854
	} else {
		unsigned int order;
		for (order = cc->order; order < MAX_ORDER; order++) {
			struct free_area *area = &zone->free_area[cc->order];
			/* Job done if page is free of the right migratetype */
			if (!list_empty(&area->free_list[cc->migratetype]))
				return COMPACT_PARTIAL;

			/* Job done if allocation would set block type */
			if (cc->order >= pageblock_order && area->nr_free)
				return COMPACT_PARTIAL;
		}
855 856
	}

857 858 859
	return COMPACT_CONTINUE;
}

860 861 862 863 864 865 866 867 868 869 870 871
/*
 * compaction_suitable: Is this suitable to run compaction on this zone now?
 * Returns
 *   COMPACT_SKIPPED  - If there are too few free pages for compaction
 *   COMPACT_PARTIAL  - If the allocation would succeed without compaction
 *   COMPACT_CONTINUE - If compaction should run now
 */
unsigned long compaction_suitable(struct zone *zone, int order)
{
	int fragindex;
	unsigned long watermark;

872 873 874 875 876 877 878
	/*
	 * order == -1 is expected when compacting via
	 * /proc/sys/vm/compact_memory
	 */
	if (order == -1)
		return COMPACT_CONTINUE;

879 880 881 882 883 884 885 886 887 888 889 890 891
	/*
	 * Watermarks for order-0 must be met for compaction. Note the 2UL.
	 * This is because during migration, copies of pages need to be
	 * allocated and for a short time, the footprint is higher
	 */
	watermark = low_wmark_pages(zone) + (2UL << order);
	if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
		return COMPACT_SKIPPED;

	/*
	 * fragmentation index determines if allocation failures are due to
	 * low memory or external fragmentation
	 *
892 893
	 * index of -1000 implies allocations might succeed depending on
	 * watermarks
894 895 896 897 898 899 900 901 902
	 * index towards 0 implies failure is due to lack of memory
	 * index towards 1000 implies failure is due to fragmentation
	 *
	 * Only compact if a failure would be due to fragmentation.
	 */
	fragindex = fragmentation_index(zone, order);
	if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
		return COMPACT_SKIPPED;

903 904
	if (fragindex == -1000 && zone_watermark_ok(zone, order, watermark,
	    0, 0))
905 906 907 908 909
		return COMPACT_PARTIAL;

	return COMPACT_CONTINUE;
}

910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963
static void compact_capture_page(struct compact_control *cc)
{
	unsigned long flags;
	int mtype, mtype_low, mtype_high;

	if (!cc->page || *cc->page)
		return;

	/*
	 * For MIGRATE_MOVABLE allocations we capture a suitable page ASAP
	 * regardless of the migratetype of the freelist is is captured from.
	 * This is fine because the order for a high-order MIGRATE_MOVABLE
	 * allocation is typically at least a pageblock size and overall
	 * fragmentation is not impaired. Other allocation types must
	 * capture pages from their own migratelist because otherwise they
	 * could pollute other pageblocks like MIGRATE_MOVABLE with
	 * difficult to move pages and making fragmentation worse overall.
	 */
	if (cc->migratetype == MIGRATE_MOVABLE) {
		mtype_low = 0;
		mtype_high = MIGRATE_PCPTYPES;
	} else {
		mtype_low = cc->migratetype;
		mtype_high = cc->migratetype + 1;
	}

	/* Speculatively examine the free lists without zone lock */
	for (mtype = mtype_low; mtype < mtype_high; mtype++) {
		int order;
		for (order = cc->order; order < MAX_ORDER; order++) {
			struct page *page;
			struct free_area *area;
			area = &(cc->zone->free_area[order]);
			if (list_empty(&area->free_list[mtype]))
				continue;

			/* Take the lock and attempt capture of the page */
			if (!compact_trylock_irqsave(&cc->zone->lock, &flags, cc))
				return;
			if (!list_empty(&area->free_list[mtype])) {
				page = list_entry(area->free_list[mtype].next,
							struct page, lru);
				if (capture_free_page(page, cc->order, mtype)) {
					spin_unlock_irqrestore(&cc->zone->lock,
									flags);
					*cc->page = page;
					return;
				}
			}
			spin_unlock_irqrestore(&cc->zone->lock, flags);
		}
	}
}

964 965 966
static int compact_zone(struct zone *zone, struct compact_control *cc)
{
	int ret;
967 968
	unsigned long start_pfn = zone->zone_start_pfn;
	unsigned long end_pfn = zone->zone_start_pfn + zone->spanned_pages;
969

970 971 972 973 974 975 976 977 978 979 980
	ret = compaction_suitable(zone, cc->order);
	switch (ret) {
	case COMPACT_PARTIAL:
	case COMPACT_SKIPPED:
		/* Compaction is likely to fail */
		return ret;
	case COMPACT_CONTINUE:
		/* Fall through to compaction */
		;
	}

981 982 983 984 985 986 987 988 989 990 991 992 993 994 995
	/*
	 * Setup to move all movable pages to the end of the zone. Used cached
	 * information on where the scanners should start but check that it
	 * is initialised by ensuring the values are within zone boundaries.
	 */
	cc->migrate_pfn = zone->compact_cached_migrate_pfn;
	cc->free_pfn = zone->compact_cached_free_pfn;
	if (cc->free_pfn < start_pfn || cc->free_pfn > end_pfn) {
		cc->free_pfn = end_pfn & ~(pageblock_nr_pages-1);
		zone->compact_cached_free_pfn = cc->free_pfn;
	}
	if (cc->migrate_pfn < start_pfn || cc->migrate_pfn > end_pfn) {
		cc->migrate_pfn = start_pfn;
		zone->compact_cached_migrate_pfn = cc->migrate_pfn;
	}
996

997 998 999 1000 1001 1002 1003
	/*
	 * Clear pageblock skip if there were failures recently and compaction
	 * is about to be retried after being deferred. kswapd does not do
	 * this reset as it'll reset the cached information when going to sleep.
	 */
	if (compaction_restarting(zone, cc->order) && !current_is_kswapd())
		__reset_isolation_suitable(zone);
1004

1005 1006 1007 1008
	migrate_prep_local();

	while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) {
		unsigned long nr_migrate, nr_remaining;
1009
		int err;
1010

1011 1012 1013
		switch (isolate_migratepages(zone, cc)) {
		case ISOLATE_ABORT:
			ret = COMPACT_PARTIAL;
1014
			putback_movable_pages(&cc->migratepages);
1015
			cc->nr_migratepages = 0;
1016 1017
			goto out;
		case ISOLATE_NONE:
1018
			continue;
1019 1020 1021
		case ISOLATE_SUCCESS:
			;
		}
1022 1023

		nr_migrate = cc->nr_migratepages;
1024
		err = migrate_pages(&cc->migratepages, compaction_alloc,
1025
				(unsigned long)cc, false,
1026 1027
				cc->sync ? MIGRATE_SYNC_LIGHT : MIGRATE_ASYNC,
				MR_COMPACTION);
1028 1029 1030
		update_nr_listpages(cc);
		nr_remaining = cc->nr_migratepages;

1031 1032
		trace_mm_compaction_migratepages(nr_migrate - nr_remaining,
						nr_remaining);
1033

1034
		/* Release isolated pages not migrated */
1035
		if (err) {
1036
			putback_movable_pages(&cc->migratepages);
1037
			cc->nr_migratepages = 0;
1038 1039 1040 1041
			if (err == -ENOMEM) {
				ret = COMPACT_PARTIAL;
				goto out;
			}
1042
		}
1043 1044 1045

		/* Capture a page now if it is a suitable size */
		compact_capture_page(cc);
1046 1047
	}

1048
out:
1049 1050 1051 1052 1053 1054
	/* Release free pages and check accounting */
	cc->nr_freepages -= release_freepages(&cc->freepages);
	VM_BUG_ON(cc->nr_freepages != 0);

	return ret;
}
1055

1056
static unsigned long compact_zone_order(struct zone *zone,
1057
				 int order, gfp_t gfp_mask,
1058 1059
				 bool sync, bool *contended,
				 struct page **page)
1060
{
1061
	unsigned long ret;
1062 1063 1064 1065 1066 1067
	struct compact_control cc = {
		.nr_freepages = 0,
		.nr_migratepages = 0,
		.order = order,
		.migratetype = allocflags_to_migratetype(gfp_mask),
		.zone = zone,
1068
		.sync = sync,
1069
		.page = page,
1070 1071 1072 1073
	};
	INIT_LIST_HEAD(&cc.freepages);
	INIT_LIST_HEAD(&cc.migratepages);

1074 1075 1076 1077 1078 1079 1080
	ret = compact_zone(zone, &cc);

	VM_BUG_ON(!list_empty(&cc.freepages));
	VM_BUG_ON(!list_empty(&cc.migratepages));

	*contended = cc.contended;
	return ret;
1081 1082
}

1083 1084
int sysctl_extfrag_threshold = 500;

1085 1086 1087 1088 1089 1090
/**
 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
 * @zonelist: The zonelist used for the current allocation
 * @order: The order of the current allocation
 * @gfp_mask: The GFP mask of the current allocation
 * @nodemask: The allowed nodes to allocate from
1091
 * @sync: Whether migration is synchronous or not
1092 1093
 * @contended: Return value that is true if compaction was aborted due to lock contention
 * @page: Optionally capture a free page of the requested order during compaction
1094 1095 1096 1097
 *
 * This is the main entry point for direct page compaction.
 */
unsigned long try_to_compact_pages(struct zonelist *zonelist,
1098
			int order, gfp_t gfp_mask, nodemask_t *nodemask,
1099
			bool sync, bool *contended, struct page **page)
1100 1101 1102 1103 1104 1105 1106
{
	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
	int may_enter_fs = gfp_mask & __GFP_FS;
	int may_perform_io = gfp_mask & __GFP_IO;
	struct zoneref *z;
	struct zone *zone;
	int rc = COMPACT_SKIPPED;
1107
	int alloc_flags = 0;
1108

1109
	/* Check if the GFP flags allow compaction */
1110
	if (!order || !may_enter_fs || !may_perform_io)
1111 1112 1113 1114
		return rc;

	count_vm_event(COMPACTSTALL);

1115 1116 1117 1118
#ifdef CONFIG_CMA
	if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
		alloc_flags |= ALLOC_CMA;
#endif
1119 1120 1121 1122 1123
	/* Compact each zone in the list */
	for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
								nodemask) {
		int status;

1124
		status = compact_zone_order(zone, order, gfp_mask, sync,
1125
						contended, page);
1126 1127
		rc = max(status, rc);

1128
		/* If a normal allocation would succeed, stop compacting */
1129 1130
		if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0,
				      alloc_flags))
1131 1132 1133 1134 1135 1136 1137
			break;
	}

	return rc;
}


1138
/* Compact all zones within a node */
1139
static int __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
{
	int zoneid;
	struct zone *zone;

	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {

		zone = &pgdat->node_zones[zoneid];
		if (!populated_zone(zone))
			continue;

1150 1151 1152 1153 1154
		cc->nr_freepages = 0;
		cc->nr_migratepages = 0;
		cc->zone = zone;
		INIT_LIST_HEAD(&cc->freepages);
		INIT_LIST_HEAD(&cc->migratepages);
1155

1156
		if (cc->order == -1 || !compaction_deferred(zone, cc->order))
1157
			compact_zone(zone, cc);
1158

1159 1160 1161
		if (cc->order > 0) {
			int ok = zone_watermark_ok(zone, cc->order,
						low_wmark_pages(zone), 0, 0);
1162
			if (ok && cc->order >= zone->compact_order_failed)
1163 1164
				zone->compact_order_failed = cc->order + 1;
			/* Currently async compaction is never deferred. */
1165
			else if (!ok && cc->sync)
1166 1167 1168
				defer_compaction(zone, cc->order);
		}

1169 1170
		VM_BUG_ON(!list_empty(&cc->freepages));
		VM_BUG_ON(!list_empty(&cc->migratepages));
1171 1172 1173 1174 1175
	}

	return 0;
}

1176 1177 1178 1179
int compact_pgdat(pg_data_t *pgdat, int order)
{
	struct compact_control cc = {
		.order = order,
1180
		.sync = false,
1181
		.page = NULL,
1182 1183 1184 1185 1186 1187 1188 1189 1190
	};

	return __compact_pgdat(pgdat, &cc);
}

static int compact_node(int nid)
{
	struct compact_control cc = {
		.order = -1,
1191
		.sync = true,
1192
		.page = NULL,
1193 1194
	};

1195
	return __compact_pgdat(NODE_DATA(nid), &cc);
1196 1197
}

1198 1199 1200 1201 1202
/* Compact all nodes in the system */
static int compact_nodes(void)
{
	int nid;

1203 1204 1205
	/* Flush pending updates to the LRU lists */
	lru_add_drain_all();

1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
	for_each_online_node(nid)
		compact_node(nid);

	return COMPACT_COMPLETE;
}

/* The written value is actually unused, all memory is compacted */
int sysctl_compact_memory;

/* This is the entry point for compacting all nodes via /proc/sys/vm */
int sysctl_compaction_handler(struct ctl_table *table, int write,
			void __user *buffer, size_t *length, loff_t *ppos)
{
	if (write)
		return compact_nodes();

	return 0;
}
1224

1225 1226 1227 1228 1229 1230 1231 1232
int sysctl_extfrag_handler(struct ctl_table *table, int write,
			void __user *buffer, size_t *length, loff_t *ppos)
{
	proc_dointvec_minmax(table, write, buffer, length, ppos);

	return 0;
}

1233
#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1234 1235
ssize_t sysfs_compact_node(struct device *dev,
			struct device_attribute *attr,
1236 1237
			const char *buf, size_t count)
{
1238 1239 1240 1241 1242 1243 1244 1245
	int nid = dev->id;

	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
		/* Flush pending updates to the LRU lists */
		lru_add_drain_all();

		compact_node(nid);
	}
1246 1247 1248

	return count;
}
1249
static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1250 1251 1252

int compaction_register_node(struct node *node)
{
1253
	return device_create_file(&node->dev, &dev_attr_compact);
1254 1255 1256 1257
}

void compaction_unregister_node(struct node *node)
{
1258
	return device_remove_file(&node->dev, &dev_attr_compact);
1259 1260
}
#endif /* CONFIG_SYSFS && CONFIG_NUMA */
1261 1262

#endif /* CONFIG_COMPACTION */