compaction.c 30.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/*
 * linux/mm/compaction.c
 *
 * Memory compaction for the reduction of external fragmentation. Note that
 * this heavily depends upon page migration to do all the real heavy
 * lifting
 *
 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
 */
#include <linux/swap.h>
#include <linux/migrate.h>
#include <linux/compaction.h>
#include <linux/mm_inline.h>
#include <linux/backing-dev.h>
15
#include <linux/sysctl.h>
16
#include <linux/sysfs.h>
17 18
#include "internal.h"

19 20
#if defined CONFIG_COMPACTION || defined CONFIG_CMA

21 22 23
#define CREATE_TRACE_POINTS
#include <trace/events/compaction.h>

24 25 26 27 28 29 30 31 32 33 34 35 36 37
static unsigned long release_freepages(struct list_head *freelist)
{
	struct page *page, *next;
	unsigned long count = 0;

	list_for_each_entry_safe(page, next, freelist, lru) {
		list_del(&page->lru);
		__free_page(page);
		count++;
	}

	return count;
}

38 39 40 41 42 43 44 45 46 47
static void map_pages(struct list_head *list)
{
	struct page *page;

	list_for_each_entry(page, list, lru) {
		arch_alloc_page(page, 0);
		kernel_map_pages(page, 1, 1);
	}
}

48 49 50 51 52
static inline bool migrate_async_suitable(int migratetype)
{
	return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
}

53 54 55 56 57
static inline bool should_release_lock(spinlock_t *lock)
{
	return need_resched() || spin_is_contended(lock);
}

58 59 60 61 62 63 64 65 66 67 68 69
/*
 * Compaction requires the taking of some coarse locks that are potentially
 * very heavily contended. Check if the process needs to be scheduled or
 * if the lock is contended. For async compaction, back out in the event
 * if contention is severe. For sync compaction, schedule.
 *
 * Returns true if the lock is held.
 * Returns false if the lock is released and compaction should abort
 */
static bool compact_checklock_irqsave(spinlock_t *lock, unsigned long *flags,
				      bool locked, struct compact_control *cc)
{
70
	if (should_release_lock(lock)) {
71 72 73 74 75 76 77
		if (locked) {
			spin_unlock_irqrestore(lock, *flags);
			locked = false;
		}

		/* async aborts if taking too long or contended */
		if (!cc->sync) {
78
			cc->contended = true;
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
			return false;
		}

		cond_resched();
	}

	if (!locked)
		spin_lock_irqsave(lock, *flags);
	return true;
}

static inline bool compact_trylock_irqsave(spinlock_t *lock,
			unsigned long *flags, struct compact_control *cc)
{
	return compact_checklock_irqsave(lock, flags, false, cc);
}

96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
/* Returns true if the page is within a block suitable for migration to */
static bool suitable_migration_target(struct page *page)
{
	int migratetype = get_pageblock_migratetype(page);

	/* Don't interfere with memory hot-remove or the min_free_kbytes blocks */
	if (migratetype == MIGRATE_ISOLATE || migratetype == MIGRATE_RESERVE)
		return false;

	/* If the page is a large free page, then allow migration */
	if (PageBuddy(page) && page_order(page) >= pageblock_order)
		return true;

	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
	if (migrate_async_suitable(migratetype))
		return true;

	/* Otherwise skip the block */
	return false;
}

117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
static void compact_capture_page(struct compact_control *cc)
{
	unsigned long flags;
	int mtype, mtype_low, mtype_high;

	if (!cc->page || *cc->page)
		return;

	/*
	 * For MIGRATE_MOVABLE allocations we capture a suitable page ASAP
	 * regardless of the migratetype of the freelist is is captured from.
	 * This is fine because the order for a high-order MIGRATE_MOVABLE
	 * allocation is typically at least a pageblock size and overall
	 * fragmentation is not impaired. Other allocation types must
	 * capture pages from their own migratelist because otherwise they
	 * could pollute other pageblocks like MIGRATE_MOVABLE with
	 * difficult to move pages and making fragmentation worse overall.
	 */
	if (cc->migratetype == MIGRATE_MOVABLE) {
		mtype_low = 0;
		mtype_high = MIGRATE_PCPTYPES;
	} else {
		mtype_low = cc->migratetype;
		mtype_high = cc->migratetype + 1;
	}

	/* Speculatively examine the free lists without zone lock */
	for (mtype = mtype_low; mtype < mtype_high; mtype++) {
		int order;
		for (order = cc->order; order < MAX_ORDER; order++) {
			struct page *page;
			struct free_area *area;
			area = &(cc->zone->free_area[order]);
			if (list_empty(&area->free_list[mtype]))
				continue;

			/* Take the lock and attempt capture of the page */
			if (!compact_trylock_irqsave(&cc->zone->lock, &flags, cc))
				return;
			if (!list_empty(&area->free_list[mtype])) {
				page = list_entry(area->free_list[mtype].next,
							struct page, lru);
				if (capture_free_page(page, cc->order, mtype)) {
					spin_unlock_irqrestore(&cc->zone->lock,
									flags);
					*cc->page = page;
					return;
				}
			}
			spin_unlock_irqrestore(&cc->zone->lock, flags);
		}
	}
}

171 172 173 174 175 176
/*
 * Isolate free pages onto a private freelist. Caller must hold zone->lock.
 * If @strict is true, will abort returning 0 on any invalid PFNs or non-free
 * pages inside of the pageblock (even though it may still end up isolating
 * some pages).
 */
177 178
static unsigned long isolate_freepages_block(struct compact_control *cc,
				unsigned long blockpfn,
179 180 181
				unsigned long end_pfn,
				struct list_head *freelist,
				bool strict)
182
{
183
	int nr_scanned = 0, total_isolated = 0;
184
	struct page *cursor;
185 186 187
	unsigned long nr_strict_required = end_pfn - blockpfn;
	unsigned long flags;
	bool locked = false;
188 189 190

	cursor = pfn_to_page(blockpfn);

191
	/* Isolate free pages. */
192 193 194 195
	for (; blockpfn < end_pfn; blockpfn++, cursor++) {
		int isolated, i;
		struct page *page = cursor;

196
		nr_scanned++;
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
		if (!pfn_valid_within(blockpfn))
			continue;
		if (!PageBuddy(page))
			continue;

		/*
		 * The zone lock must be held to isolate freepages.
		 * Unfortunately this is a very coarse lock and can be
		 * heavily contended if there are parallel allocations
		 * or parallel compactions. For async compaction do not
		 * spin on the lock and we acquire the lock as late as
		 * possible.
		 */
		locked = compact_checklock_irqsave(&cc->zone->lock, &flags,
								locked, cc);
		if (!locked)
			break;

		/* Recheck this is a suitable migration target under lock */
		if (!strict && !suitable_migration_target(page))
			break;
218

219 220
		/* Recheck this is a buddy page under lock */
		if (!PageBuddy(page))
221 222 223 224
			continue;

		/* Found a free page, break it into order-0 pages */
		isolated = split_free_page(page);
225
		if (!isolated && strict)
226
			break;
227 228 229 230 231 232 233 234 235 236 237 238 239
		total_isolated += isolated;
		for (i = 0; i < isolated; i++) {
			list_add(&page->lru, freelist);
			page++;
		}

		/* If a page was split, advance to the end of it */
		if (isolated) {
			blockpfn += isolated - 1;
			cursor += isolated - 1;
		}
	}

240
	trace_mm_compaction_isolate_freepages(nr_scanned, total_isolated);
241 242 243 244 245 246 247 248 249 250 251 252

	/*
	 * If strict isolation is requested by CMA then check that all the
	 * pages requested were isolated. If there were any failures, 0 is
	 * returned and CMA will fail.
	 */
	if (strict && nr_strict_required != total_isolated)
		total_isolated = 0;

	if (locked)
		spin_unlock_irqrestore(&cc->zone->lock, flags);

253 254 255
	return total_isolated;
}

256 257 258 259 260 261 262 263 264 265 266 267 268
/**
 * isolate_freepages_range() - isolate free pages.
 * @start_pfn: The first PFN to start isolating.
 * @end_pfn:   The one-past-last PFN.
 *
 * Non-free pages, invalid PFNs, or zone boundaries within the
 * [start_pfn, end_pfn) range are considered errors, cause function to
 * undo its actions and return zero.
 *
 * Otherwise, function returns one-past-the-last PFN of isolated page
 * (which may be greater then end_pfn if end fell in a middle of
 * a free page).
 */
269
unsigned long
270 271
isolate_freepages_range(unsigned long start_pfn, unsigned long end_pfn)
{
272
	unsigned long isolated, pfn, block_end_pfn;
273 274 275
	struct zone *zone = NULL;
	LIST_HEAD(freelist);

276 277 278 279 280
	/* cc needed for isolate_freepages_block to acquire zone->lock */
	struct compact_control cc = {
		.sync = true,
	};

281
	if (pfn_valid(start_pfn))
282
		cc.zone = zone = page_zone(pfn_to_page(start_pfn));
283 284 285 286 287 288 289 290 291 292 293 294

	for (pfn = start_pfn; pfn < end_pfn; pfn += isolated) {
		if (!pfn_valid(pfn) || zone != page_zone(pfn_to_page(pfn)))
			break;

		/*
		 * On subsequent iterations ALIGN() is actually not needed,
		 * but we keep it that we not to complicate the code.
		 */
		block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
		block_end_pfn = min(block_end_pfn, end_pfn);

295
		isolated = isolate_freepages_block(&cc, pfn, block_end_pfn,
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
						   &freelist, true);

		/*
		 * In strict mode, isolate_freepages_block() returns 0 if
		 * there are any holes in the block (ie. invalid PFNs or
		 * non-free pages).
		 */
		if (!isolated)
			break;

		/*
		 * If we managed to isolate pages, it is always (1 << n) *
		 * pageblock_nr_pages for some non-negative n.  (Max order
		 * page may span two pageblocks).
		 */
	}

	/* split_free_page does not map the pages */
	map_pages(&freelist);

	if (pfn < end_pfn) {
		/* Loop terminated early, cleanup. */
		release_freepages(&freelist);
		return 0;
	}

	/* We don't use freelists for anything. */
	return pfn;
}

326
/* Update the number of anon and file isolated pages in the zone */
327
static void acct_isolated(struct zone *zone, bool locked, struct compact_control *cc)
328 329
{
	struct page *page;
330
	unsigned int count[2] = { 0, };
331

332 333
	list_for_each_entry(page, &cc->migratepages, lru)
		count[!!page_is_file_cache(page)]++;
334

335 336 337 338 339 340 341 342
	/* If locked we can use the interrupt unsafe versions */
	if (locked) {
		__mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
		__mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
	} else {
		mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
		mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
	}
343 344 345 346 347
}

/* Similar to reclaim, but different enough that they don't share logic */
static bool too_many_isolated(struct zone *zone)
{
348
	unsigned long active, inactive, isolated;
349 350 351

	inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
					zone_page_state(zone, NR_INACTIVE_ANON);
352 353
	active = zone_page_state(zone, NR_ACTIVE_FILE) +
					zone_page_state(zone, NR_ACTIVE_ANON);
354 355 356
	isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
					zone_page_state(zone, NR_ISOLATED_ANON);

357
	return isolated > (inactive + active) / 2;
358 359
}

360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
/**
 * isolate_migratepages_range() - isolate all migrate-able pages in range.
 * @zone:	Zone pages are in.
 * @cc:		Compaction control structure.
 * @low_pfn:	The first PFN of the range.
 * @end_pfn:	The one-past-the-last PFN of the range.
 *
 * Isolate all pages that can be migrated from the range specified by
 * [low_pfn, end_pfn).  Returns zero if there is a fatal signal
 * pending), otherwise PFN of the first page that was not scanned
 * (which may be both less, equal to or more then end_pfn).
 *
 * Assumes that cc->migratepages is empty and cc->nr_migratepages is
 * zero.
 *
 * Apart from cc->migratepages and cc->nr_migratetypes this function
 * does not modify any cc's fields, in particular it does not modify
 * (or read for that matter) cc->migrate_pfn.
378
 */
379
unsigned long
380 381
isolate_migratepages_range(struct zone *zone, struct compact_control *cc,
			   unsigned long low_pfn, unsigned long end_pfn)
382
{
383
	unsigned long last_pageblock_nr = 0, pageblock_nr;
384
	unsigned long nr_scanned = 0, nr_isolated = 0;
385
	struct list_head *migratelist = &cc->migratepages;
386
	isolate_mode_t mode = 0;
387
	struct lruvec *lruvec;
388
	unsigned long flags;
389
	bool locked = false;
390 391 392 393 394 395 396

	/*
	 * Ensure that there are not too many pages isolated from the LRU
	 * list by either parallel reclaimers or compaction. If there are,
	 * delay for some time until fewer pages are isolated
	 */
	while (unlikely(too_many_isolated(zone))) {
397
		/* async migration should just abort */
398
		if (!cc->sync)
399
			return 0;
400

401 402 403
		congestion_wait(BLK_RW_ASYNC, HZ/10);

		if (fatal_signal_pending(current))
404
			return 0;
405 406 407
	}

	/* Time to isolate some pages for migration */
408
	cond_resched();
409 410
	for (; low_pfn < end_pfn; low_pfn++) {
		struct page *page;
411 412

		/* give a chance to irqs before checking need_resched() */
413 414 415 416 417
		if (locked && !((low_pfn+1) % SWAP_CLUSTER_MAX)) {
			if (should_release_lock(&zone->lru_lock)) {
				spin_unlock_irqrestore(&zone->lru_lock, flags);
				locked = false;
			}
418
		}
419

420 421 422 423 424 425 426 427 428 429 430 431 432
		/*
		 * migrate_pfn does not necessarily start aligned to a
		 * pageblock. Ensure that pfn_valid is called when moving
		 * into a new MAX_ORDER_NR_PAGES range in case of large
		 * memory holes within the zone
		 */
		if ((low_pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
			if (!pfn_valid(low_pfn)) {
				low_pfn += MAX_ORDER_NR_PAGES - 1;
				continue;
			}
		}

433 434
		if (!pfn_valid_within(low_pfn))
			continue;
435
		nr_scanned++;
436

437 438 439 440 441 442
		/*
		 * Get the page and ensure the page is within the same zone.
		 * See the comment in isolate_freepages about overlapping
		 * nodes. It is deliberate that the new zone lock is not taken
		 * as memory compaction should not move pages between nodes.
		 */
443
		page = pfn_to_page(low_pfn);
444 445 446 447
		if (page_zone(page) != zone)
			continue;

		/* Skip if free */
448 449 450
		if (PageBuddy(page))
			continue;

451 452 453 454 455 456
		/*
		 * For async migration, also only scan in MOVABLE blocks. Async
		 * migration is optimistic to see if the minimum amount of work
		 * satisfies the allocation
		 */
		pageblock_nr = low_pfn >> pageblock_order;
457
		if (!cc->sync && last_pageblock_nr != pageblock_nr &&
458
		    !migrate_async_suitable(get_pageblock_migratetype(page))) {
459
			goto next_pageblock;
460 461
		}

462
		/* Check may be lockless but that's ok as we recheck later */
463 464 465 466
		if (!PageLRU(page))
			continue;

		/*
467 468 469 470 471 472 473 474
		 * PageLRU is set. lru_lock normally excludes isolation
		 * splitting and collapsing (collapsing has already happened
		 * if PageLRU is set) but the lock is not necessarily taken
		 * here and it is wasteful to take it just to check transhuge.
		 * Check TransHuge without lock and skip the whole pageblock if
		 * it's either a transhuge or hugetlbfs page, as calling
		 * compound_order() without preventing THP from splitting the
		 * page underneath us may return surprising results.
475
		 */
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
		if (PageTransHuge(page)) {
			if (!locked)
				goto next_pageblock;
			low_pfn += (1 << compound_order(page)) - 1;
			continue;
		}

		/* Check if it is ok to still hold the lock */
		locked = compact_checklock_irqsave(&zone->lru_lock, &flags,
								locked, cc);
		if (!locked || fatal_signal_pending(current))
			break;

		/* Recheck PageLRU and PageTransHuge under lock */
		if (!PageLRU(page))
			continue;
492 493 494 495 496
		if (PageTransHuge(page)) {
			low_pfn += (1 << compound_order(page)) - 1;
			continue;
		}

497
		if (!cc->sync)
498 499
			mode |= ISOLATE_ASYNC_MIGRATE;

500 501
		lruvec = mem_cgroup_page_lruvec(page, zone);

502
		/* Try isolate the page */
503
		if (__isolate_lru_page(page, mode) != 0)
504 505
			continue;

506 507
		VM_BUG_ON(PageTransCompound(page));

508
		/* Successfully isolated */
509
		del_page_from_lru_list(page, lruvec, page_lru(page));
510 511
		list_add(&page->lru, migratelist);
		cc->nr_migratepages++;
512
		nr_isolated++;
513 514

		/* Avoid isolating too much */
515 516
		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
			++low_pfn;
517
			break;
518
		}
519 520 521 522 523 524 525

		continue;

next_pageblock:
		low_pfn += pageblock_nr_pages;
		low_pfn = ALIGN(low_pfn, pageblock_nr_pages) - 1;
		last_pageblock_nr = pageblock_nr;
526 527
	}

528
	acct_isolated(zone, locked, cc);
529

530 531
	if (locked)
		spin_unlock_irqrestore(&zone->lru_lock, flags);
532

533 534
	trace_mm_compaction_isolate_migratepages(nr_scanned, nr_isolated);

535 536 537
	return low_pfn;
}

538 539
#endif /* CONFIG_COMPACTION || CONFIG_CMA */
#ifdef CONFIG_COMPACTION
540 541 542 543 544 545 546 547 548 549 550 551 552 553
/*
 * Returns the start pfn of the last page block in a zone.  This is the starting
 * point for full compaction of a zone.  Compaction searches for free pages from
 * the end of each zone, while isolate_freepages_block scans forward inside each
 * page block.
 */
static unsigned long start_free_pfn(struct zone *zone)
{
	unsigned long free_pfn;
	free_pfn = zone->zone_start_pfn + zone->spanned_pages;
	free_pfn &= ~(pageblock_nr_pages-1);
	return free_pfn;
}

554
/*
555 556
 * Based on information in the current compact_control, find blocks
 * suitable for isolating free pages from and then isolate them.
557
 */
558 559
static void isolate_freepages(struct zone *zone,
				struct compact_control *cc)
560
{
561 562 563 564
	struct page *page;
	unsigned long high_pfn, low_pfn, pfn, zone_end_pfn, end_pfn;
	int nr_freepages = cc->nr_freepages;
	struct list_head *freelist = &cc->freepages;
565

566 567 568 569 570 571 572
	/*
	 * Initialise the free scanner. The starting point is where we last
	 * scanned from (or the end of the zone if starting). The low point
	 * is the end of the pageblock the migration scanner is using.
	 */
	pfn = cc->free_pfn;
	low_pfn = cc->migrate_pfn + pageblock_nr_pages;
573

574 575 576 577 578 579
	/*
	 * Take care that if the migration scanner is at the end of the zone
	 * that the free scanner does not accidentally move to the next zone
	 * in the next isolation cycle.
	 */
	high_pfn = min(low_pfn, pfn);
580

581
	zone_end_pfn = zone->zone_start_pfn + zone->spanned_pages;
582

583 584 585 586 587 588 589 590
	/*
	 * Isolate free pages until enough are available to migrate the
	 * pages on cc->migratepages. We stop searching if the migrate
	 * and free page scanners meet or enough free pages are isolated.
	 */
	for (; pfn > low_pfn && cc->nr_migratepages > nr_freepages;
					pfn -= pageblock_nr_pages) {
		unsigned long isolated;
591

592 593
		if (!pfn_valid(pfn))
			continue;
594

595 596 597 598 599 600 601 602 603 604 605 606
		/*
		 * Check for overlapping nodes/zones. It's possible on some
		 * configurations to have a setup like
		 * node0 node1 node0
		 * i.e. it's possible that all pages within a zones range of
		 * pages do not belong to a single zone.
		 */
		page = pfn_to_page(pfn);
		if (page_zone(page) != zone)
			continue;

		/* Check the block is suitable for migration */
607
		if (!suitable_migration_target(page))
608
			continue;
609

610
		/* Found a block suitable for isolating free pages from */
611
		isolated = 0;
612 613 614 615
		end_pfn = min(pfn + pageblock_nr_pages, zone_end_pfn);
		isolated = isolate_freepages_block(cc, pfn, end_pfn,
						   freelist, false);
		nr_freepages += isolated;
616 617 618 619 620 621

		/*
		 * Record the highest PFN we isolated pages from. When next
		 * looking for free pages, the search will restart here as
		 * page migration may have returned some pages to the allocator
		 */
622
		if (isolated) {
623
			high_pfn = max(high_pfn, pfn);
624 625 626 627 628 629 630 631 632

			/*
			 * If the free scanner has wrapped, update
			 * compact_cached_free_pfn to point to the highest
			 * pageblock with free pages. This reduces excessive
			 * scanning of full pageblocks near the end of the
			 * zone
			 */
			if (cc->order > 0 && cc->wrapped)
633 634
				zone->compact_cached_free_pfn = high_pfn;
		}
635 636 637 638 639 640 641
	}

	/* split_free_page does not map the pages */
	map_pages(freelist);

	cc->free_pfn = high_pfn;
	cc->nr_freepages = nr_freepages;
642 643 644 645 646

	/* If compact_cached_free_pfn is reset then set it now */
	if (cc->order > 0 && !cc->wrapped &&
			zone->compact_cached_free_pfn == start_free_pfn(zone))
		zone->compact_cached_free_pfn = high_pfn;
647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694
}

/*
 * This is a migrate-callback that "allocates" freepages by taking pages
 * from the isolated freelists in the block we are migrating to.
 */
static struct page *compaction_alloc(struct page *migratepage,
					unsigned long data,
					int **result)
{
	struct compact_control *cc = (struct compact_control *)data;
	struct page *freepage;

	/* Isolate free pages if necessary */
	if (list_empty(&cc->freepages)) {
		isolate_freepages(cc->zone, cc);

		if (list_empty(&cc->freepages))
			return NULL;
	}

	freepage = list_entry(cc->freepages.next, struct page, lru);
	list_del(&freepage->lru);
	cc->nr_freepages--;

	return freepage;
}

/*
 * We cannot control nr_migratepages and nr_freepages fully when migration is
 * running as migrate_pages() has no knowledge of compact_control. When
 * migration is complete, we count the number of pages on the lists by hand.
 */
static void update_nr_listpages(struct compact_control *cc)
{
	int nr_migratepages = 0;
	int nr_freepages = 0;
	struct page *page;

	list_for_each_entry(page, &cc->migratepages, lru)
		nr_migratepages++;
	list_for_each_entry(page, &cc->freepages, lru)
		nr_freepages++;

	cc->nr_migratepages = nr_migratepages;
	cc->nr_freepages = nr_freepages;
}

695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724
/* possible outcome of isolate_migratepages */
typedef enum {
	ISOLATE_ABORT,		/* Abort compaction now */
	ISOLATE_NONE,		/* No pages isolated, continue scanning */
	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
} isolate_migrate_t;

/*
 * Isolate all pages that can be migrated from the block pointed to by
 * the migrate scanner within compact_control.
 */
static isolate_migrate_t isolate_migratepages(struct zone *zone,
					struct compact_control *cc)
{
	unsigned long low_pfn, end_pfn;

	/* Do not scan outside zone boundaries */
	low_pfn = max(cc->migrate_pfn, zone->zone_start_pfn);

	/* Only scan within a pageblock boundary */
	end_pfn = ALIGN(low_pfn + pageblock_nr_pages, pageblock_nr_pages);

	/* Do not cross the free scanner or scan within a memory hole */
	if (end_pfn > cc->free_pfn || !pfn_valid(low_pfn)) {
		cc->migrate_pfn = end_pfn;
		return ISOLATE_NONE;
	}

	/* Perform the isolation */
	low_pfn = isolate_migratepages_range(zone, cc, low_pfn, end_pfn);
725
	if (!low_pfn || cc->contended)
726 727 728 729 730 731 732
		return ISOLATE_ABORT;

	cc->migrate_pfn = low_pfn;

	return ISOLATE_SUCCESS;
}

733
static int compact_finished(struct zone *zone,
734
			    struct compact_control *cc)
735
{
736
	unsigned long watermark;
737

738 739 740
	if (fatal_signal_pending(current))
		return COMPACT_PARTIAL;

741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
	/*
	 * A full (order == -1) compaction run starts at the beginning and
	 * end of a zone; it completes when the migrate and free scanner meet.
	 * A partial (order > 0) compaction can start with the free scanner
	 * at a random point in the zone, and may have to restart.
	 */
	if (cc->free_pfn <= cc->migrate_pfn) {
		if (cc->order > 0 && !cc->wrapped) {
			/* We started partway through; restart at the end. */
			unsigned long free_pfn = start_free_pfn(zone);
			zone->compact_cached_free_pfn = free_pfn;
			cc->free_pfn = free_pfn;
			cc->wrapped = 1;
			return COMPACT_CONTINUE;
		}
		return COMPACT_COMPLETE;
	}

	/* We wrapped around and ended up where we started. */
	if (cc->wrapped && cc->free_pfn <= cc->start_free_pfn)
761 762
		return COMPACT_COMPLETE;

763 764 765 766
	/*
	 * order == -1 is expected when compacting via
	 * /proc/sys/vm/compact_memory
	 */
767 768 769
	if (cc->order == -1)
		return COMPACT_CONTINUE;

770 771 772 773 774 775 776
	/* Compaction run is not finished if the watermark is not met */
	watermark = low_wmark_pages(zone);
	watermark += (1 << cc->order);

	if (!zone_watermark_ok(zone, cc->order, watermark, 0, 0))
		return COMPACT_CONTINUE;

777
	/* Direct compactor: Is a suitable page free? */
778 779 780
	if (cc->page) {
		/* Was a suitable page captured? */
		if (*cc->page)
781
			return COMPACT_PARTIAL;
782 783 784 785 786 787 788 789 790 791 792 793
	} else {
		unsigned int order;
		for (order = cc->order; order < MAX_ORDER; order++) {
			struct free_area *area = &zone->free_area[cc->order];
			/* Job done if page is free of the right migratetype */
			if (!list_empty(&area->free_list[cc->migratetype]))
				return COMPACT_PARTIAL;

			/* Job done if allocation would set block type */
			if (cc->order >= pageblock_order && area->nr_free)
				return COMPACT_PARTIAL;
		}
794 795
	}

796 797 798
	return COMPACT_CONTINUE;
}

799 800 801 802 803 804 805 806 807 808 809 810
/*
 * compaction_suitable: Is this suitable to run compaction on this zone now?
 * Returns
 *   COMPACT_SKIPPED  - If there are too few free pages for compaction
 *   COMPACT_PARTIAL  - If the allocation would succeed without compaction
 *   COMPACT_CONTINUE - If compaction should run now
 */
unsigned long compaction_suitable(struct zone *zone, int order)
{
	int fragindex;
	unsigned long watermark;

811 812 813 814 815 816 817
	/*
	 * order == -1 is expected when compacting via
	 * /proc/sys/vm/compact_memory
	 */
	if (order == -1)
		return COMPACT_CONTINUE;

818 819 820 821 822 823 824 825 826 827 828 829 830
	/*
	 * Watermarks for order-0 must be met for compaction. Note the 2UL.
	 * This is because during migration, copies of pages need to be
	 * allocated and for a short time, the footprint is higher
	 */
	watermark = low_wmark_pages(zone) + (2UL << order);
	if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
		return COMPACT_SKIPPED;

	/*
	 * fragmentation index determines if allocation failures are due to
	 * low memory or external fragmentation
	 *
831 832
	 * index of -1000 implies allocations might succeed depending on
	 * watermarks
833 834 835 836 837 838 839 840 841
	 * index towards 0 implies failure is due to lack of memory
	 * index towards 1000 implies failure is due to fragmentation
	 *
	 * Only compact if a failure would be due to fragmentation.
	 */
	fragindex = fragmentation_index(zone, order);
	if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
		return COMPACT_SKIPPED;

842 843
	if (fragindex == -1000 && zone_watermark_ok(zone, order, watermark,
	    0, 0))
844 845 846 847 848
		return COMPACT_PARTIAL;

	return COMPACT_CONTINUE;
}

849 850 851 852
static int compact_zone(struct zone *zone, struct compact_control *cc)
{
	int ret;

853 854 855 856 857 858 859 860 861 862 863
	ret = compaction_suitable(zone, cc->order);
	switch (ret) {
	case COMPACT_PARTIAL:
	case COMPACT_SKIPPED:
		/* Compaction is likely to fail */
		return ret;
	case COMPACT_CONTINUE:
		/* Fall through to compaction */
		;
	}

864 865
	/* Setup to move all movable pages to the end of the zone */
	cc->migrate_pfn = zone->zone_start_pfn;
866 867 868 869 870 871 872 873 874

	if (cc->order > 0) {
		/* Incremental compaction. Start where the last one stopped. */
		cc->free_pfn = zone->compact_cached_free_pfn;
		cc->start_free_pfn = cc->free_pfn;
	} else {
		/* Order == -1 starts at the end of the zone. */
		cc->free_pfn = start_free_pfn(zone);
	}
875 876 877 878 879

	migrate_prep_local();

	while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) {
		unsigned long nr_migrate, nr_remaining;
880
		int err;
881

882 883 884
		switch (isolate_migratepages(zone, cc)) {
		case ISOLATE_ABORT:
			ret = COMPACT_PARTIAL;
885 886
			putback_lru_pages(&cc->migratepages);
			cc->nr_migratepages = 0;
887 888
			goto out;
		case ISOLATE_NONE:
889
			continue;
890 891 892
		case ISOLATE_SUCCESS:
			;
		}
893 894

		nr_migrate = cc->nr_migratepages;
895
		err = migrate_pages(&cc->migratepages, compaction_alloc,
896 897
				(unsigned long)cc, false,
				cc->sync ? MIGRATE_SYNC_LIGHT : MIGRATE_ASYNC);
898 899 900 901 902 903 904
		update_nr_listpages(cc);
		nr_remaining = cc->nr_migratepages;

		count_vm_event(COMPACTBLOCKS);
		count_vm_events(COMPACTPAGES, nr_migrate - nr_remaining);
		if (nr_remaining)
			count_vm_events(COMPACTPAGEFAILED, nr_remaining);
905 906
		trace_mm_compaction_migratepages(nr_migrate - nr_remaining,
						nr_remaining);
907 908

		/* Release LRU pages not migrated */
909
		if (err) {
910 911
			putback_lru_pages(&cc->migratepages);
			cc->nr_migratepages = 0;
912 913 914 915
			if (err == -ENOMEM) {
				ret = COMPACT_PARTIAL;
				goto out;
			}
916
		}
917 918 919

		/* Capture a page now if it is a suitable size */
		compact_capture_page(cc);
920 921
	}

922
out:
923 924 925 926 927 928
	/* Release free pages and check accounting */
	cc->nr_freepages -= release_freepages(&cc->freepages);
	VM_BUG_ON(cc->nr_freepages != 0);

	return ret;
}
929

930
static unsigned long compact_zone_order(struct zone *zone,
931
				 int order, gfp_t gfp_mask,
932 933
				 bool sync, bool *contended,
				 struct page **page)
934
{
935
	unsigned long ret;
936 937 938 939 940 941
	struct compact_control cc = {
		.nr_freepages = 0,
		.nr_migratepages = 0,
		.order = order,
		.migratetype = allocflags_to_migratetype(gfp_mask),
		.zone = zone,
942
		.sync = sync,
943
		.page = page,
944 945 946 947
	};
	INIT_LIST_HEAD(&cc.freepages);
	INIT_LIST_HEAD(&cc.migratepages);

948 949 950 951 952 953 954
	ret = compact_zone(zone, &cc);

	VM_BUG_ON(!list_empty(&cc.freepages));
	VM_BUG_ON(!list_empty(&cc.migratepages));

	*contended = cc.contended;
	return ret;
955 956
}

957 958
int sysctl_extfrag_threshold = 500;

959 960 961 962 963 964
/**
 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
 * @zonelist: The zonelist used for the current allocation
 * @order: The order of the current allocation
 * @gfp_mask: The GFP mask of the current allocation
 * @nodemask: The allowed nodes to allocate from
965
 * @sync: Whether migration is synchronous or not
966 967
 * @contended: Return value that is true if compaction was aborted due to lock contention
 * @page: Optionally capture a free page of the requested order during compaction
968 969 970 971
 *
 * This is the main entry point for direct page compaction.
 */
unsigned long try_to_compact_pages(struct zonelist *zonelist,
972
			int order, gfp_t gfp_mask, nodemask_t *nodemask,
973
			bool sync, bool *contended, struct page **page)
974 975 976 977 978 979 980
{
	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
	int may_enter_fs = gfp_mask & __GFP_FS;
	int may_perform_io = gfp_mask & __GFP_IO;
	struct zoneref *z;
	struct zone *zone;
	int rc = COMPACT_SKIPPED;
981
	int alloc_flags = 0;
982

983
	/* Check if the GFP flags allow compaction */
984
	if (!order || !may_enter_fs || !may_perform_io)
985 986 987 988
		return rc;

	count_vm_event(COMPACTSTALL);

989 990 991 992
#ifdef CONFIG_CMA
	if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
		alloc_flags |= ALLOC_CMA;
#endif
993 994 995 996 997
	/* Compact each zone in the list */
	for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
								nodemask) {
		int status;

998
		status = compact_zone_order(zone, order, gfp_mask, sync,
999
						contended, page);
1000 1001
		rc = max(status, rc);

1002
		/* If a normal allocation would succeed, stop compacting */
1003 1004
		if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0,
				      alloc_flags))
1005 1006 1007 1008 1009 1010 1011
			break;
	}

	return rc;
}


1012
/* Compact all zones within a node */
1013
static int __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
{
	int zoneid;
	struct zone *zone;

	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {

		zone = &pgdat->node_zones[zoneid];
		if (!populated_zone(zone))
			continue;

1024 1025 1026 1027 1028
		cc->nr_freepages = 0;
		cc->nr_migratepages = 0;
		cc->zone = zone;
		INIT_LIST_HEAD(&cc->freepages);
		INIT_LIST_HEAD(&cc->migratepages);
1029

1030
		if (cc->order == -1 || !compaction_deferred(zone, cc->order))
1031
			compact_zone(zone, cc);
1032

1033 1034 1035
		if (cc->order > 0) {
			int ok = zone_watermark_ok(zone, cc->order,
						low_wmark_pages(zone), 0, 0);
1036
			if (ok && cc->order >= zone->compact_order_failed)
1037 1038
				zone->compact_order_failed = cc->order + 1;
			/* Currently async compaction is never deferred. */
1039
			else if (!ok && cc->sync)
1040 1041 1042
				defer_compaction(zone, cc->order);
		}

1043 1044
		VM_BUG_ON(!list_empty(&cc->freepages));
		VM_BUG_ON(!list_empty(&cc->migratepages));
1045 1046 1047 1048 1049
	}

	return 0;
}

1050 1051 1052 1053
int compact_pgdat(pg_data_t *pgdat, int order)
{
	struct compact_control cc = {
		.order = order,
1054
		.sync = false,
1055
		.page = NULL,
1056 1057 1058 1059 1060 1061 1062 1063 1064
	};

	return __compact_pgdat(pgdat, &cc);
}

static int compact_node(int nid)
{
	struct compact_control cc = {
		.order = -1,
1065
		.sync = true,
1066
		.page = NULL,
1067 1068
	};

1069
	return __compact_pgdat(NODE_DATA(nid), &cc);
1070 1071
}

1072 1073 1074 1075 1076
/* Compact all nodes in the system */
static int compact_nodes(void)
{
	int nid;

1077 1078 1079
	/* Flush pending updates to the LRU lists */
	lru_add_drain_all();

1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
	for_each_online_node(nid)
		compact_node(nid);

	return COMPACT_COMPLETE;
}

/* The written value is actually unused, all memory is compacted */
int sysctl_compact_memory;

/* This is the entry point for compacting all nodes via /proc/sys/vm */
int sysctl_compaction_handler(struct ctl_table *table, int write,
			void __user *buffer, size_t *length, loff_t *ppos)
{
	if (write)
		return compact_nodes();

	return 0;
}
1098

1099 1100 1101 1102 1103 1104 1105 1106
int sysctl_extfrag_handler(struct ctl_table *table, int write,
			void __user *buffer, size_t *length, loff_t *ppos)
{
	proc_dointvec_minmax(table, write, buffer, length, ppos);

	return 0;
}

1107
#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1108 1109
ssize_t sysfs_compact_node(struct device *dev,
			struct device_attribute *attr,
1110 1111
			const char *buf, size_t count)
{
1112 1113 1114 1115 1116 1117 1118 1119
	int nid = dev->id;

	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
		/* Flush pending updates to the LRU lists */
		lru_add_drain_all();

		compact_node(nid);
	}
1120 1121 1122

	return count;
}
1123
static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1124 1125 1126

int compaction_register_node(struct node *node)
{
1127
	return device_create_file(&node->dev, &dev_attr_compact);
1128 1129 1130 1131
}

void compaction_unregister_node(struct node *node)
{
1132
	return device_remove_file(&node->dev, &dev_attr_compact);
1133 1134
}
#endif /* CONFIG_SYSFS && CONFIG_NUMA */
1135 1136

#endif /* CONFIG_COMPACTION */