i40e_txrx.c 60.5 KB
Newer Older
1 2 3
/*******************************************************************************
 *
 * Intel Ethernet Controller XL710 Family Linux Virtual Function Driver
4
 * Copyright(c) 2013 - 2016 Intel Corporation.
5 6 7 8 9 10 11 12 13 14
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
15 16 17
 * You should have received a copy of the GNU General Public License along
 * with this program.  If not, see <http://www.gnu.org/licenses/>.
 *
18 19 20 21 22 23 24 25 26
 * The full GNU General Public License is included in this distribution in
 * the file called "COPYING".
 *
 * Contact Information:
 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
 *
 ******************************************************************************/

27
#include <linux/prefetch.h>
28
#include <net/busy_poll.h>
29

30
#include "i40evf.h"
31
#include "i40e_prototype.h"
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53

static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
				u32 td_tag)
{
	return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
			   ((u64)td_cmd  << I40E_TXD_QW1_CMD_SHIFT) |
			   ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
			   ((u64)size  << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
			   ((u64)td_tag  << I40E_TXD_QW1_L2TAG1_SHIFT));
}

#define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)

/**
 * i40e_unmap_and_free_tx_resource - Release a Tx buffer
 * @ring:      the ring that owns the buffer
 * @tx_buffer: the buffer to free
 **/
static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
					    struct i40e_tx_buffer *tx_buffer)
{
	if (tx_buffer->skb) {
54
		dev_kfree_skb_any(tx_buffer->skb);
55 56 57 58 59 60 61 62 63 64 65
		if (dma_unmap_len(tx_buffer, len))
			dma_unmap_single(ring->dev,
					 dma_unmap_addr(tx_buffer, dma),
					 dma_unmap_len(tx_buffer, len),
					 DMA_TO_DEVICE);
	} else if (dma_unmap_len(tx_buffer, len)) {
		dma_unmap_page(ring->dev,
			       dma_unmap_addr(tx_buffer, dma),
			       dma_unmap_len(tx_buffer, len),
			       DMA_TO_DEVICE);
	}
66 67 68 69

	if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
		kfree(tx_buffer->raw_buf);

70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
	tx_buffer->next_to_watch = NULL;
	tx_buffer->skb = NULL;
	dma_unmap_len_set(tx_buffer, len, 0);
	/* tx_buffer must be completely set up in the transmit path */
}

/**
 * i40evf_clean_tx_ring - Free any empty Tx buffers
 * @tx_ring: ring to be cleaned
 **/
void i40evf_clean_tx_ring(struct i40e_ring *tx_ring)
{
	unsigned long bi_size;
	u16 i;

	/* ring already cleared, nothing to do */
	if (!tx_ring->tx_bi)
		return;

	/* Free all the Tx ring sk_buffs */
	for (i = 0; i < tx_ring->count; i++)
		i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);

	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
	memset(tx_ring->tx_bi, 0, bi_size);

	/* Zero out the descriptor ring */
	memset(tx_ring->desc, 0, tx_ring->size);

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;

	if (!tx_ring->netdev)
		return;

	/* cleanup Tx queue statistics */
	netdev_tx_reset_queue(netdev_get_tx_queue(tx_ring->netdev,
						  tx_ring->queue_index));
}

/**
 * i40evf_free_tx_resources - Free Tx resources per queue
 * @tx_ring: Tx descriptor ring for a specific queue
 *
 * Free all transmit software resources
 **/
void i40evf_free_tx_resources(struct i40e_ring *tx_ring)
{
	i40evf_clean_tx_ring(tx_ring);
	kfree(tx_ring->tx_bi);
	tx_ring->tx_bi = NULL;

	if (tx_ring->desc) {
		dma_free_coherent(tx_ring->dev, tx_ring->size,
				  tx_ring->desc, tx_ring->dma);
		tx_ring->desc = NULL;
	}
}

J
Jesse Brandeburg 已提交
129
/**
130 131
 * i40evf_get_tx_pending - how many Tx descriptors not processed
 * @tx_ring: the ring of descriptors
132
 * @in_sw: is tx_pending being checked in SW or HW
J
Jesse Brandeburg 已提交
133
 *
134 135
 * Since there is no access to the ring head register
 * in XL710, we need to use our local copies
J
Jesse Brandeburg 已提交
136
 **/
137
u32 i40evf_get_tx_pending(struct i40e_ring *ring, bool in_sw)
J
Jesse Brandeburg 已提交
138
{
139
	u32 head, tail;
J
Jesse Brandeburg 已提交
140

141 142 143 144
	if (!in_sw)
		head = i40e_get_head(ring);
	else
		head = ring->next_to_clean;
145 146 147 148 149 150 151
	tail = readl(ring->tail);

	if (head != tail)
		return (head < tail) ?
			tail - head : (tail + ring->count - head);

	return 0;
J
Jesse Brandeburg 已提交
152 153
}

154 155
#define WB_STRIDE 0x3

156 157
/**
 * i40e_clean_tx_irq - Reclaim resources after transmit completes
158 159 160
 * @vsi: the VSI we care about
 * @tx_ring: Tx ring to clean
 * @napi_budget: Used to determine if we are in netpoll
161 162 163
 *
 * Returns true if there's any budget left (e.g. the clean is finished)
 **/
164 165
static bool i40e_clean_tx_irq(struct i40e_vsi *vsi,
			      struct i40e_ring *tx_ring, int napi_budget)
166 167 168
{
	u16 i = tx_ring->next_to_clean;
	struct i40e_tx_buffer *tx_buf;
169
	struct i40e_tx_desc *tx_head;
170
	struct i40e_tx_desc *tx_desc;
171 172
	unsigned int total_bytes = 0, total_packets = 0;
	unsigned int budget = vsi->work_limit;
173 174 175 176 177

	tx_buf = &tx_ring->tx_bi[i];
	tx_desc = I40E_TX_DESC(tx_ring, i);
	i -= tx_ring->count;

178 179
	tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));

180 181 182 183 184 185 186 187 188 189
	do {
		struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;

		/* if next_to_watch is not set then there is no work pending */
		if (!eop_desc)
			break;

		/* prevent any other reads prior to eop_desc */
		read_barrier_depends();

190 191
		/* we have caught up to head, no work left to do */
		if (tx_head == tx_desc)
192 193 194 195 196 197 198 199 200 201
			break;

		/* clear next_to_watch to prevent false hangs */
		tx_buf->next_to_watch = NULL;

		/* update the statistics for this packet */
		total_bytes += tx_buf->bytecount;
		total_packets += tx_buf->gso_segs;

		/* free the skb */
202
		napi_consume_skb(tx_buf->skb, napi_budget);
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245

		/* unmap skb header data */
		dma_unmap_single(tx_ring->dev,
				 dma_unmap_addr(tx_buf, dma),
				 dma_unmap_len(tx_buf, len),
				 DMA_TO_DEVICE);

		/* clear tx_buffer data */
		tx_buf->skb = NULL;
		dma_unmap_len_set(tx_buf, len, 0);

		/* unmap remaining buffers */
		while (tx_desc != eop_desc) {

			tx_buf++;
			tx_desc++;
			i++;
			if (unlikely(!i)) {
				i -= tx_ring->count;
				tx_buf = tx_ring->tx_bi;
				tx_desc = I40E_TX_DESC(tx_ring, 0);
			}

			/* unmap any remaining paged data */
			if (dma_unmap_len(tx_buf, len)) {
				dma_unmap_page(tx_ring->dev,
					       dma_unmap_addr(tx_buf, dma),
					       dma_unmap_len(tx_buf, len),
					       DMA_TO_DEVICE);
				dma_unmap_len_set(tx_buf, len, 0);
			}
		}

		/* move us one more past the eop_desc for start of next pkt */
		tx_buf++;
		tx_desc++;
		i++;
		if (unlikely(!i)) {
			i -= tx_ring->count;
			tx_buf = tx_ring->tx_bi;
			tx_desc = I40E_TX_DESC(tx_ring, 0);
		}

246 247
		prefetch(tx_desc);

248 249 250 251 252 253 254 255 256 257 258 259 260
		/* update budget accounting */
		budget--;
	} while (likely(budget));

	i += tx_ring->count;
	tx_ring->next_to_clean = i;
	u64_stats_update_begin(&tx_ring->syncp);
	tx_ring->stats.bytes += total_bytes;
	tx_ring->stats.packets += total_packets;
	u64_stats_update_end(&tx_ring->syncp);
	tx_ring->q_vector->tx.total_bytes += total_bytes;
	tx_ring->q_vector->tx.total_packets += total_packets;

261 262 263 264 265 266
	if (tx_ring->flags & I40E_TXR_FLAGS_WB_ON_ITR) {
		/* check to see if there are < 4 descriptors
		 * waiting to be written back, then kick the hardware to force
		 * them to be written back in case we stay in NAPI.
		 * In this mode on X722 we do not enable Interrupt.
		 */
267
		unsigned int j = i40evf_get_tx_pending(tx_ring, false);
268 269 270

		if (budget &&
		    ((j / (WB_STRIDE + 1)) == 0) && (j > 0) &&
271
		    !test_bit(__I40E_DOWN, &vsi->state) &&
272 273 274 275
		    (I40E_DESC_UNUSED(tx_ring) != tx_ring->count))
			tx_ring->arm_wb = true;
	}

276 277 278 279 280 281 282 283 284 285 286 287 288
	netdev_tx_completed_queue(netdev_get_tx_queue(tx_ring->netdev,
						      tx_ring->queue_index),
				  total_packets, total_bytes);

#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
		     (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
		/* Make sure that anybody stopping the queue after this
		 * sees the new next_to_clean.
		 */
		smp_mb();
		if (__netif_subqueue_stopped(tx_ring->netdev,
					     tx_ring->queue_index) &&
289
		   !test_bit(__I40E_DOWN, &vsi->state)) {
290 291 292 293 294 295
			netif_wake_subqueue(tx_ring->netdev,
					    tx_ring->queue_index);
			++tx_ring->tx_stats.restart_queue;
		}
	}

296
	return !!budget;
297 298
}

299
/**
300
 * i40evf_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
301
 * @vsi: the VSI we care about
302
 * @q_vector: the vector on which to enable writeback
303 304
 *
 **/
305 306
static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
				  struct i40e_q_vector *q_vector)
307
{
308
	u16 flags = q_vector->tx.ring[0].flags;
309
	u32 val;
310

311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
	if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
		return;

	if (q_vector->arm_wb_state)
		return;

	val = I40E_VFINT_DYN_CTLN1_WB_ON_ITR_MASK |
	      I40E_VFINT_DYN_CTLN1_ITR_INDX_MASK; /* set noitr */

	wr32(&vsi->back->hw,
	     I40E_VFINT_DYN_CTLN1(q_vector->v_idx +
				  vsi->base_vector - 1), val);
	q_vector->arm_wb_state = true;
}

/**
 * i40evf_force_wb - Issue SW Interrupt so HW does a wb
 * @vsi: the VSI we care about
 * @q_vector: the vector  on which to force writeback
 *
 **/
void i40evf_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
{
	u32 val = I40E_VFINT_DYN_CTLN1_INTENA_MASK |
		  I40E_VFINT_DYN_CTLN1_ITR_INDX_MASK | /* set noitr */
		  I40E_VFINT_DYN_CTLN1_SWINT_TRIG_MASK |
		  I40E_VFINT_DYN_CTLN1_SW_ITR_INDX_ENA_MASK
		  /* allow 00 to be written to the index */;

	wr32(&vsi->back->hw,
	     I40E_VFINT_DYN_CTLN1(q_vector->v_idx + vsi->base_vector - 1),
	     val);
343 344
}

345 346 347 348
/**
 * i40e_set_new_dynamic_itr - Find new ITR level
 * @rc: structure containing ring performance data
 *
349 350
 * Returns true if ITR changed, false if not
 *
351 352 353 354 355 356 357 358
 * Stores a new ITR value based on packets and byte counts during
 * the last interrupt.  The advantage of per interrupt computation
 * is faster updates and more accurate ITR for the current traffic
 * pattern.  Constants in this function were computed based on
 * theoretical maximum wire speed and thresholds were set based on
 * testing data as well as attempting to minimize response time
 * while increasing bulk throughput.
 **/
359
static bool i40e_set_new_dynamic_itr(struct i40e_ring_container *rc)
360 361
{
	enum i40e_latency_range new_latency_range = rc->latency_range;
362
	struct i40e_q_vector *qv = rc->ring->q_vector;
363 364
	u32 new_itr = rc->itr;
	int bytes_per_int;
365
	int usecs;
366 367

	if (rc->total_packets == 0 || !rc->itr)
368
		return false;
369 370

	/* simple throttlerate management
371
	 *   0-10MB/s   lowest (50000 ints/s)
372
	 *  10-20MB/s   low    (20000 ints/s)
373 374
	 *  20-1249MB/s bulk   (18000 ints/s)
	 *  > 40000 Rx packets per second (8000 ints/s)
375 376 377 378
	 *
	 * The math works out because the divisor is in 10^(-6) which
	 * turns the bytes/us input value into MB/s values, but
	 * make sure to use usecs, as the register values written
379 380
	 * are in 2 usec increments in the ITR registers, and make sure
	 * to use the smoothed values that the countdown timer gives us.
381
	 */
382
	usecs = (rc->itr << 1) * ITR_COUNTDOWN_START;
383
	bytes_per_int = rc->total_bytes / usecs;
384

385
	switch (new_latency_range) {
386 387 388 389 390 391 392 393 394 395 396
	case I40E_LOWEST_LATENCY:
		if (bytes_per_int > 10)
			new_latency_range = I40E_LOW_LATENCY;
		break;
	case I40E_LOW_LATENCY:
		if (bytes_per_int > 20)
			new_latency_range = I40E_BULK_LATENCY;
		else if (bytes_per_int <= 10)
			new_latency_range = I40E_LOWEST_LATENCY;
		break;
	case I40E_BULK_LATENCY:
397
	case I40E_ULTRA_LATENCY:
398 399 400
	default:
		if (bytes_per_int <= 20)
			new_latency_range = I40E_LOW_LATENCY;
401 402
		break;
	}
403 404 405 406 407 408 409 410 411 412 413 414

	/* this is to adjust RX more aggressively when streaming small
	 * packets.  The value of 40000 was picked as it is just beyond
	 * what the hardware can receive per second if in low latency
	 * mode.
	 */
#define RX_ULTRA_PACKET_RATE 40000

	if ((((rc->total_packets * 1000000) / usecs) > RX_ULTRA_PACKET_RATE) &&
	    (&qv->rx == rc))
		new_latency_range = I40E_ULTRA_LATENCY;

415
	rc->latency_range = new_latency_range;
416 417 418

	switch (new_latency_range) {
	case I40E_LOWEST_LATENCY:
419
		new_itr = I40E_ITR_50K;
420 421 422 423 424
		break;
	case I40E_LOW_LATENCY:
		new_itr = I40E_ITR_20K;
		break;
	case I40E_BULK_LATENCY:
425 426 427
		new_itr = I40E_ITR_18K;
		break;
	case I40E_ULTRA_LATENCY:
428 429 430 431 432 433 434 435
		new_itr = I40E_ITR_8K;
		break;
	default:
		break;
	}

	rc->total_bytes = 0;
	rc->total_packets = 0;
436 437 438 439 440 441 442

	if (new_itr != rc->itr) {
		rc->itr = new_itr;
		return true;
	}

	return false;
443 444
}

J
Jesse Brandeburg 已提交
445
/**
446 447 448 449 450 451 452 453 454 455 456 457 458
 * i40evf_setup_tx_descriptors - Allocate the Tx descriptors
 * @tx_ring: the tx ring to set up
 *
 * Return 0 on success, negative on error
 **/
int i40evf_setup_tx_descriptors(struct i40e_ring *tx_ring)
{
	struct device *dev = tx_ring->dev;
	int bi_size;

	if (!dev)
		return -ENOMEM;

459 460
	/* warn if we are about to overwrite the pointer */
	WARN_ON(tx_ring->tx_bi);
461 462 463 464 465 466 467
	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
	tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
	if (!tx_ring->tx_bi)
		goto err;

	/* round up to nearest 4K */
	tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
468 469 470 471
	/* add u32 for head writeback, align after this takes care of
	 * guaranteeing this is at least one cache line in size
	 */
	tx_ring->size += sizeof(u32);
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
	tx_ring->size = ALIGN(tx_ring->size, 4096);
	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
					   &tx_ring->dma, GFP_KERNEL);
	if (!tx_ring->desc) {
		dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
			 tx_ring->size);
		goto err;
	}

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;
	return 0;

err:
	kfree(tx_ring->tx_bi);
	tx_ring->tx_bi = NULL;
	return -ENOMEM;
}

/**
 * i40evf_clean_rx_ring - Free Rx buffers
 * @rx_ring: ring to be cleaned
 **/
void i40evf_clean_rx_ring(struct i40e_ring *rx_ring)
{
	struct device *dev = rx_ring->dev;
	unsigned long bi_size;
	u16 i;

	/* ring already cleared, nothing to do */
	if (!rx_ring->rx_bi)
		return;

	/* Free all the Rx ring sk_buffs */
	for (i = 0; i < rx_ring->count; i++) {
507 508
		struct i40e_rx_buffer *rx_bi = &rx_ring->rx_bi[i];

509 510 511 512
		if (rx_bi->skb) {
			dev_kfree_skb(rx_bi->skb);
			rx_bi->skb = NULL;
		}
513 514 515 516 517 518 519 520
		if (!rx_bi->page)
			continue;

		dma_unmap_page(dev, rx_bi->dma, PAGE_SIZE, DMA_FROM_DEVICE);
		__free_pages(rx_bi->page, 0);

		rx_bi->page = NULL;
		rx_bi->page_offset = 0;
521 522 523 524 525 526 527 528
	}

	bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
	memset(rx_ring->rx_bi, 0, bi_size);

	/* Zero out the descriptor ring */
	memset(rx_ring->desc, 0, rx_ring->size);

529
	rx_ring->next_to_alloc = 0;
530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;
}

/**
 * i40evf_free_rx_resources - Free Rx resources
 * @rx_ring: ring to clean the resources from
 *
 * Free all receive software resources
 **/
void i40evf_free_rx_resources(struct i40e_ring *rx_ring)
{
	i40evf_clean_rx_ring(rx_ring);
	kfree(rx_ring->rx_bi);
	rx_ring->rx_bi = NULL;

	if (rx_ring->desc) {
		dma_free_coherent(rx_ring->dev, rx_ring->size,
				  rx_ring->desc, rx_ring->dma);
		rx_ring->desc = NULL;
	}
}

/**
 * i40evf_setup_rx_descriptors - Allocate Rx descriptors
 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
 *
 * Returns 0 on success, negative on failure
 **/
int i40evf_setup_rx_descriptors(struct i40e_ring *rx_ring)
{
	struct device *dev = rx_ring->dev;
	int bi_size;

564 565
	/* warn if we are about to overwrite the pointer */
	WARN_ON(rx_ring->rx_bi);
566 567 568 569 570
	bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
	rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
	if (!rx_ring->rx_bi)
		goto err;

571
	u64_stats_init(&rx_ring->syncp);
572

573
	/* Round up to nearest 4K */
574
	rx_ring->size = rx_ring->count * sizeof(union i40e_32byte_rx_desc);
575 576 577 578 579 580 581 582 583 584
	rx_ring->size = ALIGN(rx_ring->size, 4096);
	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
					   &rx_ring->dma, GFP_KERNEL);

	if (!rx_ring->desc) {
		dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
			 rx_ring->size);
		goto err;
	}

585
	rx_ring->next_to_alloc = 0;
586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;

	return 0;
err:
	kfree(rx_ring->rx_bi);
	rx_ring->rx_bi = NULL;
	return -ENOMEM;
}

/**
 * i40e_release_rx_desc - Store the new tail and head values
 * @rx_ring: ring to bump
 * @val: new head index
 **/
static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
{
	rx_ring->next_to_use = val;
604 605 606 607

	/* update next to alloc since we have filled the ring */
	rx_ring->next_to_alloc = val;

608 609 610 611 612 613 614 615 616 617
	/* Force memory writes to complete before letting h/w
	 * know there are new descriptors to fetch.  (Only
	 * applicable for weak-ordered memory model archs,
	 * such as IA-64).
	 */
	wmb();
	writel(val, rx_ring->tail);
}

/**
618 619 620
 * i40e_alloc_mapped_page - recycle or make a new page
 * @rx_ring: ring to use
 * @bi: rx_buffer struct to modify
621
 *
622 623
 * Returns true if the page was successfully allocated or
 * reused.
624
 **/
625 626
static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring,
				   struct i40e_rx_buffer *bi)
627
{
628 629
	struct page *page = bi->page;
	dma_addr_t dma;
630

631 632 633 634 635
	/* since we are recycling buffers we should seldom need to alloc */
	if (likely(page)) {
		rx_ring->rx_stats.page_reuse_count++;
		return true;
	}
636

637 638 639 640 641 642
	/* alloc new page for storage */
	page = dev_alloc_page();
	if (unlikely(!page)) {
		rx_ring->rx_stats.alloc_page_failed++;
		return false;
	}
643

644 645
	/* map page for use */
	dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
646

647 648
	/* if mapping failed free memory back to system since
	 * there isn't much point in holding memory we can't use
649
	 */
650 651 652 653
	if (dma_mapping_error(rx_ring->dev, dma)) {
		__free_pages(page, 0);
		rx_ring->rx_stats.alloc_page_failed++;
		return false;
654 655
	}

656 657 658
	bi->dma = dma;
	bi->page = page;
	bi->page_offset = 0;
659

660 661
	return true;
}
662

663 664 665 666 667 668 669 670 671 672
/**
 * i40e_receive_skb - Send a completed packet up the stack
 * @rx_ring:  rx ring in play
 * @skb: packet to send up
 * @vlan_tag: vlan tag for packet
 **/
static void i40e_receive_skb(struct i40e_ring *rx_ring,
			     struct sk_buff *skb, u16 vlan_tag)
{
	struct i40e_q_vector *q_vector = rx_ring->q_vector;
673

674 675 676 677 678
	if ((rx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
	    (vlan_tag & VLAN_VID_MASK))
		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);

	napi_gro_receive(&q_vector->napi, skb);
679 680 681
}

/**
682
 * i40evf_alloc_rx_buffers - Replace used receive buffers
683 684
 * @rx_ring: ring to place buffers on
 * @cleaned_count: number of buffers to replace
685
 *
686
 * Returns false if all allocations were successful, true if any fail
687
 **/
688
bool i40evf_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
689
{
690
	u16 ntu = rx_ring->next_to_use;
691 692 693 694 695
	union i40e_rx_desc *rx_desc;
	struct i40e_rx_buffer *bi;

	/* do nothing if no valid netdev defined */
	if (!rx_ring->netdev || !cleaned_count)
696
		return false;
697

698 699
	rx_desc = I40E_RX_DESC(rx_ring, ntu);
	bi = &rx_ring->rx_bi[ntu];
700

701 702 703
	do {
		if (!i40e_alloc_mapped_page(rx_ring, bi))
			goto no_buffers;
704

705 706 707 708
		/* Refresh the desc even if buffer_addrs didn't change
		 * because each write-back erases this info.
		 */
		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
709
		rx_desc->read.hdr_addr = 0;
710

711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
		rx_desc++;
		bi++;
		ntu++;
		if (unlikely(ntu == rx_ring->count)) {
			rx_desc = I40E_RX_DESC(rx_ring, 0);
			bi = rx_ring->rx_bi;
			ntu = 0;
		}

		/* clear the status bits for the next_to_use descriptor */
		rx_desc->wb.qword1.status_error_len = 0;

		cleaned_count--;
	} while (cleaned_count);

	if (rx_ring->next_to_use != ntu)
		i40e_release_rx_desc(rx_ring, ntu);
728 729 730

	return false;

731
no_buffers:
732 733
	if (rx_ring->next_to_use != ntu)
		i40e_release_rx_desc(rx_ring, ntu);
734 735 736 737 738

	/* make sure to come back via polling to try again after
	 * allocation failure
	 */
	return true;
739 740 741 742 743 744
}

/**
 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
 * @vsi: the VSI we care about
 * @skb: skb currently being received and modified
745 746 747
 * @rx_desc: the receive descriptor
 *
 * skb->protocol must be set before this function is called
748 749 750
 **/
static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
				    struct sk_buff *skb,
751
				    union i40e_rx_desc *rx_desc)
752
{
753 754
	struct i40e_rx_ptype_decoded decoded;
	u32 rx_error, rx_status;
755
	bool ipv4, ipv6;
756 757 758 759 760 761 762 763 764 765
	u8 ptype;
	u64 qword;

	qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
	ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT;
	rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
		   I40E_RXD_QW1_ERROR_SHIFT;
	rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
		    I40E_RXD_QW1_STATUS_SHIFT;
	decoded = decode_rx_desc_ptype(ptype);
766 767 768

	skb->ip_summed = CHECKSUM_NONE;

769 770
	skb_checksum_none_assert(skb);

771
	/* Rx csum enabled and ip headers found? */
772 773 774 775
	if (!(vsi->netdev->features & NETIF_F_RXCSUM))
		return;

	/* did the hardware decode the packet and checksum? */
776
	if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
777 778 779 780
		return;

	/* both known and outer_ip must be set for the below code to work */
	if (!(decoded.known && decoded.outer_ip))
781 782
		return;

783 784 785 786
	ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4);
	ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6);
787 788

	if (ipv4 &&
789 790
	    (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
			 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
791 792
		goto checksum_fail;

J
Jesse Brandeburg 已提交
793
	/* likely incorrect csum if alternate IP extension headers found */
794
	if (ipv6 &&
795
	    rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
796
		/* don't increment checksum err here, non-fatal err */
797 798
		return;

799
	/* there was some L4 error, count error and punt packet to the stack */
800
	if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
801 802 803 804 805 806
		goto checksum_fail;

	/* handle packets that were not able to be checksummed due
	 * to arrival speed, in this case the stack can compute
	 * the csum.
	 */
807
	if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
808 809
		return;

810 811 812
	/* If there is an outer header present that might contain a checksum
	 * we need to bump the checksum level by 1 to reflect the fact that
	 * we are indicating we validated the inner checksum.
813
	 */
814 815 816 817 818 819 820 821 822 823 824 825 826
	if (decoded.tunnel_type >= I40E_RX_PTYPE_TUNNEL_IP_GRENAT)
		skb->csum_level = 1;

	/* Only report checksum unnecessary for TCP, UDP, or SCTP */
	switch (decoded.inner_prot) {
	case I40E_RX_PTYPE_INNER_PROT_TCP:
	case I40E_RX_PTYPE_INNER_PROT_UDP:
	case I40E_RX_PTYPE_INNER_PROT_SCTP:
		skb->ip_summed = CHECKSUM_UNNECESSARY;
		/* fall though */
	default:
		break;
	}
827 828 829 830 831

	return;

checksum_fail:
	vsi->back->hw_csum_rx_error++;
832 833 834
}

/**
835
 * i40e_ptype_to_htype - get a hash type
836 837 838 839
 * @ptype: the ptype value from the descriptor
 *
 * Returns a hash type to be used by skb_set_hash
 **/
840
static inline int i40e_ptype_to_htype(u8 ptype)
841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856
{
	struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);

	if (!decoded.known)
		return PKT_HASH_TYPE_NONE;

	if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
	    decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
		return PKT_HASH_TYPE_L4;
	else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
		 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
		return PKT_HASH_TYPE_L3;
	else
		return PKT_HASH_TYPE_L2;
}

857 858 859 860 861 862 863 864 865 866 867
/**
 * i40e_rx_hash - set the hash value in the skb
 * @ring: descriptor ring
 * @rx_desc: specific descriptor
 **/
static inline void i40e_rx_hash(struct i40e_ring *ring,
				union i40e_rx_desc *rx_desc,
				struct sk_buff *skb,
				u8 rx_ptype)
{
	u32 hash;
868
	const __le64 rss_mask =
869 870 871 872 873 874 875 876 877 878 879 880
		cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
			    I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);

	if (ring->netdev->features & NETIF_F_RXHASH)
		return;

	if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
		hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
		skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
	}
}

881
/**
882 883 884 885 886
 * i40evf_process_skb_fields - Populate skb header fields from Rx descriptor
 * @rx_ring: rx descriptor ring packet is being transacted on
 * @rx_desc: pointer to the EOP Rx descriptor
 * @skb: pointer to current skb being populated
 * @rx_ptype: the packet type decoded by hardware
887
 *
888 889 890
 * This function checks the ring, descriptor, and packet information in
 * order to populate the hash, checksum, VLAN, protocol, and
 * other fields within the skb.
891
 **/
892 893 894 895
static inline
void i40evf_process_skb_fields(struct i40e_ring *rx_ring,
			       union i40e_rx_desc *rx_desc, struct sk_buff *skb,
			       u8 rx_ptype)
896
{
897
	i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
898

899 900
	/* modifies the skb - consumes the enet header */
	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
901

902
	i40e_rx_checksum(rx_ring->vsi, skb, rx_desc);
903

904 905
	skb_record_rx_queue(skb, rx_ring->queue_index);
}
906

907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923
/**
 * i40e_pull_tail - i40e specific version of skb_pull_tail
 * @rx_ring: rx descriptor ring packet is being transacted on
 * @skb: pointer to current skb being adjusted
 *
 * This function is an i40e specific version of __pskb_pull_tail.  The
 * main difference between this version and the original function is that
 * this function can make several assumptions about the state of things
 * that allow for significant optimizations versus the standard function.
 * As a result we can do things like drop a frag and maintain an accurate
 * truesize for the skb.
 */
static void i40e_pull_tail(struct i40e_ring *rx_ring, struct sk_buff *skb)
{
	struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
	unsigned char *va;
	unsigned int pull_len;
924

925 926 927 928 929
	/* it is valid to use page_address instead of kmap since we are
	 * working with pages allocated out of the lomem pool per
	 * alloc_page(GFP_ATOMIC)
	 */
	va = skb_frag_address(frag);
930

931 932 933 934
	/* we need the header to contain the greater of either ETH_HLEN or
	 * 60 bytes if the skb->len is less than 60 for skb_pad.
	 */
	pull_len = eth_get_headlen(va, I40E_RX_HDR_SIZE);
935

936 937
	/* align pull length to size of long to optimize memcpy performance */
	skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
938

939 940 941 942 943 944
	/* update all of the pointers */
	skb_frag_size_sub(frag, pull_len);
	frag->page_offset += pull_len;
	skb->data_len -= pull_len;
	skb->tail += pull_len;
}
945

946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963
/**
 * i40e_cleanup_headers - Correct empty headers
 * @rx_ring: rx descriptor ring packet is being transacted on
 * @skb: pointer to current skb being fixed
 *
 * Also address the case where we are pulling data in on pages only
 * and as such no data is present in the skb header.
 *
 * In addition if skb is not at least 60 bytes we need to pad it so that
 * it is large enough to qualify as a valid Ethernet frame.
 *
 * Returns true if an error was encountered and skb was freed.
 **/
static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb)
{
	/* place header in linear portion of buffer */
	if (skb_is_nonlinear(skb))
		i40e_pull_tail(rx_ring, skb);
964

965 966 967
	/* if eth_skb_pad returns an error the skb was freed */
	if (eth_skb_pad(skb))
		return true;
968

969 970
	return false;
}
971

972 973 974 975 976 977 978 979 980 981 982 983
/**
 * i40e_reuse_rx_page - page flip buffer and store it back on the ring
 * @rx_ring: rx descriptor ring to store buffers on
 * @old_buff: donor buffer to have page reused
 *
 * Synchronizes page for reuse by the adapter
 **/
static void i40e_reuse_rx_page(struct i40e_ring *rx_ring,
			       struct i40e_rx_buffer *old_buff)
{
	struct i40e_rx_buffer *new_buff;
	u16 nta = rx_ring->next_to_alloc;
984

985
	new_buff = &rx_ring->rx_bi[nta];
986

987 988 989
	/* update, and store next to alloc */
	nta++;
	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
990

991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
	/* transfer page from old buffer to new buffer */
	*new_buff = *old_buff;
}

/**
 * i40e_page_is_reserved - check if reuse is possible
 * @page: page struct to check
 */
static inline bool i40e_page_is_reserved(struct page *page)
{
	return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
}

/**
 * i40e_add_rx_frag - Add contents of Rx buffer to sk_buff
 * @rx_ring: rx descriptor ring to transact packets on
 * @rx_buffer: buffer containing page to add
 * @rx_desc: descriptor containing length of buffer written by hardware
 * @skb: sk_buff to place the data into
 *
 * This function will add the data contained in rx_buffer->page to the skb.
 * This is done either through a direct copy if the data in the buffer is
 * less than the skb header size, otherwise it will just attach the page as
 * a frag to the skb.
 *
 * The function will then update the page offset if necessary and return
 * true if the buffer can be reused by the adapter.
 **/
static bool i40e_add_rx_frag(struct i40e_ring *rx_ring,
			     struct i40e_rx_buffer *rx_buffer,
			     union i40e_rx_desc *rx_desc,
			     struct sk_buff *skb)
{
	struct page *page = rx_buffer->page;
	u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
	unsigned int size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
			    I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
#if (PAGE_SIZE < 8192)
	unsigned int truesize = I40E_RXBUFFER_2048;
#else
	unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
	unsigned int last_offset = PAGE_SIZE - I40E_RXBUFFER_2048;
1033
#endif
1034

1035 1036 1037 1038 1039
	/* will the data fit in the skb we allocated? if so, just
	 * copy it as it is pretty small anyway
	 */
	if ((size <= I40E_RX_HDR_SIZE) && !skb_is_nonlinear(skb)) {
		unsigned char *va = page_address(page) + rx_buffer->page_offset;
1040

1041
		memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
1042

1043 1044 1045
		/* page is not reserved, we can reuse buffer as-is */
		if (likely(!i40e_page_is_reserved(page)))
			return true;
1046

1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
		/* this page cannot be reused so discard it */
		__free_pages(page, 0);
		return false;
	}

	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
			rx_buffer->page_offset, size, truesize);

	/* avoid re-using remote pages */
	if (unlikely(i40e_page_is_reserved(page)))
		return false;

#if (PAGE_SIZE < 8192)
	/* if we are only owner of page we can reuse it */
	if (unlikely(page_count(page) != 1))
		return false;

	/* flip page offset to other buffer */
	rx_buffer->page_offset ^= truesize;
#else
	/* move offset up to the next cache line */
	rx_buffer->page_offset += truesize;

	if (rx_buffer->page_offset > last_offset)
		return false;
#endif

	/* Even if we own the page, we are not allowed to use atomic_set()
	 * This would break get_page_unless_zero() users.
	 */
	get_page(rx_buffer->page);

	return true;
}

/**
 * i40evf_fetch_rx_buffer - Allocate skb and populate it
 * @rx_ring: rx descriptor ring to transact packets on
 * @rx_desc: descriptor containing info written by hardware
 *
 * This function allocates an skb on the fly, and populates it with the page
 * data from the current receive descriptor, taking care to set up the skb
 * correctly, as well as handling calling the page recycle function if
 * necessary.
 */
static inline
struct sk_buff *i40evf_fetch_rx_buffer(struct i40e_ring *rx_ring,
				       union i40e_rx_desc *rx_desc)
{
	struct i40e_rx_buffer *rx_buffer;
	struct sk_buff *skb;
	struct page *page;

	rx_buffer = &rx_ring->rx_bi[rx_ring->next_to_clean];
	page = rx_buffer->page;
	prefetchw(page);

	skb = rx_buffer->skb;

	if (likely(!skb)) {
		void *page_addr = page_address(page) + rx_buffer->page_offset;

		/* prefetch first cache line of first page */
		prefetch(page_addr);
#if L1_CACHE_BYTES < 128
		prefetch(page_addr + L1_CACHE_BYTES);
#endif

		/* allocate a skb to store the frags */
		skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
				       I40E_RX_HDR_SIZE,
				       GFP_ATOMIC | __GFP_NOWARN);
		if (unlikely(!skb)) {
			rx_ring->rx_stats.alloc_buff_failed++;
			return NULL;
		}

		/* we will be copying header into skb->data in
		 * pskb_may_pull so it is in our interest to prefetch
		 * it now to avoid a possible cache miss
		 */
		prefetchw(skb->data);
	} else {
		rx_buffer->skb = NULL;
	}

	/* we are reusing so sync this buffer for CPU use */
	dma_sync_single_range_for_cpu(rx_ring->dev,
				      rx_buffer->dma,
				      rx_buffer->page_offset,
				      I40E_RXBUFFER_2048,
				      DMA_FROM_DEVICE);

	/* pull page into skb */
	if (i40e_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
		/* hand second half of page back to the ring */
		i40e_reuse_rx_page(rx_ring, rx_buffer);
		rx_ring->rx_stats.page_reuse_count++;
	} else {
		/* we are not reusing the buffer so unmap it */
		dma_unmap_page(rx_ring->dev, rx_buffer->dma, PAGE_SIZE,
			       DMA_FROM_DEVICE);
	}

	/* clear contents of buffer_info */
	rx_buffer->page = NULL;

	return skb;
}

/**
 * i40e_is_non_eop - process handling of non-EOP buffers
 * @rx_ring: Rx ring being processed
 * @rx_desc: Rx descriptor for current buffer
 * @skb: Current socket buffer containing buffer in progress
 *
 * This function updates next to clean.  If the buffer is an EOP buffer
 * this function exits returning false, otherwise it will place the
 * sk_buff in the next buffer to be chained and return true indicating
 * that this is in fact a non-EOP buffer.
 **/
static bool i40e_is_non_eop(struct i40e_ring *rx_ring,
			    union i40e_rx_desc *rx_desc,
			    struct sk_buff *skb)
{
	u32 ntc = rx_ring->next_to_clean + 1;

	/* fetch, update, and store next to clean */
	ntc = (ntc < rx_ring->count) ? ntc : 0;
	rx_ring->next_to_clean = ntc;

	prefetch(I40E_RX_DESC(rx_ring, ntc));

	/* if we are the last buffer then there is nothing else to do */
#define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)
	if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF)))
		return false;

	/* place skb in next buffer to be received */
	rx_ring->rx_bi[ntc].skb = skb;
	rx_ring->rx_stats.non_eop_descs++;

	return true;
1190 1191 1192
}

/**
1193 1194 1195 1196 1197 1198 1199 1200
 * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
 * @rx_ring: rx descriptor ring to transact packets on
 * @budget: Total limit on number of packets to process
 *
 * This function provides a "bounce buffer" approach to Rx interrupt
 * processing.  The advantage to this is that on systems that have
 * expensive overhead for IOMMU access this provides a means of avoiding
 * it by maintaining the mapping of the page to the system.
1201
 *
1202
 * Returns amount of work completed
1203
 **/
1204
static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget)
1205 1206 1207
{
	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
	u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
1208
	bool failure = false;
1209

1210 1211
	while (likely(total_rx_packets < budget)) {
		union i40e_rx_desc *rx_desc;
1212
		struct sk_buff *skb;
1213
		u32 rx_status;
1214
		u16 vlan_tag;
1215 1216 1217
		u8 rx_ptype;
		u64 qword;

1218 1219
		/* return some buffers to hardware, one at a time is too slow */
		if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
1220
			failure = failure ||
1221
				  i40evf_alloc_rx_buffers(rx_ring, cleaned_count);
1222 1223 1224
			cleaned_count = 0;
		}

1225 1226
		rx_desc = I40E_RX_DESC(rx_ring, rx_ring->next_to_clean);

1227
		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1228 1229
		rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
			   I40E_RXD_QW1_PTYPE_SHIFT;
1230
		rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1231
			    I40E_RXD_QW1_STATUS_SHIFT;
1232

1233
		if (!(rx_status & BIT(I40E_RX_DESC_STATUS_DD_SHIFT)))
1234 1235
			break;

1236 1237 1238 1239 1240 1241 1242 1243
		/* status_error_len will always be zero for unused descriptors
		 * because it's cleared in cleanup, and overlaps with hdr_addr
		 * which is always zero because packet split isn't used, if the
		 * hardware wrote DD then it will be non-zero
		 */
		if (!rx_desc->wb.qword1.status_error_len)
			break;

1244 1245 1246 1247
		/* This memory barrier is needed to keep us from reading
		 * any other fields out of the rx_desc until we know the
		 * DD bit is set.
		 */
1248
		dma_rmb();
1249

1250 1251 1252
		skb = i40evf_fetch_rx_buffer(rx_ring, rx_desc);
		if (!skb)
			break;
1253 1254 1255

		cleaned_count++;

1256
		if (i40e_is_non_eop(rx_ring, rx_desc, skb))
1257 1258
			continue;

1259 1260 1261 1262 1263 1264
		/* ERR_MASK will only have valid bits if EOP set, and
		 * what we are doing here is actually checking
		 * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
		 * the error field
		 */
		if (unlikely(i40e_test_staterr(rx_desc, BIT(I40E_RXD_QW1_ERROR_SHIFT)))) {
1265 1266 1267 1268
			dev_kfree_skb_any(skb);
			continue;
		}

1269 1270 1271
		if (i40e_cleanup_headers(rx_ring, skb))
			continue;

1272 1273 1274
		/* probably a little skewed due to removing CRC */
		total_rx_bytes += skb->len;

1275 1276
		/* populate checksum, VLAN, and protocol */
		i40evf_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
1277 1278


1279 1280 1281
		vlan_tag = (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) ?
			   le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1) : 0;

1282 1283
		i40e_receive_skb(rx_ring, skb, vlan_tag);

1284 1285 1286
		/* update budget accounting */
		total_rx_packets++;
	}
1287 1288 1289 1290 1291 1292 1293 1294

	u64_stats_update_begin(&rx_ring->syncp);
	rx_ring->stats.packets += total_rx_packets;
	rx_ring->stats.bytes += total_rx_bytes;
	u64_stats_update_end(&rx_ring->syncp);
	rx_ring->q_vector->rx.total_packets += total_rx_packets;
	rx_ring->q_vector->rx.total_bytes += total_rx_bytes;

1295
	/* guarantee a trip back through this routine if there was a failure */
1296
	return failure ? budget : total_rx_packets;
1297 1298
}

1299 1300 1301 1302 1303
static u32 i40e_buildreg_itr(const int type, const u16 itr)
{
	u32 val;

	val = I40E_VFINT_DYN_CTLN1_INTENA_MASK |
1304 1305 1306
	      /* Don't clear PBA because that can cause lost interrupts that
	       * came in while we were cleaning/polling
	       */
1307 1308 1309 1310 1311 1312 1313 1314 1315
	      (type << I40E_VFINT_DYN_CTLN1_ITR_INDX_SHIFT) |
	      (itr << I40E_VFINT_DYN_CTLN1_INTERVAL_SHIFT);

	return val;
}

/* a small macro to shorten up some long lines */
#define INTREG I40E_VFINT_DYN_CTLN1

1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
/**
 * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
 * @vsi: the VSI we care about
 * @q_vector: q_vector for which itr is being updated and interrupt enabled
 *
 **/
static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
					  struct i40e_q_vector *q_vector)
{
	struct i40e_hw *hw = &vsi->back->hw;
1326 1327
	bool rx = false, tx = false;
	u32 rxval, txval;
1328 1329 1330
	int vector;

	vector = (q_vector->v_idx + vsi->base_vector);
1331 1332 1333 1334

	/* avoid dynamic calculation if in countdown mode OR if
	 * all dynamic is disabled
	 */
1335 1336
	rxval = txval = i40e_buildreg_itr(I40E_ITR_NONE, 0);

1337 1338 1339 1340 1341 1342
	if (q_vector->itr_countdown > 0 ||
	    (!ITR_IS_DYNAMIC(vsi->rx_itr_setting) &&
	     !ITR_IS_DYNAMIC(vsi->tx_itr_setting))) {
		goto enable_int;
	}

1343
	if (ITR_IS_DYNAMIC(vsi->rx_itr_setting)) {
1344 1345
		rx = i40e_set_new_dynamic_itr(&q_vector->rx);
		rxval = i40e_buildreg_itr(I40E_RX_ITR, q_vector->rx.itr);
1346
	}
J
Jesse Brandeburg 已提交
1347

1348
	if (ITR_IS_DYNAMIC(vsi->tx_itr_setting)) {
1349 1350 1351
		tx = i40e_set_new_dynamic_itr(&q_vector->tx);
		txval = i40e_buildreg_itr(I40E_TX_ITR, q_vector->tx.itr);
	}
J
Jesse Brandeburg 已提交
1352

1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
	if (rx || tx) {
		/* get the higher of the two ITR adjustments and
		 * use the same value for both ITR registers
		 * when in adaptive mode (Rx and/or Tx)
		 */
		u16 itr = max(q_vector->tx.itr, q_vector->rx.itr);

		q_vector->tx.itr = q_vector->rx.itr = itr;
		txval = i40e_buildreg_itr(I40E_TX_ITR, itr);
		tx = true;
		rxval = i40e_buildreg_itr(I40E_RX_ITR, itr);
		rx = true;
1365
	}
1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379

	/* only need to enable the interrupt once, but need
	 * to possibly update both ITR values
	 */
	if (rx) {
		/* set the INTENA_MSK_MASK so that this first write
		 * won't actually enable the interrupt, instead just
		 * updating the ITR (it's bit 31 PF and VF)
		 */
		rxval |= BIT(31);
		/* don't check _DOWN because interrupt isn't being enabled */
		wr32(hw, INTREG(vector - 1), rxval);
	}

1380
enable_int:
1381 1382
	if (!test_bit(__I40E_DOWN, &vsi->state))
		wr32(hw, INTREG(vector - 1), txval);
1383 1384 1385 1386 1387

	if (q_vector->itr_countdown)
		q_vector->itr_countdown--;
	else
		q_vector->itr_countdown = ITR_COUNTDOWN_START;
1388 1389
}

1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405
/**
 * i40evf_napi_poll - NAPI polling Rx/Tx cleanup routine
 * @napi: napi struct with our devices info in it
 * @budget: amount of work driver is allowed to do this pass, in packets
 *
 * This function will clean all queues associated with a q_vector.
 *
 * Returns the amount of work done
 **/
int i40evf_napi_poll(struct napi_struct *napi, int budget)
{
	struct i40e_q_vector *q_vector =
			       container_of(napi, struct i40e_q_vector, napi);
	struct i40e_vsi *vsi = q_vector->vsi;
	struct i40e_ring *ring;
	bool clean_complete = true;
1406
	bool arm_wb = false;
1407
	int budget_per_ring;
1408
	int work_done = 0;
1409 1410 1411 1412 1413 1414 1415 1416 1417

	if (test_bit(__I40E_DOWN, &vsi->state)) {
		napi_complete(napi);
		return 0;
	}

	/* Since the actual Tx work is minimal, we can give the Tx a larger
	 * budget and be more aggressive about cleaning up the Tx descriptors.
	 */
1418
	i40e_for_each_ring(ring, q_vector->tx) {
1419
		if (!i40e_clean_tx_irq(vsi, ring, budget)) {
1420 1421 1422 1423
			clean_complete = false;
			continue;
		}
		arm_wb |= ring->arm_wb;
1424
		ring->arm_wb = false;
1425
	}
1426

1427 1428 1429 1430
	/* Handle case where we are called by netpoll with a budget of 0 */
	if (budget <= 0)
		goto tx_only;

1431 1432 1433 1434 1435
	/* We attempt to distribute budget to each Rx queue fairly, but don't
	 * allow the budget to go below 1 because that would exit polling early.
	 */
	budget_per_ring = max(budget/q_vector->num_ringpairs, 1);

1436
	i40e_for_each_ring(ring, q_vector->rx) {
1437
		int cleaned = i40e_clean_rx_irq(ring, budget_per_ring);
1438 1439

		work_done += cleaned;
1440 1441 1442
		/* if we clean as many as budgeted, we must not be done */
		if (cleaned >= budget_per_ring)
			clean_complete = false;
1443
	}
1444 1445

	/* If work not completed, return budget and polling will return */
1446
	if (!clean_complete) {
1447
tx_only:
1448 1449
		if (arm_wb) {
			q_vector->tx.ring[0].tx_stats.tx_force_wb++;
1450
			i40e_enable_wb_on_itr(vsi, q_vector);
1451
		}
1452
		return budget;
1453
	}
1454

1455 1456 1457
	if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR)
		q_vector->arm_wb_state = false;

1458
	/* Work is done so exit the polling mode and re-enable the interrupt */
1459
	napi_complete_done(napi, work_done);
1460
	i40e_update_enable_itr(vsi, q_vector);
1461 1462 1463 1464
	return 0;
}

/**
1465
 * i40evf_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
1466 1467 1468 1469 1470 1471 1472 1473 1474 1475
 * @skb:     send buffer
 * @tx_ring: ring to send buffer on
 * @flags:   the tx flags to be set
 *
 * Checks the skb and set up correspondingly several generic transmit flags
 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
 *
 * Returns error code indicate the frame should be dropped upon error and the
 * otherwise  returns 0 to indicate the flags has been set properly.
 **/
1476 1477 1478
static inline int i40evf_tx_prepare_vlan_flags(struct sk_buff *skb,
					       struct i40e_ring *tx_ring,
					       u32 *flags)
1479 1480 1481 1482
{
	__be16 protocol = skb->protocol;
	u32  tx_flags = 0;

1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495
	if (protocol == htons(ETH_P_8021Q) &&
	    !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
		/* When HW VLAN acceleration is turned off by the user the
		 * stack sets the protocol to 8021q so that the driver
		 * can take any steps required to support the SW only
		 * VLAN handling.  In our case the driver doesn't need
		 * to take any further steps so just set the protocol
		 * to the encapsulated ethertype.
		 */
		skb->protocol = vlan_get_protocol(skb);
		goto out;
	}

1496
	/* if we have a HW VLAN tag being added, default to the HW one */
1497 1498
	if (skb_vlan_tag_present(skb)) {
		tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
1499 1500 1501 1502
		tx_flags |= I40E_TX_FLAGS_HW_VLAN;
	/* else if it is a SW VLAN, check the next protocol and store the tag */
	} else if (protocol == htons(ETH_P_8021Q)) {
		struct vlan_hdr *vhdr, _vhdr;
J
Jesse Brandeburg 已提交
1503

1504 1505 1506 1507 1508 1509 1510 1511 1512
		vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
		if (!vhdr)
			return -EINVAL;

		protocol = vhdr->h_vlan_encapsulated_proto;
		tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
		tx_flags |= I40E_TX_FLAGS_SW_VLAN;
	}

1513
out:
1514 1515 1516 1517 1518 1519 1520 1521
	*flags = tx_flags;
	return 0;
}

/**
 * i40e_tso - set up the tso context descriptor
 * @skb:      ptr to the skb we're sending
 * @hdr_len:  ptr to the size of the packet header
1522
 * @cd_type_cmd_tso_mss: Quad Word 1
1523 1524 1525
 *
 * Returns 0 if no TSO can happen, 1 if tso is going, or error
 **/
1526
static int i40e_tso(struct sk_buff *skb, u8 *hdr_len, u64 *cd_type_cmd_tso_mss)
1527
{
1528
	u64 cd_cmd, cd_tso_len, cd_mss;
1529 1530 1531 1532 1533
	union {
		struct iphdr *v4;
		struct ipv6hdr *v6;
		unsigned char *hdr;
	} ip;
1534 1535
	union {
		struct tcphdr *tcp;
1536
		struct udphdr *udp;
1537 1538 1539
		unsigned char *hdr;
	} l4;
	u32 paylen, l4_offset;
1540 1541
	int err;

1542 1543 1544
	if (skb->ip_summed != CHECKSUM_PARTIAL)
		return 0;

1545 1546 1547
	if (!skb_is_gso(skb))
		return 0;

1548 1549 1550
	err = skb_cow_head(skb, 0);
	if (err < 0)
		return err;
1551

1552 1553
	ip.hdr = skb_network_header(skb);
	l4.hdr = skb_transport_header(skb);
1554

1555 1556 1557 1558
	/* initialize outer IP header fields */
	if (ip.v4->version == 4) {
		ip.v4->tot_len = 0;
		ip.v4->check = 0;
1559
	} else {
1560 1561 1562
		ip.v6->payload_len = 0;
	}

1563
	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
1564
					 SKB_GSO_GRE_CSUM |
1565
					 SKB_GSO_IPXIP4 |
1566
					 SKB_GSO_IPXIP6 |
1567
					 SKB_GSO_UDP_TUNNEL |
1568
					 SKB_GSO_UDP_TUNNEL_CSUM)) {
1569 1570 1571 1572
		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
			l4.udp->len = 0;

1573 1574 1575 1576
			/* determine offset of outer transport header */
			l4_offset = l4.hdr - skb->data;

			/* remove payload length from outer checksum */
1577 1578
			paylen = skb->len - l4_offset;
			csum_replace_by_diff(&l4.udp->check, htonl(paylen));
1579 1580
		}

1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591
		/* reset pointers to inner headers */
		ip.hdr = skb_inner_network_header(skb);
		l4.hdr = skb_inner_transport_header(skb);

		/* initialize inner IP header fields */
		if (ip.v4->version == 4) {
			ip.v4->tot_len = 0;
			ip.v4->check = 0;
		} else {
			ip.v6->payload_len = 0;
		}
1592 1593
	}

1594 1595 1596 1597
	/* determine offset of inner transport header */
	l4_offset = l4.hdr - skb->data;

	/* remove payload length from inner checksum */
1598 1599
	paylen = skb->len - l4_offset;
	csum_replace_by_diff(&l4.tcp->check, htonl(paylen));
1600 1601 1602

	/* compute length of segmentation header */
	*hdr_len = (l4.tcp->doff * 4) + l4_offset;
1603 1604 1605 1606 1607

	/* find the field values */
	cd_cmd = I40E_TX_CTX_DESC_TSO;
	cd_tso_len = skb->len - *hdr_len;
	cd_mss = skb_shinfo(skb)->gso_size;
1608 1609 1610
	*cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
				(cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
				(cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
1611 1612 1613 1614 1615 1616
	return 1;
}

/**
 * i40e_tx_enable_csum - Enable Tx checksum offloads
 * @skb: send buffer
1617
 * @tx_flags: pointer to Tx flags currently set
1618 1619
 * @td_cmd: Tx descriptor command bits to set
 * @td_offset: Tx descriptor header offsets to set
1620
 * @tx_ring: Tx descriptor ring
1621 1622
 * @cd_tunneling: ptr to context desc bits
 **/
1623 1624 1625 1626
static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
			       u32 *td_cmd, u32 *td_offset,
			       struct i40e_ring *tx_ring,
			       u32 *cd_tunneling)
1627
{
1628 1629 1630 1631 1632 1633 1634 1635 1636 1637
	union {
		struct iphdr *v4;
		struct ipv6hdr *v6;
		unsigned char *hdr;
	} ip;
	union {
		struct tcphdr *tcp;
		struct udphdr *udp;
		unsigned char *hdr;
	} l4;
1638
	unsigned char *exthdr;
1639
	u32 offset, cmd = 0;
1640
	__be16 frag_off;
1641 1642
	u8 l4_proto = 0;

1643 1644 1645
	if (skb->ip_summed != CHECKSUM_PARTIAL)
		return 0;

1646 1647
	ip.hdr = skb_network_header(skb);
	l4.hdr = skb_transport_header(skb);
1648

1649 1650 1651
	/* compute outer L2 header size */
	offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;

1652
	if (skb->encapsulation) {
1653
		u32 tunnel = 0;
1654 1655
		/* define outer network header type */
		if (*tx_flags & I40E_TX_FLAGS_IPV4) {
1656 1657 1658 1659
			tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
				  I40E_TX_CTX_EXT_IP_IPV4 :
				  I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;

1660 1661
			l4_proto = ip.v4->protocol;
		} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
1662
			tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
1663 1664

			exthdr = ip.hdr + sizeof(*ip.v6);
1665
			l4_proto = ip.v6->nexthdr;
1666 1667 1668
			if (l4.hdr != exthdr)
				ipv6_skip_exthdr(skb, exthdr - skb->data,
						 &l4_proto, &frag_off);
1669 1670 1671 1672
		}

		/* define outer transport */
		switch (l4_proto) {
1673
		case IPPROTO_UDP:
1674
			tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
1675
			*tx_flags |= I40E_TX_FLAGS_VXLAN_TUNNEL;
1676
			break;
1677
		case IPPROTO_GRE:
1678
			tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
1679 1680
			*tx_flags |= I40E_TX_FLAGS_VXLAN_TUNNEL;
			break;
1681 1682 1683 1684 1685
		case IPPROTO_IPIP:
		case IPPROTO_IPV6:
			*tx_flags |= I40E_TX_FLAGS_VXLAN_TUNNEL;
			l4.hdr = skb_inner_network_header(skb);
			break;
1686
		default:
1687 1688 1689 1690 1691
			if (*tx_flags & I40E_TX_FLAGS_TSO)
				return -1;

			skb_checksum_help(skb);
			return 0;
1692
		}
1693

1694 1695 1696 1697 1698 1699 1700
		/* compute outer L3 header size */
		tunnel |= ((l4.hdr - ip.hdr) / 4) <<
			  I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;

		/* switch IP header pointer from outer to inner header */
		ip.hdr = skb_inner_network_header(skb);

1701 1702 1703 1704
		/* compute tunnel header size */
		tunnel |= ((ip.hdr - l4.hdr) / 2) <<
			  I40E_TXD_CTX_QW0_NATLEN_SHIFT;

1705 1706
		/* indicate if we need to offload outer UDP header */
		if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
1707
		    !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
1708 1709 1710
		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
			tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;

1711 1712 1713
		/* record tunnel offload values */
		*cd_tunneling |= tunnel;

1714 1715
		/* switch L4 header pointer from outer to inner */
		l4.hdr = skb_inner_transport_header(skb);
1716
		l4_proto = 0;
1717

1718 1719 1720 1721 1722
		/* reset type as we transition from outer to inner headers */
		*tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
		if (ip.v4->version == 4)
			*tx_flags |= I40E_TX_FLAGS_IPV4;
		if (ip.v6->version == 6)
1723
			*tx_flags |= I40E_TX_FLAGS_IPV6;
1724 1725 1726
	}

	/* Enable IP checksum offloads */
1727
	if (*tx_flags & I40E_TX_FLAGS_IPV4) {
1728
		l4_proto = ip.v4->protocol;
1729 1730 1731
		/* the stack computes the IP header already, the only time we
		 * need the hardware to recompute it is in the case of TSO.
		 */
1732 1733 1734
		cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
		       I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
		       I40E_TX_DESC_CMD_IIPT_IPV4;
1735
	} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
1736
		cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
1737 1738 1739 1740 1741 1742

		exthdr = ip.hdr + sizeof(*ip.v6);
		l4_proto = ip.v6->nexthdr;
		if (l4.hdr != exthdr)
			ipv6_skip_exthdr(skb, exthdr - skb->data,
					 &l4_proto, &frag_off);
1743
	}
1744

1745 1746
	/* compute inner L3 header size */
	offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
1747 1748

	/* Enable L4 checksum offloads */
1749
	switch (l4_proto) {
1750 1751
	case IPPROTO_TCP:
		/* enable checksum offloads */
1752 1753
		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
		offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1754 1755 1756
		break;
	case IPPROTO_SCTP:
		/* enable SCTP checksum offload */
1757 1758 1759
		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
		offset |= (sizeof(struct sctphdr) >> 2) <<
			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1760 1761 1762
		break;
	case IPPROTO_UDP:
		/* enable UDP checksum offload */
1763 1764 1765
		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
		offset |= (sizeof(struct udphdr) >> 2) <<
			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1766 1767
		break;
	default:
1768 1769 1770 1771
		if (*tx_flags & I40E_TX_FLAGS_TSO)
			return -1;
		skb_checksum_help(skb);
		return 0;
1772
	}
1773 1774 1775

	*td_cmd |= cmd;
	*td_offset |= offset;
1776 1777

	return 1;
1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793
}

/**
 * i40e_create_tx_ctx Build the Tx context descriptor
 * @tx_ring:  ring to create the descriptor on
 * @cd_type_cmd_tso_mss: Quad Word 1
 * @cd_tunneling: Quad Word 0 - bits 0-31
 * @cd_l2tag2: Quad Word 0 - bits 32-63
 **/
static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
			       const u64 cd_type_cmd_tso_mss,
			       const u32 cd_tunneling, const u32 cd_l2tag2)
{
	struct i40e_tx_context_desc *context_desc;
	int i = tx_ring->next_to_use;

1794 1795
	if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
	    !cd_tunneling && !cd_l2tag2)
1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806
		return;

	/* grab the next descriptor */
	context_desc = I40E_TX_CTXTDESC(tx_ring, i);

	i++;
	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;

	/* cpu_to_le32 and assign to struct fields */
	context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
	context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
1807
	context_desc->rsvd = cpu_to_le16(0);
1808 1809 1810
	context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
}

J
Jesse Brandeburg 已提交
1811
/**
1812
 * __i40evf_chk_linearize - Check if there are more than 8 buffers per packet
1813 1814
 * @skb:      send buffer
 *
1815 1816 1817 1818 1819 1820 1821 1822
 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
 * and so we need to figure out the cases where we need to linearize the skb.
 *
 * For TSO we need to count the TSO header and segment payload separately.
 * As such we need to check cases where we have 7 fragments or more as we
 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
 * the segment payload in the first descriptor, and another 7 for the
 * fragments.
1823
 **/
1824
bool __i40evf_chk_linearize(struct sk_buff *skb)
1825
{
1826
	const struct skb_frag_struct *frag, *stale;
1827
	int nr_frags, sum;
1828

1829
	/* no need to check if number of frags is less than 7 */
1830
	nr_frags = skb_shinfo(skb)->nr_frags;
1831
	if (nr_frags < (I40E_MAX_BUFFER_TXD - 1))
1832
		return false;
1833

1834 1835
	/* We need to walk through the list and validate that each group
	 * of 6 fragments totals at least gso_size.  However we don't need
1836 1837
	 * to perform such validation on the last 6 since the last 6 cannot
	 * inherit any data from a descriptor after them.
1838
	 */
1839
	nr_frags -= I40E_MAX_BUFFER_TXD - 2;
1840 1841 1842 1843 1844 1845 1846 1847
	frag = &skb_shinfo(skb)->frags[0];

	/* Initialize size to the negative value of gso_size minus 1.  We
	 * use this as the worst case scenerio in which the frag ahead
	 * of us only provides one byte which is why we are limited to 6
	 * descriptors for a single transmit as the header and previous
	 * fragment are already consuming 2 descriptors.
	 */
1848
	sum = 1 - skb_shinfo(skb)->gso_size;
1849

1850 1851 1852 1853 1854 1855
	/* Add size of frags 0 through 4 to create our initial sum */
	sum += skb_frag_size(frag++);
	sum += skb_frag_size(frag++);
	sum += skb_frag_size(frag++);
	sum += skb_frag_size(frag++);
	sum += skb_frag_size(frag++);
1856 1857 1858 1859 1860 1861

	/* Walk through fragments adding latest fragment, testing it, and
	 * then removing stale fragments from the sum.
	 */
	stale = &skb_shinfo(skb)->frags[0];
	for (;;) {
1862
		sum += skb_frag_size(frag++);
1863 1864 1865 1866 1867 1868 1869 1870 1871

		/* if sum is negative we failed to make sufficient progress */
		if (sum < 0)
			return true;

		/* use pre-decrement to avoid processing last fragment */
		if (!--nr_frags)
			break;

1872
		sum -= skb_frag_size(stale++);
1873 1874
	}

1875
	return false;
1876 1877
}

1878 1879 1880 1881 1882 1883 1884
/**
 * __i40evf_maybe_stop_tx - 2nd level check for tx stop conditions
 * @tx_ring: the ring to be checked
 * @size:    the size buffer we want to assure is available
 *
 * Returns -EBUSY if a stop is needed, else 0
 **/
1885
int __i40evf_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900
{
	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
	/* Memory barrier before checking head and tail */
	smp_mb();

	/* Check again in a case another CPU has just made room available. */
	if (likely(I40E_DESC_UNUSED(tx_ring) < size))
		return -EBUSY;

	/* A reprieve! - use start_queue because it doesn't call schedule */
	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
	++tx_ring->tx_stats.restart_queue;
	return 0;
}

1901
/**
1902
 * i40evf_tx_map - Build the Tx descriptor
1903 1904 1905 1906 1907 1908 1909 1910
 * @tx_ring:  ring to send buffer on
 * @skb:      send buffer
 * @first:    first buffer info buffer to use
 * @tx_flags: collected send information
 * @hdr_len:  size of the packet header
 * @td_cmd:   the command field in the descriptor
 * @td_offset: offset for checksum or crc
 **/
1911 1912 1913
static inline void i40evf_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
				 struct i40e_tx_buffer *first, u32 tx_flags,
				 const u8 hdr_len, u32 td_cmd, u32 td_offset)
1914 1915 1916 1917 1918 1919 1920 1921 1922 1923
{
	unsigned int data_len = skb->data_len;
	unsigned int size = skb_headlen(skb);
	struct skb_frag_struct *frag;
	struct i40e_tx_buffer *tx_bi;
	struct i40e_tx_desc *tx_desc;
	u16 i = tx_ring->next_to_use;
	u32 td_tag = 0;
	dma_addr_t dma;
	u16 gso_segs;
1924 1925 1926
	u16 desc_count = 0;
	bool tail_bump = true;
	bool do_rs = false;
1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950

	if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
		td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
		td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
			 I40E_TX_FLAGS_VLAN_SHIFT;
	}

	if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO))
		gso_segs = skb_shinfo(skb)->gso_segs;
	else
		gso_segs = 1;

	/* multiply data chunks by size of headers */
	first->bytecount = skb->len - hdr_len + (gso_segs * hdr_len);
	first->gso_segs = gso_segs;
	first->skb = skb;
	first->tx_flags = tx_flags;

	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);

	tx_desc = I40E_TX_DESC(tx_ring, i);
	tx_bi = first;

	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1951 1952
		unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;

1953 1954 1955 1956 1957 1958 1959
		if (dma_mapping_error(tx_ring->dev, dma))
			goto dma_error;

		/* record length, and DMA address */
		dma_unmap_len_set(tx_bi, len, size);
		dma_unmap_addr_set(tx_bi, dma, dma);

1960 1961
		/* align size to end of page */
		max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
1962 1963 1964 1965 1966
		tx_desc->buffer_addr = cpu_to_le64(dma);

		while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
			tx_desc->cmd_type_offset_bsz =
				build_ctob(td_cmd, td_offset,
1967
					   max_data, td_tag);
1968 1969 1970

			tx_desc++;
			i++;
1971 1972
			desc_count++;

1973 1974 1975 1976 1977
			if (i == tx_ring->count) {
				tx_desc = I40E_TX_DESC(tx_ring, 0);
				i = 0;
			}

1978 1979
			dma += max_data;
			size -= max_data;
1980

1981
			max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992
			tx_desc->buffer_addr = cpu_to_le64(dma);
		}

		if (likely(!data_len))
			break;

		tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
							  size, td_tag);

		tx_desc++;
		i++;
1993 1994
		desc_count++;

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
		if (i == tx_ring->count) {
			tx_desc = I40E_TX_DESC(tx_ring, 0);
			i = 0;
		}

		size = skb_frag_size(frag);
		data_len -= size;

		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
				       DMA_TO_DEVICE);

		tx_bi = &tx_ring->tx_bi[i];
	}

	/* set next_to_watch value indicating a packet is present */
	first->next_to_watch = tx_desc;

	i++;
	if (i == tx_ring->count)
		i = 0;

	tx_ring->next_to_use = i;

2018 2019 2020
	netdev_tx_sent_queue(netdev_get_tx_queue(tx_ring->netdev,
						 tx_ring->queue_index),
						 first->bytecount);
2021
	i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069

	/* Algorithm to optimize tail and RS bit setting:
	 * if xmit_more is supported
	 *	if xmit_more is true
	 *		do not update tail and do not mark RS bit.
	 *	if xmit_more is false and last xmit_more was false
	 *		if every packet spanned less than 4 desc
	 *			then set RS bit on 4th packet and update tail
	 *			on every packet
	 *		else
	 *			update tail and set RS bit on every packet.
	 *	if xmit_more is false and last_xmit_more was true
	 *		update tail and set RS bit.
	 *
	 * Optimization: wmb to be issued only in case of tail update.
	 * Also optimize the Descriptor WB path for RS bit with the same
	 * algorithm.
	 *
	 * Note: If there are less than 4 packets
	 * pending and interrupts were disabled the service task will
	 * trigger a force WB.
	 */
	if (skb->xmit_more  &&
	    !netif_xmit_stopped(netdev_get_tx_queue(tx_ring->netdev,
						    tx_ring->queue_index))) {
		tx_ring->flags |= I40E_TXR_FLAGS_LAST_XMIT_MORE_SET;
		tail_bump = false;
	} else if (!skb->xmit_more &&
		   !netif_xmit_stopped(netdev_get_tx_queue(tx_ring->netdev,
						       tx_ring->queue_index)) &&
		   (!(tx_ring->flags & I40E_TXR_FLAGS_LAST_XMIT_MORE_SET)) &&
		   (tx_ring->packet_stride < WB_STRIDE) &&
		   (desc_count < WB_STRIDE)) {
		tx_ring->packet_stride++;
	} else {
		tx_ring->packet_stride = 0;
		tx_ring->flags &= ~I40E_TXR_FLAGS_LAST_XMIT_MORE_SET;
		do_rs = true;
	}
	if (do_rs)
		tx_ring->packet_stride = 0;

	tx_desc->cmd_type_offset_bsz =
			build_ctob(td_cmd, td_offset, size, td_tag) |
			cpu_to_le64((u64)(do_rs ? I40E_TXD_CMD :
						  I40E_TX_DESC_CMD_EOP) <<
						  I40E_TXD_QW1_CMD_SHIFT);

2070
	/* notify HW of packet */
2071
	if (!tail_bump)
2072
		prefetchw(tx_desc + 1);
2073

2074 2075 2076 2077 2078 2079 2080 2081 2082 2083
	if (tail_bump) {
		/* Force memory writes to complete before letting h/w
		 * know there are new descriptors to fetch.  (Only
		 * applicable for weak-ordered memory model archs,
		 * such as IA-64).
		 */
		wmb();
		writel(i, tx_ring->tail);
	}

2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120
	return;

dma_error:
	dev_info(tx_ring->dev, "TX DMA map failed\n");

	/* clear dma mappings for failed tx_bi map */
	for (;;) {
		tx_bi = &tx_ring->tx_bi[i];
		i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
		if (tx_bi == first)
			break;
		if (i == 0)
			i = tx_ring->count;
		i--;
	}

	tx_ring->next_to_use = i;
}

/**
 * i40e_xmit_frame_ring - Sends buffer on Tx ring
 * @skb:     send buffer
 * @tx_ring: ring to send buffer on
 *
 * Returns NETDEV_TX_OK if sent, else an error code
 **/
static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
					struct i40e_ring *tx_ring)
{
	u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
	u32 cd_tunneling = 0, cd_l2tag2 = 0;
	struct i40e_tx_buffer *first;
	u32 td_offset = 0;
	u32 tx_flags = 0;
	__be16 protocol;
	u32 td_cmd = 0;
	u8 hdr_len = 0;
2121
	int tso, count;
J
Jesse Brandeburg 已提交
2122

2123 2124 2125
	/* prefetch the data, we'll need it later */
	prefetch(skb->data);

2126
	count = i40e_xmit_descriptor_count(skb);
2127 2128 2129
	if (i40e_chk_linearize(skb, count)) {
		if (__skb_linearize(skb))
			goto out_drop;
2130
		count = i40e_txd_use_count(skb->len);
2131 2132
		tx_ring->tx_stats.tx_linearize++;
	}
2133 2134 2135 2136 2137 2138 2139 2140 2141

	/* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
	 *       + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
	 *       + 4 desc gap to avoid the cache line where head is,
	 *       + 1 desc for context descriptor,
	 * otherwise try next time
	 */
	if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
		tx_ring->tx_stats.tx_busy++;
2142
		return NETDEV_TX_BUSY;
2143
	}
2144 2145

	/* prepare the xmit flags */
2146
	if (i40evf_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
2147 2148 2149
		goto out_drop;

	/* obtain protocol of skb */
2150
	protocol = vlan_get_protocol(skb);
2151 2152 2153 2154 2155 2156 2157 2158 2159 2160

	/* record the location of the first descriptor for this packet */
	first = &tx_ring->tx_bi[tx_ring->next_to_use];

	/* setup IPv4/IPv6 offloads */
	if (protocol == htons(ETH_P_IP))
		tx_flags |= I40E_TX_FLAGS_IPV4;
	else if (protocol == htons(ETH_P_IPV6))
		tx_flags |= I40E_TX_FLAGS_IPV6;

2161
	tso = i40e_tso(skb, &hdr_len, &cd_type_cmd_tso_mss);
2162 2163 2164 2165 2166 2167 2168

	if (tso < 0)
		goto out_drop;
	else if (tso)
		tx_flags |= I40E_TX_FLAGS_TSO;

	/* Always offload the checksum, since it's in the data descriptor */
2169 2170 2171 2172
	tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
				  tx_ring, &cd_tunneling);
	if (tso < 0)
		goto out_drop;
2173

2174 2175 2176 2177 2178
	skb_tx_timestamp(skb);

	/* always enable CRC insertion offload */
	td_cmd |= I40E_TX_DESC_CMD_ICRC;

2179 2180 2181
	i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
			   cd_tunneling, cd_l2tag2);

2182 2183
	i40evf_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
		      td_cmd, td_offset);
2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201

	return NETDEV_TX_OK;

out_drop:
	dev_kfree_skb_any(skb);
	return NETDEV_TX_OK;
}

/**
 * i40evf_xmit_frame - Selects the correct VSI and Tx queue to send buffer
 * @skb:    send buffer
 * @netdev: network interface device structure
 *
 * Returns NETDEV_TX_OK if sent, else an error code
 **/
netdev_tx_t i40evf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
{
	struct i40evf_adapter *adapter = netdev_priv(netdev);
2202
	struct i40e_ring *tx_ring = &adapter->tx_rings[skb->queue_mapping];
2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215

	/* hardware can't handle really short frames, hardware padding works
	 * beyond this point
	 */
	if (unlikely(skb->len < I40E_MIN_TX_LEN)) {
		if (skb_pad(skb, I40E_MIN_TX_LEN - skb->len))
			return NETDEV_TX_OK;
		skb->len = I40E_MIN_TX_LEN;
		skb_set_tail_pointer(skb, I40E_MIN_TX_LEN);
	}

	return i40e_xmit_frame_ring(skb, tx_ring);
}