fs-writeback.c 71.7 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10
/*
 * fs/fs-writeback.c
 *
 * Copyright (C) 2002, Linus Torvalds.
 *
 * Contains all the functions related to writing back and waiting
 * upon dirty inodes against superblocks, and writing back dirty
 * pages against inodes.  ie: data writeback.  Writeout of the
 * inode itself is not handled here.
 *
11
 * 10Apr2002	Andrew Morton
L
Linus Torvalds 已提交
12 13 14 15 16
 *		Split out of fs/inode.c
 *		Additions for address_space-based writeback
 */

#include <linux/kernel.h>
17
#include <linux/export.h>
L
Linus Torvalds 已提交
18
#include <linux/spinlock.h>
19
#include <linux/slab.h>
L
Linus Torvalds 已提交
20 21 22
#include <linux/sched.h>
#include <linux/fs.h>
#include <linux/mm.h>
23
#include <linux/pagemap.h>
24
#include <linux/kthread.h>
L
Linus Torvalds 已提交
25 26 27
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/backing-dev.h>
28
#include <linux/tracepoint.h>
29
#include <linux/device.h>
30
#include <linux/memcontrol.h>
31
#include "internal.h"
L
Linus Torvalds 已提交
32

33 34 35
/*
 * 4MB minimal write chunk size
 */
36
#define MIN_WRITEBACK_PAGES	(4096UL >> (PAGE_SHIFT - 10))
37

38 39 40 41
struct wb_completion {
	atomic_t		cnt;
};

42 43 44
/*
 * Passed into wb_writeback(), essentially a subset of writeback_control
 */
45
struct wb_writeback_work {
46 47
	long nr_pages;
	struct super_block *sb;
48
	unsigned long *older_than_this;
49
	enum writeback_sync_modes sync_mode;
50
	unsigned int tagged_writepages:1;
51 52 53
	unsigned int for_kupdate:1;
	unsigned int range_cyclic:1;
	unsigned int for_background:1;
54
	unsigned int for_sync:1;	/* sync(2) WB_SYNC_ALL writeback */
55
	unsigned int auto_free:1;	/* free on completion */
56
	unsigned int start_all:1;	/* nr_pages == 0 (all) writeback */
57
	enum wb_reason reason;		/* why was writeback initiated? */
58

59
	struct list_head list;		/* pending work list */
60
	struct wb_completion *done;	/* set if the caller waits */
61 62
};

63 64 65 66 67 68 69 70 71 72 73 74 75
/*
 * If one wants to wait for one or more wb_writeback_works, each work's
 * ->done should be set to a wb_completion defined using the following
 * macro.  Once all work items are issued with wb_queue_work(), the caller
 * can wait for the completion of all using wb_wait_for_completion().  Work
 * items which are waited upon aren't freed automatically on completion.
 */
#define DEFINE_WB_COMPLETION_ONSTACK(cmpl)				\
	struct wb_completion cmpl = {					\
		.cnt		= ATOMIC_INIT(1),			\
	}


76 77 78 79 80 81 82 83 84 85 86 87
/*
 * If an inode is constantly having its pages dirtied, but then the
 * updates stop dirtytime_expire_interval seconds in the past, it's
 * possible for the worst case time between when an inode has its
 * timestamps updated and when they finally get written out to be two
 * dirtytime_expire_intervals.  We set the default to 12 hours (in
 * seconds), which means most of the time inodes will have their
 * timestamps written to disk after 12 hours, but in the worst case a
 * few inodes might not their timestamps updated for 24 hours.
 */
unsigned int dirtytime_expire_interval = 12 * 60 * 60;

N
Nick Piggin 已提交
88 89
static inline struct inode *wb_inode(struct list_head *head)
{
90
	return list_entry(head, struct inode, i_io_list);
N
Nick Piggin 已提交
91 92
}

93 94 95 96 97 98 99 100
/*
 * Include the creation of the trace points after defining the
 * wb_writeback_work structure and inline functions so that the definition
 * remains local to this file.
 */
#define CREATE_TRACE_POINTS
#include <trace/events/writeback.h>

101 102
EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);

103 104 105 106 107 108
static bool wb_io_lists_populated(struct bdi_writeback *wb)
{
	if (wb_has_dirty_io(wb)) {
		return false;
	} else {
		set_bit(WB_has_dirty_io, &wb->state);
109
		WARN_ON_ONCE(!wb->avg_write_bandwidth);
110 111
		atomic_long_add(wb->avg_write_bandwidth,
				&wb->bdi->tot_write_bandwidth);
112 113 114 115 116 117 118
		return true;
	}
}

static void wb_io_lists_depopulated(struct bdi_writeback *wb)
{
	if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
119
	    list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
120
		clear_bit(WB_has_dirty_io, &wb->state);
121 122
		WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
					&wb->bdi->tot_write_bandwidth) < 0);
123
	}
124 125 126
}

/**
127
 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
128 129 130 131
 * @inode: inode to be moved
 * @wb: target bdi_writeback
 * @head: one of @wb->b_{dirty|io|more_io}
 *
132
 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
133 134 135
 * Returns %true if @inode is the first occupant of the !dirty_time IO
 * lists; otherwise, %false.
 */
136
static bool inode_io_list_move_locked(struct inode *inode,
137 138 139 140 141
				      struct bdi_writeback *wb,
				      struct list_head *head)
{
	assert_spin_locked(&wb->list_lock);

142
	list_move(&inode->i_io_list, head);
143 144 145 146 147 148 149 150 151 152

	/* dirty_time doesn't count as dirty_io until expiration */
	if (head != &wb->b_dirty_time)
		return wb_io_lists_populated(wb);

	wb_io_lists_depopulated(wb);
	return false;
}

/**
153
 * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list
154 155 156 157 158 159
 * @inode: inode to be removed
 * @wb: bdi_writeback @inode is being removed from
 *
 * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
 * clear %WB_has_dirty_io if all are empty afterwards.
 */
160
static void inode_io_list_del_locked(struct inode *inode,
161 162 163 164
				     struct bdi_writeback *wb)
{
	assert_spin_locked(&wb->list_lock);

165
	list_del_init(&inode->i_io_list);
166 167 168
	wb_io_lists_depopulated(wb);
}

169
static void wb_wakeup(struct bdi_writeback *wb)
J
Jan Kara 已提交
170
{
171 172 173 174
	spin_lock_bh(&wb->work_lock);
	if (test_bit(WB_registered, &wb->state))
		mod_delayed_work(bdi_wq, &wb->dwork, 0);
	spin_unlock_bh(&wb->work_lock);
J
Jan Kara 已提交
175 176
}

177 178 179 180 181 182 183 184 185 186 187
static void finish_writeback_work(struct bdi_writeback *wb,
				  struct wb_writeback_work *work)
{
	struct wb_completion *done = work->done;

	if (work->auto_free)
		kfree(work);
	if (done && atomic_dec_and_test(&done->cnt))
		wake_up_all(&wb->bdi->wb_waitq);
}

188 189
static void wb_queue_work(struct bdi_writeback *wb,
			  struct wb_writeback_work *work)
190
{
191
	trace_writeback_queue(wb, work);
192

193 194
	if (work->done)
		atomic_inc(&work->done->cnt);
195 196 197 198 199 200 201 202 203

	spin_lock_bh(&wb->work_lock);

	if (test_bit(WB_registered, &wb->state)) {
		list_add_tail(&work->list, &wb->work_list);
		mod_delayed_work(bdi_wq, &wb->dwork, 0);
	} else
		finish_writeback_work(wb, work);

204
	spin_unlock_bh(&wb->work_lock);
L
Linus Torvalds 已提交
205 206
}

207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
/**
 * wb_wait_for_completion - wait for completion of bdi_writeback_works
 * @bdi: bdi work items were issued to
 * @done: target wb_completion
 *
 * Wait for one or more work items issued to @bdi with their ->done field
 * set to @done, which should have been defined with
 * DEFINE_WB_COMPLETION_ONSTACK().  This function returns after all such
 * work items are completed.  Work items which are waited upon aren't freed
 * automatically on completion.
 */
static void wb_wait_for_completion(struct backing_dev_info *bdi,
				   struct wb_completion *done)
{
	atomic_dec(&done->cnt);		/* put down the initial count */
	wait_event(bdi->wb_waitq, !atomic_read(&done->cnt));
}

225 226
#ifdef CONFIG_CGROUP_WRITEBACK

227 228 229 230 231 232 233 234 235 236 237 238 239 240
/* parameters for foreign inode detection, see wb_detach_inode() */
#define WB_FRN_TIME_SHIFT	13	/* 1s = 2^13, upto 8 secs w/ 16bit */
#define WB_FRN_TIME_AVG_SHIFT	3	/* avg = avg * 7/8 + new * 1/8 */
#define WB_FRN_TIME_CUT_DIV	2	/* ignore rounds < avg / 2 */
#define WB_FRN_TIME_PERIOD	(2 * (1 << WB_FRN_TIME_SHIFT))	/* 2s */

#define WB_FRN_HIST_SLOTS	16	/* inode->i_wb_frn_history is 16bit */
#define WB_FRN_HIST_UNIT	(WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
					/* each slot's duration is 2s / 16 */
#define WB_FRN_HIST_THR_SLOTS	(WB_FRN_HIST_SLOTS / 2)
					/* if foreign slots >= 8, switch */
#define WB_FRN_HIST_MAX_SLOTS	(WB_FRN_HIST_THR_SLOTS / 2 + 1)
					/* one round can affect upto 5 slots */

241 242 243
static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
static struct workqueue_struct *isw_wq;

244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
void __inode_attach_wb(struct inode *inode, struct page *page)
{
	struct backing_dev_info *bdi = inode_to_bdi(inode);
	struct bdi_writeback *wb = NULL;

	if (inode_cgwb_enabled(inode)) {
		struct cgroup_subsys_state *memcg_css;

		if (page) {
			memcg_css = mem_cgroup_css_from_page(page);
			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
		} else {
			/* must pin memcg_css, see wb_get_create() */
			memcg_css = task_get_css(current, memory_cgrp_id);
			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
			css_put(memcg_css);
		}
	}

	if (!wb)
		wb = &bdi->wb;

	/*
	 * There may be multiple instances of this function racing to
	 * update the same inode.  Use cmpxchg() to tell the winner.
	 */
	if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
		wb_put(wb);
}

274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
/**
 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
 * @inode: inode of interest with i_lock held
 *
 * Returns @inode's wb with its list_lock held.  @inode->i_lock must be
 * held on entry and is released on return.  The returned wb is guaranteed
 * to stay @inode's associated wb until its list_lock is released.
 */
static struct bdi_writeback *
locked_inode_to_wb_and_lock_list(struct inode *inode)
	__releases(&inode->i_lock)
	__acquires(&wb->list_lock)
{
	while (true) {
		struct bdi_writeback *wb = inode_to_wb(inode);

		/*
		 * inode_to_wb() association is protected by both
		 * @inode->i_lock and @wb->list_lock but list_lock nests
		 * outside i_lock.  Drop i_lock and verify that the
		 * association hasn't changed after acquiring list_lock.
		 */
		wb_get(wb);
		spin_unlock(&inode->i_lock);
		spin_lock(&wb->list_lock);

300
		/* i_wb may have changed inbetween, can't use inode_to_wb() */
301 302 303 304
		if (likely(wb == inode->i_wb)) {
			wb_put(wb);	/* @inode already has ref */
			return wb;
		}
305 306

		spin_unlock(&wb->list_lock);
307
		wb_put(wb);
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
		cpu_relax();
		spin_lock(&inode->i_lock);
	}
}

/**
 * inode_to_wb_and_lock_list - determine an inode's wb and lock it
 * @inode: inode of interest
 *
 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
 * on entry.
 */
static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
	__acquires(&wb->list_lock)
{
	spin_lock(&inode->i_lock);
	return locked_inode_to_wb_and_lock_list(inode);
}

327 328 329 330 331 332 333 334 335 336 337 338 339
struct inode_switch_wbs_context {
	struct inode		*inode;
	struct bdi_writeback	*new_wb;

	struct rcu_head		rcu_head;
	struct work_struct	work;
};

static void inode_switch_wbs_work_fn(struct work_struct *work)
{
	struct inode_switch_wbs_context *isw =
		container_of(work, struct inode_switch_wbs_context, work);
	struct inode *inode = isw->inode;
340 341
	struct address_space *mapping = inode->i_mapping;
	struct bdi_writeback *old_wb = inode->i_wb;
342
	struct bdi_writeback *new_wb = isw->new_wb;
343 344 345
	struct radix_tree_iter iter;
	bool switched = false;
	void **slot;
346 347 348 349 350 351

	/*
	 * By the time control reaches here, RCU grace period has passed
	 * since I_WB_SWITCH assertion and all wb stat update transactions
	 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
	 * synchronizing against mapping->tree_lock.
352 353 354 355
	 *
	 * Grabbing old_wb->list_lock, inode->i_lock and mapping->tree_lock
	 * gives us exclusion against all wb related operations on @inode
	 * including IO list manipulations and stat updates.
356
	 */
357 358 359 360 361 362 363
	if (old_wb < new_wb) {
		spin_lock(&old_wb->list_lock);
		spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
	} else {
		spin_lock(&new_wb->list_lock);
		spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
	}
364
	spin_lock(&inode->i_lock);
365 366 367 368
	spin_lock_irq(&mapping->tree_lock);

	/*
	 * Once I_FREEING is visible under i_lock, the eviction path owns
369
	 * the inode and we shouldn't modify ->i_io_list.
370 371 372 373 374 375 376 377 378 379 380 381 382 383
	 */
	if (unlikely(inode->i_state & I_FREEING))
		goto skip_switch;

	/*
	 * Count and transfer stats.  Note that PAGECACHE_TAG_DIRTY points
	 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
	 * pages actually under underwriteback.
	 */
	radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
				   PAGECACHE_TAG_DIRTY) {
		struct page *page = radix_tree_deref_slot_protected(slot,
							&mapping->tree_lock);
		if (likely(page) && PageDirty(page)) {
384 385
			dec_wb_stat(old_wb, WB_RECLAIMABLE);
			inc_wb_stat(new_wb, WB_RECLAIMABLE);
386 387 388 389 390 391 392 393 394
		}
	}

	radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
				   PAGECACHE_TAG_WRITEBACK) {
		struct page *page = radix_tree_deref_slot_protected(slot,
							&mapping->tree_lock);
		if (likely(page)) {
			WARN_ON_ONCE(!PageWriteback(page));
395 396
			dec_wb_stat(old_wb, WB_WRITEBACK);
			inc_wb_stat(new_wb, WB_WRITEBACK);
397 398 399 400 401 402 403 404 405 406 407
		}
	}

	wb_get(new_wb);

	/*
	 * Transfer to @new_wb's IO list if necessary.  The specific list
	 * @inode was on is ignored and the inode is put on ->b_dirty which
	 * is always correct including from ->b_dirty_time.  The transfer
	 * preserves @inode->dirtied_when ordering.
	 */
408
	if (!list_empty(&inode->i_io_list)) {
409 410
		struct inode *pos;

411
		inode_io_list_del_locked(inode, old_wb);
412
		inode->i_wb = new_wb;
413
		list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
414 415 416
			if (time_after_eq(inode->dirtied_when,
					  pos->dirtied_when))
				break;
417
		inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev);
418 419 420
	} else {
		inode->i_wb = new_wb;
	}
421

422
	/* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
423 424 425
	inode->i_wb_frn_winner = 0;
	inode->i_wb_frn_avg_time = 0;
	inode->i_wb_frn_history = 0;
426 427
	switched = true;
skip_switch:
428 429 430 431 432 433
	/*
	 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
	 * ensures that the new wb is visible if they see !I_WB_SWITCH.
	 */
	smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);

434
	spin_unlock_irq(&mapping->tree_lock);
435
	spin_unlock(&inode->i_lock);
436 437
	spin_unlock(&new_wb->list_lock);
	spin_unlock(&old_wb->list_lock);
438

439 440 441 442
	if (switched) {
		wb_wakeup(new_wb);
		wb_put(old_wb);
	}
443
	wb_put(new_wb);
444 445

	iput(inode);
446
	kfree(isw);
447 448

	atomic_dec(&isw_nr_in_flight);
449 450 451 452 453 454 455 456 457
}

static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
{
	struct inode_switch_wbs_context *isw = container_of(rcu_head,
				struct inode_switch_wbs_context, rcu_head);

	/* needs to grab bh-unsafe locks, bounce to work item */
	INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
458
	queue_work(isw_wq, &isw->work);
459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
}

/**
 * inode_switch_wbs - change the wb association of an inode
 * @inode: target inode
 * @new_wb_id: ID of the new wb
 *
 * Switch @inode's wb association to the wb identified by @new_wb_id.  The
 * switching is performed asynchronously and may fail silently.
 */
static void inode_switch_wbs(struct inode *inode, int new_wb_id)
{
	struct backing_dev_info *bdi = inode_to_bdi(inode);
	struct cgroup_subsys_state *memcg_css;
	struct inode_switch_wbs_context *isw;

	/* noop if seems to be already in progress */
	if (inode->i_state & I_WB_SWITCH)
		return;

	isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
	if (!isw)
		return;

	/* find and pin the new wb */
	rcu_read_lock();
	memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
	if (memcg_css)
		isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
	rcu_read_unlock();
	if (!isw->new_wb)
		goto out_free;

	/* while holding I_WB_SWITCH, no one else can update the association */
	spin_lock(&inode->i_lock);
494 495 496 497 498 499
	if (!(inode->i_sb->s_flags & MS_ACTIVE) ||
	    inode->i_state & (I_WB_SWITCH | I_FREEING) ||
	    inode_to_wb(inode) == isw->new_wb) {
		spin_unlock(&inode->i_lock);
		goto out_free;
	}
500
	inode->i_state |= I_WB_SWITCH;
501
	__iget(inode);
502 503 504 505
	spin_unlock(&inode->i_lock);

	isw->inode = inode;

506 507
	atomic_inc(&isw_nr_in_flight);

508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
	/*
	 * In addition to synchronizing among switchers, I_WB_SWITCH tells
	 * the RCU protected stat update paths to grab the mapping's
	 * tree_lock so that stat transfer can synchronize against them.
	 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
	 */
	call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
	return;

out_free:
	if (isw->new_wb)
		wb_put(isw->new_wb);
	kfree(isw);
}

523 524 525 526 527 528 529 530 531 532 533 534 535
/**
 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
 * @wbc: writeback_control of interest
 * @inode: target inode
 *
 * @inode is locked and about to be written back under the control of @wbc.
 * Record @inode's writeback context into @wbc and unlock the i_lock.  On
 * writeback completion, wbc_detach_inode() should be called.  This is used
 * to track the cgroup writeback context.
 */
void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
				 struct inode *inode)
{
536 537 538 539 540
	if (!inode_cgwb_enabled(inode)) {
		spin_unlock(&inode->i_lock);
		return;
	}

541
	wbc->wb = inode_to_wb(inode);
542 543 544 545 546 547 548 549 550
	wbc->inode = inode;

	wbc->wb_id = wbc->wb->memcg_css->id;
	wbc->wb_lcand_id = inode->i_wb_frn_winner;
	wbc->wb_tcand_id = 0;
	wbc->wb_bytes = 0;
	wbc->wb_lcand_bytes = 0;
	wbc->wb_tcand_bytes = 0;

551 552
	wb_get(wbc->wb);
	spin_unlock(&inode->i_lock);
553 554 555 556 557 558 559

	/*
	 * A dying wb indicates that the memcg-blkcg mapping has changed
	 * and a new wb is already serving the memcg.  Switch immediately.
	 */
	if (unlikely(wb_dying(wbc->wb)))
		inode_switch_wbs(inode, wbc->wb_id);
560 561 562
}

/**
563 564
 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
 * @wbc: writeback_control of the just finished writeback
565 566 567
 *
 * To be called after a writeback attempt of an inode finishes and undoes
 * wbc_attach_and_unlock_inode().  Can be called under any context.
568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
 *
 * As concurrent write sharing of an inode is expected to be very rare and
 * memcg only tracks page ownership on first-use basis severely confining
 * the usefulness of such sharing, cgroup writeback tracks ownership
 * per-inode.  While the support for concurrent write sharing of an inode
 * is deemed unnecessary, an inode being written to by different cgroups at
 * different points in time is a lot more common, and, more importantly,
 * charging only by first-use can too readily lead to grossly incorrect
 * behaviors (single foreign page can lead to gigabytes of writeback to be
 * incorrectly attributed).
 *
 * To resolve this issue, cgroup writeback detects the majority dirtier of
 * an inode and transfers the ownership to it.  To avoid unnnecessary
 * oscillation, the detection mechanism keeps track of history and gives
 * out the switch verdict only if the foreign usage pattern is stable over
 * a certain amount of time and/or writeback attempts.
 *
 * On each writeback attempt, @wbc tries to detect the majority writer
 * using Boyer-Moore majority vote algorithm.  In addition to the byte
 * count from the majority voting, it also counts the bytes written for the
 * current wb and the last round's winner wb (max of last round's current
 * wb, the winner from two rounds ago, and the last round's majority
 * candidate).  Keeping track of the historical winner helps the algorithm
 * to semi-reliably detect the most active writer even when it's not the
 * absolute majority.
 *
 * Once the winner of the round is determined, whether the winner is
 * foreign or not and how much IO time the round consumed is recorded in
 * inode->i_wb_frn_history.  If the amount of recorded foreign IO time is
 * over a certain threshold, the switch verdict is given.
598 599 600
 */
void wbc_detach_inode(struct writeback_control *wbc)
{
601 602
	struct bdi_writeback *wb = wbc->wb;
	struct inode *inode = wbc->inode;
603 604
	unsigned long avg_time, max_bytes, max_time;
	u16 history;
605 606
	int max_id;

607 608 609 610 611 612
	if (!wb)
		return;

	history = inode->i_wb_frn_history;
	avg_time = inode->i_wb_frn_avg_time;

613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664
	/* pick the winner of this round */
	if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
	    wbc->wb_bytes >= wbc->wb_tcand_bytes) {
		max_id = wbc->wb_id;
		max_bytes = wbc->wb_bytes;
	} else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
		max_id = wbc->wb_lcand_id;
		max_bytes = wbc->wb_lcand_bytes;
	} else {
		max_id = wbc->wb_tcand_id;
		max_bytes = wbc->wb_tcand_bytes;
	}

	/*
	 * Calculate the amount of IO time the winner consumed and fold it
	 * into the running average kept per inode.  If the consumed IO
	 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
	 * deciding whether to switch or not.  This is to prevent one-off
	 * small dirtiers from skewing the verdict.
	 */
	max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
				wb->avg_write_bandwidth);
	if (avg_time)
		avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
			    (avg_time >> WB_FRN_TIME_AVG_SHIFT);
	else
		avg_time = max_time;	/* immediate catch up on first run */

	if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
		int slots;

		/*
		 * The switch verdict is reached if foreign wb's consume
		 * more than a certain proportion of IO time in a
		 * WB_FRN_TIME_PERIOD.  This is loosely tracked by 16 slot
		 * history mask where each bit represents one sixteenth of
		 * the period.  Determine the number of slots to shift into
		 * history from @max_time.
		 */
		slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
			    (unsigned long)WB_FRN_HIST_MAX_SLOTS);
		history <<= slots;
		if (wbc->wb_id != max_id)
			history |= (1U << slots) - 1;

		/*
		 * Switch if the current wb isn't the consistent winner.
		 * If there are multiple closely competing dirtiers, the
		 * inode may switch across them repeatedly over time, which
		 * is okay.  The main goal is avoiding keeping an inode on
		 * the wrong wb for an extended period of time.
		 */
665 666
		if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
			inode_switch_wbs(inode, max_id);
667 668 669 670 671 672 673 674 675 676
	}

	/*
	 * Multiple instances of this function may race to update the
	 * following fields but we don't mind occassional inaccuracies.
	 */
	inode->i_wb_frn_winner = max_id;
	inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
	inode->i_wb_frn_history = history;

677 678 679 680
	wb_put(wbc->wb);
	wbc->wb = NULL;
}

681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722
/**
 * wbc_account_io - account IO issued during writeback
 * @wbc: writeback_control of the writeback in progress
 * @page: page being written out
 * @bytes: number of bytes being written out
 *
 * @bytes from @page are about to written out during the writeback
 * controlled by @wbc.  Keep the book for foreign inode detection.  See
 * wbc_detach_inode().
 */
void wbc_account_io(struct writeback_control *wbc, struct page *page,
		    size_t bytes)
{
	int id;

	/*
	 * pageout() path doesn't attach @wbc to the inode being written
	 * out.  This is intentional as we don't want the function to block
	 * behind a slow cgroup.  Ultimately, we want pageout() to kick off
	 * regular writeback instead of writing things out itself.
	 */
	if (!wbc->wb)
		return;

	id = mem_cgroup_css_from_page(page)->id;

	if (id == wbc->wb_id) {
		wbc->wb_bytes += bytes;
		return;
	}

	if (id == wbc->wb_lcand_id)
		wbc->wb_lcand_bytes += bytes;

	/* Boyer-Moore majority vote algorithm */
	if (!wbc->wb_tcand_bytes)
		wbc->wb_tcand_id = id;
	if (id == wbc->wb_tcand_id)
		wbc->wb_tcand_bytes += bytes;
	else
		wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
}
723
EXPORT_SYMBOL_GPL(wbc_account_io);
724

725 726
/**
 * inode_congested - test whether an inode is congested
727
 * @inode: inode to test for congestion (may be NULL)
728 729 730 731 732 733 734 735 736
 * @cong_bits: mask of WB_[a]sync_congested bits to test
 *
 * Tests whether @inode is congested.  @cong_bits is the mask of congestion
 * bits to test and the return value is the mask of set bits.
 *
 * If cgroup writeback is enabled for @inode, the congestion state is
 * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
 * associated with @inode is congested; otherwise, the root wb's congestion
 * state is used.
737 738 739
 *
 * @inode is allowed to be NULL as this function is often called on
 * mapping->host which is NULL for the swapper space.
740 741 742
 */
int inode_congested(struct inode *inode, int cong_bits)
{
743 744 745 746
	/*
	 * Once set, ->i_wb never becomes NULL while the inode is alive.
	 * Start transaction iff ->i_wb is visible.
	 */
747
	if (inode && inode_to_wb_is_valid(inode)) {
748 749 750 751 752 753 754
		struct bdi_writeback *wb;
		bool locked, congested;

		wb = unlocked_inode_to_wb_begin(inode, &locked);
		congested = wb_congested(wb, cong_bits);
		unlocked_inode_to_wb_end(inode, locked);
		return congested;
755 756 757 758 759 760
	}

	return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
}
EXPORT_SYMBOL_GPL(inode_congested);

761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788
/**
 * wb_split_bdi_pages - split nr_pages to write according to bandwidth
 * @wb: target bdi_writeback to split @nr_pages to
 * @nr_pages: number of pages to write for the whole bdi
 *
 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
 * relation to the total write bandwidth of all wb's w/ dirty inodes on
 * @wb->bdi.
 */
static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
{
	unsigned long this_bw = wb->avg_write_bandwidth;
	unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);

	if (nr_pages == LONG_MAX)
		return LONG_MAX;

	/*
	 * This may be called on clean wb's and proportional distribution
	 * may not make sense, just use the original @nr_pages in those
	 * cases.  In general, we wanna err on the side of writing more.
	 */
	if (!tot_bw || this_bw >= tot_bw)
		return nr_pages;
	else
		return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
}

789 790 791 792 793 794 795 796 797 798 799 800 801 802 803
/**
 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
 * @bdi: target backing_dev_info
 * @base_work: wb_writeback_work to issue
 * @skip_if_busy: skip wb's which already have writeback in progress
 *
 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
 * have dirty inodes.  If @base_work->nr_page isn't %LONG_MAX, it's
 * distributed to the busy wbs according to each wb's proportion in the
 * total active write bandwidth of @bdi.
 */
static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
				  struct wb_writeback_work *base_work,
				  bool skip_if_busy)
{
804
	struct bdi_writeback *last_wb = NULL;
805 806
	struct bdi_writeback *wb = list_entry(&bdi->wb_list,
					      struct bdi_writeback, bdi_node);
807 808 809 810

	might_sleep();
restart:
	rcu_read_lock();
811
	list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
812 813 814 815 816
		DEFINE_WB_COMPLETION_ONSTACK(fallback_work_done);
		struct wb_writeback_work fallback_work;
		struct wb_writeback_work *work;
		long nr_pages;

817 818 819 820 821
		if (last_wb) {
			wb_put(last_wb);
			last_wb = NULL;
		}

822 823 824 825 826 827
		/* SYNC_ALL writes out I_DIRTY_TIME too */
		if (!wb_has_dirty_io(wb) &&
		    (base_work->sync_mode == WB_SYNC_NONE ||
		     list_empty(&wb->b_dirty_time)))
			continue;
		if (skip_if_busy && writeback_in_progress(wb))
828 829
			continue;

830 831 832 833 834 835 836 837 838
		nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);

		work = kmalloc(sizeof(*work), GFP_ATOMIC);
		if (work) {
			*work = *base_work;
			work->nr_pages = nr_pages;
			work->auto_free = 1;
			wb_queue_work(wb, work);
			continue;
839
		}
840 841 842 843 844 845 846 847 848 849

		/* alloc failed, execute synchronously using on-stack fallback */
		work = &fallback_work;
		*work = *base_work;
		work->nr_pages = nr_pages;
		work->auto_free = 0;
		work->done = &fallback_work_done;

		wb_queue_work(wb, work);

850 851 852 853 854 855 856 857
		/*
		 * Pin @wb so that it stays on @bdi->wb_list.  This allows
		 * continuing iteration from @wb after dropping and
		 * regrabbing rcu read lock.
		 */
		wb_get(wb);
		last_wb = wb;

858 859 860
		rcu_read_unlock();
		wb_wait_for_completion(bdi, &fallback_work_done);
		goto restart;
861 862
	}
	rcu_read_unlock();
863 864 865

	if (last_wb)
		wb_put(last_wb);
866 867
}

868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894
/**
 * cgroup_writeback_umount - flush inode wb switches for umount
 *
 * This function is called when a super_block is about to be destroyed and
 * flushes in-flight inode wb switches.  An inode wb switch goes through
 * RCU and then workqueue, so the two need to be flushed in order to ensure
 * that all previously scheduled switches are finished.  As wb switches are
 * rare occurrences and synchronize_rcu() can take a while, perform
 * flushing iff wb switches are in flight.
 */
void cgroup_writeback_umount(void)
{
	if (atomic_read(&isw_nr_in_flight)) {
		synchronize_rcu();
		flush_workqueue(isw_wq);
	}
}

static int __init cgroup_writeback_init(void)
{
	isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
	if (!isw_wq)
		return -ENOMEM;
	return 0;
}
fs_initcall(cgroup_writeback_init);

895 896
#else	/* CONFIG_CGROUP_WRITEBACK */

897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917
static struct bdi_writeback *
locked_inode_to_wb_and_lock_list(struct inode *inode)
	__releases(&inode->i_lock)
	__acquires(&wb->list_lock)
{
	struct bdi_writeback *wb = inode_to_wb(inode);

	spin_unlock(&inode->i_lock);
	spin_lock(&wb->list_lock);
	return wb;
}

static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
	__acquires(&wb->list_lock)
{
	struct bdi_writeback *wb = inode_to_wb(inode);

	spin_lock(&wb->list_lock);
	return wb;
}

918 919 920 921 922
static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
{
	return nr_pages;
}

923 924 925 926 927 928
static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
				  struct wb_writeback_work *base_work,
				  bool skip_if_busy)
{
	might_sleep();

929
	if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
930 931 932 933 934
		base_work->auto_free = 0;
		wb_queue_work(&bdi->wb, base_work);
	}
}

935 936
#endif	/* CONFIG_CGROUP_WRITEBACK */

937 938 939 940 941 942 943 944 945 946 947 948
/*
 * Add in the number of potentially dirty inodes, because each inode
 * write can dirty pagecache in the underlying blockdev.
 */
static unsigned long get_nr_dirty_pages(void)
{
	return global_node_page_state(NR_FILE_DIRTY) +
		global_node_page_state(NR_UNSTABLE_NFS) +
		get_nr_dirty_inodes();
}

static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason)
949
{
950 951 952 953 954
	struct wb_writeback_work *work;

	if (!wb_has_dirty_io(wb))
		return;

955 956 957 958 959 960 961 962 963 964 965 966 967 968
	/*
	 * All callers of this function want to start writeback of all
	 * dirty pages. Places like vmscan can call this at a very
	 * high frequency, causing pointless allocations of tons of
	 * work items and keeping the flusher threads busy retrieving
	 * that work. Ensure that we only allow one of them pending and
	 * inflight at the time. It doesn't matter if we race a little
	 * bit on this, so use the faster separate test/set bit variants.
	 */
	if (test_bit(WB_start_all, &wb->state))
		return;

	set_bit(WB_start_all, &wb->state);

969 970 971 972
	/*
	 * This is WB_SYNC_NONE writeback, so if allocation fails just
	 * wakeup the thread for old dirty data writeback
	 */
973 974
	work = kzalloc(sizeof(*work),
		       GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
975
	if (!work) {
976
		clear_bit(WB_start_all, &wb->state);
977
		trace_writeback_nowork(wb);
978 979 980 981 982
		wb_wakeup(wb);
		return;
	}

	work->sync_mode	= WB_SYNC_NONE;
983
	work->nr_pages	= wb_split_bdi_pages(wb, get_nr_dirty_pages());
984
	work->range_cyclic = 1;
985
	work->reason	= reason;
986
	work->auto_free	= 1;
987
	work->start_all = 1;
988 989

	wb_queue_work(wb, work);
990
}
991

992
/**
993 994
 * wb_start_background_writeback - start background writeback
 * @wb: bdi_writback to write from
995 996
 *
 * Description:
997
 *   This makes sure WB_SYNC_NONE background writeback happens. When
998
 *   this function returns, it is only guaranteed that for given wb
999 1000
 *   some IO is happening if we are over background dirty threshold.
 *   Caller need not hold sb s_umount semaphore.
1001
 */
1002
void wb_start_background_writeback(struct bdi_writeback *wb)
1003
{
1004 1005 1006 1007
	/*
	 * We just wake up the flusher thread. It will perform background
	 * writeback as soon as there is no other work to do.
	 */
1008
	trace_writeback_wake_background(wb);
1009
	wb_wakeup(wb);
L
Linus Torvalds 已提交
1010 1011
}

1012 1013 1014
/*
 * Remove the inode from the writeback list it is on.
 */
1015
void inode_io_list_del(struct inode *inode)
1016
{
1017
	struct bdi_writeback *wb;
1018

1019
	wb = inode_to_wb_and_lock_list(inode);
1020
	inode_io_list_del_locked(inode, wb);
1021
	spin_unlock(&wb->list_lock);
1022 1023
}

1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
/*
 * mark an inode as under writeback on the sb
 */
void sb_mark_inode_writeback(struct inode *inode)
{
	struct super_block *sb = inode->i_sb;
	unsigned long flags;

	if (list_empty(&inode->i_wb_list)) {
		spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1034
		if (list_empty(&inode->i_wb_list)) {
1035
			list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
1036 1037
			trace_sb_mark_inode_writeback(inode);
		}
1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
		spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
	}
}

/*
 * clear an inode as under writeback on the sb
 */
void sb_clear_inode_writeback(struct inode *inode)
{
	struct super_block *sb = inode->i_sb;
	unsigned long flags;

	if (!list_empty(&inode->i_wb_list)) {
		spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1052 1053 1054 1055
		if (!list_empty(&inode->i_wb_list)) {
			list_del_init(&inode->i_wb_list);
			trace_sb_clear_inode_writeback(inode);
		}
1056 1057 1058 1059
		spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
	}
}

1060 1061 1062 1063 1064
/*
 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
 * furthest end of its superblock's dirty-inode list.
 *
 * Before stamping the inode's ->dirtied_when, we check to see whether it is
1065
 * already the most-recently-dirtied inode on the b_dirty list.  If that is
1066 1067 1068
 * the case then the inode must have been redirtied while it was being written
 * out and we don't reset its dirtied_when.
 */
1069
static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1070
{
1071
	if (!list_empty(&wb->b_dirty)) {
1072
		struct inode *tail;
1073

N
Nick Piggin 已提交
1074
		tail = wb_inode(wb->b_dirty.next);
1075
		if (time_before(inode->dirtied_when, tail->dirtied_when))
1076 1077
			inode->dirtied_when = jiffies;
	}
1078
	inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1079 1080
}

1081
/*
1082
 * requeue inode for re-scanning after bdi->b_io list is exhausted.
1083
 */
1084
static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1085
{
1086
	inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1087 1088
}

J
Joern Engel 已提交
1089 1090
static void inode_sync_complete(struct inode *inode)
{
1091
	inode->i_state &= ~I_SYNC;
1092 1093
	/* If inode is clean an unused, put it into LRU now... */
	inode_add_lru(inode);
1094
	/* Waiters must see I_SYNC cleared before being woken up */
J
Joern Engel 已提交
1095 1096 1097 1098
	smp_mb();
	wake_up_bit(&inode->i_state, __I_SYNC);
}

1099 1100 1101 1102 1103 1104 1105 1106
static bool inode_dirtied_after(struct inode *inode, unsigned long t)
{
	bool ret = time_after(inode->dirtied_when, t);
#ifndef CONFIG_64BIT
	/*
	 * For inodes being constantly redirtied, dirtied_when can get stuck.
	 * It _appears_ to be in the future, but is actually in distant past.
	 * This test is necessary to prevent such wrapped-around relative times
1107
	 * from permanently stopping the whole bdi writeback.
1108 1109 1110 1111 1112 1113
	 */
	ret = ret && time_before_eq(inode->dirtied_when, jiffies);
#endif
	return ret;
}

1114 1115
#define EXPIRE_DIRTY_ATIME 0x0001

1116
/*
1117
 * Move expired (dirtied before work->older_than_this) dirty inodes from
J
Jan Kara 已提交
1118
 * @delaying_queue to @dispatch_queue.
1119
 */
1120
static int move_expired_inodes(struct list_head *delaying_queue,
1121
			       struct list_head *dispatch_queue,
1122
			       int flags,
1123
			       struct wb_writeback_work *work)
1124
{
1125 1126
	unsigned long *older_than_this = NULL;
	unsigned long expire_time;
1127 1128
	LIST_HEAD(tmp);
	struct list_head *pos, *node;
1129
	struct super_block *sb = NULL;
1130
	struct inode *inode;
1131
	int do_sb_sort = 0;
1132
	int moved = 0;
1133

1134 1135
	if ((flags & EXPIRE_DIRTY_ATIME) == 0)
		older_than_this = work->older_than_this;
1136 1137
	else if (!work->for_sync) {
		expire_time = jiffies - (dirtytime_expire_interval * HZ);
1138 1139
		older_than_this = &expire_time;
	}
1140
	while (!list_empty(delaying_queue)) {
N
Nick Piggin 已提交
1141
		inode = wb_inode(delaying_queue->prev);
1142 1143
		if (older_than_this &&
		    inode_dirtied_after(inode, *older_than_this))
1144
			break;
1145
		list_move(&inode->i_io_list, &tmp);
1146
		moved++;
1147 1148
		if (flags & EXPIRE_DIRTY_ATIME)
			set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
1149 1150
		if (sb_is_blkdev_sb(inode->i_sb))
			continue;
1151 1152 1153
		if (sb && sb != inode->i_sb)
			do_sb_sort = 1;
		sb = inode->i_sb;
1154 1155
	}

1156 1157 1158
	/* just one sb in list, splice to dispatch_queue and we're done */
	if (!do_sb_sort) {
		list_splice(&tmp, dispatch_queue);
1159
		goto out;
1160 1161
	}

1162 1163
	/* Move inodes from one superblock together */
	while (!list_empty(&tmp)) {
N
Nick Piggin 已提交
1164
		sb = wb_inode(tmp.prev)->i_sb;
1165
		list_for_each_prev_safe(pos, node, &tmp) {
N
Nick Piggin 已提交
1166
			inode = wb_inode(pos);
1167
			if (inode->i_sb == sb)
1168
				list_move(&inode->i_io_list, dispatch_queue);
1169
		}
1170
	}
1171 1172
out:
	return moved;
1173 1174 1175 1176
}

/*
 * Queue all expired dirty inodes for io, eldest first.
1177 1178 1179 1180 1181 1182 1183 1184
 * Before
 *         newly dirtied     b_dirty    b_io    b_more_io
 *         =============>    gf         edc     BA
 * After
 *         newly dirtied     b_dirty    b_io    b_more_io
 *         =============>    g          fBAedc
 *                                           |
 *                                           +--> dequeue for IO
1185
 */
1186
static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
1187
{
1188
	int moved;
1189

1190
	assert_spin_locked(&wb->list_lock);
1191
	list_splice_init(&wb->b_more_io, &wb->b_io);
1192 1193 1194
	moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
	moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
				     EXPIRE_DIRTY_ATIME, work);
1195 1196
	if (moved)
		wb_io_lists_populated(wb);
1197
	trace_writeback_queue_io(wb, work, moved);
1198 1199
}

1200
static int write_inode(struct inode *inode, struct writeback_control *wbc)
1201
{
T
Tejun Heo 已提交
1202 1203 1204 1205 1206 1207 1208 1209
	int ret;

	if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
		trace_writeback_write_inode_start(inode, wbc);
		ret = inode->i_sb->s_op->write_inode(inode, wbc);
		trace_writeback_write_inode(inode, wbc);
		return ret;
	}
1210
	return 0;
1211 1212
}

L
Linus Torvalds 已提交
1213
/*
1214 1215
 * Wait for writeback on an inode to complete. Called with i_lock held.
 * Caller must make sure inode cannot go away when we drop i_lock.
1216
 */
1217 1218 1219
static void __inode_wait_for_writeback(struct inode *inode)
	__releases(inode->i_lock)
	__acquires(inode->i_lock)
1220 1221 1222 1223 1224
{
	DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
	wait_queue_head_t *wqh;

	wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1225 1226
	while (inode->i_state & I_SYNC) {
		spin_unlock(&inode->i_lock);
1227 1228
		__wait_on_bit(wqh, &wq, bit_wait,
			      TASK_UNINTERRUPTIBLE);
1229
		spin_lock(&inode->i_lock);
1230
	}
1231 1232
}

1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
/*
 * Wait for writeback on an inode to complete. Caller must have inode pinned.
 */
void inode_wait_for_writeback(struct inode *inode)
{
	spin_lock(&inode->i_lock);
	__inode_wait_for_writeback(inode);
	spin_unlock(&inode->i_lock);
}

/*
 * Sleep until I_SYNC is cleared. This function must be called with i_lock
 * held and drops it. It is aimed for callers not holding any inode reference
 * so once i_lock is dropped, inode can go away.
 */
static void inode_sleep_on_writeback(struct inode *inode)
	__releases(inode->i_lock)
{
	DEFINE_WAIT(wait);
	wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
	int sleep;

	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
	sleep = inode->i_state & I_SYNC;
	spin_unlock(&inode->i_lock);
	if (sleep)
		schedule();
	finish_wait(wqh, &wait);
}

1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
/*
 * Find proper writeback list for the inode depending on its current state and
 * possibly also change of its state while we were doing writeback.  Here we
 * handle things such as livelock prevention or fairness of writeback among
 * inodes. This function can be called only by flusher thread - noone else
 * processes all inodes in writeback lists and requeueing inodes behind flusher
 * thread's back can have unexpected consequences.
 */
static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
			  struct writeback_control *wbc)
{
	if (inode->i_state & I_FREEING)
		return;

	/*
	 * Sync livelock prevention. Each inode is tagged and synced in one
	 * shot. If still dirty, it will be redirty_tail()'ed below.  Update
	 * the dirty time to prevent enqueue and sync it again.
	 */
	if ((inode->i_state & I_DIRTY) &&
	    (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
		inode->dirtied_when = jiffies;

1286 1287 1288 1289 1290 1291 1292 1293 1294
	if (wbc->pages_skipped) {
		/*
		 * writeback is not making progress due to locked
		 * buffers. Skip this inode for now.
		 */
		redirty_tail(inode, wb);
		return;
	}

1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
	if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
		/*
		 * We didn't write back all the pages.  nfs_writepages()
		 * sometimes bales out without doing anything.
		 */
		if (wbc->nr_to_write <= 0) {
			/* Slice used up. Queue for next turn. */
			requeue_io(inode, wb);
		} else {
			/*
			 * Writeback blocked by something other than
			 * congestion. Delay the inode for some time to
			 * avoid spinning on the CPU (100% iowait)
			 * retrying writeback of the dirty page/inode
			 * that cannot be performed immediately.
			 */
			redirty_tail(inode, wb);
		}
	} else if (inode->i_state & I_DIRTY) {
		/*
		 * Filesystems can dirty the inode during writeback operations,
		 * such as delayed allocation during submission or metadata
		 * updates after data IO completion.
		 */
		redirty_tail(inode, wb);
1320
	} else if (inode->i_state & I_DIRTY_TIME) {
1321
		inode->dirtied_when = jiffies;
1322
		inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1323 1324
	} else {
		/* The inode is clean. Remove from writeback lists. */
1325
		inode_io_list_del_locked(inode, wb);
1326 1327 1328
	}
}

1329
/*
1330 1331 1332
 * Write out an inode and its dirty pages. Do not update the writeback list
 * linkage. That is left to the caller. The caller is also responsible for
 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
L
Linus Torvalds 已提交
1333 1334
 */
static int
1335
__writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
L
Linus Torvalds 已提交
1336 1337
{
	struct address_space *mapping = inode->i_mapping;
1338
	long nr_to_write = wbc->nr_to_write;
1339
	unsigned dirty;
L
Linus Torvalds 已提交
1340 1341
	int ret;

1342
	WARN_ON(!(inode->i_state & I_SYNC));
L
Linus Torvalds 已提交
1343

T
Tejun Heo 已提交
1344 1345
	trace_writeback_single_inode_start(inode, wbc, nr_to_write);

L
Linus Torvalds 已提交
1346 1347
	ret = do_writepages(mapping, wbc);

1348 1349 1350
	/*
	 * Make sure to wait on the data before writing out the metadata.
	 * This is important for filesystems that modify metadata on data
1351 1352 1353
	 * I/O completion. We don't do it for sync(2) writeback because it has a
	 * separate, external IO completion path and ->sync_fs for guaranteeing
	 * inode metadata is written back correctly.
1354
	 */
1355
	if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1356
		int err = filemap_fdatawait(mapping);
L
Linus Torvalds 已提交
1357 1358 1359 1360
		if (ret == 0)
			ret = err;
	}

1361 1362 1363 1364 1365
	/*
	 * Some filesystems may redirty the inode during the writeback
	 * due to delalloc, clear dirty metadata flags right before
	 * write_inode()
	 */
1366
	spin_lock(&inode->i_lock);
1367

1368
	dirty = inode->i_state & I_DIRTY;
1369 1370
	if (inode->i_state & I_DIRTY_TIME) {
		if ((dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
1371
		    wbc->sync_mode == WB_SYNC_ALL ||
1372 1373 1374 1375 1376 1377 1378 1379 1380
		    unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
		    unlikely(time_after(jiffies,
					(inode->dirtied_time_when +
					 dirtytime_expire_interval * HZ)))) {
			dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
			trace_writeback_lazytime(inode);
		}
	} else
		inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
1381
	inode->i_state &= ~dirty;
1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398

	/*
	 * Paired with smp_mb() in __mark_inode_dirty().  This allows
	 * __mark_inode_dirty() to test i_state without grabbing i_lock -
	 * either they see the I_DIRTY bits cleared or we see the dirtied
	 * inode.
	 *
	 * I_DIRTY_PAGES is always cleared together above even if @mapping
	 * still has dirty pages.  The flag is reinstated after smp_mb() if
	 * necessary.  This guarantees that either __mark_inode_dirty()
	 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
	 */
	smp_mb();

	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
		inode->i_state |= I_DIRTY_PAGES;

1399
	spin_unlock(&inode->i_lock);
1400

1401 1402
	if (dirty & I_DIRTY_TIME)
		mark_inode_dirty_sync(inode);
1403
	/* Don't write the inode if only I_DIRTY_PAGES was set */
1404
	if (dirty & ~I_DIRTY_PAGES) {
1405
		int err = write_inode(inode, wbc);
L
Linus Torvalds 已提交
1406 1407 1408
		if (ret == 0)
			ret = err;
	}
1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420
	trace_writeback_single_inode(inode, wbc, nr_to_write);
	return ret;
}

/*
 * Write out an inode's dirty pages. Either the caller has an active reference
 * on the inode or the inode has I_WILL_FREE set.
 *
 * This function is designed to be called for writing back one inode which
 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
 * and does more profound writeback list handling in writeback_sb_inodes().
 */
1421 1422
static int writeback_single_inode(struct inode *inode,
				  struct writeback_control *wbc)
1423
{
1424
	struct bdi_writeback *wb;
1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436
	int ret = 0;

	spin_lock(&inode->i_lock);
	if (!atomic_read(&inode->i_count))
		WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
	else
		WARN_ON(inode->i_state & I_WILL_FREE);

	if (inode->i_state & I_SYNC) {
		if (wbc->sync_mode != WB_SYNC_ALL)
			goto out;
		/*
1437 1438 1439
		 * It's a data-integrity sync. We must wait. Since callers hold
		 * inode reference or inode has I_WILL_FREE set, it cannot go
		 * away under us.
1440
		 */
1441
		__inode_wait_for_writeback(inode);
1442 1443 1444
	}
	WARN_ON(inode->i_state & I_SYNC);
	/*
J
Jan Kara 已提交
1445 1446 1447 1448 1449 1450
	 * Skip inode if it is clean and we have no outstanding writeback in
	 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
	 * function since flusher thread may be doing for example sync in
	 * parallel and if we move the inode, it could get skipped. So here we
	 * make sure inode is on some writeback list and leave it there unless
	 * we have completely cleaned the inode.
1451
	 */
1452
	if (!(inode->i_state & I_DIRTY_ALL) &&
J
Jan Kara 已提交
1453 1454
	    (wbc->sync_mode != WB_SYNC_ALL ||
	     !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1455 1456
		goto out;
	inode->i_state |= I_SYNC;
1457
	wbc_attach_and_unlock_inode(wbc, inode);
1458

1459
	ret = __writeback_single_inode(inode, wbc);
L
Linus Torvalds 已提交
1460

1461
	wbc_detach_inode(wbc);
1462 1463

	wb = inode_to_wb_and_lock_list(inode);
1464
	spin_lock(&inode->i_lock);
1465 1466 1467 1468
	/*
	 * If inode is clean, remove it from writeback lists. Otherwise don't
	 * touch it. See comment above for explanation.
	 */
1469
	if (!(inode->i_state & I_DIRTY_ALL))
1470
		inode_io_list_del_locked(inode, wb);
1471
	spin_unlock(&wb->list_lock);
J
Joern Engel 已提交
1472
	inode_sync_complete(inode);
1473 1474
out:
	spin_unlock(&inode->i_lock);
L
Linus Torvalds 已提交
1475 1476 1477
	return ret;
}

1478
static long writeback_chunk_size(struct bdi_writeback *wb,
1479
				 struct wb_writeback_work *work)
1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497
{
	long pages;

	/*
	 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
	 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
	 * here avoids calling into writeback_inodes_wb() more than once.
	 *
	 * The intended call sequence for WB_SYNC_ALL writeback is:
	 *
	 *      wb_writeback()
	 *          writeback_sb_inodes()       <== called only once
	 *              write_cache_pages()     <== called once for each inode
	 *                   (quickly) tag currently dirty pages
	 *                   (maybe slowly) sync all tagged pages
	 */
	if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
		pages = LONG_MAX;
1498
	else {
1499
		pages = min(wb->avg_write_bandwidth / 2,
1500
			    global_wb_domain.dirty_limit / DIRTY_SCOPE);
1501 1502 1503 1504
		pages = min(pages, work->nr_pages);
		pages = round_down(pages + MIN_WRITEBACK_PAGES,
				   MIN_WRITEBACK_PAGES);
	}
1505 1506 1507 1508

	return pages;
}

1509 1510
/*
 * Write a portion of b_io inodes which belong to @sb.
1511
 *
1512
 * Return the number of pages and/or inodes written.
1513 1514 1515 1516
 *
 * NOTE! This is called with wb->list_lock held, and will
 * unlock and relock that for each inode it ends up doing
 * IO for.
1517
 */
1518 1519 1520
static long writeback_sb_inodes(struct super_block *sb,
				struct bdi_writeback *wb,
				struct wb_writeback_work *work)
L
Linus Torvalds 已提交
1521
{
1522 1523 1524 1525 1526
	struct writeback_control wbc = {
		.sync_mode		= work->sync_mode,
		.tagged_writepages	= work->tagged_writepages,
		.for_kupdate		= work->for_kupdate,
		.for_background		= work->for_background,
1527
		.for_sync		= work->for_sync,
1528 1529 1530 1531 1532 1533 1534 1535
		.range_cyclic		= work->range_cyclic,
		.range_start		= 0,
		.range_end		= LLONG_MAX,
	};
	unsigned long start_time = jiffies;
	long write_chunk;
	long wrote = 0;  /* count both pages and inodes */

1536
	while (!list_empty(&wb->b_io)) {
N
Nick Piggin 已提交
1537
		struct inode *inode = wb_inode(wb->b_io.prev);
1538
		struct bdi_writeback *tmp_wb;
1539 1540

		if (inode->i_sb != sb) {
1541
			if (work->sb) {
1542 1543 1544 1545 1546
				/*
				 * We only want to write back data for this
				 * superblock, move all inodes not belonging
				 * to it back onto the dirty list.
				 */
1547
				redirty_tail(inode, wb);
1548 1549 1550 1551 1552 1553 1554 1555
				continue;
			}

			/*
			 * The inode belongs to a different superblock.
			 * Bounce back to the caller to unpin this and
			 * pin the next superblock.
			 */
1556
			break;
1557 1558
		}

1559
		/*
W
Wanpeng Li 已提交
1560 1561
		 * Don't bother with new inodes or inodes being freed, first
		 * kind does not need periodic writeout yet, and for the latter
1562 1563
		 * kind writeout is handled by the freer.
		 */
1564
		spin_lock(&inode->i_lock);
1565
		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1566
			spin_unlock(&inode->i_lock);
1567
			redirty_tail(inode, wb);
1568 1569
			continue;
		}
1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584
		if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
			/*
			 * If this inode is locked for writeback and we are not
			 * doing writeback-for-data-integrity, move it to
			 * b_more_io so that writeback can proceed with the
			 * other inodes on s_io.
			 *
			 * We'll have another go at writing back this inode
			 * when we completed a full scan of b_io.
			 */
			spin_unlock(&inode->i_lock);
			requeue_io(inode, wb);
			trace_writeback_sb_inodes_requeue(inode);
			continue;
		}
1585 1586
		spin_unlock(&wb->list_lock);

1587 1588 1589 1590 1591
		/*
		 * We already requeued the inode if it had I_SYNC set and we
		 * are doing WB_SYNC_NONE writeback. So this catches only the
		 * WB_SYNC_ALL case.
		 */
1592 1593 1594 1595
		if (inode->i_state & I_SYNC) {
			/* Wait for I_SYNC. This function drops i_lock... */
			inode_sleep_on_writeback(inode);
			/* Inode may be gone, start again */
1596
			spin_lock(&wb->list_lock);
1597 1598
			continue;
		}
1599
		inode->i_state |= I_SYNC;
1600
		wbc_attach_and_unlock_inode(&wbc, inode);
1601

1602
		write_chunk = writeback_chunk_size(wb, work);
1603 1604
		wbc.nr_to_write = write_chunk;
		wbc.pages_skipped = 0;
1605

1606 1607 1608 1609
		/*
		 * We use I_SYNC to pin the inode in memory. While it is set
		 * evict_inode() will wait so the inode cannot be freed.
		 */
1610
		__writeback_single_inode(inode, &wbc);
1611

1612
		wbc_detach_inode(&wbc);
1613 1614
		work->nr_pages -= write_chunk - wbc.nr_to_write;
		wrote += write_chunk - wbc.nr_to_write;
1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628

		if (need_resched()) {
			/*
			 * We're trying to balance between building up a nice
			 * long list of IOs to improve our merge rate, and
			 * getting those IOs out quickly for anyone throttling
			 * in balance_dirty_pages().  cond_resched() doesn't
			 * unplug, so get our IOs out the door before we
			 * give up the CPU.
			 */
			blk_flush_plug(current);
			cond_resched();
		}

1629 1630 1631 1632 1633
		/*
		 * Requeue @inode if still dirty.  Be careful as @inode may
		 * have been switched to another wb in the meantime.
		 */
		tmp_wb = inode_to_wb_and_lock_list(inode);
1634
		spin_lock(&inode->i_lock);
1635
		if (!(inode->i_state & I_DIRTY_ALL))
1636
			wrote++;
1637
		requeue_inode(inode, tmp_wb, &wbc);
1638
		inode_sync_complete(inode);
1639
		spin_unlock(&inode->i_lock);
1640

1641 1642 1643 1644 1645
		if (unlikely(tmp_wb != wb)) {
			spin_unlock(&tmp_wb->list_lock);
			spin_lock(&wb->list_lock);
		}

1646 1647 1648 1649 1650 1651 1652 1653 1654
		/*
		 * bail out to wb_writeback() often enough to check
		 * background threshold and other termination conditions.
		 */
		if (wrote) {
			if (time_is_before_jiffies(start_time + HZ / 10UL))
				break;
			if (work->nr_pages <= 0)
				break;
1655
		}
L
Linus Torvalds 已提交
1656
	}
1657
	return wrote;
1658 1659
}

1660 1661
static long __writeback_inodes_wb(struct bdi_writeback *wb,
				  struct wb_writeback_work *work)
1662
{
1663 1664
	unsigned long start_time = jiffies;
	long wrote = 0;
N
Nick Piggin 已提交
1665

1666
	while (!list_empty(&wb->b_io)) {
N
Nick Piggin 已提交
1667
		struct inode *inode = wb_inode(wb->b_io.prev);
1668
		struct super_block *sb = inode->i_sb;
1669

1670
		if (!trylock_super(sb)) {
1671
			/*
1672
			 * trylock_super() may fail consistently due to
1673 1674 1675 1676
			 * s_umount being grabbed by someone else. Don't use
			 * requeue_io() to avoid busy retrying the inode/sb.
			 */
			redirty_tail(inode, wb);
1677
			continue;
1678
		}
1679
		wrote += writeback_sb_inodes(sb, wb, work);
1680
		up_read(&sb->s_umount);
1681

1682 1683 1684 1685 1686 1687 1688
		/* refer to the same tests at the end of writeback_sb_inodes */
		if (wrote) {
			if (time_is_before_jiffies(start_time + HZ / 10UL))
				break;
			if (work->nr_pages <= 0)
				break;
		}
1689
	}
1690
	/* Leave any unwritten inodes on b_io */
1691
	return wrote;
1692 1693
}

1694
static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1695
				enum wb_reason reason)
1696
{
1697 1698 1699 1700
	struct wb_writeback_work work = {
		.nr_pages	= nr_pages,
		.sync_mode	= WB_SYNC_NONE,
		.range_cyclic	= 1,
1701
		.reason		= reason,
1702
	};
1703
	struct blk_plug plug;
1704

1705
	blk_start_plug(&plug);
1706
	spin_lock(&wb->list_lock);
W
Wu Fengguang 已提交
1707
	if (list_empty(&wb->b_io))
1708
		queue_io(wb, &work);
1709
	__writeback_inodes_wb(wb, &work);
1710
	spin_unlock(&wb->list_lock);
1711
	blk_finish_plug(&plug);
1712

1713 1714
	return nr_pages - work.nr_pages;
}
1715 1716 1717

/*
 * Explicit flushing or periodic writeback of "old" data.
1718
 *
1719 1720 1721 1722
 * Define "old": the first time one of an inode's pages is dirtied, we mark the
 * dirtying-time in the inode's address_space.  So this periodic writeback code
 * just walks the superblock inode list, writing back any inodes which are
 * older than a specific point in time.
1723
 *
1724 1725 1726
 * Try to run once per dirty_writeback_interval.  But if a writeback event
 * takes longer than a dirty_writeback_interval interval, then leave a
 * one-second gap.
1727
 *
1728 1729
 * older_than_this takes precedence over nr_to_write.  So we'll only write back
 * all dirty pages if they are all attached to "old" mappings.
1730
 */
1731
static long wb_writeback(struct bdi_writeback *wb,
1732
			 struct wb_writeback_work *work)
1733
{
1734
	unsigned long wb_start = jiffies;
1735
	long nr_pages = work->nr_pages;
1736
	unsigned long oldest_jif;
J
Jan Kara 已提交
1737
	struct inode *inode;
1738
	long progress;
1739
	struct blk_plug plug;
1740

1741 1742
	oldest_jif = jiffies;
	work->older_than_this = &oldest_jif;
N
Nick Piggin 已提交
1743

1744
	blk_start_plug(&plug);
1745
	spin_lock(&wb->list_lock);
1746 1747
	for (;;) {
		/*
1748
		 * Stop writeback when nr_pages has been consumed
1749
		 */
1750
		if (work->nr_pages <= 0)
1751
			break;
1752

1753 1754 1755 1756 1757 1758 1759
		/*
		 * Background writeout and kupdate-style writeback may
		 * run forever. Stop them if there is other work to do
		 * so that e.g. sync can proceed. They'll be restarted
		 * after the other works are all done.
		 */
		if ((work->for_background || work->for_kupdate) &&
1760
		    !list_empty(&wb->work_list))
1761 1762
			break;

N
Nick Piggin 已提交
1763
		/*
1764 1765
		 * For background writeout, stop when we are below the
		 * background dirty threshold
N
Nick Piggin 已提交
1766
		 */
1767
		if (work->for_background && !wb_over_bg_thresh(wb))
1768
			break;
N
Nick Piggin 已提交
1769

1770 1771 1772 1773 1774 1775
		/*
		 * Kupdate and background works are special and we want to
		 * include all inodes that need writing. Livelock avoidance is
		 * handled by these works yielding to any other work so we are
		 * safe.
		 */
1776
		if (work->for_kupdate) {
1777
			oldest_jif = jiffies -
1778
				msecs_to_jiffies(dirty_expire_interval * 10);
1779
		} else if (work->for_background)
1780
			oldest_jif = jiffies;
1781

1782
		trace_writeback_start(wb, work);
1783
		if (list_empty(&wb->b_io))
1784
			queue_io(wb, work);
1785
		if (work->sb)
1786
			progress = writeback_sb_inodes(work->sb, wb, work);
1787
		else
1788
			progress = __writeback_inodes_wb(wb, work);
1789
		trace_writeback_written(wb, work);
1790

1791
		wb_update_bandwidth(wb, wb_start);
1792 1793

		/*
1794 1795 1796 1797 1798 1799
		 * Did we write something? Try for more
		 *
		 * Dirty inodes are moved to b_io for writeback in batches.
		 * The completion of the current batch does not necessarily
		 * mean the overall work is done. So we keep looping as long
		 * as made some progress on cleaning pages or inodes.
1800
		 */
1801
		if (progress)
1802 1803
			continue;
		/*
1804
		 * No more inodes for IO, bail
1805
		 */
1806
		if (list_empty(&wb->b_more_io))
1807
			break;
1808 1809 1810 1811 1812
		/*
		 * Nothing written. Wait for some inode to
		 * become available for writeback. Otherwise
		 * we'll just busyloop.
		 */
1813 1814 1815 1816 1817 1818 1819
		trace_writeback_wait(wb, work);
		inode = wb_inode(wb->b_more_io.prev);
		spin_lock(&inode->i_lock);
		spin_unlock(&wb->list_lock);
		/* This function drops i_lock... */
		inode_sleep_on_writeback(inode);
		spin_lock(&wb->list_lock);
1820
	}
1821
	spin_unlock(&wb->list_lock);
1822
	blk_finish_plug(&plug);
1823

1824
	return nr_pages - work->nr_pages;
1825 1826 1827
}

/*
1828
 * Return the next wb_writeback_work struct that hasn't been processed yet.
1829
 */
1830
static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
1831
{
1832
	struct wb_writeback_work *work = NULL;
1833

1834 1835 1836
	spin_lock_bh(&wb->work_lock);
	if (!list_empty(&wb->work_list)) {
		work = list_entry(wb->work_list.next,
1837 1838
				  struct wb_writeback_work, list);
		list_del_init(&work->list);
1839
	}
1840
	spin_unlock_bh(&wb->work_lock);
1841 1842 1843 1844 1845 1846 1847 1848

	/*
	 * Once we start processing a work item that had !nr_pages,
	 * clear the wb state bit for that so we can allow more.
	 */
	if (work && work->start_all)
		clear_bit(WB_start_all, &wb->state);

1849
	return work;
1850 1851
}

1852 1853
static long wb_check_background_flush(struct bdi_writeback *wb)
{
1854
	if (wb_over_bg_thresh(wb)) {
1855 1856 1857 1858 1859 1860

		struct wb_writeback_work work = {
			.nr_pages	= LONG_MAX,
			.sync_mode	= WB_SYNC_NONE,
			.for_background	= 1,
			.range_cyclic	= 1,
1861
			.reason		= WB_REASON_BACKGROUND,
1862 1863 1864 1865 1866 1867 1868 1869
		};

		return wb_writeback(wb, &work);
	}

	return 0;
}

1870 1871 1872 1873 1874
static long wb_check_old_data_flush(struct bdi_writeback *wb)
{
	unsigned long expired;
	long nr_pages;

1875 1876 1877 1878 1879 1880
	/*
	 * When set to zero, disable periodic writeback
	 */
	if (!dirty_writeback_interval)
		return 0;

1881 1882 1883 1884 1885 1886
	expired = wb->last_old_flush +
			msecs_to_jiffies(dirty_writeback_interval * 10);
	if (time_before(jiffies, expired))
		return 0;

	wb->last_old_flush = jiffies;
1887
	nr_pages = get_nr_dirty_pages();
1888

1889
	if (nr_pages) {
1890
		struct wb_writeback_work work = {
1891 1892 1893 1894
			.nr_pages	= nr_pages,
			.sync_mode	= WB_SYNC_NONE,
			.for_kupdate	= 1,
			.range_cyclic	= 1,
1895
			.reason		= WB_REASON_PERIODIC,
1896 1897
		};

1898
		return wb_writeback(wb, &work);
1899
	}
1900 1901 1902 1903 1904 1905 1906

	return 0;
}

/*
 * Retrieve work items and do the writeback they describe
 */
1907
static long wb_do_writeback(struct bdi_writeback *wb)
1908
{
1909
	struct wb_writeback_work *work;
1910
	long wrote = 0;
1911

1912
	set_bit(WB_writeback_running, &wb->state);
1913
	while ((work = get_next_work_item(wb)) != NULL) {
1914
		trace_writeback_exec(wb, work);
1915
		wrote += wb_writeback(wb, work);
1916
		finish_writeback_work(wb, work);
1917 1918 1919 1920 1921 1922
	}

	/*
	 * Check for periodic writeback, kupdated() style
	 */
	wrote += wb_check_old_data_flush(wb);
1923
	wrote += wb_check_background_flush(wb);
1924
	clear_bit(WB_writeback_running, &wb->state);
1925 1926 1927 1928 1929 1930

	return wrote;
}

/*
 * Handle writeback of dirty data for the device backed by this bdi. Also
1931
 * reschedules periodically and does kupdated style flushing.
1932
 */
1933
void wb_workfn(struct work_struct *work)
1934
{
1935 1936
	struct bdi_writeback *wb = container_of(to_delayed_work(work),
						struct bdi_writeback, dwork);
1937 1938
	long pages_written;

1939
	set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
P
Peter Zijlstra 已提交
1940
	current->flags |= PF_SWAPWRITE;
1941

1942
	if (likely(!current_is_workqueue_rescuer() ||
1943
		   !test_bit(WB_registered, &wb->state))) {
1944
		/*
1945
		 * The normal path.  Keep writing back @wb until its
1946
		 * work_list is empty.  Note that this path is also taken
1947
		 * if @wb is shutting down even when we're running off the
1948
		 * rescuer as work_list needs to be drained.
1949
		 */
1950
		do {
1951
			pages_written = wb_do_writeback(wb);
1952
			trace_writeback_pages_written(pages_written);
1953
		} while (!list_empty(&wb->work_list));
1954 1955 1956 1957 1958 1959
	} else {
		/*
		 * bdi_wq can't get enough workers and we're running off
		 * the emergency worker.  Don't hog it.  Hopefully, 1024 is
		 * enough for efficient IO.
		 */
1960
		pages_written = writeback_inodes_wb(wb, 1024,
1961
						    WB_REASON_FORKER_THREAD);
1962
		trace_writeback_pages_written(pages_written);
1963 1964
	}

1965
	if (!list_empty(&wb->work_list))
1966 1967
		mod_delayed_work(bdi_wq, &wb->dwork, 0);
	else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
1968
		wb_wakeup_delayed(wb);
1969

1970
	current->flags &= ~PF_SWAPWRITE;
1971 1972
}

1973 1974 1975 1976 1977
/*
 * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero,
 * write back the whole world.
 */
static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
1978
					 enum wb_reason reason)
1979 1980 1981 1982 1983 1984 1985
{
	struct bdi_writeback *wb;

	if (!bdi_has_dirty_io(bdi))
		return;

	list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
1986
		wb_start_writeback(wb, reason);
1987 1988 1989 1990 1991 1992
}

void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
				enum wb_reason reason)
{
	rcu_read_lock();
1993
	__wakeup_flusher_threads_bdi(bdi, reason);
1994 1995 1996
	rcu_read_unlock();
}

1997
/*
1998
 * Wakeup the flusher threads to start writeback of all currently dirty pages
1999
 */
2000
void wakeup_flusher_threads(enum wb_reason reason)
2001
{
2002
	struct backing_dev_info *bdi;
2003

2004 2005 2006 2007 2008 2009
	/*
	 * If we are expecting writeback progress we must submit plugged IO.
	 */
	if (blk_needs_flush_plug(current))
		blk_schedule_flush_plug(current);

2010
	rcu_read_lock();
2011
	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2012
		__wakeup_flusher_threads_bdi(bdi, reason);
2013
	rcu_read_unlock();
L
Linus Torvalds 已提交
2014 2015
}

2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039
/*
 * Wake up bdi's periodically to make sure dirtytime inodes gets
 * written back periodically.  We deliberately do *not* check the
 * b_dirtytime list in wb_has_dirty_io(), since this would cause the
 * kernel to be constantly waking up once there are any dirtytime
 * inodes on the system.  So instead we define a separate delayed work
 * function which gets called much more rarely.  (By default, only
 * once every 12 hours.)
 *
 * If there is any other write activity going on in the file system,
 * this function won't be necessary.  But if the only thing that has
 * happened on the file system is a dirtytime inode caused by an atime
 * update, we need this infrastructure below to make sure that inode
 * eventually gets pushed out to disk.
 */
static void wakeup_dirtytime_writeback(struct work_struct *w);
static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);

static void wakeup_dirtytime_writeback(struct work_struct *w)
{
	struct backing_dev_info *bdi;

	rcu_read_lock();
	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
2040 2041
		struct bdi_writeback *wb;

2042
		list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2043 2044
			if (!list_empty(&wb->b_dirty_time))
				wb_wakeup(wb);
2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056
	}
	rcu_read_unlock();
	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
}

static int __init start_dirtytime_writeback(void)
{
	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
	return 0;
}
__initcall(start_dirtytime_writeback);

2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067
int dirtytime_interval_handler(struct ctl_table *table, int write,
			       void __user *buffer, size_t *lenp, loff_t *ppos)
{
	int ret;

	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
	if (ret == 0 && write)
		mod_delayed_work(system_wq, &dirtytime_work, 0);
	return ret;
}

2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090
static noinline void block_dump___mark_inode_dirty(struct inode *inode)
{
	if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
		struct dentry *dentry;
		const char *name = "?";

		dentry = d_find_alias(inode);
		if (dentry) {
			spin_lock(&dentry->d_lock);
			name = (const char *) dentry->d_name.name;
		}
		printk(KERN_DEBUG
		       "%s(%d): dirtied inode %lu (%s) on %s\n",
		       current->comm, task_pid_nr(current), inode->i_ino,
		       name, inode->i_sb->s_id);
		if (dentry) {
			spin_unlock(&dentry->d_lock);
			dput(dentry);
		}
	}
}

/**
2091 2092 2093 2094 2095 2096 2097
 * __mark_inode_dirty -	internal function
 *
 * @inode: inode to mark
 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
 *
 * Mark an inode as dirty. Callers should use mark_inode_dirty or
 * mark_inode_dirty_sync.
L
Linus Torvalds 已提交
2098
 *
2099 2100 2101 2102 2103 2104 2105 2106 2107
 * Put the inode on the super block's dirty list.
 *
 * CAREFUL! We mark it dirty unconditionally, but move it onto the
 * dirty list only if it is hashed or if it refers to a blockdev.
 * If it was not hashed, it will never be added to the dirty list
 * even if it is later hashed, as it will have been marked dirty already.
 *
 * In short, make sure you hash any inodes _before_ you start marking
 * them dirty.
L
Linus Torvalds 已提交
2108
 *
2109 2110 2111 2112 2113 2114
 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
 * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
 * the kernel-internal blockdev inode represents the dirtying time of the
 * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
 * page->mapping->host, so the page-dirtying time is recorded in the internal
 * blockdev inode.
L
Linus Torvalds 已提交
2115
 */
2116
void __mark_inode_dirty(struct inode *inode, int flags)
L
Linus Torvalds 已提交
2117
{
2118
#define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC)
2119
	struct super_block *sb = inode->i_sb;
2120 2121 2122
	int dirtytime;

	trace_writeback_mark_inode_dirty(inode, flags);
L
Linus Torvalds 已提交
2123

2124 2125 2126 2127
	/*
	 * Don't do this for I_DIRTY_PAGES - that doesn't actually
	 * dirty the inode itself
	 */
2128
	if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC | I_DIRTY_TIME)) {
T
Tejun Heo 已提交
2129 2130
		trace_writeback_dirty_inode_start(inode, flags);

2131
		if (sb->s_op->dirty_inode)
2132
			sb->s_op->dirty_inode(inode, flags);
T
Tejun Heo 已提交
2133 2134

		trace_writeback_dirty_inode(inode, flags);
2135
	}
2136 2137 2138
	if (flags & I_DIRTY_INODE)
		flags &= ~I_DIRTY_TIME;
	dirtytime = flags & I_DIRTY_TIME;
2139 2140

	/*
2141 2142
	 * Paired with smp_mb() in __writeback_single_inode() for the
	 * following lockless i_state test.  See there for details.
2143 2144 2145
	 */
	smp_mb();

2146 2147
	if (((inode->i_state & flags) == flags) ||
	    (dirtytime && (inode->i_state & I_DIRTY_INODE)))
2148 2149 2150 2151 2152
		return;

	if (unlikely(block_dump))
		block_dump___mark_inode_dirty(inode);

2153
	spin_lock(&inode->i_lock);
2154 2155
	if (dirtytime && (inode->i_state & I_DIRTY_INODE))
		goto out_unlock_inode;
2156 2157 2158
	if ((inode->i_state & flags) != flags) {
		const int was_dirty = inode->i_state & I_DIRTY;

2159 2160
		inode_attach_wb(inode, NULL);

2161 2162
		if (flags & I_DIRTY_INODE)
			inode->i_state &= ~I_DIRTY_TIME;
2163 2164 2165 2166 2167 2168 2169 2170
		inode->i_state |= flags;

		/*
		 * If the inode is being synced, just update its dirty state.
		 * The unlocker will place the inode on the appropriate
		 * superblock list, based upon its state.
		 */
		if (inode->i_state & I_SYNC)
2171
			goto out_unlock_inode;
2172 2173 2174 2175 2176 2177

		/*
		 * Only add valid (hashed) inodes to the superblock's
		 * dirty list.  Add blockdev inodes as well.
		 */
		if (!S_ISBLK(inode->i_mode)) {
A
Al Viro 已提交
2178
			if (inode_unhashed(inode))
2179
				goto out_unlock_inode;
2180
		}
A
Al Viro 已提交
2181
		if (inode->i_state & I_FREEING)
2182
			goto out_unlock_inode;
2183 2184 2185 2186 2187 2188

		/*
		 * If the inode was already on b_dirty/b_io/b_more_io, don't
		 * reposition it (that would break b_dirty time-ordering).
		 */
		if (!was_dirty) {
2189
			struct bdi_writeback *wb;
2190
			struct list_head *dirty_list;
2191
			bool wakeup_bdi = false;
2192

2193
			wb = locked_inode_to_wb_and_lock_list(inode);
2194

2195 2196 2197
			WARN(bdi_cap_writeback_dirty(wb->bdi) &&
			     !test_bit(WB_registered, &wb->state),
			     "bdi-%s not registered\n", wb->bdi->name);
2198 2199

			inode->dirtied_when = jiffies;
2200 2201
			if (dirtytime)
				inode->dirtied_time_when = jiffies;
2202

2203
			if (inode->i_state & (I_DIRTY_INODE | I_DIRTY_PAGES))
2204
				dirty_list = &wb->b_dirty;
2205
			else
2206
				dirty_list = &wb->b_dirty_time;
2207

2208
			wakeup_bdi = inode_io_list_move_locked(inode, wb,
2209 2210
							       dirty_list);

2211
			spin_unlock(&wb->list_lock);
2212
			trace_writeback_dirty_inode_enqueue(inode);
2213

2214 2215 2216 2217 2218 2219
			/*
			 * If this is the first dirty inode for this bdi,
			 * we have to wake-up the corresponding bdi thread
			 * to make sure background write-back happens
			 * later.
			 */
2220 2221
			if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi)
				wb_wakeup_delayed(wb);
2222
			return;
L
Linus Torvalds 已提交
2223 2224
		}
	}
2225 2226
out_unlock_inode:
	spin_unlock(&inode->i_lock);
2227

2228
#undef I_DIRTY_INODE
2229 2230 2231
}
EXPORT_SYMBOL(__mark_inode_dirty);

2232 2233 2234 2235 2236 2237 2238 2239 2240
/*
 * The @s_sync_lock is used to serialise concurrent sync operations
 * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
 * Concurrent callers will block on the s_sync_lock rather than doing contending
 * walks. The queueing maintains sync(2) required behaviour as all the IO that
 * has been issued up to the time this function is enter is guaranteed to be
 * completed by the time we have gained the lock and waited for all IO that is
 * in progress regardless of the order callers are granted the lock.
 */
2241
static void wait_sb_inodes(struct super_block *sb)
2242
{
2243
	LIST_HEAD(sync_list);
2244 2245 2246 2247 2248

	/*
	 * We need to be protected against the filesystem going from
	 * r/o to r/w or vice versa.
	 */
2249
	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2250

2251
	mutex_lock(&sb->s_sync_lock);
2252 2253

	/*
2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271
	 * Splice the writeback list onto a temporary list to avoid waiting on
	 * inodes that have started writeback after this point.
	 *
	 * Use rcu_read_lock() to keep the inodes around until we have a
	 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
	 * the local list because inodes can be dropped from either by writeback
	 * completion.
	 */
	rcu_read_lock();
	spin_lock_irq(&sb->s_inode_wblist_lock);
	list_splice_init(&sb->s_inodes_wb, &sync_list);

	/*
	 * Data integrity sync. Must wait for all pages under writeback, because
	 * there may have been pages dirtied before our sync call, but which had
	 * writeout started before we write it out.  In which case, the inode
	 * may not be on the dirty list, but we still have to wait for that
	 * writeout.
2272
	 */
2273 2274 2275
	while (!list_empty(&sync_list)) {
		struct inode *inode = list_first_entry(&sync_list, struct inode,
						       i_wb_list);
2276
		struct address_space *mapping = inode->i_mapping;
2277

2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295
		/*
		 * Move each inode back to the wb list before we drop the lock
		 * to preserve consistency between i_wb_list and the mapping
		 * writeback tag. Writeback completion is responsible to remove
		 * the inode from either list once the writeback tag is cleared.
		 */
		list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);

		/*
		 * The mapping can appear untagged while still on-list since we
		 * do not have the mapping lock. Skip it here, wb completion
		 * will remove it.
		 */
		if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
			continue;

		spin_unlock_irq(&sb->s_inode_wblist_lock);

2296
		spin_lock(&inode->i_lock);
2297
		if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
2298
			spin_unlock(&inode->i_lock);
2299 2300

			spin_lock_irq(&sb->s_inode_wblist_lock);
2301
			continue;
2302
		}
2303
		__iget(inode);
2304
		spin_unlock(&inode->i_lock);
2305
		rcu_read_unlock();
2306

2307 2308 2309 2310 2311 2312
		/*
		 * We keep the error status of individual mapping so that
		 * applications can catch the writeback error using fsync(2).
		 * See filemap_fdatawait_keep_errors() for details.
		 */
		filemap_fdatawait_keep_errors(mapping);
2313 2314 2315

		cond_resched();

2316 2317 2318 2319
		iput(inode);

		rcu_read_lock();
		spin_lock_irq(&sb->s_inode_wblist_lock);
2320
	}
2321 2322
	spin_unlock_irq(&sb->s_inode_wblist_lock);
	rcu_read_unlock();
2323
	mutex_unlock(&sb->s_sync_lock);
L
Linus Torvalds 已提交
2324 2325
}

2326 2327
static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
				     enum wb_reason reason, bool skip_if_busy)
L
Linus Torvalds 已提交
2328
{
2329
	DEFINE_WB_COMPLETION_ONSTACK(done);
2330
	struct wb_writeback_work work = {
2331 2332 2333 2334 2335
		.sb			= sb,
		.sync_mode		= WB_SYNC_NONE,
		.tagged_writepages	= 1,
		.done			= &done,
		.nr_pages		= nr,
2336
		.reason			= reason,
2337
	};
2338
	struct backing_dev_info *bdi = sb->s_bdi;
2339

2340
	if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2341
		return;
2342
	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2343

2344
	bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2345
	wb_wait_for_completion(bdi, &done);
2346
}
2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363

/**
 * writeback_inodes_sb_nr -	writeback dirty inodes from given super_block
 * @sb: the superblock
 * @nr: the number of pages to write
 * @reason: reason why some writeback work initiated
 *
 * Start writeback on some inodes on this super_block. No guarantees are made
 * on how many (if any) will be written, and this function does not wait
 * for IO completion of submitted IO.
 */
void writeback_inodes_sb_nr(struct super_block *sb,
			    unsigned long nr,
			    enum wb_reason reason)
{
	__writeback_inodes_sb_nr(sb, nr, reason, false);
}
2364 2365 2366 2367 2368
EXPORT_SYMBOL(writeback_inodes_sb_nr);

/**
 * writeback_inodes_sb	-	writeback dirty inodes from given super_block
 * @sb: the superblock
2369
 * @reason: reason why some writeback work was initiated
2370 2371 2372 2373 2374
 *
 * Start writeback on some inodes on this super_block. No guarantees are made
 * on how many (if any) will be written, and this function does not wait
 * for IO completion of submitted IO.
 */
2375
void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2376
{
2377
	return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2378
}
2379
EXPORT_SYMBOL(writeback_inodes_sb);
2380

2381
/**
2382
 * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
2383
 * @sb: the superblock
2384 2385
 * @nr: the number of pages to write
 * @reason: the reason of writeback
2386
 *
2387
 * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
2388 2389
 * Returns 1 if writeback was started, 0 if not.
 */
2390 2391
bool try_to_writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
				   enum wb_reason reason)
2392
{
2393
	if (!down_read_trylock(&sb->s_umount))
2394
		return false;
2395

2396
	__writeback_inodes_sb_nr(sb, nr, reason, true);
2397
	up_read(&sb->s_umount);
2398
	return true;
2399
}
2400
EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr);
2401

2402
/**
2403
 * try_to_writeback_inodes_sb - try to start writeback if none underway
2404
 * @sb: the superblock
2405
 * @reason: reason why some writeback work was initiated
2406
 *
2407
 * Implement by try_to_writeback_inodes_sb_nr()
2408 2409
 * Returns 1 if writeback was started, 0 if not.
 */
2410
bool try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2411
{
2412
	return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2413
}
2414
EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2415

2416 2417
/**
 * sync_inodes_sb	-	sync sb inode pages
2418
 * @sb: the superblock
2419 2420
 *
 * This function writes and waits on any dirty inode belonging to this
2421
 * super_block.
2422
 */
2423
void sync_inodes_sb(struct super_block *sb)
2424
{
2425
	DEFINE_WB_COMPLETION_ONSTACK(done);
2426
	struct wb_writeback_work work = {
2427 2428 2429 2430
		.sb		= sb,
		.sync_mode	= WB_SYNC_ALL,
		.nr_pages	= LONG_MAX,
		.range_cyclic	= 0,
2431
		.done		= &done,
2432
		.reason		= WB_REASON_SYNC,
2433
		.for_sync	= 1,
2434
	};
2435
	struct backing_dev_info *bdi = sb->s_bdi;
2436

2437 2438 2439 2440 2441 2442
	/*
	 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
	 * inodes under writeback and I_DIRTY_TIME inodes ignored by
	 * bdi_has_dirty() need to be written out too.
	 */
	if (bdi == &noop_backing_dev_info)
2443
		return;
2444 2445
	WARN_ON(!rwsem_is_locked(&sb->s_umount));

2446
	bdi_split_work_to_wbs(bdi, &work, false);
2447
	wb_wait_for_completion(bdi, &done);
2448

2449
	wait_sb_inodes(sb);
L
Linus Torvalds 已提交
2450
}
2451
EXPORT_SYMBOL(sync_inodes_sb);
L
Linus Torvalds 已提交
2452 2453

/**
2454 2455 2456 2457 2458 2459
 * write_inode_now	-	write an inode to disk
 * @inode: inode to write to disk
 * @sync: whether the write should be synchronous or not
 *
 * This function commits an inode to disk immediately if it is dirty. This is
 * primarily needed by knfsd.
L
Linus Torvalds 已提交
2460
 *
2461
 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
L
Linus Torvalds 已提交
2462 2463 2464 2465 2466
 */
int write_inode_now(struct inode *inode, int sync)
{
	struct writeback_control wbc = {
		.nr_to_write = LONG_MAX,
2467
		.sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2468 2469
		.range_start = 0,
		.range_end = LLONG_MAX,
L
Linus Torvalds 已提交
2470 2471 2472
	};

	if (!mapping_cap_writeback_dirty(inode->i_mapping))
2473
		wbc.nr_to_write = 0;
L
Linus Torvalds 已提交
2474 2475

	might_sleep();
2476
	return writeback_single_inode(inode, &wbc);
L
Linus Torvalds 已提交
2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492
}
EXPORT_SYMBOL(write_inode_now);

/**
 * sync_inode - write an inode and its pages to disk.
 * @inode: the inode to sync
 * @wbc: controls the writeback mode
 *
 * sync_inode() will write an inode and its pages to disk.  It will also
 * correctly update the inode on its superblock's dirty inode lists and will
 * update inode->i_state.
 *
 * The caller must have a ref on the inode.
 */
int sync_inode(struct inode *inode, struct writeback_control *wbc)
{
2493
	return writeback_single_inode(inode, wbc);
L
Linus Torvalds 已提交
2494 2495
}
EXPORT_SYMBOL(sync_inode);
C
Christoph Hellwig 已提交
2496 2497

/**
A
Andrew Morton 已提交
2498
 * sync_inode_metadata - write an inode to disk
C
Christoph Hellwig 已提交
2499 2500 2501
 * @inode: the inode to sync
 * @wait: wait for I/O to complete.
 *
A
Andrew Morton 已提交
2502
 * Write an inode to disk and adjust its dirty state after completion.
C
Christoph Hellwig 已提交
2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515
 *
 * Note: only writes the actual inode, no associated data or other metadata.
 */
int sync_inode_metadata(struct inode *inode, int wait)
{
	struct writeback_control wbc = {
		.sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
		.nr_to_write = 0, /* metadata-only */
	};

	return sync_inode(inode, &wbc);
}
EXPORT_SYMBOL(sync_inode_metadata);