fs-writeback.c 59.2 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10
/*
 * fs/fs-writeback.c
 *
 * Copyright (C) 2002, Linus Torvalds.
 *
 * Contains all the functions related to writing back and waiting
 * upon dirty inodes against superblocks, and writing back dirty
 * pages against inodes.  ie: data writeback.  Writeout of the
 * inode itself is not handled here.
 *
11
 * 10Apr2002	Andrew Morton
L
Linus Torvalds 已提交
12 13 14 15 16
 *		Split out of fs/inode.c
 *		Additions for address_space-based writeback
 */

#include <linux/kernel.h>
17
#include <linux/export.h>
L
Linus Torvalds 已提交
18
#include <linux/spinlock.h>
19
#include <linux/slab.h>
L
Linus Torvalds 已提交
20 21 22
#include <linux/sched.h>
#include <linux/fs.h>
#include <linux/mm.h>
23
#include <linux/pagemap.h>
24
#include <linux/kthread.h>
L
Linus Torvalds 已提交
25 26 27
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/backing-dev.h>
28
#include <linux/tracepoint.h>
29
#include <linux/device.h>
30
#include <linux/memcontrol.h>
31
#include "internal.h"
L
Linus Torvalds 已提交
32

33 34 35 36 37
/*
 * 4MB minimal write chunk size
 */
#define MIN_WRITEBACK_PAGES	(4096UL >> (PAGE_CACHE_SHIFT - 10))

38 39 40 41
struct wb_completion {
	atomic_t		cnt;
};

42 43 44
/*
 * Passed into wb_writeback(), essentially a subset of writeback_control
 */
45
struct wb_writeback_work {
46 47
	long nr_pages;
	struct super_block *sb;
48
	unsigned long *older_than_this;
49
	enum writeback_sync_modes sync_mode;
50
	unsigned int tagged_writepages:1;
51 52 53
	unsigned int for_kupdate:1;
	unsigned int range_cyclic:1;
	unsigned int for_background:1;
54
	unsigned int for_sync:1;	/* sync(2) WB_SYNC_ALL writeback */
55
	unsigned int auto_free:1;	/* free on completion */
56 57
	unsigned int single_wait:1;
	unsigned int single_done:1;
58
	enum wb_reason reason;		/* why was writeback initiated? */
59

60
	struct list_head list;		/* pending work list */
61
	struct wb_completion *done;	/* set if the caller waits */
62 63
};

64 65 66 67 68 69 70 71 72 73 74 75 76
/*
 * If one wants to wait for one or more wb_writeback_works, each work's
 * ->done should be set to a wb_completion defined using the following
 * macro.  Once all work items are issued with wb_queue_work(), the caller
 * can wait for the completion of all using wb_wait_for_completion().  Work
 * items which are waited upon aren't freed automatically on completion.
 */
#define DEFINE_WB_COMPLETION_ONSTACK(cmpl)				\
	struct wb_completion cmpl = {					\
		.cnt		= ATOMIC_INIT(1),			\
	}


77 78 79 80 81 82 83 84 85 86 87 88
/*
 * If an inode is constantly having its pages dirtied, but then the
 * updates stop dirtytime_expire_interval seconds in the past, it's
 * possible for the worst case time between when an inode has its
 * timestamps updated and when they finally get written out to be two
 * dirtytime_expire_intervals.  We set the default to 12 hours (in
 * seconds), which means most of the time inodes will have their
 * timestamps written to disk after 12 hours, but in the worst case a
 * few inodes might not their timestamps updated for 24 hours.
 */
unsigned int dirtytime_expire_interval = 12 * 60 * 60;

N
Nick Piggin 已提交
89 90 91 92 93
static inline struct inode *wb_inode(struct list_head *head)
{
	return list_entry(head, struct inode, i_wb_list);
}

94 95 96 97 98 99 100 101
/*
 * Include the creation of the trace points after defining the
 * wb_writeback_work structure and inline functions so that the definition
 * remains local to this file.
 */
#define CREATE_TRACE_POINTS
#include <trace/events/writeback.h>

102 103
EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);

104 105 106 107 108 109
static bool wb_io_lists_populated(struct bdi_writeback *wb)
{
	if (wb_has_dirty_io(wb)) {
		return false;
	} else {
		set_bit(WB_has_dirty_io, &wb->state);
110
		WARN_ON_ONCE(!wb->avg_write_bandwidth);
111 112
		atomic_long_add(wb->avg_write_bandwidth,
				&wb->bdi->tot_write_bandwidth);
113 114 115 116 117 118 119
		return true;
	}
}

static void wb_io_lists_depopulated(struct bdi_writeback *wb)
{
	if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
120
	    list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
121
		clear_bit(WB_has_dirty_io, &wb->state);
122 123
		WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
					&wb->bdi->tot_write_bandwidth) < 0);
124
	}
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
}

/**
 * inode_wb_list_move_locked - move an inode onto a bdi_writeback IO list
 * @inode: inode to be moved
 * @wb: target bdi_writeback
 * @head: one of @wb->b_{dirty|io|more_io}
 *
 * Move @inode->i_wb_list to @list of @wb and set %WB_has_dirty_io.
 * Returns %true if @inode is the first occupant of the !dirty_time IO
 * lists; otherwise, %false.
 */
static bool inode_wb_list_move_locked(struct inode *inode,
				      struct bdi_writeback *wb,
				      struct list_head *head)
{
	assert_spin_locked(&wb->list_lock);

	list_move(&inode->i_wb_list, head);

	/* dirty_time doesn't count as dirty_io until expiration */
	if (head != &wb->b_dirty_time)
		return wb_io_lists_populated(wb);

	wb_io_lists_depopulated(wb);
	return false;
}

/**
 * inode_wb_list_del_locked - remove an inode from its bdi_writeback IO list
 * @inode: inode to be removed
 * @wb: bdi_writeback @inode is being removed from
 *
 * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
 * clear %WB_has_dirty_io if all are empty afterwards.
 */
static void inode_wb_list_del_locked(struct inode *inode,
				     struct bdi_writeback *wb)
{
	assert_spin_locked(&wb->list_lock);

	list_del_init(&inode->i_wb_list);
	wb_io_lists_depopulated(wb);
}

170
static void wb_wakeup(struct bdi_writeback *wb)
J
Jan Kara 已提交
171
{
172 173 174 175
	spin_lock_bh(&wb->work_lock);
	if (test_bit(WB_registered, &wb->state))
		mod_delayed_work(bdi_wq, &wb->dwork, 0);
	spin_unlock_bh(&wb->work_lock);
J
Jan Kara 已提交
176 177
}

178 179
static void wb_queue_work(struct bdi_writeback *wb,
			  struct wb_writeback_work *work)
180
{
181
	trace_writeback_queue(wb->bdi, work);
182

183
	spin_lock_bh(&wb->work_lock);
184 185 186
	if (!test_bit(WB_registered, &wb->state)) {
		if (work->single_wait)
			work->single_done = 1;
J
Jan Kara 已提交
187
		goto out_unlock;
188
	}
189 190
	if (work->done)
		atomic_inc(&work->done->cnt);
191 192
	list_add_tail(&work->list, &wb->work_list);
	mod_delayed_work(bdi_wq, &wb->dwork, 0);
J
Jan Kara 已提交
193
out_unlock:
194
	spin_unlock_bh(&wb->work_lock);
L
Linus Torvalds 已提交
195 196
}

197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
/**
 * wb_wait_for_completion - wait for completion of bdi_writeback_works
 * @bdi: bdi work items were issued to
 * @done: target wb_completion
 *
 * Wait for one or more work items issued to @bdi with their ->done field
 * set to @done, which should have been defined with
 * DEFINE_WB_COMPLETION_ONSTACK().  This function returns after all such
 * work items are completed.  Work items which are waited upon aren't freed
 * automatically on completion.
 */
static void wb_wait_for_completion(struct backing_dev_info *bdi,
				   struct wb_completion *done)
{
	atomic_dec(&done->cnt);		/* put down the initial count */
	wait_event(bdi->wb_waitq, !atomic_read(&done->cnt));
}

215 216
#ifdef CONFIG_CGROUP_WRITEBACK

217 218 219 220 221 222 223 224 225 226 227 228 229 230
/* parameters for foreign inode detection, see wb_detach_inode() */
#define WB_FRN_TIME_SHIFT	13	/* 1s = 2^13, upto 8 secs w/ 16bit */
#define WB_FRN_TIME_AVG_SHIFT	3	/* avg = avg * 7/8 + new * 1/8 */
#define WB_FRN_TIME_CUT_DIV	2	/* ignore rounds < avg / 2 */
#define WB_FRN_TIME_PERIOD	(2 * (1 << WB_FRN_TIME_SHIFT))	/* 2s */

#define WB_FRN_HIST_SLOTS	16	/* inode->i_wb_frn_history is 16bit */
#define WB_FRN_HIST_UNIT	(WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
					/* each slot's duration is 2s / 16 */
#define WB_FRN_HIST_THR_SLOTS	(WB_FRN_HIST_SLOTS / 2)
					/* if foreign slots >= 8, switch */
#define WB_FRN_HIST_MAX_SLOTS	(WB_FRN_HIST_THR_SLOTS / 2 + 1)
					/* one round can affect upto 5 slots */

231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
void __inode_attach_wb(struct inode *inode, struct page *page)
{
	struct backing_dev_info *bdi = inode_to_bdi(inode);
	struct bdi_writeback *wb = NULL;

	if (inode_cgwb_enabled(inode)) {
		struct cgroup_subsys_state *memcg_css;

		if (page) {
			memcg_css = mem_cgroup_css_from_page(page);
			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
		} else {
			/* must pin memcg_css, see wb_get_create() */
			memcg_css = task_get_css(current, memory_cgrp_id);
			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
			css_put(memcg_css);
		}
	}

	if (!wb)
		wb = &bdi->wb;

	/*
	 * There may be multiple instances of this function racing to
	 * update the same inode.  Use cmpxchg() to tell the winner.
	 */
	if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
		wb_put(wb);
}

261 262 263 264 265 266 267 268 269 270 271 272 273 274
/**
 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
 * @wbc: writeback_control of interest
 * @inode: target inode
 *
 * @inode is locked and about to be written back under the control of @wbc.
 * Record @inode's writeback context into @wbc and unlock the i_lock.  On
 * writeback completion, wbc_detach_inode() should be called.  This is used
 * to track the cgroup writeback context.
 */
void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
				 struct inode *inode)
{
	wbc->wb = inode_to_wb(inode);
275 276 277 278 279 280 281 282 283
	wbc->inode = inode;

	wbc->wb_id = wbc->wb->memcg_css->id;
	wbc->wb_lcand_id = inode->i_wb_frn_winner;
	wbc->wb_tcand_id = 0;
	wbc->wb_bytes = 0;
	wbc->wb_lcand_bytes = 0;
	wbc->wb_tcand_bytes = 0;

284 285 286 287 288
	wb_get(wbc->wb);
	spin_unlock(&inode->i_lock);
}

/**
289 290
 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
 * @wbc: writeback_control of the just finished writeback
291 292 293
 *
 * To be called after a writeback attempt of an inode finishes and undoes
 * wbc_attach_and_unlock_inode().  Can be called under any context.
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
 *
 * As concurrent write sharing of an inode is expected to be very rare and
 * memcg only tracks page ownership on first-use basis severely confining
 * the usefulness of such sharing, cgroup writeback tracks ownership
 * per-inode.  While the support for concurrent write sharing of an inode
 * is deemed unnecessary, an inode being written to by different cgroups at
 * different points in time is a lot more common, and, more importantly,
 * charging only by first-use can too readily lead to grossly incorrect
 * behaviors (single foreign page can lead to gigabytes of writeback to be
 * incorrectly attributed).
 *
 * To resolve this issue, cgroup writeback detects the majority dirtier of
 * an inode and transfers the ownership to it.  To avoid unnnecessary
 * oscillation, the detection mechanism keeps track of history and gives
 * out the switch verdict only if the foreign usage pattern is stable over
 * a certain amount of time and/or writeback attempts.
 *
 * On each writeback attempt, @wbc tries to detect the majority writer
 * using Boyer-Moore majority vote algorithm.  In addition to the byte
 * count from the majority voting, it also counts the bytes written for the
 * current wb and the last round's winner wb (max of last round's current
 * wb, the winner from two rounds ago, and the last round's majority
 * candidate).  Keeping track of the historical winner helps the algorithm
 * to semi-reliably detect the most active writer even when it's not the
 * absolute majority.
 *
 * Once the winner of the round is determined, whether the winner is
 * foreign or not and how much IO time the round consumed is recorded in
 * inode->i_wb_frn_history.  If the amount of recorded foreign IO time is
 * over a certain threshold, the switch verdict is given.
324 325 326
 */
void wbc_detach_inode(struct writeback_control *wbc)
{
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
	struct bdi_writeback *wb = wbc->wb;
	struct inode *inode = wbc->inode;
	u16 history = inode->i_wb_frn_history;
	unsigned long avg_time = inode->i_wb_frn_avg_time;
	unsigned long max_bytes, max_time;
	int max_id;

	/* pick the winner of this round */
	if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
	    wbc->wb_bytes >= wbc->wb_tcand_bytes) {
		max_id = wbc->wb_id;
		max_bytes = wbc->wb_bytes;
	} else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
		max_id = wbc->wb_lcand_id;
		max_bytes = wbc->wb_lcand_bytes;
	} else {
		max_id = wbc->wb_tcand_id;
		max_bytes = wbc->wb_tcand_bytes;
	}

	/*
	 * Calculate the amount of IO time the winner consumed and fold it
	 * into the running average kept per inode.  If the consumed IO
	 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
	 * deciding whether to switch or not.  This is to prevent one-off
	 * small dirtiers from skewing the verdict.
	 */
	max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
				wb->avg_write_bandwidth);
	if (avg_time)
		avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
			    (avg_time >> WB_FRN_TIME_AVG_SHIFT);
	else
		avg_time = max_time;	/* immediate catch up on first run */

	if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
		int slots;

		/*
		 * The switch verdict is reached if foreign wb's consume
		 * more than a certain proportion of IO time in a
		 * WB_FRN_TIME_PERIOD.  This is loosely tracked by 16 slot
		 * history mask where each bit represents one sixteenth of
		 * the period.  Determine the number of slots to shift into
		 * history from @max_time.
		 */
		slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
			    (unsigned long)WB_FRN_HIST_MAX_SLOTS);
		history <<= slots;
		if (wbc->wb_id != max_id)
			history |= (1U << slots) - 1;

		/*
		 * Switch if the current wb isn't the consistent winner.
		 * If there are multiple closely competing dirtiers, the
		 * inode may switch across them repeatedly over time, which
		 * is okay.  The main goal is avoiding keeping an inode on
		 * the wrong wb for an extended period of time.
		 */
		if (hweight32(history) > WB_FRN_HIST_THR_SLOTS) {
			/* switch */
			max_id = 0;
			avg_time = 0;
			history = 0;
		}
	}

	/*
	 * Multiple instances of this function may race to update the
	 * following fields but we don't mind occassional inaccuracies.
	 */
	inode->i_wb_frn_winner = max_id;
	inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
	inode->i_wb_frn_history = history;

402 403 404 405
	wb_put(wbc->wb);
	wbc->wb = NULL;
}

406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
/**
 * wbc_account_io - account IO issued during writeback
 * @wbc: writeback_control of the writeback in progress
 * @page: page being written out
 * @bytes: number of bytes being written out
 *
 * @bytes from @page are about to written out during the writeback
 * controlled by @wbc.  Keep the book for foreign inode detection.  See
 * wbc_detach_inode().
 */
void wbc_account_io(struct writeback_control *wbc, struct page *page,
		    size_t bytes)
{
	int id;

	/*
	 * pageout() path doesn't attach @wbc to the inode being written
	 * out.  This is intentional as we don't want the function to block
	 * behind a slow cgroup.  Ultimately, we want pageout() to kick off
	 * regular writeback instead of writing things out itself.
	 */
	if (!wbc->wb)
		return;

	rcu_read_lock();
	id = mem_cgroup_css_from_page(page)->id;
	rcu_read_unlock();

	if (id == wbc->wb_id) {
		wbc->wb_bytes += bytes;
		return;
	}

	if (id == wbc->wb_lcand_id)
		wbc->wb_lcand_bytes += bytes;

	/* Boyer-Moore majority vote algorithm */
	if (!wbc->wb_tcand_bytes)
		wbc->wb_tcand_id = id;
	if (id == wbc->wb_tcand_id)
		wbc->wb_tcand_bytes += bytes;
	else
		wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
}

451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
/**
 * inode_congested - test whether an inode is congested
 * @inode: inode to test for congestion
 * @cong_bits: mask of WB_[a]sync_congested bits to test
 *
 * Tests whether @inode is congested.  @cong_bits is the mask of congestion
 * bits to test and the return value is the mask of set bits.
 *
 * If cgroup writeback is enabled for @inode, the congestion state is
 * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
 * associated with @inode is congested; otherwise, the root wb's congestion
 * state is used.
 */
int inode_congested(struct inode *inode, int cong_bits)
{
	if (inode) {
		struct bdi_writeback *wb = inode_to_wb(inode);
		if (wb)
			return wb_congested(wb, cong_bits);
	}

	return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
}
EXPORT_SYMBOL_GPL(inode_congested);

476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
/**
 * wb_wait_for_single_work - wait for completion of a single bdi_writeback_work
 * @bdi: bdi the work item was issued to
 * @work: work item to wait for
 *
 * Wait for the completion of @work which was issued to one of @bdi's
 * bdi_writeback's.  The caller must have set @work->single_wait before
 * issuing it.  This wait operates independently fo
 * wb_wait_for_completion() and also disables automatic freeing of @work.
 */
static void wb_wait_for_single_work(struct backing_dev_info *bdi,
				    struct wb_writeback_work *work)
{
	if (WARN_ON_ONCE(!work->single_wait))
		return;

	wait_event(bdi->wb_waitq, work->single_done);

	/*
	 * Paired with smp_wmb() in wb_do_writeback() and ensures that all
	 * modifications to @work prior to assertion of ->single_done is
	 * visible to the caller once this function returns.
	 */
	smp_rmb();
}

502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
/**
 * wb_split_bdi_pages - split nr_pages to write according to bandwidth
 * @wb: target bdi_writeback to split @nr_pages to
 * @nr_pages: number of pages to write for the whole bdi
 *
 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
 * relation to the total write bandwidth of all wb's w/ dirty inodes on
 * @wb->bdi.
 */
static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
{
	unsigned long this_bw = wb->avg_write_bandwidth;
	unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);

	if (nr_pages == LONG_MAX)
		return LONG_MAX;

	/*
	 * This may be called on clean wb's and proportional distribution
	 * may not make sense, just use the original @nr_pages in those
	 * cases.  In general, we wanna err on the side of writing more.
	 */
	if (!tot_bw || this_bw >= tot_bw)
		return nr_pages;
	else
		return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
}

530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
/**
 * wb_clone_and_queue_work - clone a wb_writeback_work and issue it to a wb
 * @wb: target bdi_writeback
 * @base_work: source wb_writeback_work
 *
 * Try to make a clone of @base_work and issue it to @wb.  If cloning
 * succeeds, %true is returned; otherwise, @base_work is issued directly
 * and %false is returned.  In the latter case, the caller is required to
 * wait for @base_work's completion using wb_wait_for_single_work().
 *
 * A clone is auto-freed on completion.  @base_work never is.
 */
static bool wb_clone_and_queue_work(struct bdi_writeback *wb,
				    struct wb_writeback_work *base_work)
{
	struct wb_writeback_work *work;

	work = kmalloc(sizeof(*work), GFP_ATOMIC);
	if (work) {
		*work = *base_work;
		work->auto_free = 1;
		work->single_wait = 0;
	} else {
		work = base_work;
		work->auto_free = 0;
		work->single_wait = 1;
	}
	work->single_done = 0;
	wb_queue_work(wb, work);
	return work != base_work;
}

/**
 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
 * @bdi: target backing_dev_info
 * @base_work: wb_writeback_work to issue
 * @skip_if_busy: skip wb's which already have writeback in progress
 *
 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
 * have dirty inodes.  If @base_work->nr_page isn't %LONG_MAX, it's
 * distributed to the busy wbs according to each wb's proportion in the
 * total active write bandwidth of @bdi.
 */
static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
				  struct wb_writeback_work *base_work,
				  bool skip_if_busy)
{
	long nr_pages = base_work->nr_pages;
	int next_blkcg_id = 0;
	struct bdi_writeback *wb;
	struct wb_iter iter;

	might_sleep();

	if (!bdi_has_dirty_io(bdi))
		return;
restart:
	rcu_read_lock();
	bdi_for_each_wb(wb, bdi, &iter, next_blkcg_id) {
		if (!wb_has_dirty_io(wb) ||
		    (skip_if_busy && writeback_in_progress(wb)))
			continue;

		base_work->nr_pages = wb_split_bdi_pages(wb, nr_pages);
		if (!wb_clone_and_queue_work(wb, base_work)) {
			next_blkcg_id = wb->blkcg_css->id + 1;
			rcu_read_unlock();
			wb_wait_for_single_work(bdi, base_work);
			goto restart;
		}
	}
	rcu_read_unlock();
}

604 605 606 607 608 609 610
#else	/* CONFIG_CGROUP_WRITEBACK */

static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
{
	return nr_pages;
}

611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
				  struct wb_writeback_work *base_work,
				  bool skip_if_busy)
{
	might_sleep();

	if (bdi_has_dirty_io(bdi) &&
	    (!skip_if_busy || !writeback_in_progress(&bdi->wb))) {
		base_work->auto_free = 0;
		base_work->single_wait = 0;
		base_work->single_done = 0;
		wb_queue_work(&bdi->wb, base_work);
	}
}

626 627
#endif	/* CONFIG_CGROUP_WRITEBACK */

628 629
void wb_start_writeback(struct bdi_writeback *wb, long nr_pages,
			bool range_cyclic, enum wb_reason reason)
630
{
631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650
	struct wb_writeback_work *work;

	if (!wb_has_dirty_io(wb))
		return;

	/*
	 * This is WB_SYNC_NONE writeback, so if allocation fails just
	 * wakeup the thread for old dirty data writeback
	 */
	work = kzalloc(sizeof(*work), GFP_ATOMIC);
	if (!work) {
		trace_writeback_nowork(wb->bdi);
		wb_wakeup(wb);
		return;
	}

	work->sync_mode	= WB_SYNC_NONE;
	work->nr_pages	= nr_pages;
	work->range_cyclic = range_cyclic;
	work->reason	= reason;
651
	work->auto_free	= 1;
652 653

	wb_queue_work(wb, work);
654
}
655

656
/**
657 658
 * wb_start_background_writeback - start background writeback
 * @wb: bdi_writback to write from
659 660
 *
 * Description:
661
 *   This makes sure WB_SYNC_NONE background writeback happens. When
662
 *   this function returns, it is only guaranteed that for given wb
663 664
 *   some IO is happening if we are over background dirty threshold.
 *   Caller need not hold sb s_umount semaphore.
665
 */
666
void wb_start_background_writeback(struct bdi_writeback *wb)
667
{
668 669 670 671
	/*
	 * We just wake up the flusher thread. It will perform background
	 * writeback as soon as there is no other work to do.
	 */
672 673
	trace_writeback_wake_background(wb->bdi);
	wb_wakeup(wb);
L
Linus Torvalds 已提交
674 675
}

676 677 678 679 680
/*
 * Remove the inode from the writeback list it is on.
 */
void inode_wb_list_del(struct inode *inode)
{
681
	struct bdi_writeback *wb = inode_to_wb(inode);
682

683
	spin_lock(&wb->list_lock);
684
	inode_wb_list_del_locked(inode, wb);
685
	spin_unlock(&wb->list_lock);
686 687
}

688 689 690 691 692
/*
 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
 * furthest end of its superblock's dirty-inode list.
 *
 * Before stamping the inode's ->dirtied_when, we check to see whether it is
693
 * already the most-recently-dirtied inode on the b_dirty list.  If that is
694 695 696
 * the case then the inode must have been redirtied while it was being written
 * out and we don't reset its dirtied_when.
 */
697
static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
698
{
699
	if (!list_empty(&wb->b_dirty)) {
700
		struct inode *tail;
701

N
Nick Piggin 已提交
702
		tail = wb_inode(wb->b_dirty.next);
703
		if (time_before(inode->dirtied_when, tail->dirtied_when))
704 705
			inode->dirtied_when = jiffies;
	}
706
	inode_wb_list_move_locked(inode, wb, &wb->b_dirty);
707 708
}

709
/*
710
 * requeue inode for re-scanning after bdi->b_io list is exhausted.
711
 */
712
static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
713
{
714
	inode_wb_list_move_locked(inode, wb, &wb->b_more_io);
715 716
}

J
Joern Engel 已提交
717 718
static void inode_sync_complete(struct inode *inode)
{
719
	inode->i_state &= ~I_SYNC;
720 721
	/* If inode is clean an unused, put it into LRU now... */
	inode_add_lru(inode);
722
	/* Waiters must see I_SYNC cleared before being woken up */
J
Joern Engel 已提交
723 724 725 726
	smp_mb();
	wake_up_bit(&inode->i_state, __I_SYNC);
}

727 728 729 730 731 732 733 734
static bool inode_dirtied_after(struct inode *inode, unsigned long t)
{
	bool ret = time_after(inode->dirtied_when, t);
#ifndef CONFIG_64BIT
	/*
	 * For inodes being constantly redirtied, dirtied_when can get stuck.
	 * It _appears_ to be in the future, but is actually in distant past.
	 * This test is necessary to prevent such wrapped-around relative times
735
	 * from permanently stopping the whole bdi writeback.
736 737 738 739 740 741
	 */
	ret = ret && time_before_eq(inode->dirtied_when, jiffies);
#endif
	return ret;
}

742 743
#define EXPIRE_DIRTY_ATIME 0x0001

744
/*
745
 * Move expired (dirtied before work->older_than_this) dirty inodes from
J
Jan Kara 已提交
746
 * @delaying_queue to @dispatch_queue.
747
 */
748
static int move_expired_inodes(struct list_head *delaying_queue,
749
			       struct list_head *dispatch_queue,
750
			       int flags,
751
			       struct wb_writeback_work *work)
752
{
753 754
	unsigned long *older_than_this = NULL;
	unsigned long expire_time;
755 756
	LIST_HEAD(tmp);
	struct list_head *pos, *node;
757
	struct super_block *sb = NULL;
758
	struct inode *inode;
759
	int do_sb_sort = 0;
760
	int moved = 0;
761

762 763
	if ((flags & EXPIRE_DIRTY_ATIME) == 0)
		older_than_this = work->older_than_this;
764 765
	else if (!work->for_sync) {
		expire_time = jiffies - (dirtytime_expire_interval * HZ);
766 767
		older_than_this = &expire_time;
	}
768
	while (!list_empty(delaying_queue)) {
N
Nick Piggin 已提交
769
		inode = wb_inode(delaying_queue->prev);
770 771
		if (older_than_this &&
		    inode_dirtied_after(inode, *older_than_this))
772
			break;
773 774
		list_move(&inode->i_wb_list, &tmp);
		moved++;
775 776
		if (flags & EXPIRE_DIRTY_ATIME)
			set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
777 778
		if (sb_is_blkdev_sb(inode->i_sb))
			continue;
779 780 781
		if (sb && sb != inode->i_sb)
			do_sb_sort = 1;
		sb = inode->i_sb;
782 783
	}

784 785 786
	/* just one sb in list, splice to dispatch_queue and we're done */
	if (!do_sb_sort) {
		list_splice(&tmp, dispatch_queue);
787
		goto out;
788 789
	}

790 791
	/* Move inodes from one superblock together */
	while (!list_empty(&tmp)) {
N
Nick Piggin 已提交
792
		sb = wb_inode(tmp.prev)->i_sb;
793
		list_for_each_prev_safe(pos, node, &tmp) {
N
Nick Piggin 已提交
794
			inode = wb_inode(pos);
795
			if (inode->i_sb == sb)
N
Nick Piggin 已提交
796
				list_move(&inode->i_wb_list, dispatch_queue);
797
		}
798
	}
799 800
out:
	return moved;
801 802 803 804
}

/*
 * Queue all expired dirty inodes for io, eldest first.
805 806 807 808 809 810 811 812
 * Before
 *         newly dirtied     b_dirty    b_io    b_more_io
 *         =============>    gf         edc     BA
 * After
 *         newly dirtied     b_dirty    b_io    b_more_io
 *         =============>    g          fBAedc
 *                                           |
 *                                           +--> dequeue for IO
813
 */
814
static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
815
{
816
	int moved;
817

818
	assert_spin_locked(&wb->list_lock);
819
	list_splice_init(&wb->b_more_io, &wb->b_io);
820 821 822
	moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
	moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
				     EXPIRE_DIRTY_ATIME, work);
823 824
	if (moved)
		wb_io_lists_populated(wb);
825
	trace_writeback_queue_io(wb, work, moved);
826 827
}

828
static int write_inode(struct inode *inode, struct writeback_control *wbc)
829
{
T
Tejun Heo 已提交
830 831 832 833 834 835 836 837
	int ret;

	if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
		trace_writeback_write_inode_start(inode, wbc);
		ret = inode->i_sb->s_op->write_inode(inode, wbc);
		trace_writeback_write_inode(inode, wbc);
		return ret;
	}
838
	return 0;
839 840
}

L
Linus Torvalds 已提交
841
/*
842 843
 * Wait for writeback on an inode to complete. Called with i_lock held.
 * Caller must make sure inode cannot go away when we drop i_lock.
844
 */
845 846 847
static void __inode_wait_for_writeback(struct inode *inode)
	__releases(inode->i_lock)
	__acquires(inode->i_lock)
848 849 850 851 852
{
	DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
	wait_queue_head_t *wqh;

	wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
853 854
	while (inode->i_state & I_SYNC) {
		spin_unlock(&inode->i_lock);
855 856
		__wait_on_bit(wqh, &wq, bit_wait,
			      TASK_UNINTERRUPTIBLE);
857
		spin_lock(&inode->i_lock);
858
	}
859 860
}

861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890
/*
 * Wait for writeback on an inode to complete. Caller must have inode pinned.
 */
void inode_wait_for_writeback(struct inode *inode)
{
	spin_lock(&inode->i_lock);
	__inode_wait_for_writeback(inode);
	spin_unlock(&inode->i_lock);
}

/*
 * Sleep until I_SYNC is cleared. This function must be called with i_lock
 * held and drops it. It is aimed for callers not holding any inode reference
 * so once i_lock is dropped, inode can go away.
 */
static void inode_sleep_on_writeback(struct inode *inode)
	__releases(inode->i_lock)
{
	DEFINE_WAIT(wait);
	wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
	int sleep;

	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
	sleep = inode->i_state & I_SYNC;
	spin_unlock(&inode->i_lock);
	if (sleep)
		schedule();
	finish_wait(wqh, &wait);
}

891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913
/*
 * Find proper writeback list for the inode depending on its current state and
 * possibly also change of its state while we were doing writeback.  Here we
 * handle things such as livelock prevention or fairness of writeback among
 * inodes. This function can be called only by flusher thread - noone else
 * processes all inodes in writeback lists and requeueing inodes behind flusher
 * thread's back can have unexpected consequences.
 */
static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
			  struct writeback_control *wbc)
{
	if (inode->i_state & I_FREEING)
		return;

	/*
	 * Sync livelock prevention. Each inode is tagged and synced in one
	 * shot. If still dirty, it will be redirty_tail()'ed below.  Update
	 * the dirty time to prevent enqueue and sync it again.
	 */
	if ((inode->i_state & I_DIRTY) &&
	    (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
		inode->dirtied_when = jiffies;

914 915 916 917 918 919 920 921 922
	if (wbc->pages_skipped) {
		/*
		 * writeback is not making progress due to locked
		 * buffers. Skip this inode for now.
		 */
		redirty_tail(inode, wb);
		return;
	}

923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947
	if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
		/*
		 * We didn't write back all the pages.  nfs_writepages()
		 * sometimes bales out without doing anything.
		 */
		if (wbc->nr_to_write <= 0) {
			/* Slice used up. Queue for next turn. */
			requeue_io(inode, wb);
		} else {
			/*
			 * Writeback blocked by something other than
			 * congestion. Delay the inode for some time to
			 * avoid spinning on the CPU (100% iowait)
			 * retrying writeback of the dirty page/inode
			 * that cannot be performed immediately.
			 */
			redirty_tail(inode, wb);
		}
	} else if (inode->i_state & I_DIRTY) {
		/*
		 * Filesystems can dirty the inode during writeback operations,
		 * such as delayed allocation during submission or metadata
		 * updates after data IO completion.
		 */
		redirty_tail(inode, wb);
948
	} else if (inode->i_state & I_DIRTY_TIME) {
949
		inode->dirtied_when = jiffies;
950
		inode_wb_list_move_locked(inode, wb, &wb->b_dirty_time);
951 952
	} else {
		/* The inode is clean. Remove from writeback lists. */
953
		inode_wb_list_del_locked(inode, wb);
954 955 956
	}
}

957
/*
958 959 960
 * Write out an inode and its dirty pages. Do not update the writeback list
 * linkage. That is left to the caller. The caller is also responsible for
 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
L
Linus Torvalds 已提交
961 962
 */
static int
963
__writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
L
Linus Torvalds 已提交
964 965
{
	struct address_space *mapping = inode->i_mapping;
966
	long nr_to_write = wbc->nr_to_write;
967
	unsigned dirty;
L
Linus Torvalds 已提交
968 969
	int ret;

970
	WARN_ON(!(inode->i_state & I_SYNC));
L
Linus Torvalds 已提交
971

T
Tejun Heo 已提交
972 973
	trace_writeback_single_inode_start(inode, wbc, nr_to_write);

L
Linus Torvalds 已提交
974 975
	ret = do_writepages(mapping, wbc);

976 977 978
	/*
	 * Make sure to wait on the data before writing out the metadata.
	 * This is important for filesystems that modify metadata on data
979 980 981
	 * I/O completion. We don't do it for sync(2) writeback because it has a
	 * separate, external IO completion path and ->sync_fs for guaranteeing
	 * inode metadata is written back correctly.
982
	 */
983
	if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
984
		int err = filemap_fdatawait(mapping);
L
Linus Torvalds 已提交
985 986 987 988
		if (ret == 0)
			ret = err;
	}

989 990 991 992 993
	/*
	 * Some filesystems may redirty the inode during the writeback
	 * due to delalloc, clear dirty metadata flags right before
	 * write_inode()
	 */
994
	spin_lock(&inode->i_lock);
995

996
	dirty = inode->i_state & I_DIRTY;
997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
	if (inode->i_state & I_DIRTY_TIME) {
		if ((dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
		    unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
		    unlikely(time_after(jiffies,
					(inode->dirtied_time_when +
					 dirtytime_expire_interval * HZ)))) {
			dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
			trace_writeback_lazytime(inode);
		}
	} else
		inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
1008
	inode->i_state &= ~dirty;
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025

	/*
	 * Paired with smp_mb() in __mark_inode_dirty().  This allows
	 * __mark_inode_dirty() to test i_state without grabbing i_lock -
	 * either they see the I_DIRTY bits cleared or we see the dirtied
	 * inode.
	 *
	 * I_DIRTY_PAGES is always cleared together above even if @mapping
	 * still has dirty pages.  The flag is reinstated after smp_mb() if
	 * necessary.  This guarantees that either __mark_inode_dirty()
	 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
	 */
	smp_mb();

	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
		inode->i_state |= I_DIRTY_PAGES;

1026
	spin_unlock(&inode->i_lock);
1027

1028 1029
	if (dirty & I_DIRTY_TIME)
		mark_inode_dirty_sync(inode);
1030
	/* Don't write the inode if only I_DIRTY_PAGES was set */
1031
	if (dirty & ~I_DIRTY_PAGES) {
1032
		int err = write_inode(inode, wbc);
L
Linus Torvalds 已提交
1033 1034 1035
		if (ret == 0)
			ret = err;
	}
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
	trace_writeback_single_inode(inode, wbc, nr_to_write);
	return ret;
}

/*
 * Write out an inode's dirty pages. Either the caller has an active reference
 * on the inode or the inode has I_WILL_FREE set.
 *
 * This function is designed to be called for writing back one inode which
 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
 * and does more profound writeback list handling in writeback_sb_inodes().
 */
static int
writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
		       struct writeback_control *wbc)
{
	int ret = 0;

	spin_lock(&inode->i_lock);
	if (!atomic_read(&inode->i_count))
		WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
	else
		WARN_ON(inode->i_state & I_WILL_FREE);

	if (inode->i_state & I_SYNC) {
		if (wbc->sync_mode != WB_SYNC_ALL)
			goto out;
		/*
1064 1065 1066
		 * It's a data-integrity sync. We must wait. Since callers hold
		 * inode reference or inode has I_WILL_FREE set, it cannot go
		 * away under us.
1067
		 */
1068
		__inode_wait_for_writeback(inode);
1069 1070 1071
	}
	WARN_ON(inode->i_state & I_SYNC);
	/*
J
Jan Kara 已提交
1072 1073 1074 1075 1076 1077
	 * Skip inode if it is clean and we have no outstanding writeback in
	 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
	 * function since flusher thread may be doing for example sync in
	 * parallel and if we move the inode, it could get skipped. So here we
	 * make sure inode is on some writeback list and leave it there unless
	 * we have completely cleaned the inode.
1078
	 */
1079
	if (!(inode->i_state & I_DIRTY_ALL) &&
J
Jan Kara 已提交
1080 1081
	    (wbc->sync_mode != WB_SYNC_ALL ||
	     !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1082 1083
		goto out;
	inode->i_state |= I_SYNC;
1084
	wbc_attach_and_unlock_inode(wbc, inode);
1085

1086
	ret = __writeback_single_inode(inode, wbc);
L
Linus Torvalds 已提交
1087

1088
	wbc_detach_inode(wbc);
1089
	spin_lock(&wb->list_lock);
1090
	spin_lock(&inode->i_lock);
1091 1092 1093 1094
	/*
	 * If inode is clean, remove it from writeback lists. Otherwise don't
	 * touch it. See comment above for explanation.
	 */
1095
	if (!(inode->i_state & I_DIRTY_ALL))
1096
		inode_wb_list_del_locked(inode, wb);
1097
	spin_unlock(&wb->list_lock);
J
Joern Engel 已提交
1098
	inode_sync_complete(inode);
1099 1100
out:
	spin_unlock(&inode->i_lock);
L
Linus Torvalds 已提交
1101 1102 1103
	return ret;
}

1104
static long writeback_chunk_size(struct bdi_writeback *wb,
1105
				 struct wb_writeback_work *work)
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
{
	long pages;

	/*
	 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
	 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
	 * here avoids calling into writeback_inodes_wb() more than once.
	 *
	 * The intended call sequence for WB_SYNC_ALL writeback is:
	 *
	 *      wb_writeback()
	 *          writeback_sb_inodes()       <== called only once
	 *              write_cache_pages()     <== called once for each inode
	 *                   (quickly) tag currently dirty pages
	 *                   (maybe slowly) sync all tagged pages
	 */
	if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
		pages = LONG_MAX;
1124
	else {
1125
		pages = min(wb->avg_write_bandwidth / 2,
1126
			    global_wb_domain.dirty_limit / DIRTY_SCOPE);
1127 1128 1129 1130
		pages = min(pages, work->nr_pages);
		pages = round_down(pages + MIN_WRITEBACK_PAGES,
				   MIN_WRITEBACK_PAGES);
	}
1131 1132 1133 1134

	return pages;
}

1135 1136
/*
 * Write a portion of b_io inodes which belong to @sb.
1137
 *
1138
 * Return the number of pages and/or inodes written.
1139
 */
1140 1141 1142
static long writeback_sb_inodes(struct super_block *sb,
				struct bdi_writeback *wb,
				struct wb_writeback_work *work)
L
Linus Torvalds 已提交
1143
{
1144 1145 1146 1147 1148
	struct writeback_control wbc = {
		.sync_mode		= work->sync_mode,
		.tagged_writepages	= work->tagged_writepages,
		.for_kupdate		= work->for_kupdate,
		.for_background		= work->for_background,
1149
		.for_sync		= work->for_sync,
1150 1151 1152 1153 1154 1155 1156 1157
		.range_cyclic		= work->range_cyclic,
		.range_start		= 0,
		.range_end		= LLONG_MAX,
	};
	unsigned long start_time = jiffies;
	long write_chunk;
	long wrote = 0;  /* count both pages and inodes */

1158
	while (!list_empty(&wb->b_io)) {
N
Nick Piggin 已提交
1159
		struct inode *inode = wb_inode(wb->b_io.prev);
1160 1161

		if (inode->i_sb != sb) {
1162
			if (work->sb) {
1163 1164 1165 1166 1167
				/*
				 * We only want to write back data for this
				 * superblock, move all inodes not belonging
				 * to it back onto the dirty list.
				 */
1168
				redirty_tail(inode, wb);
1169 1170 1171 1172 1173 1174 1175 1176
				continue;
			}

			/*
			 * The inode belongs to a different superblock.
			 * Bounce back to the caller to unpin this and
			 * pin the next superblock.
			 */
1177
			break;
1178 1179
		}

1180
		/*
W
Wanpeng Li 已提交
1181 1182
		 * Don't bother with new inodes or inodes being freed, first
		 * kind does not need periodic writeout yet, and for the latter
1183 1184
		 * kind writeout is handled by the freer.
		 */
1185
		spin_lock(&inode->i_lock);
1186
		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1187
			spin_unlock(&inode->i_lock);
1188
			redirty_tail(inode, wb);
1189 1190
			continue;
		}
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
		if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
			/*
			 * If this inode is locked for writeback and we are not
			 * doing writeback-for-data-integrity, move it to
			 * b_more_io so that writeback can proceed with the
			 * other inodes on s_io.
			 *
			 * We'll have another go at writing back this inode
			 * when we completed a full scan of b_io.
			 */
			spin_unlock(&inode->i_lock);
			requeue_io(inode, wb);
			trace_writeback_sb_inodes_requeue(inode);
			continue;
		}
1206 1207
		spin_unlock(&wb->list_lock);

1208 1209 1210 1211 1212
		/*
		 * We already requeued the inode if it had I_SYNC set and we
		 * are doing WB_SYNC_NONE writeback. So this catches only the
		 * WB_SYNC_ALL case.
		 */
1213 1214 1215 1216
		if (inode->i_state & I_SYNC) {
			/* Wait for I_SYNC. This function drops i_lock... */
			inode_sleep_on_writeback(inode);
			/* Inode may be gone, start again */
1217
			spin_lock(&wb->list_lock);
1218 1219
			continue;
		}
1220
		inode->i_state |= I_SYNC;
1221
		wbc_attach_and_unlock_inode(&wbc, inode);
1222

1223
		write_chunk = writeback_chunk_size(wb, work);
1224 1225
		wbc.nr_to_write = write_chunk;
		wbc.pages_skipped = 0;
1226

1227 1228 1229 1230
		/*
		 * We use I_SYNC to pin the inode in memory. While it is set
		 * evict_inode() will wait so the inode cannot be freed.
		 */
1231
		__writeback_single_inode(inode, &wbc);
1232

1233
		wbc_detach_inode(&wbc);
1234 1235
		work->nr_pages -= write_chunk - wbc.nr_to_write;
		wrote += write_chunk - wbc.nr_to_write;
1236 1237
		spin_lock(&wb->list_lock);
		spin_lock(&inode->i_lock);
1238
		if (!(inode->i_state & I_DIRTY_ALL))
1239
			wrote++;
1240 1241
		requeue_inode(inode, wb, &wbc);
		inode_sync_complete(inode);
1242
		spin_unlock(&inode->i_lock);
1243
		cond_resched_lock(&wb->list_lock);
1244 1245 1246 1247 1248 1249 1250 1251 1252
		/*
		 * bail out to wb_writeback() often enough to check
		 * background threshold and other termination conditions.
		 */
		if (wrote) {
			if (time_is_before_jiffies(start_time + HZ / 10UL))
				break;
			if (work->nr_pages <= 0)
				break;
1253
		}
L
Linus Torvalds 已提交
1254
	}
1255
	return wrote;
1256 1257
}

1258 1259
static long __writeback_inodes_wb(struct bdi_writeback *wb,
				  struct wb_writeback_work *work)
1260
{
1261 1262
	unsigned long start_time = jiffies;
	long wrote = 0;
N
Nick Piggin 已提交
1263

1264
	while (!list_empty(&wb->b_io)) {
N
Nick Piggin 已提交
1265
		struct inode *inode = wb_inode(wb->b_io.prev);
1266
		struct super_block *sb = inode->i_sb;
1267

1268
		if (!trylock_super(sb)) {
1269
			/*
1270
			 * trylock_super() may fail consistently due to
1271 1272 1273 1274
			 * s_umount being grabbed by someone else. Don't use
			 * requeue_io() to avoid busy retrying the inode/sb.
			 */
			redirty_tail(inode, wb);
1275
			continue;
1276
		}
1277
		wrote += writeback_sb_inodes(sb, wb, work);
1278
		up_read(&sb->s_umount);
1279

1280 1281 1282 1283 1284 1285 1286
		/* refer to the same tests at the end of writeback_sb_inodes */
		if (wrote) {
			if (time_is_before_jiffies(start_time + HZ / 10UL))
				break;
			if (work->nr_pages <= 0)
				break;
		}
1287
	}
1288
	/* Leave any unwritten inodes on b_io */
1289
	return wrote;
1290 1291
}

1292
static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1293
				enum wb_reason reason)
1294
{
1295 1296 1297 1298
	struct wb_writeback_work work = {
		.nr_pages	= nr_pages,
		.sync_mode	= WB_SYNC_NONE,
		.range_cyclic	= 1,
1299
		.reason		= reason,
1300
	};
1301

1302
	spin_lock(&wb->list_lock);
W
Wu Fengguang 已提交
1303
	if (list_empty(&wb->b_io))
1304
		queue_io(wb, &work);
1305
	__writeback_inodes_wb(wb, &work);
1306
	spin_unlock(&wb->list_lock);
1307

1308 1309
	return nr_pages - work.nr_pages;
}
1310 1311 1312

/*
 * Explicit flushing or periodic writeback of "old" data.
1313
 *
1314 1315 1316 1317
 * Define "old": the first time one of an inode's pages is dirtied, we mark the
 * dirtying-time in the inode's address_space.  So this periodic writeback code
 * just walks the superblock inode list, writing back any inodes which are
 * older than a specific point in time.
1318
 *
1319 1320 1321
 * Try to run once per dirty_writeback_interval.  But if a writeback event
 * takes longer than a dirty_writeback_interval interval, then leave a
 * one-second gap.
1322
 *
1323 1324
 * older_than_this takes precedence over nr_to_write.  So we'll only write back
 * all dirty pages if they are all attached to "old" mappings.
1325
 */
1326
static long wb_writeback(struct bdi_writeback *wb,
1327
			 struct wb_writeback_work *work)
1328
{
1329
	unsigned long wb_start = jiffies;
1330
	long nr_pages = work->nr_pages;
1331
	unsigned long oldest_jif;
J
Jan Kara 已提交
1332
	struct inode *inode;
1333
	long progress;
1334

1335 1336
	oldest_jif = jiffies;
	work->older_than_this = &oldest_jif;
N
Nick Piggin 已提交
1337

1338
	spin_lock(&wb->list_lock);
1339 1340
	for (;;) {
		/*
1341
		 * Stop writeback when nr_pages has been consumed
1342
		 */
1343
		if (work->nr_pages <= 0)
1344
			break;
1345

1346 1347 1348 1349 1350 1351 1352
		/*
		 * Background writeout and kupdate-style writeback may
		 * run forever. Stop them if there is other work to do
		 * so that e.g. sync can proceed. They'll be restarted
		 * after the other works are all done.
		 */
		if ((work->for_background || work->for_kupdate) &&
1353
		    !list_empty(&wb->work_list))
1354 1355
			break;

N
Nick Piggin 已提交
1356
		/*
1357 1358
		 * For background writeout, stop when we are below the
		 * background dirty threshold
N
Nick Piggin 已提交
1359
		 */
1360
		if (work->for_background && !wb_over_bg_thresh(wb))
1361
			break;
N
Nick Piggin 已提交
1362

1363 1364 1365 1366 1367 1368
		/*
		 * Kupdate and background works are special and we want to
		 * include all inodes that need writing. Livelock avoidance is
		 * handled by these works yielding to any other work so we are
		 * safe.
		 */
1369
		if (work->for_kupdate) {
1370
			oldest_jif = jiffies -
1371
				msecs_to_jiffies(dirty_expire_interval * 10);
1372
		} else if (work->for_background)
1373
			oldest_jif = jiffies;
1374

1375
		trace_writeback_start(wb->bdi, work);
1376
		if (list_empty(&wb->b_io))
1377
			queue_io(wb, work);
1378
		if (work->sb)
1379
			progress = writeback_sb_inodes(work->sb, wb, work);
1380
		else
1381 1382
			progress = __writeback_inodes_wb(wb, work);
		trace_writeback_written(wb->bdi, work);
1383

1384
		wb_update_bandwidth(wb, wb_start);
1385 1386

		/*
1387 1388 1389 1390 1391 1392
		 * Did we write something? Try for more
		 *
		 * Dirty inodes are moved to b_io for writeback in batches.
		 * The completion of the current batch does not necessarily
		 * mean the overall work is done. So we keep looping as long
		 * as made some progress on cleaning pages or inodes.
1393
		 */
1394
		if (progress)
1395 1396
			continue;
		/*
1397
		 * No more inodes for IO, bail
1398
		 */
1399
		if (list_empty(&wb->b_more_io))
1400
			break;
1401 1402 1403 1404 1405 1406
		/*
		 * Nothing written. Wait for some inode to
		 * become available for writeback. Otherwise
		 * we'll just busyloop.
		 */
		if (!list_empty(&wb->b_more_io))  {
1407
			trace_writeback_wait(wb->bdi, work);
N
Nick Piggin 已提交
1408
			inode = wb_inode(wb->b_more_io.prev);
1409
			spin_lock(&inode->i_lock);
1410
			spin_unlock(&wb->list_lock);
1411 1412
			/* This function drops i_lock... */
			inode_sleep_on_writeback(inode);
1413
			spin_lock(&wb->list_lock);
1414 1415
		}
	}
1416
	spin_unlock(&wb->list_lock);
1417

1418
	return nr_pages - work->nr_pages;
1419 1420 1421
}

/*
1422
 * Return the next wb_writeback_work struct that hasn't been processed yet.
1423
 */
1424
static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
1425
{
1426
	struct wb_writeback_work *work = NULL;
1427

1428 1429 1430
	spin_lock_bh(&wb->work_lock);
	if (!list_empty(&wb->work_list)) {
		work = list_entry(wb->work_list.next,
1431 1432
				  struct wb_writeback_work, list);
		list_del_init(&work->list);
1433
	}
1434
	spin_unlock_bh(&wb->work_lock);
1435
	return work;
1436 1437
}

1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448
/*
 * Add in the number of potentially dirty inodes, because each inode
 * write can dirty pagecache in the underlying blockdev.
 */
static unsigned long get_nr_dirty_pages(void)
{
	return global_page_state(NR_FILE_DIRTY) +
		global_page_state(NR_UNSTABLE_NFS) +
		get_nr_dirty_inodes();
}

1449 1450
static long wb_check_background_flush(struct bdi_writeback *wb)
{
1451
	if (wb_over_bg_thresh(wb)) {
1452 1453 1454 1455 1456 1457

		struct wb_writeback_work work = {
			.nr_pages	= LONG_MAX,
			.sync_mode	= WB_SYNC_NONE,
			.for_background	= 1,
			.range_cyclic	= 1,
1458
			.reason		= WB_REASON_BACKGROUND,
1459 1460 1461 1462 1463 1464 1465 1466
		};

		return wb_writeback(wb, &work);
	}

	return 0;
}

1467 1468 1469 1470 1471
static long wb_check_old_data_flush(struct bdi_writeback *wb)
{
	unsigned long expired;
	long nr_pages;

1472 1473 1474 1475 1476 1477
	/*
	 * When set to zero, disable periodic writeback
	 */
	if (!dirty_writeback_interval)
		return 0;

1478 1479 1480 1481 1482 1483
	expired = wb->last_old_flush +
			msecs_to_jiffies(dirty_writeback_interval * 10);
	if (time_before(jiffies, expired))
		return 0;

	wb->last_old_flush = jiffies;
1484
	nr_pages = get_nr_dirty_pages();
1485

1486
	if (nr_pages) {
1487
		struct wb_writeback_work work = {
1488 1489 1490 1491
			.nr_pages	= nr_pages,
			.sync_mode	= WB_SYNC_NONE,
			.for_kupdate	= 1,
			.range_cyclic	= 1,
1492
			.reason		= WB_REASON_PERIODIC,
1493 1494
		};

1495
		return wb_writeback(wb, &work);
1496
	}
1497 1498 1499 1500 1501 1502 1503

	return 0;
}

/*
 * Retrieve work items and do the writeback they describe
 */
1504
static long wb_do_writeback(struct bdi_writeback *wb)
1505
{
1506
	struct wb_writeback_work *work;
1507
	long wrote = 0;
1508

1509
	set_bit(WB_writeback_running, &wb->state);
1510
	while ((work = get_next_work_item(wb)) != NULL) {
1511
		struct wb_completion *done = work->done;
1512
		bool need_wake_up = false;
1513

1514
		trace_writeback_exec(wb->bdi, work);
1515

1516
		wrote += wb_writeback(wb, work);
1517

1518 1519 1520 1521 1522 1523 1524
		if (work->single_wait) {
			WARN_ON_ONCE(work->auto_free);
			/* paired w/ rmb in wb_wait_for_single_work() */
			smp_wmb();
			work->single_done = 1;
			need_wake_up = true;
		} else if (work->auto_free) {
1525
			kfree(work);
1526 1527
		}

1528
		if (done && atomic_dec_and_test(&done->cnt))
1529 1530 1531
			need_wake_up = true;

		if (need_wake_up)
1532
			wake_up_all(&wb->bdi->wb_waitq);
1533 1534 1535 1536 1537 1538
	}

	/*
	 * Check for periodic writeback, kupdated() style
	 */
	wrote += wb_check_old_data_flush(wb);
1539
	wrote += wb_check_background_flush(wb);
1540
	clear_bit(WB_writeback_running, &wb->state);
1541 1542 1543 1544 1545 1546

	return wrote;
}

/*
 * Handle writeback of dirty data for the device backed by this bdi. Also
1547
 * reschedules periodically and does kupdated style flushing.
1548
 */
1549
void wb_workfn(struct work_struct *work)
1550
{
1551 1552
	struct bdi_writeback *wb = container_of(to_delayed_work(work),
						struct bdi_writeback, dwork);
1553 1554
	long pages_written;

1555
	set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
P
Peter Zijlstra 已提交
1556
	current->flags |= PF_SWAPWRITE;
1557

1558
	if (likely(!current_is_workqueue_rescuer() ||
1559
		   !test_bit(WB_registered, &wb->state))) {
1560
		/*
1561
		 * The normal path.  Keep writing back @wb until its
1562
		 * work_list is empty.  Note that this path is also taken
1563
		 * if @wb is shutting down even when we're running off the
1564
		 * rescuer as work_list needs to be drained.
1565
		 */
1566
		do {
1567
			pages_written = wb_do_writeback(wb);
1568
			trace_writeback_pages_written(pages_written);
1569
		} while (!list_empty(&wb->work_list));
1570 1571 1572 1573 1574 1575
	} else {
		/*
		 * bdi_wq can't get enough workers and we're running off
		 * the emergency worker.  Don't hog it.  Hopefully, 1024 is
		 * enough for efficient IO.
		 */
1576
		pages_written = writeback_inodes_wb(wb, 1024,
1577
						    WB_REASON_FORKER_THREAD);
1578
		trace_writeback_pages_written(pages_written);
1579 1580
	}

1581
	if (!list_empty(&wb->work_list))
1582 1583
		mod_delayed_work(bdi_wq, &wb->dwork, 0);
	else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
1584
		wb_wakeup_delayed(wb);
1585

1586
	current->flags &= ~PF_SWAPWRITE;
1587 1588 1589
}

/*
1590 1591
 * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
 * the whole world.
1592
 */
1593
void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
1594
{
1595
	struct backing_dev_info *bdi;
1596

1597 1598
	if (!nr_pages)
		nr_pages = get_nr_dirty_pages();
1599

1600
	rcu_read_lock();
1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611
	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
		struct bdi_writeback *wb;
		struct wb_iter iter;

		if (!bdi_has_dirty_io(bdi))
			continue;

		bdi_for_each_wb(wb, bdi, &iter, 0)
			wb_start_writeback(wb, wb_split_bdi_pages(wb, nr_pages),
					   false, reason);
	}
1612
	rcu_read_unlock();
L
Linus Torvalds 已提交
1613 1614
}

1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638
/*
 * Wake up bdi's periodically to make sure dirtytime inodes gets
 * written back periodically.  We deliberately do *not* check the
 * b_dirtytime list in wb_has_dirty_io(), since this would cause the
 * kernel to be constantly waking up once there are any dirtytime
 * inodes on the system.  So instead we define a separate delayed work
 * function which gets called much more rarely.  (By default, only
 * once every 12 hours.)
 *
 * If there is any other write activity going on in the file system,
 * this function won't be necessary.  But if the only thing that has
 * happened on the file system is a dirtytime inode caused by an atime
 * update, we need this infrastructure below to make sure that inode
 * eventually gets pushed out to disk.
 */
static void wakeup_dirtytime_writeback(struct work_struct *w);
static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);

static void wakeup_dirtytime_writeback(struct work_struct *w)
{
	struct backing_dev_info *bdi;

	rcu_read_lock();
	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1639 1640 1641 1642 1643 1644
		struct bdi_writeback *wb;
		struct wb_iter iter;

		bdi_for_each_wb(wb, bdi, &iter, 0)
			if (!list_empty(&bdi->wb.b_dirty_time))
				wb_wakeup(&bdi->wb);
1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656
	}
	rcu_read_unlock();
	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
}

static int __init start_dirtytime_writeback(void)
{
	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
	return 0;
}
__initcall(start_dirtytime_writeback);

1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667
int dirtytime_interval_handler(struct ctl_table *table, int write,
			       void __user *buffer, size_t *lenp, loff_t *ppos)
{
	int ret;

	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
	if (ret == 0 && write)
		mod_delayed_work(system_wq, &dirtytime_work, 0);
	return ret;
}

1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
static noinline void block_dump___mark_inode_dirty(struct inode *inode)
{
	if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
		struct dentry *dentry;
		const char *name = "?";

		dentry = d_find_alias(inode);
		if (dentry) {
			spin_lock(&dentry->d_lock);
			name = (const char *) dentry->d_name.name;
		}
		printk(KERN_DEBUG
		       "%s(%d): dirtied inode %lu (%s) on %s\n",
		       current->comm, task_pid_nr(current), inode->i_ino,
		       name, inode->i_sb->s_id);
		if (dentry) {
			spin_unlock(&dentry->d_lock);
			dput(dentry);
		}
	}
}

/**
 *	__mark_inode_dirty -	internal function
 *	@inode: inode to mark
 *	@flags: what kind of dirty (i.e. I_DIRTY_SYNC)
 *	Mark an inode as dirty. Callers should use mark_inode_dirty or
 *  	mark_inode_dirty_sync.
L
Linus Torvalds 已提交
1696
 *
1697 1698 1699 1700 1701 1702 1703 1704 1705
 * Put the inode on the super block's dirty list.
 *
 * CAREFUL! We mark it dirty unconditionally, but move it onto the
 * dirty list only if it is hashed or if it refers to a blockdev.
 * If it was not hashed, it will never be added to the dirty list
 * even if it is later hashed, as it will have been marked dirty already.
 *
 * In short, make sure you hash any inodes _before_ you start marking
 * them dirty.
L
Linus Torvalds 已提交
1706
 *
1707 1708 1709 1710 1711 1712
 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
 * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
 * the kernel-internal blockdev inode represents the dirtying time of the
 * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
 * page->mapping->host, so the page-dirtying time is recorded in the internal
 * blockdev inode.
L
Linus Torvalds 已提交
1713
 */
1714
#define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC)
1715
void __mark_inode_dirty(struct inode *inode, int flags)
L
Linus Torvalds 已提交
1716
{
1717
	struct super_block *sb = inode->i_sb;
1718 1719 1720
	int dirtytime;

	trace_writeback_mark_inode_dirty(inode, flags);
L
Linus Torvalds 已提交
1721

1722 1723 1724 1725
	/*
	 * Don't do this for I_DIRTY_PAGES - that doesn't actually
	 * dirty the inode itself
	 */
1726
	if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC | I_DIRTY_TIME)) {
T
Tejun Heo 已提交
1727 1728
		trace_writeback_dirty_inode_start(inode, flags);

1729
		if (sb->s_op->dirty_inode)
1730
			sb->s_op->dirty_inode(inode, flags);
T
Tejun Heo 已提交
1731 1732

		trace_writeback_dirty_inode(inode, flags);
1733
	}
1734 1735 1736
	if (flags & I_DIRTY_INODE)
		flags &= ~I_DIRTY_TIME;
	dirtytime = flags & I_DIRTY_TIME;
1737 1738

	/*
1739 1740
	 * Paired with smp_mb() in __writeback_single_inode() for the
	 * following lockless i_state test.  See there for details.
1741 1742 1743
	 */
	smp_mb();

1744 1745
	if (((inode->i_state & flags) == flags) ||
	    (dirtytime && (inode->i_state & I_DIRTY_INODE)))
1746 1747 1748 1749 1750
		return;

	if (unlikely(block_dump))
		block_dump___mark_inode_dirty(inode);

1751
	spin_lock(&inode->i_lock);
1752 1753
	if (dirtytime && (inode->i_state & I_DIRTY_INODE))
		goto out_unlock_inode;
1754 1755 1756
	if ((inode->i_state & flags) != flags) {
		const int was_dirty = inode->i_state & I_DIRTY;

1757 1758
		inode_attach_wb(inode, NULL);

1759 1760
		if (flags & I_DIRTY_INODE)
			inode->i_state &= ~I_DIRTY_TIME;
1761 1762 1763 1764 1765 1766 1767 1768
		inode->i_state |= flags;

		/*
		 * If the inode is being synced, just update its dirty state.
		 * The unlocker will place the inode on the appropriate
		 * superblock list, based upon its state.
		 */
		if (inode->i_state & I_SYNC)
1769
			goto out_unlock_inode;
1770 1771 1772 1773 1774 1775

		/*
		 * Only add valid (hashed) inodes to the superblock's
		 * dirty list.  Add blockdev inodes as well.
		 */
		if (!S_ISBLK(inode->i_mode)) {
A
Al Viro 已提交
1776
			if (inode_unhashed(inode))
1777
				goto out_unlock_inode;
1778
		}
A
Al Viro 已提交
1779
		if (inode->i_state & I_FREEING)
1780
			goto out_unlock_inode;
1781 1782 1783 1784 1785 1786

		/*
		 * If the inode was already on b_dirty/b_io/b_more_io, don't
		 * reposition it (that would break b_dirty time-ordering).
		 */
		if (!was_dirty) {
1787
			struct bdi_writeback *wb = inode_to_wb(inode);
1788
			struct list_head *dirty_list;
1789
			bool wakeup_bdi = false;
1790

1791
			spin_unlock(&inode->i_lock);
1792
			spin_lock(&wb->list_lock);
1793

1794 1795 1796
			WARN(bdi_cap_writeback_dirty(wb->bdi) &&
			     !test_bit(WB_registered, &wb->state),
			     "bdi-%s not registered\n", wb->bdi->name);
1797 1798

			inode->dirtied_when = jiffies;
1799 1800
			if (dirtytime)
				inode->dirtied_time_when = jiffies;
1801

1802
			if (inode->i_state & (I_DIRTY_INODE | I_DIRTY_PAGES))
1803
				dirty_list = &wb->b_dirty;
1804
			else
1805
				dirty_list = &wb->b_dirty_time;
1806

1807
			wakeup_bdi = inode_wb_list_move_locked(inode, wb,
1808 1809
							       dirty_list);

1810
			spin_unlock(&wb->list_lock);
1811
			trace_writeback_dirty_inode_enqueue(inode);
1812

1813 1814 1815 1816 1817 1818
			/*
			 * If this is the first dirty inode for this bdi,
			 * we have to wake-up the corresponding bdi thread
			 * to make sure background write-back happens
			 * later.
			 */
1819 1820
			if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi)
				wb_wakeup_delayed(wb);
1821
			return;
L
Linus Torvalds 已提交
1822 1823
		}
	}
1824 1825
out_unlock_inode:
	spin_unlock(&inode->i_lock);
1826

1827 1828 1829
}
EXPORT_SYMBOL(__mark_inode_dirty);

1830
static void wait_sb_inodes(struct super_block *sb)
1831 1832 1833 1834 1835 1836 1837
{
	struct inode *inode, *old_inode = NULL;

	/*
	 * We need to be protected against the filesystem going from
	 * r/o to r/w or vice versa.
	 */
1838
	WARN_ON(!rwsem_is_locked(&sb->s_umount));
1839

1840
	spin_lock(&inode_sb_list_lock);
1841 1842 1843 1844 1845 1846 1847 1848

	/*
	 * Data integrity sync. Must wait for all pages under writeback,
	 * because there may have been pages dirtied before our sync
	 * call, but which had writeout started before we write it out.
	 * In which case, the inode may not be on the dirty list, but
	 * we still have to wait for that writeout.
	 */
1849
	list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1850
		struct address_space *mapping = inode->i_mapping;
1851

1852 1853 1854 1855
		spin_lock(&inode->i_lock);
		if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
		    (mapping->nrpages == 0)) {
			spin_unlock(&inode->i_lock);
1856
			continue;
1857
		}
1858
		__iget(inode);
1859
		spin_unlock(&inode->i_lock);
1860 1861
		spin_unlock(&inode_sb_list_lock);

1862
		/*
1863 1864 1865 1866 1867 1868
		 * We hold a reference to 'inode' so it couldn't have been
		 * removed from s_inodes list while we dropped the
		 * inode_sb_list_lock.  We cannot iput the inode now as we can
		 * be holding the last reference and we cannot iput it under
		 * inode_sb_list_lock. So we keep the reference and iput it
		 * later.
1869 1870 1871 1872 1873 1874 1875 1876
		 */
		iput(old_inode);
		old_inode = inode;

		filemap_fdatawait(mapping);

		cond_resched();

1877
		spin_lock(&inode_sb_list_lock);
1878
	}
1879
	spin_unlock(&inode_sb_list_lock);
1880
	iput(old_inode);
L
Linus Torvalds 已提交
1881 1882
}

1883 1884
static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
				     enum wb_reason reason, bool skip_if_busy)
L
Linus Torvalds 已提交
1885
{
1886
	DEFINE_WB_COMPLETION_ONSTACK(done);
1887
	struct wb_writeback_work work = {
1888 1889 1890 1891 1892
		.sb			= sb,
		.sync_mode		= WB_SYNC_NONE,
		.tagged_writepages	= 1,
		.done			= &done,
		.nr_pages		= nr,
1893
		.reason			= reason,
1894
	};
1895
	struct backing_dev_info *bdi = sb->s_bdi;
1896

1897
	if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
1898
		return;
1899
	WARN_ON(!rwsem_is_locked(&sb->s_umount));
1900

1901
	bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
1902
	wb_wait_for_completion(bdi, &done);
1903
}
1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920

/**
 * writeback_inodes_sb_nr -	writeback dirty inodes from given super_block
 * @sb: the superblock
 * @nr: the number of pages to write
 * @reason: reason why some writeback work initiated
 *
 * Start writeback on some inodes on this super_block. No guarantees are made
 * on how many (if any) will be written, and this function does not wait
 * for IO completion of submitted IO.
 */
void writeback_inodes_sb_nr(struct super_block *sb,
			    unsigned long nr,
			    enum wb_reason reason)
{
	__writeback_inodes_sb_nr(sb, nr, reason, false);
}
1921 1922 1923 1924 1925
EXPORT_SYMBOL(writeback_inodes_sb_nr);

/**
 * writeback_inodes_sb	-	writeback dirty inodes from given super_block
 * @sb: the superblock
1926
 * @reason: reason why some writeback work was initiated
1927 1928 1929 1930 1931
 *
 * Start writeback on some inodes on this super_block. No guarantees are made
 * on how many (if any) will be written, and this function does not wait
 * for IO completion of submitted IO.
 */
1932
void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1933
{
1934
	return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1935
}
1936
EXPORT_SYMBOL(writeback_inodes_sb);
1937

1938
/**
1939
 * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
1940
 * @sb: the superblock
1941 1942
 * @nr: the number of pages to write
 * @reason: the reason of writeback
1943
 *
1944
 * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
1945 1946
 * Returns 1 if writeback was started, 0 if not.
 */
1947 1948
bool try_to_writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
				   enum wb_reason reason)
1949
{
1950
	if (!down_read_trylock(&sb->s_umount))
1951
		return false;
1952

1953
	__writeback_inodes_sb_nr(sb, nr, reason, true);
1954
	up_read(&sb->s_umount);
1955
	return true;
1956
}
1957
EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr);
1958

1959
/**
1960
 * try_to_writeback_inodes_sb - try to start writeback if none underway
1961
 * @sb: the superblock
1962
 * @reason: reason why some writeback work was initiated
1963
 *
1964
 * Implement by try_to_writeback_inodes_sb_nr()
1965 1966
 * Returns 1 if writeback was started, 0 if not.
 */
1967
bool try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1968
{
1969
	return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1970
}
1971
EXPORT_SYMBOL(try_to_writeback_inodes_sb);
1972

1973 1974
/**
 * sync_inodes_sb	-	sync sb inode pages
1975
 * @sb: the superblock
1976 1977
 *
 * This function writes and waits on any dirty inode belonging to this
1978
 * super_block.
1979
 */
1980
void sync_inodes_sb(struct super_block *sb)
1981
{
1982
	DEFINE_WB_COMPLETION_ONSTACK(done);
1983
	struct wb_writeback_work work = {
1984 1985 1986 1987
		.sb		= sb,
		.sync_mode	= WB_SYNC_ALL,
		.nr_pages	= LONG_MAX,
		.range_cyclic	= 0,
1988
		.done		= &done,
1989
		.reason		= WB_REASON_SYNC,
1990
		.for_sync	= 1,
1991
	};
1992
	struct backing_dev_info *bdi = sb->s_bdi;
1993

1994
	/* Nothing to do? */
1995
	if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
1996
		return;
1997 1998
	WARN_ON(!rwsem_is_locked(&sb->s_umount));

1999
	bdi_split_work_to_wbs(bdi, &work, false);
2000
	wb_wait_for_completion(bdi, &done);
2001

2002
	wait_sb_inodes(sb);
L
Linus Torvalds 已提交
2003
}
2004
EXPORT_SYMBOL(sync_inodes_sb);
L
Linus Torvalds 已提交
2005 2006

/**
2007 2008 2009 2010 2011 2012
 * write_inode_now	-	write an inode to disk
 * @inode: inode to write to disk
 * @sync: whether the write should be synchronous or not
 *
 * This function commits an inode to disk immediately if it is dirty. This is
 * primarily needed by knfsd.
L
Linus Torvalds 已提交
2013
 *
2014
 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
L
Linus Torvalds 已提交
2015 2016 2017
 */
int write_inode_now(struct inode *inode, int sync)
{
2018
	struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
L
Linus Torvalds 已提交
2019 2020
	struct writeback_control wbc = {
		.nr_to_write = LONG_MAX,
2021
		.sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2022 2023
		.range_start = 0,
		.range_end = LLONG_MAX,
L
Linus Torvalds 已提交
2024 2025 2026
	};

	if (!mapping_cap_writeback_dirty(inode->i_mapping))
2027
		wbc.nr_to_write = 0;
L
Linus Torvalds 已提交
2028 2029

	might_sleep();
2030
	return writeback_single_inode(inode, wb, &wbc);
L
Linus Torvalds 已提交
2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046
}
EXPORT_SYMBOL(write_inode_now);

/**
 * sync_inode - write an inode and its pages to disk.
 * @inode: the inode to sync
 * @wbc: controls the writeback mode
 *
 * sync_inode() will write an inode and its pages to disk.  It will also
 * correctly update the inode on its superblock's dirty inode lists and will
 * update inode->i_state.
 *
 * The caller must have a ref on the inode.
 */
int sync_inode(struct inode *inode, struct writeback_control *wbc)
{
2047
	return writeback_single_inode(inode, &inode_to_bdi(inode)->wb, wbc);
L
Linus Torvalds 已提交
2048 2049
}
EXPORT_SYMBOL(sync_inode);
C
Christoph Hellwig 已提交
2050 2051

/**
A
Andrew Morton 已提交
2052
 * sync_inode_metadata - write an inode to disk
C
Christoph Hellwig 已提交
2053 2054 2055
 * @inode: the inode to sync
 * @wait: wait for I/O to complete.
 *
A
Andrew Morton 已提交
2056
 * Write an inode to disk and adjust its dirty state after completion.
C
Christoph Hellwig 已提交
2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069
 *
 * Note: only writes the actual inode, no associated data or other metadata.
 */
int sync_inode_metadata(struct inode *inode, int wait)
{
	struct writeback_control wbc = {
		.sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
		.nr_to_write = 0, /* metadata-only */
	};

	return sync_inode(inode, &wbc);
}
EXPORT_SYMBOL(sync_inode_metadata);