fs-writeback.c 67.1 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10
/*
 * fs/fs-writeback.c
 *
 * Copyright (C) 2002, Linus Torvalds.
 *
 * Contains all the functions related to writing back and waiting
 * upon dirty inodes against superblocks, and writing back dirty
 * pages against inodes.  ie: data writeback.  Writeout of the
 * inode itself is not handled here.
 *
11
 * 10Apr2002	Andrew Morton
L
Linus Torvalds 已提交
12 13 14 15 16
 *		Split out of fs/inode.c
 *		Additions for address_space-based writeback
 */

#include <linux/kernel.h>
17
#include <linux/export.h>
L
Linus Torvalds 已提交
18
#include <linux/spinlock.h>
19
#include <linux/slab.h>
L
Linus Torvalds 已提交
20 21 22
#include <linux/sched.h>
#include <linux/fs.h>
#include <linux/mm.h>
23
#include <linux/pagemap.h>
24
#include <linux/kthread.h>
L
Linus Torvalds 已提交
25 26 27
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/backing-dev.h>
28
#include <linux/tracepoint.h>
29
#include <linux/device.h>
30
#include <linux/memcontrol.h>
31
#include "internal.h"
L
Linus Torvalds 已提交
32

33 34 35 36 37
/*
 * 4MB minimal write chunk size
 */
#define MIN_WRITEBACK_PAGES	(4096UL >> (PAGE_CACHE_SHIFT - 10))

38 39 40 41
struct wb_completion {
	atomic_t		cnt;
};

42 43 44
/*
 * Passed into wb_writeback(), essentially a subset of writeback_control
 */
45
struct wb_writeback_work {
46 47
	long nr_pages;
	struct super_block *sb;
48
	unsigned long *older_than_this;
49
	enum writeback_sync_modes sync_mode;
50
	unsigned int tagged_writepages:1;
51 52 53
	unsigned int for_kupdate:1;
	unsigned int range_cyclic:1;
	unsigned int for_background:1;
54
	unsigned int for_sync:1;	/* sync(2) WB_SYNC_ALL writeback */
55
	unsigned int auto_free:1;	/* free on completion */
56 57
	unsigned int single_wait:1;
	unsigned int single_done:1;
58
	enum wb_reason reason;		/* why was writeback initiated? */
59

60
	struct list_head list;		/* pending work list */
61
	struct wb_completion *done;	/* set if the caller waits */
62 63
};

64 65 66 67 68 69 70 71 72 73 74 75 76
/*
 * If one wants to wait for one or more wb_writeback_works, each work's
 * ->done should be set to a wb_completion defined using the following
 * macro.  Once all work items are issued with wb_queue_work(), the caller
 * can wait for the completion of all using wb_wait_for_completion().  Work
 * items which are waited upon aren't freed automatically on completion.
 */
#define DEFINE_WB_COMPLETION_ONSTACK(cmpl)				\
	struct wb_completion cmpl = {					\
		.cnt		= ATOMIC_INIT(1),			\
	}


77 78 79 80 81 82 83 84 85 86 87 88
/*
 * If an inode is constantly having its pages dirtied, but then the
 * updates stop dirtytime_expire_interval seconds in the past, it's
 * possible for the worst case time between when an inode has its
 * timestamps updated and when they finally get written out to be two
 * dirtytime_expire_intervals.  We set the default to 12 hours (in
 * seconds), which means most of the time inodes will have their
 * timestamps written to disk after 12 hours, but in the worst case a
 * few inodes might not their timestamps updated for 24 hours.
 */
unsigned int dirtytime_expire_interval = 12 * 60 * 60;

N
Nick Piggin 已提交
89 90 91 92 93
static inline struct inode *wb_inode(struct list_head *head)
{
	return list_entry(head, struct inode, i_wb_list);
}

94 95 96 97 98 99 100 101
/*
 * Include the creation of the trace points after defining the
 * wb_writeback_work structure and inline functions so that the definition
 * remains local to this file.
 */
#define CREATE_TRACE_POINTS
#include <trace/events/writeback.h>

102 103
EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);

104 105 106 107 108 109
static bool wb_io_lists_populated(struct bdi_writeback *wb)
{
	if (wb_has_dirty_io(wb)) {
		return false;
	} else {
		set_bit(WB_has_dirty_io, &wb->state);
110
		WARN_ON_ONCE(!wb->avg_write_bandwidth);
111 112
		atomic_long_add(wb->avg_write_bandwidth,
				&wb->bdi->tot_write_bandwidth);
113 114 115 116 117 118 119
		return true;
	}
}

static void wb_io_lists_depopulated(struct bdi_writeback *wb)
{
	if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
120
	    list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
121
		clear_bit(WB_has_dirty_io, &wb->state);
122 123
		WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
					&wb->bdi->tot_write_bandwidth) < 0);
124
	}
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
}

/**
 * inode_wb_list_move_locked - move an inode onto a bdi_writeback IO list
 * @inode: inode to be moved
 * @wb: target bdi_writeback
 * @head: one of @wb->b_{dirty|io|more_io}
 *
 * Move @inode->i_wb_list to @list of @wb and set %WB_has_dirty_io.
 * Returns %true if @inode is the first occupant of the !dirty_time IO
 * lists; otherwise, %false.
 */
static bool inode_wb_list_move_locked(struct inode *inode,
				      struct bdi_writeback *wb,
				      struct list_head *head)
{
	assert_spin_locked(&wb->list_lock);

	list_move(&inode->i_wb_list, head);

	/* dirty_time doesn't count as dirty_io until expiration */
	if (head != &wb->b_dirty_time)
		return wb_io_lists_populated(wb);

	wb_io_lists_depopulated(wb);
	return false;
}

/**
 * inode_wb_list_del_locked - remove an inode from its bdi_writeback IO list
 * @inode: inode to be removed
 * @wb: bdi_writeback @inode is being removed from
 *
 * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
 * clear %WB_has_dirty_io if all are empty afterwards.
 */
static void inode_wb_list_del_locked(struct inode *inode,
				     struct bdi_writeback *wb)
{
	assert_spin_locked(&wb->list_lock);

	list_del_init(&inode->i_wb_list);
	wb_io_lists_depopulated(wb);
}

170
static void wb_wakeup(struct bdi_writeback *wb)
J
Jan Kara 已提交
171
{
172 173 174 175
	spin_lock_bh(&wb->work_lock);
	if (test_bit(WB_registered, &wb->state))
		mod_delayed_work(bdi_wq, &wb->dwork, 0);
	spin_unlock_bh(&wb->work_lock);
J
Jan Kara 已提交
176 177
}

178 179
static void wb_queue_work(struct bdi_writeback *wb,
			  struct wb_writeback_work *work)
180
{
181
	trace_writeback_queue(wb->bdi, work);
182

183
	spin_lock_bh(&wb->work_lock);
184 185 186
	if (!test_bit(WB_registered, &wb->state)) {
		if (work->single_wait)
			work->single_done = 1;
J
Jan Kara 已提交
187
		goto out_unlock;
188
	}
189 190
	if (work->done)
		atomic_inc(&work->done->cnt);
191 192
	list_add_tail(&work->list, &wb->work_list);
	mod_delayed_work(bdi_wq, &wb->dwork, 0);
J
Jan Kara 已提交
193
out_unlock:
194
	spin_unlock_bh(&wb->work_lock);
L
Linus Torvalds 已提交
195 196
}

197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
/**
 * wb_wait_for_completion - wait for completion of bdi_writeback_works
 * @bdi: bdi work items were issued to
 * @done: target wb_completion
 *
 * Wait for one or more work items issued to @bdi with their ->done field
 * set to @done, which should have been defined with
 * DEFINE_WB_COMPLETION_ONSTACK().  This function returns after all such
 * work items are completed.  Work items which are waited upon aren't freed
 * automatically on completion.
 */
static void wb_wait_for_completion(struct backing_dev_info *bdi,
				   struct wb_completion *done)
{
	atomic_dec(&done->cnt);		/* put down the initial count */
	wait_event(bdi->wb_waitq, !atomic_read(&done->cnt));
}

215 216
#ifdef CONFIG_CGROUP_WRITEBACK

217 218 219 220 221 222 223 224 225 226 227 228 229 230
/* parameters for foreign inode detection, see wb_detach_inode() */
#define WB_FRN_TIME_SHIFT	13	/* 1s = 2^13, upto 8 secs w/ 16bit */
#define WB_FRN_TIME_AVG_SHIFT	3	/* avg = avg * 7/8 + new * 1/8 */
#define WB_FRN_TIME_CUT_DIV	2	/* ignore rounds < avg / 2 */
#define WB_FRN_TIME_PERIOD	(2 * (1 << WB_FRN_TIME_SHIFT))	/* 2s */

#define WB_FRN_HIST_SLOTS	16	/* inode->i_wb_frn_history is 16bit */
#define WB_FRN_HIST_UNIT	(WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
					/* each slot's duration is 2s / 16 */
#define WB_FRN_HIST_THR_SLOTS	(WB_FRN_HIST_SLOTS / 2)
					/* if foreign slots >= 8, switch */
#define WB_FRN_HIST_MAX_SLOTS	(WB_FRN_HIST_THR_SLOTS / 2 + 1)
					/* one round can affect upto 5 slots */

231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
void __inode_attach_wb(struct inode *inode, struct page *page)
{
	struct backing_dev_info *bdi = inode_to_bdi(inode);
	struct bdi_writeback *wb = NULL;

	if (inode_cgwb_enabled(inode)) {
		struct cgroup_subsys_state *memcg_css;

		if (page) {
			memcg_css = mem_cgroup_css_from_page(page);
			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
		} else {
			/* must pin memcg_css, see wb_get_create() */
			memcg_css = task_get_css(current, memory_cgrp_id);
			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
			css_put(memcg_css);
		}
	}

	if (!wb)
		wb = &bdi->wb;

	/*
	 * There may be multiple instances of this function racing to
	 * update the same inode.  Use cmpxchg() to tell the winner.
	 */
	if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
		wb_put(wb);
}

261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
/**
 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
 * @inode: inode of interest with i_lock held
 *
 * Returns @inode's wb with its list_lock held.  @inode->i_lock must be
 * held on entry and is released on return.  The returned wb is guaranteed
 * to stay @inode's associated wb until its list_lock is released.
 */
static struct bdi_writeback *
locked_inode_to_wb_and_lock_list(struct inode *inode)
	__releases(&inode->i_lock)
	__acquires(&wb->list_lock)
{
	while (true) {
		struct bdi_writeback *wb = inode_to_wb(inode);

		/*
		 * inode_to_wb() association is protected by both
		 * @inode->i_lock and @wb->list_lock but list_lock nests
		 * outside i_lock.  Drop i_lock and verify that the
		 * association hasn't changed after acquiring list_lock.
		 */
		wb_get(wb);
		spin_unlock(&inode->i_lock);
		spin_lock(&wb->list_lock);
		wb_put(wb);		/* not gonna deref it anymore */

288 289
		/* i_wb may have changed inbetween, can't use inode_to_wb() */
		if (likely(wb == inode->i_wb))
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
			return wb;	/* @inode already has ref */

		spin_unlock(&wb->list_lock);
		cpu_relax();
		spin_lock(&inode->i_lock);
	}
}

/**
 * inode_to_wb_and_lock_list - determine an inode's wb and lock it
 * @inode: inode of interest
 *
 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
 * on entry.
 */
static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
	__acquires(&wb->list_lock)
{
	spin_lock(&inode->i_lock);
	return locked_inode_to_wb_and_lock_list(inode);
}

312 313 314 315 316 317 318 319 320 321 322 323 324
struct inode_switch_wbs_context {
	struct inode		*inode;
	struct bdi_writeback	*new_wb;

	struct rcu_head		rcu_head;
	struct work_struct	work;
};

static void inode_switch_wbs_work_fn(struct work_struct *work)
{
	struct inode_switch_wbs_context *isw =
		container_of(work, struct inode_switch_wbs_context, work);
	struct inode *inode = isw->inode;
325 326
	struct address_space *mapping = inode->i_mapping;
	struct bdi_writeback *old_wb = inode->i_wb;
327
	struct bdi_writeback *new_wb = isw->new_wb;
328 329 330
	struct radix_tree_iter iter;
	bool switched = false;
	void **slot;
331 332 333 334 335 336

	/*
	 * By the time control reaches here, RCU grace period has passed
	 * since I_WB_SWITCH assertion and all wb stat update transactions
	 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
	 * synchronizing against mapping->tree_lock.
337 338 339 340
	 *
	 * Grabbing old_wb->list_lock, inode->i_lock and mapping->tree_lock
	 * gives us exclusion against all wb related operations on @inode
	 * including IO list manipulations and stat updates.
341
	 */
342 343 344 345 346 347 348
	if (old_wb < new_wb) {
		spin_lock(&old_wb->list_lock);
		spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
	} else {
		spin_lock(&new_wb->list_lock);
		spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
	}
349
	spin_lock(&inode->i_lock);
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
	spin_lock_irq(&mapping->tree_lock);

	/*
	 * Once I_FREEING is visible under i_lock, the eviction path owns
	 * the inode and we shouldn't modify ->i_wb_list.
	 */
	if (unlikely(inode->i_state & I_FREEING))
		goto skip_switch;

	/*
	 * Count and transfer stats.  Note that PAGECACHE_TAG_DIRTY points
	 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
	 * pages actually under underwriteback.
	 */
	radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
				   PAGECACHE_TAG_DIRTY) {
		struct page *page = radix_tree_deref_slot_protected(slot,
							&mapping->tree_lock);
		if (likely(page) && PageDirty(page)) {
			__dec_wb_stat(old_wb, WB_RECLAIMABLE);
			__inc_wb_stat(new_wb, WB_RECLAIMABLE);
		}
	}

	radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
				   PAGECACHE_TAG_WRITEBACK) {
		struct page *page = radix_tree_deref_slot_protected(slot,
							&mapping->tree_lock);
		if (likely(page)) {
			WARN_ON_ONCE(!PageWriteback(page));
			__dec_wb_stat(old_wb, WB_WRITEBACK);
			__inc_wb_stat(new_wb, WB_WRITEBACK);
		}
	}

	wb_get(new_wb);

	/*
	 * Transfer to @new_wb's IO list if necessary.  The specific list
	 * @inode was on is ignored and the inode is put on ->b_dirty which
	 * is always correct including from ->b_dirty_time.  The transfer
	 * preserves @inode->dirtied_when ordering.
	 */
	if (!list_empty(&inode->i_wb_list)) {
		struct inode *pos;

		inode_wb_list_del_locked(inode, old_wb);
		inode->i_wb = new_wb;
		list_for_each_entry(pos, &new_wb->b_dirty, i_wb_list)
			if (time_after_eq(inode->dirtied_when,
					  pos->dirtied_when))
				break;
		inode_wb_list_move_locked(inode, new_wb, pos->i_wb_list.prev);
	} else {
		inode->i_wb = new_wb;
	}
406

407
	/* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
408 409 410
	inode->i_wb_frn_winner = 0;
	inode->i_wb_frn_avg_time = 0;
	inode->i_wb_frn_history = 0;
411 412
	switched = true;
skip_switch:
413 414 415 416 417 418
	/*
	 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
	 * ensures that the new wb is visible if they see !I_WB_SWITCH.
	 */
	smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);

419
	spin_unlock_irq(&mapping->tree_lock);
420
	spin_unlock(&inode->i_lock);
421 422
	spin_unlock(&new_wb->list_lock);
	spin_unlock(&old_wb->list_lock);
423

424 425 426 427
	if (switched) {
		wb_wakeup(new_wb);
		wb_put(old_wb);
	}
428
	wb_put(new_wb);
429 430

	iput(inode);
431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
	kfree(isw);
}

static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
{
	struct inode_switch_wbs_context *isw = container_of(rcu_head,
				struct inode_switch_wbs_context, rcu_head);

	/* needs to grab bh-unsafe locks, bounce to work item */
	INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
	schedule_work(&isw->work);
}

/**
 * inode_switch_wbs - change the wb association of an inode
 * @inode: target inode
 * @new_wb_id: ID of the new wb
 *
 * Switch @inode's wb association to the wb identified by @new_wb_id.  The
 * switching is performed asynchronously and may fail silently.
 */
static void inode_switch_wbs(struct inode *inode, int new_wb_id)
{
	struct backing_dev_info *bdi = inode_to_bdi(inode);
	struct cgroup_subsys_state *memcg_css;
	struct inode_switch_wbs_context *isw;

	/* noop if seems to be already in progress */
	if (inode->i_state & I_WB_SWITCH)
		return;

	isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
	if (!isw)
		return;

	/* find and pin the new wb */
	rcu_read_lock();
	memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
	if (memcg_css)
		isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
	rcu_read_unlock();
	if (!isw->new_wb)
		goto out_free;

	/* while holding I_WB_SWITCH, no one else can update the association */
	spin_lock(&inode->i_lock);
	if (inode->i_state & (I_WB_SWITCH | I_FREEING) ||
	    inode_to_wb(inode) == isw->new_wb) {
		spin_unlock(&inode->i_lock);
		goto out_free;
	}
	inode->i_state |= I_WB_SWITCH;
	spin_unlock(&inode->i_lock);

	ihold(inode);
	isw->inode = inode;

	/*
	 * In addition to synchronizing among switchers, I_WB_SWITCH tells
	 * the RCU protected stat update paths to grab the mapping's
	 * tree_lock so that stat transfer can synchronize against them.
	 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
	 */
	call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
	return;

out_free:
	if (isw->new_wb)
		wb_put(isw->new_wb);
	kfree(isw);
}

503 504 505 506 507 508 509 510 511 512 513 514 515
/**
 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
 * @wbc: writeback_control of interest
 * @inode: target inode
 *
 * @inode is locked and about to be written back under the control of @wbc.
 * Record @inode's writeback context into @wbc and unlock the i_lock.  On
 * writeback completion, wbc_detach_inode() should be called.  This is used
 * to track the cgroup writeback context.
 */
void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
				 struct inode *inode)
{
516 517 518 519 520
	if (!inode_cgwb_enabled(inode)) {
		spin_unlock(&inode->i_lock);
		return;
	}

521
	wbc->wb = inode_to_wb(inode);
522 523 524 525 526 527 528 529 530
	wbc->inode = inode;

	wbc->wb_id = wbc->wb->memcg_css->id;
	wbc->wb_lcand_id = inode->i_wb_frn_winner;
	wbc->wb_tcand_id = 0;
	wbc->wb_bytes = 0;
	wbc->wb_lcand_bytes = 0;
	wbc->wb_tcand_bytes = 0;

531 532
	wb_get(wbc->wb);
	spin_unlock(&inode->i_lock);
533 534 535 536 537 538 539

	/*
	 * A dying wb indicates that the memcg-blkcg mapping has changed
	 * and a new wb is already serving the memcg.  Switch immediately.
	 */
	if (unlikely(wb_dying(wbc->wb)))
		inode_switch_wbs(inode, wbc->wb_id);
540 541 542
}

/**
543 544
 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
 * @wbc: writeback_control of the just finished writeback
545 546 547
 *
 * To be called after a writeback attempt of an inode finishes and undoes
 * wbc_attach_and_unlock_inode().  Can be called under any context.
548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
 *
 * As concurrent write sharing of an inode is expected to be very rare and
 * memcg only tracks page ownership on first-use basis severely confining
 * the usefulness of such sharing, cgroup writeback tracks ownership
 * per-inode.  While the support for concurrent write sharing of an inode
 * is deemed unnecessary, an inode being written to by different cgroups at
 * different points in time is a lot more common, and, more importantly,
 * charging only by first-use can too readily lead to grossly incorrect
 * behaviors (single foreign page can lead to gigabytes of writeback to be
 * incorrectly attributed).
 *
 * To resolve this issue, cgroup writeback detects the majority dirtier of
 * an inode and transfers the ownership to it.  To avoid unnnecessary
 * oscillation, the detection mechanism keeps track of history and gives
 * out the switch verdict only if the foreign usage pattern is stable over
 * a certain amount of time and/or writeback attempts.
 *
 * On each writeback attempt, @wbc tries to detect the majority writer
 * using Boyer-Moore majority vote algorithm.  In addition to the byte
 * count from the majority voting, it also counts the bytes written for the
 * current wb and the last round's winner wb (max of last round's current
 * wb, the winner from two rounds ago, and the last round's majority
 * candidate).  Keeping track of the historical winner helps the algorithm
 * to semi-reliably detect the most active writer even when it's not the
 * absolute majority.
 *
 * Once the winner of the round is determined, whether the winner is
 * foreign or not and how much IO time the round consumed is recorded in
 * inode->i_wb_frn_history.  If the amount of recorded foreign IO time is
 * over a certain threshold, the switch verdict is given.
578 579 580
 */
void wbc_detach_inode(struct writeback_control *wbc)
{
581 582
	struct bdi_writeback *wb = wbc->wb;
	struct inode *inode = wbc->inode;
583 584
	unsigned long avg_time, max_bytes, max_time;
	u16 history;
585 586
	int max_id;

587 588 589 590 591 592
	if (!wb)
		return;

	history = inode->i_wb_frn_history;
	avg_time = inode->i_wb_frn_avg_time;

593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
	/* pick the winner of this round */
	if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
	    wbc->wb_bytes >= wbc->wb_tcand_bytes) {
		max_id = wbc->wb_id;
		max_bytes = wbc->wb_bytes;
	} else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
		max_id = wbc->wb_lcand_id;
		max_bytes = wbc->wb_lcand_bytes;
	} else {
		max_id = wbc->wb_tcand_id;
		max_bytes = wbc->wb_tcand_bytes;
	}

	/*
	 * Calculate the amount of IO time the winner consumed and fold it
	 * into the running average kept per inode.  If the consumed IO
	 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
	 * deciding whether to switch or not.  This is to prevent one-off
	 * small dirtiers from skewing the verdict.
	 */
	max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
				wb->avg_write_bandwidth);
	if (avg_time)
		avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
			    (avg_time >> WB_FRN_TIME_AVG_SHIFT);
	else
		avg_time = max_time;	/* immediate catch up on first run */

	if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
		int slots;

		/*
		 * The switch verdict is reached if foreign wb's consume
		 * more than a certain proportion of IO time in a
		 * WB_FRN_TIME_PERIOD.  This is loosely tracked by 16 slot
		 * history mask where each bit represents one sixteenth of
		 * the period.  Determine the number of slots to shift into
		 * history from @max_time.
		 */
		slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
			    (unsigned long)WB_FRN_HIST_MAX_SLOTS);
		history <<= slots;
		if (wbc->wb_id != max_id)
			history |= (1U << slots) - 1;

		/*
		 * Switch if the current wb isn't the consistent winner.
		 * If there are multiple closely competing dirtiers, the
		 * inode may switch across them repeatedly over time, which
		 * is okay.  The main goal is avoiding keeping an inode on
		 * the wrong wb for an extended period of time.
		 */
645 646
		if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
			inode_switch_wbs(inode, max_id);
647 648 649 650 651 652 653 654 655 656
	}

	/*
	 * Multiple instances of this function may race to update the
	 * following fields but we don't mind occassional inaccuracies.
	 */
	inode->i_wb_frn_winner = max_id;
	inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
	inode->i_wb_frn_history = history;

657 658 659 660
	wb_put(wbc->wb);
	wbc->wb = NULL;
}

661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705
/**
 * wbc_account_io - account IO issued during writeback
 * @wbc: writeback_control of the writeback in progress
 * @page: page being written out
 * @bytes: number of bytes being written out
 *
 * @bytes from @page are about to written out during the writeback
 * controlled by @wbc.  Keep the book for foreign inode detection.  See
 * wbc_detach_inode().
 */
void wbc_account_io(struct writeback_control *wbc, struct page *page,
		    size_t bytes)
{
	int id;

	/*
	 * pageout() path doesn't attach @wbc to the inode being written
	 * out.  This is intentional as we don't want the function to block
	 * behind a slow cgroup.  Ultimately, we want pageout() to kick off
	 * regular writeback instead of writing things out itself.
	 */
	if (!wbc->wb)
		return;

	rcu_read_lock();
	id = mem_cgroup_css_from_page(page)->id;
	rcu_read_unlock();

	if (id == wbc->wb_id) {
		wbc->wb_bytes += bytes;
		return;
	}

	if (id == wbc->wb_lcand_id)
		wbc->wb_lcand_bytes += bytes;

	/* Boyer-Moore majority vote algorithm */
	if (!wbc->wb_tcand_bytes)
		wbc->wb_tcand_id = id;
	if (id == wbc->wb_tcand_id)
		wbc->wb_tcand_bytes += bytes;
	else
		wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
}

706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
/**
 * inode_congested - test whether an inode is congested
 * @inode: inode to test for congestion
 * @cong_bits: mask of WB_[a]sync_congested bits to test
 *
 * Tests whether @inode is congested.  @cong_bits is the mask of congestion
 * bits to test and the return value is the mask of set bits.
 *
 * If cgroup writeback is enabled for @inode, the congestion state is
 * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
 * associated with @inode is congested; otherwise, the root wb's congestion
 * state is used.
 */
int inode_congested(struct inode *inode, int cong_bits)
{
721 722 723 724
	/*
	 * Once set, ->i_wb never becomes NULL while the inode is alive.
	 * Start transaction iff ->i_wb is visible.
	 */
725
	if (inode && inode_to_wb_is_valid(inode)) {
726 727 728 729 730 731 732
		struct bdi_writeback *wb;
		bool locked, congested;

		wb = unlocked_inode_to_wb_begin(inode, &locked);
		congested = wb_congested(wb, cong_bits);
		unlocked_inode_to_wb_end(inode, locked);
		return congested;
733 734 735 736 737 738
	}

	return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
}
EXPORT_SYMBOL_GPL(inode_congested);

739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
/**
 * wb_wait_for_single_work - wait for completion of a single bdi_writeback_work
 * @bdi: bdi the work item was issued to
 * @work: work item to wait for
 *
 * Wait for the completion of @work which was issued to one of @bdi's
 * bdi_writeback's.  The caller must have set @work->single_wait before
 * issuing it.  This wait operates independently fo
 * wb_wait_for_completion() and also disables automatic freeing of @work.
 */
static void wb_wait_for_single_work(struct backing_dev_info *bdi,
				    struct wb_writeback_work *work)
{
	if (WARN_ON_ONCE(!work->single_wait))
		return;

	wait_event(bdi->wb_waitq, work->single_done);

	/*
	 * Paired with smp_wmb() in wb_do_writeback() and ensures that all
	 * modifications to @work prior to assertion of ->single_done is
	 * visible to the caller once this function returns.
	 */
	smp_rmb();
}

765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792
/**
 * wb_split_bdi_pages - split nr_pages to write according to bandwidth
 * @wb: target bdi_writeback to split @nr_pages to
 * @nr_pages: number of pages to write for the whole bdi
 *
 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
 * relation to the total write bandwidth of all wb's w/ dirty inodes on
 * @wb->bdi.
 */
static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
{
	unsigned long this_bw = wb->avg_write_bandwidth;
	unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);

	if (nr_pages == LONG_MAX)
		return LONG_MAX;

	/*
	 * This may be called on clean wb's and proportional distribution
	 * may not make sense, just use the original @nr_pages in those
	 * cases.  In general, we wanna err on the side of writing more.
	 */
	if (!tot_bw || this_bw >= tot_bw)
		return nr_pages;
	else
		return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
}

793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866
/**
 * wb_clone_and_queue_work - clone a wb_writeback_work and issue it to a wb
 * @wb: target bdi_writeback
 * @base_work: source wb_writeback_work
 *
 * Try to make a clone of @base_work and issue it to @wb.  If cloning
 * succeeds, %true is returned; otherwise, @base_work is issued directly
 * and %false is returned.  In the latter case, the caller is required to
 * wait for @base_work's completion using wb_wait_for_single_work().
 *
 * A clone is auto-freed on completion.  @base_work never is.
 */
static bool wb_clone_and_queue_work(struct bdi_writeback *wb,
				    struct wb_writeback_work *base_work)
{
	struct wb_writeback_work *work;

	work = kmalloc(sizeof(*work), GFP_ATOMIC);
	if (work) {
		*work = *base_work;
		work->auto_free = 1;
		work->single_wait = 0;
	} else {
		work = base_work;
		work->auto_free = 0;
		work->single_wait = 1;
	}
	work->single_done = 0;
	wb_queue_work(wb, work);
	return work != base_work;
}

/**
 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
 * @bdi: target backing_dev_info
 * @base_work: wb_writeback_work to issue
 * @skip_if_busy: skip wb's which already have writeback in progress
 *
 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
 * have dirty inodes.  If @base_work->nr_page isn't %LONG_MAX, it's
 * distributed to the busy wbs according to each wb's proportion in the
 * total active write bandwidth of @bdi.
 */
static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
				  struct wb_writeback_work *base_work,
				  bool skip_if_busy)
{
	long nr_pages = base_work->nr_pages;
	int next_blkcg_id = 0;
	struct bdi_writeback *wb;
	struct wb_iter iter;

	might_sleep();

	if (!bdi_has_dirty_io(bdi))
		return;
restart:
	rcu_read_lock();
	bdi_for_each_wb(wb, bdi, &iter, next_blkcg_id) {
		if (!wb_has_dirty_io(wb) ||
		    (skip_if_busy && writeback_in_progress(wb)))
			continue;

		base_work->nr_pages = wb_split_bdi_pages(wb, nr_pages);
		if (!wb_clone_and_queue_work(wb, base_work)) {
			next_blkcg_id = wb->blkcg_css->id + 1;
			rcu_read_unlock();
			wb_wait_for_single_work(bdi, base_work);
			goto restart;
		}
	}
	rcu_read_unlock();
}

867 868
#else	/* CONFIG_CGROUP_WRITEBACK */

869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889
static struct bdi_writeback *
locked_inode_to_wb_and_lock_list(struct inode *inode)
	__releases(&inode->i_lock)
	__acquires(&wb->list_lock)
{
	struct bdi_writeback *wb = inode_to_wb(inode);

	spin_unlock(&inode->i_lock);
	spin_lock(&wb->list_lock);
	return wb;
}

static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
	__acquires(&wb->list_lock)
{
	struct bdi_writeback *wb = inode_to_wb(inode);

	spin_lock(&wb->list_lock);
	return wb;
}

890 891 892 893 894
static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
{
	return nr_pages;
}

895 896 897 898 899 900 901 902 903 904 905 906 907 908 909
static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
				  struct wb_writeback_work *base_work,
				  bool skip_if_busy)
{
	might_sleep();

	if (bdi_has_dirty_io(bdi) &&
	    (!skip_if_busy || !writeback_in_progress(&bdi->wb))) {
		base_work->auto_free = 0;
		base_work->single_wait = 0;
		base_work->single_done = 0;
		wb_queue_work(&bdi->wb, base_work);
	}
}

910 911
#endif	/* CONFIG_CGROUP_WRITEBACK */

912 913
void wb_start_writeback(struct bdi_writeback *wb, long nr_pages,
			bool range_cyclic, enum wb_reason reason)
914
{
915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934
	struct wb_writeback_work *work;

	if (!wb_has_dirty_io(wb))
		return;

	/*
	 * This is WB_SYNC_NONE writeback, so if allocation fails just
	 * wakeup the thread for old dirty data writeback
	 */
	work = kzalloc(sizeof(*work), GFP_ATOMIC);
	if (!work) {
		trace_writeback_nowork(wb->bdi);
		wb_wakeup(wb);
		return;
	}

	work->sync_mode	= WB_SYNC_NONE;
	work->nr_pages	= nr_pages;
	work->range_cyclic = range_cyclic;
	work->reason	= reason;
935
	work->auto_free	= 1;
936 937

	wb_queue_work(wb, work);
938
}
939

940
/**
941 942
 * wb_start_background_writeback - start background writeback
 * @wb: bdi_writback to write from
943 944
 *
 * Description:
945
 *   This makes sure WB_SYNC_NONE background writeback happens. When
946
 *   this function returns, it is only guaranteed that for given wb
947 948
 *   some IO is happening if we are over background dirty threshold.
 *   Caller need not hold sb s_umount semaphore.
949
 */
950
void wb_start_background_writeback(struct bdi_writeback *wb)
951
{
952 953 954 955
	/*
	 * We just wake up the flusher thread. It will perform background
	 * writeback as soon as there is no other work to do.
	 */
956 957
	trace_writeback_wake_background(wb->bdi);
	wb_wakeup(wb);
L
Linus Torvalds 已提交
958 959
}

960 961 962 963 964
/*
 * Remove the inode from the writeback list it is on.
 */
void inode_wb_list_del(struct inode *inode)
{
965
	struct bdi_writeback *wb;
966

967
	wb = inode_to_wb_and_lock_list(inode);
968
	inode_wb_list_del_locked(inode, wb);
969
	spin_unlock(&wb->list_lock);
970 971
}

972 973 974 975 976
/*
 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
 * furthest end of its superblock's dirty-inode list.
 *
 * Before stamping the inode's ->dirtied_when, we check to see whether it is
977
 * already the most-recently-dirtied inode on the b_dirty list.  If that is
978 979 980
 * the case then the inode must have been redirtied while it was being written
 * out and we don't reset its dirtied_when.
 */
981
static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
982
{
983
	if (!list_empty(&wb->b_dirty)) {
984
		struct inode *tail;
985

N
Nick Piggin 已提交
986
		tail = wb_inode(wb->b_dirty.next);
987
		if (time_before(inode->dirtied_when, tail->dirtied_when))
988 989
			inode->dirtied_when = jiffies;
	}
990
	inode_wb_list_move_locked(inode, wb, &wb->b_dirty);
991 992
}

993
/*
994
 * requeue inode for re-scanning after bdi->b_io list is exhausted.
995
 */
996
static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
997
{
998
	inode_wb_list_move_locked(inode, wb, &wb->b_more_io);
999 1000
}

J
Joern Engel 已提交
1001 1002
static void inode_sync_complete(struct inode *inode)
{
1003
	inode->i_state &= ~I_SYNC;
1004 1005
	/* If inode is clean an unused, put it into LRU now... */
	inode_add_lru(inode);
1006
	/* Waiters must see I_SYNC cleared before being woken up */
J
Joern Engel 已提交
1007 1008 1009 1010
	smp_mb();
	wake_up_bit(&inode->i_state, __I_SYNC);
}

1011 1012 1013 1014 1015 1016 1017 1018
static bool inode_dirtied_after(struct inode *inode, unsigned long t)
{
	bool ret = time_after(inode->dirtied_when, t);
#ifndef CONFIG_64BIT
	/*
	 * For inodes being constantly redirtied, dirtied_when can get stuck.
	 * It _appears_ to be in the future, but is actually in distant past.
	 * This test is necessary to prevent such wrapped-around relative times
1019
	 * from permanently stopping the whole bdi writeback.
1020 1021 1022 1023 1024 1025
	 */
	ret = ret && time_before_eq(inode->dirtied_when, jiffies);
#endif
	return ret;
}

1026 1027
#define EXPIRE_DIRTY_ATIME 0x0001

1028
/*
1029
 * Move expired (dirtied before work->older_than_this) dirty inodes from
J
Jan Kara 已提交
1030
 * @delaying_queue to @dispatch_queue.
1031
 */
1032
static int move_expired_inodes(struct list_head *delaying_queue,
1033
			       struct list_head *dispatch_queue,
1034
			       int flags,
1035
			       struct wb_writeback_work *work)
1036
{
1037 1038
	unsigned long *older_than_this = NULL;
	unsigned long expire_time;
1039 1040
	LIST_HEAD(tmp);
	struct list_head *pos, *node;
1041
	struct super_block *sb = NULL;
1042
	struct inode *inode;
1043
	int do_sb_sort = 0;
1044
	int moved = 0;
1045

1046 1047
	if ((flags & EXPIRE_DIRTY_ATIME) == 0)
		older_than_this = work->older_than_this;
1048 1049
	else if (!work->for_sync) {
		expire_time = jiffies - (dirtytime_expire_interval * HZ);
1050 1051
		older_than_this = &expire_time;
	}
1052
	while (!list_empty(delaying_queue)) {
N
Nick Piggin 已提交
1053
		inode = wb_inode(delaying_queue->prev);
1054 1055
		if (older_than_this &&
		    inode_dirtied_after(inode, *older_than_this))
1056
			break;
1057 1058
		list_move(&inode->i_wb_list, &tmp);
		moved++;
1059 1060
		if (flags & EXPIRE_DIRTY_ATIME)
			set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
1061 1062
		if (sb_is_blkdev_sb(inode->i_sb))
			continue;
1063 1064 1065
		if (sb && sb != inode->i_sb)
			do_sb_sort = 1;
		sb = inode->i_sb;
1066 1067
	}

1068 1069 1070
	/* just one sb in list, splice to dispatch_queue and we're done */
	if (!do_sb_sort) {
		list_splice(&tmp, dispatch_queue);
1071
		goto out;
1072 1073
	}

1074 1075
	/* Move inodes from one superblock together */
	while (!list_empty(&tmp)) {
N
Nick Piggin 已提交
1076
		sb = wb_inode(tmp.prev)->i_sb;
1077
		list_for_each_prev_safe(pos, node, &tmp) {
N
Nick Piggin 已提交
1078
			inode = wb_inode(pos);
1079
			if (inode->i_sb == sb)
N
Nick Piggin 已提交
1080
				list_move(&inode->i_wb_list, dispatch_queue);
1081
		}
1082
	}
1083 1084
out:
	return moved;
1085 1086 1087 1088
}

/*
 * Queue all expired dirty inodes for io, eldest first.
1089 1090 1091 1092 1093 1094 1095 1096
 * Before
 *         newly dirtied     b_dirty    b_io    b_more_io
 *         =============>    gf         edc     BA
 * After
 *         newly dirtied     b_dirty    b_io    b_more_io
 *         =============>    g          fBAedc
 *                                           |
 *                                           +--> dequeue for IO
1097
 */
1098
static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
1099
{
1100
	int moved;
1101

1102
	assert_spin_locked(&wb->list_lock);
1103
	list_splice_init(&wb->b_more_io, &wb->b_io);
1104 1105 1106
	moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
	moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
				     EXPIRE_DIRTY_ATIME, work);
1107 1108
	if (moved)
		wb_io_lists_populated(wb);
1109
	trace_writeback_queue_io(wb, work, moved);
1110 1111
}

1112
static int write_inode(struct inode *inode, struct writeback_control *wbc)
1113
{
T
Tejun Heo 已提交
1114 1115 1116 1117 1118 1119 1120 1121
	int ret;

	if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
		trace_writeback_write_inode_start(inode, wbc);
		ret = inode->i_sb->s_op->write_inode(inode, wbc);
		trace_writeback_write_inode(inode, wbc);
		return ret;
	}
1122
	return 0;
1123 1124
}

L
Linus Torvalds 已提交
1125
/*
1126 1127
 * Wait for writeback on an inode to complete. Called with i_lock held.
 * Caller must make sure inode cannot go away when we drop i_lock.
1128
 */
1129 1130 1131
static void __inode_wait_for_writeback(struct inode *inode)
	__releases(inode->i_lock)
	__acquires(inode->i_lock)
1132 1133 1134 1135 1136
{
	DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
	wait_queue_head_t *wqh;

	wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1137 1138
	while (inode->i_state & I_SYNC) {
		spin_unlock(&inode->i_lock);
1139 1140
		__wait_on_bit(wqh, &wq, bit_wait,
			      TASK_UNINTERRUPTIBLE);
1141
		spin_lock(&inode->i_lock);
1142
	}
1143 1144
}

1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
/*
 * Wait for writeback on an inode to complete. Caller must have inode pinned.
 */
void inode_wait_for_writeback(struct inode *inode)
{
	spin_lock(&inode->i_lock);
	__inode_wait_for_writeback(inode);
	spin_unlock(&inode->i_lock);
}

/*
 * Sleep until I_SYNC is cleared. This function must be called with i_lock
 * held and drops it. It is aimed for callers not holding any inode reference
 * so once i_lock is dropped, inode can go away.
 */
static void inode_sleep_on_writeback(struct inode *inode)
	__releases(inode->i_lock)
{
	DEFINE_WAIT(wait);
	wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
	int sleep;

	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
	sleep = inode->i_state & I_SYNC;
	spin_unlock(&inode->i_lock);
	if (sleep)
		schedule();
	finish_wait(wqh, &wait);
}

1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
/*
 * Find proper writeback list for the inode depending on its current state and
 * possibly also change of its state while we were doing writeback.  Here we
 * handle things such as livelock prevention or fairness of writeback among
 * inodes. This function can be called only by flusher thread - noone else
 * processes all inodes in writeback lists and requeueing inodes behind flusher
 * thread's back can have unexpected consequences.
 */
static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
			  struct writeback_control *wbc)
{
	if (inode->i_state & I_FREEING)
		return;

	/*
	 * Sync livelock prevention. Each inode is tagged and synced in one
	 * shot. If still dirty, it will be redirty_tail()'ed below.  Update
	 * the dirty time to prevent enqueue and sync it again.
	 */
	if ((inode->i_state & I_DIRTY) &&
	    (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
		inode->dirtied_when = jiffies;

1198 1199 1200 1201 1202 1203 1204 1205 1206
	if (wbc->pages_skipped) {
		/*
		 * writeback is not making progress due to locked
		 * buffers. Skip this inode for now.
		 */
		redirty_tail(inode, wb);
		return;
	}

1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
	if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
		/*
		 * We didn't write back all the pages.  nfs_writepages()
		 * sometimes bales out without doing anything.
		 */
		if (wbc->nr_to_write <= 0) {
			/* Slice used up. Queue for next turn. */
			requeue_io(inode, wb);
		} else {
			/*
			 * Writeback blocked by something other than
			 * congestion. Delay the inode for some time to
			 * avoid spinning on the CPU (100% iowait)
			 * retrying writeback of the dirty page/inode
			 * that cannot be performed immediately.
			 */
			redirty_tail(inode, wb);
		}
	} else if (inode->i_state & I_DIRTY) {
		/*
		 * Filesystems can dirty the inode during writeback operations,
		 * such as delayed allocation during submission or metadata
		 * updates after data IO completion.
		 */
		redirty_tail(inode, wb);
1232
	} else if (inode->i_state & I_DIRTY_TIME) {
1233
		inode->dirtied_when = jiffies;
1234
		inode_wb_list_move_locked(inode, wb, &wb->b_dirty_time);
1235 1236
	} else {
		/* The inode is clean. Remove from writeback lists. */
1237
		inode_wb_list_del_locked(inode, wb);
1238 1239 1240
	}
}

1241
/*
1242 1243 1244
 * Write out an inode and its dirty pages. Do not update the writeback list
 * linkage. That is left to the caller. The caller is also responsible for
 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
L
Linus Torvalds 已提交
1245 1246
 */
static int
1247
__writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
L
Linus Torvalds 已提交
1248 1249
{
	struct address_space *mapping = inode->i_mapping;
1250
	long nr_to_write = wbc->nr_to_write;
1251
	unsigned dirty;
L
Linus Torvalds 已提交
1252 1253
	int ret;

1254
	WARN_ON(!(inode->i_state & I_SYNC));
L
Linus Torvalds 已提交
1255

T
Tejun Heo 已提交
1256 1257
	trace_writeback_single_inode_start(inode, wbc, nr_to_write);

L
Linus Torvalds 已提交
1258 1259
	ret = do_writepages(mapping, wbc);

1260 1261 1262
	/*
	 * Make sure to wait on the data before writing out the metadata.
	 * This is important for filesystems that modify metadata on data
1263 1264 1265
	 * I/O completion. We don't do it for sync(2) writeback because it has a
	 * separate, external IO completion path and ->sync_fs for guaranteeing
	 * inode metadata is written back correctly.
1266
	 */
1267
	if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1268
		int err = filemap_fdatawait(mapping);
L
Linus Torvalds 已提交
1269 1270 1271 1272
		if (ret == 0)
			ret = err;
	}

1273 1274 1275 1276 1277
	/*
	 * Some filesystems may redirty the inode during the writeback
	 * due to delalloc, clear dirty metadata flags right before
	 * write_inode()
	 */
1278
	spin_lock(&inode->i_lock);
1279

1280
	dirty = inode->i_state & I_DIRTY;
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291
	if (inode->i_state & I_DIRTY_TIME) {
		if ((dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
		    unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
		    unlikely(time_after(jiffies,
					(inode->dirtied_time_when +
					 dirtytime_expire_interval * HZ)))) {
			dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
			trace_writeback_lazytime(inode);
		}
	} else
		inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
1292
	inode->i_state &= ~dirty;
1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309

	/*
	 * Paired with smp_mb() in __mark_inode_dirty().  This allows
	 * __mark_inode_dirty() to test i_state without grabbing i_lock -
	 * either they see the I_DIRTY bits cleared or we see the dirtied
	 * inode.
	 *
	 * I_DIRTY_PAGES is always cleared together above even if @mapping
	 * still has dirty pages.  The flag is reinstated after smp_mb() if
	 * necessary.  This guarantees that either __mark_inode_dirty()
	 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
	 */
	smp_mb();

	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
		inode->i_state |= I_DIRTY_PAGES;

1310
	spin_unlock(&inode->i_lock);
1311

1312 1313
	if (dirty & I_DIRTY_TIME)
		mark_inode_dirty_sync(inode);
1314
	/* Don't write the inode if only I_DIRTY_PAGES was set */
1315
	if (dirty & ~I_DIRTY_PAGES) {
1316
		int err = write_inode(inode, wbc);
L
Linus Torvalds 已提交
1317 1318 1319
		if (ret == 0)
			ret = err;
	}
1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
	trace_writeback_single_inode(inode, wbc, nr_to_write);
	return ret;
}

/*
 * Write out an inode's dirty pages. Either the caller has an active reference
 * on the inode or the inode has I_WILL_FREE set.
 *
 * This function is designed to be called for writing back one inode which
 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
 * and does more profound writeback list handling in writeback_sb_inodes().
 */
static int
writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
		       struct writeback_control *wbc)
{
	int ret = 0;

	spin_lock(&inode->i_lock);
	if (!atomic_read(&inode->i_count))
		WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
	else
		WARN_ON(inode->i_state & I_WILL_FREE);

	if (inode->i_state & I_SYNC) {
		if (wbc->sync_mode != WB_SYNC_ALL)
			goto out;
		/*
1348 1349 1350
		 * It's a data-integrity sync. We must wait. Since callers hold
		 * inode reference or inode has I_WILL_FREE set, it cannot go
		 * away under us.
1351
		 */
1352
		__inode_wait_for_writeback(inode);
1353 1354 1355
	}
	WARN_ON(inode->i_state & I_SYNC);
	/*
J
Jan Kara 已提交
1356 1357 1358 1359 1360 1361
	 * Skip inode if it is clean and we have no outstanding writeback in
	 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
	 * function since flusher thread may be doing for example sync in
	 * parallel and if we move the inode, it could get skipped. So here we
	 * make sure inode is on some writeback list and leave it there unless
	 * we have completely cleaned the inode.
1362
	 */
1363
	if (!(inode->i_state & I_DIRTY_ALL) &&
J
Jan Kara 已提交
1364 1365
	    (wbc->sync_mode != WB_SYNC_ALL ||
	     !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1366 1367
		goto out;
	inode->i_state |= I_SYNC;
1368
	wbc_attach_and_unlock_inode(wbc, inode);
1369

1370
	ret = __writeback_single_inode(inode, wbc);
L
Linus Torvalds 已提交
1371

1372
	wbc_detach_inode(wbc);
1373
	spin_lock(&wb->list_lock);
1374
	spin_lock(&inode->i_lock);
1375 1376 1377 1378
	/*
	 * If inode is clean, remove it from writeback lists. Otherwise don't
	 * touch it. See comment above for explanation.
	 */
1379
	if (!(inode->i_state & I_DIRTY_ALL))
1380
		inode_wb_list_del_locked(inode, wb);
1381
	spin_unlock(&wb->list_lock);
J
Joern Engel 已提交
1382
	inode_sync_complete(inode);
1383 1384
out:
	spin_unlock(&inode->i_lock);
L
Linus Torvalds 已提交
1385 1386 1387
	return ret;
}

1388
static long writeback_chunk_size(struct bdi_writeback *wb,
1389
				 struct wb_writeback_work *work)
1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
{
	long pages;

	/*
	 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
	 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
	 * here avoids calling into writeback_inodes_wb() more than once.
	 *
	 * The intended call sequence for WB_SYNC_ALL writeback is:
	 *
	 *      wb_writeback()
	 *          writeback_sb_inodes()       <== called only once
	 *              write_cache_pages()     <== called once for each inode
	 *                   (quickly) tag currently dirty pages
	 *                   (maybe slowly) sync all tagged pages
	 */
	if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
		pages = LONG_MAX;
1408
	else {
1409
		pages = min(wb->avg_write_bandwidth / 2,
1410
			    global_wb_domain.dirty_limit / DIRTY_SCOPE);
1411 1412 1413 1414
		pages = min(pages, work->nr_pages);
		pages = round_down(pages + MIN_WRITEBACK_PAGES,
				   MIN_WRITEBACK_PAGES);
	}
1415 1416 1417 1418

	return pages;
}

1419 1420
/*
 * Write a portion of b_io inodes which belong to @sb.
1421
 *
1422
 * Return the number of pages and/or inodes written.
1423
 */
1424 1425 1426
static long writeback_sb_inodes(struct super_block *sb,
				struct bdi_writeback *wb,
				struct wb_writeback_work *work)
L
Linus Torvalds 已提交
1427
{
1428 1429 1430 1431 1432
	struct writeback_control wbc = {
		.sync_mode		= work->sync_mode,
		.tagged_writepages	= work->tagged_writepages,
		.for_kupdate		= work->for_kupdate,
		.for_background		= work->for_background,
1433
		.for_sync		= work->for_sync,
1434 1435 1436 1437 1438 1439 1440 1441
		.range_cyclic		= work->range_cyclic,
		.range_start		= 0,
		.range_end		= LLONG_MAX,
	};
	unsigned long start_time = jiffies;
	long write_chunk;
	long wrote = 0;  /* count both pages and inodes */

1442
	while (!list_empty(&wb->b_io)) {
N
Nick Piggin 已提交
1443
		struct inode *inode = wb_inode(wb->b_io.prev);
1444 1445

		if (inode->i_sb != sb) {
1446
			if (work->sb) {
1447 1448 1449 1450 1451
				/*
				 * We only want to write back data for this
				 * superblock, move all inodes not belonging
				 * to it back onto the dirty list.
				 */
1452
				redirty_tail(inode, wb);
1453 1454 1455 1456 1457 1458 1459 1460
				continue;
			}

			/*
			 * The inode belongs to a different superblock.
			 * Bounce back to the caller to unpin this and
			 * pin the next superblock.
			 */
1461
			break;
1462 1463
		}

1464
		/*
W
Wanpeng Li 已提交
1465 1466
		 * Don't bother with new inodes or inodes being freed, first
		 * kind does not need periodic writeout yet, and for the latter
1467 1468
		 * kind writeout is handled by the freer.
		 */
1469
		spin_lock(&inode->i_lock);
1470
		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1471
			spin_unlock(&inode->i_lock);
1472
			redirty_tail(inode, wb);
1473 1474
			continue;
		}
1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489
		if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
			/*
			 * If this inode is locked for writeback and we are not
			 * doing writeback-for-data-integrity, move it to
			 * b_more_io so that writeback can proceed with the
			 * other inodes on s_io.
			 *
			 * We'll have another go at writing back this inode
			 * when we completed a full scan of b_io.
			 */
			spin_unlock(&inode->i_lock);
			requeue_io(inode, wb);
			trace_writeback_sb_inodes_requeue(inode);
			continue;
		}
1490 1491
		spin_unlock(&wb->list_lock);

1492 1493 1494 1495 1496
		/*
		 * We already requeued the inode if it had I_SYNC set and we
		 * are doing WB_SYNC_NONE writeback. So this catches only the
		 * WB_SYNC_ALL case.
		 */
1497 1498 1499 1500
		if (inode->i_state & I_SYNC) {
			/* Wait for I_SYNC. This function drops i_lock... */
			inode_sleep_on_writeback(inode);
			/* Inode may be gone, start again */
1501
			spin_lock(&wb->list_lock);
1502 1503
			continue;
		}
1504
		inode->i_state |= I_SYNC;
1505
		wbc_attach_and_unlock_inode(&wbc, inode);
1506

1507
		write_chunk = writeback_chunk_size(wb, work);
1508 1509
		wbc.nr_to_write = write_chunk;
		wbc.pages_skipped = 0;
1510

1511 1512 1513 1514
		/*
		 * We use I_SYNC to pin the inode in memory. While it is set
		 * evict_inode() will wait so the inode cannot be freed.
		 */
1515
		__writeback_single_inode(inode, &wbc);
1516

1517
		wbc_detach_inode(&wbc);
1518 1519
		work->nr_pages -= write_chunk - wbc.nr_to_write;
		wrote += write_chunk - wbc.nr_to_write;
1520 1521
		spin_lock(&wb->list_lock);
		spin_lock(&inode->i_lock);
1522
		if (!(inode->i_state & I_DIRTY_ALL))
1523
			wrote++;
1524 1525
		requeue_inode(inode, wb, &wbc);
		inode_sync_complete(inode);
1526
		spin_unlock(&inode->i_lock);
1527
		cond_resched_lock(&wb->list_lock);
1528 1529 1530 1531 1532 1533 1534 1535 1536
		/*
		 * bail out to wb_writeback() often enough to check
		 * background threshold and other termination conditions.
		 */
		if (wrote) {
			if (time_is_before_jiffies(start_time + HZ / 10UL))
				break;
			if (work->nr_pages <= 0)
				break;
1537
		}
L
Linus Torvalds 已提交
1538
	}
1539
	return wrote;
1540 1541
}

1542 1543
static long __writeback_inodes_wb(struct bdi_writeback *wb,
				  struct wb_writeback_work *work)
1544
{
1545 1546
	unsigned long start_time = jiffies;
	long wrote = 0;
N
Nick Piggin 已提交
1547

1548
	while (!list_empty(&wb->b_io)) {
N
Nick Piggin 已提交
1549
		struct inode *inode = wb_inode(wb->b_io.prev);
1550
		struct super_block *sb = inode->i_sb;
1551

1552
		if (!trylock_super(sb)) {
1553
			/*
1554
			 * trylock_super() may fail consistently due to
1555 1556 1557 1558
			 * s_umount being grabbed by someone else. Don't use
			 * requeue_io() to avoid busy retrying the inode/sb.
			 */
			redirty_tail(inode, wb);
1559
			continue;
1560
		}
1561
		wrote += writeback_sb_inodes(sb, wb, work);
1562
		up_read(&sb->s_umount);
1563

1564 1565 1566 1567 1568 1569 1570
		/* refer to the same tests at the end of writeback_sb_inodes */
		if (wrote) {
			if (time_is_before_jiffies(start_time + HZ / 10UL))
				break;
			if (work->nr_pages <= 0)
				break;
		}
1571
	}
1572
	/* Leave any unwritten inodes on b_io */
1573
	return wrote;
1574 1575
}

1576
static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1577
				enum wb_reason reason)
1578
{
1579 1580 1581 1582
	struct wb_writeback_work work = {
		.nr_pages	= nr_pages,
		.sync_mode	= WB_SYNC_NONE,
		.range_cyclic	= 1,
1583
		.reason		= reason,
1584
	};
1585

1586
	spin_lock(&wb->list_lock);
W
Wu Fengguang 已提交
1587
	if (list_empty(&wb->b_io))
1588
		queue_io(wb, &work);
1589
	__writeback_inodes_wb(wb, &work);
1590
	spin_unlock(&wb->list_lock);
1591

1592 1593
	return nr_pages - work.nr_pages;
}
1594 1595 1596

/*
 * Explicit flushing or periodic writeback of "old" data.
1597
 *
1598 1599 1600 1601
 * Define "old": the first time one of an inode's pages is dirtied, we mark the
 * dirtying-time in the inode's address_space.  So this periodic writeback code
 * just walks the superblock inode list, writing back any inodes which are
 * older than a specific point in time.
1602
 *
1603 1604 1605
 * Try to run once per dirty_writeback_interval.  But if a writeback event
 * takes longer than a dirty_writeback_interval interval, then leave a
 * one-second gap.
1606
 *
1607 1608
 * older_than_this takes precedence over nr_to_write.  So we'll only write back
 * all dirty pages if they are all attached to "old" mappings.
1609
 */
1610
static long wb_writeback(struct bdi_writeback *wb,
1611
			 struct wb_writeback_work *work)
1612
{
1613
	unsigned long wb_start = jiffies;
1614
	long nr_pages = work->nr_pages;
1615
	unsigned long oldest_jif;
J
Jan Kara 已提交
1616
	struct inode *inode;
1617
	long progress;
1618

1619 1620
	oldest_jif = jiffies;
	work->older_than_this = &oldest_jif;
N
Nick Piggin 已提交
1621

1622
	spin_lock(&wb->list_lock);
1623 1624
	for (;;) {
		/*
1625
		 * Stop writeback when nr_pages has been consumed
1626
		 */
1627
		if (work->nr_pages <= 0)
1628
			break;
1629

1630 1631 1632 1633 1634 1635 1636
		/*
		 * Background writeout and kupdate-style writeback may
		 * run forever. Stop them if there is other work to do
		 * so that e.g. sync can proceed. They'll be restarted
		 * after the other works are all done.
		 */
		if ((work->for_background || work->for_kupdate) &&
1637
		    !list_empty(&wb->work_list))
1638 1639
			break;

N
Nick Piggin 已提交
1640
		/*
1641 1642
		 * For background writeout, stop when we are below the
		 * background dirty threshold
N
Nick Piggin 已提交
1643
		 */
1644
		if (work->for_background && !wb_over_bg_thresh(wb))
1645
			break;
N
Nick Piggin 已提交
1646

1647 1648 1649 1650 1651 1652
		/*
		 * Kupdate and background works are special and we want to
		 * include all inodes that need writing. Livelock avoidance is
		 * handled by these works yielding to any other work so we are
		 * safe.
		 */
1653
		if (work->for_kupdate) {
1654
			oldest_jif = jiffies -
1655
				msecs_to_jiffies(dirty_expire_interval * 10);
1656
		} else if (work->for_background)
1657
			oldest_jif = jiffies;
1658

1659
		trace_writeback_start(wb->bdi, work);
1660
		if (list_empty(&wb->b_io))
1661
			queue_io(wb, work);
1662
		if (work->sb)
1663
			progress = writeback_sb_inodes(work->sb, wb, work);
1664
		else
1665 1666
			progress = __writeback_inodes_wb(wb, work);
		trace_writeback_written(wb->bdi, work);
1667

1668
		wb_update_bandwidth(wb, wb_start);
1669 1670

		/*
1671 1672 1673 1674 1675 1676
		 * Did we write something? Try for more
		 *
		 * Dirty inodes are moved to b_io for writeback in batches.
		 * The completion of the current batch does not necessarily
		 * mean the overall work is done. So we keep looping as long
		 * as made some progress on cleaning pages or inodes.
1677
		 */
1678
		if (progress)
1679 1680
			continue;
		/*
1681
		 * No more inodes for IO, bail
1682
		 */
1683
		if (list_empty(&wb->b_more_io))
1684
			break;
1685 1686 1687 1688 1689 1690
		/*
		 * Nothing written. Wait for some inode to
		 * become available for writeback. Otherwise
		 * we'll just busyloop.
		 */
		if (!list_empty(&wb->b_more_io))  {
1691
			trace_writeback_wait(wb->bdi, work);
N
Nick Piggin 已提交
1692
			inode = wb_inode(wb->b_more_io.prev);
1693
			spin_lock(&inode->i_lock);
1694
			spin_unlock(&wb->list_lock);
1695 1696
			/* This function drops i_lock... */
			inode_sleep_on_writeback(inode);
1697
			spin_lock(&wb->list_lock);
1698 1699
		}
	}
1700
	spin_unlock(&wb->list_lock);
1701

1702
	return nr_pages - work->nr_pages;
1703 1704 1705
}

/*
1706
 * Return the next wb_writeback_work struct that hasn't been processed yet.
1707
 */
1708
static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
1709
{
1710
	struct wb_writeback_work *work = NULL;
1711

1712 1713 1714
	spin_lock_bh(&wb->work_lock);
	if (!list_empty(&wb->work_list)) {
		work = list_entry(wb->work_list.next,
1715 1716
				  struct wb_writeback_work, list);
		list_del_init(&work->list);
1717
	}
1718
	spin_unlock_bh(&wb->work_lock);
1719
	return work;
1720 1721
}

1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732
/*
 * Add in the number of potentially dirty inodes, because each inode
 * write can dirty pagecache in the underlying blockdev.
 */
static unsigned long get_nr_dirty_pages(void)
{
	return global_page_state(NR_FILE_DIRTY) +
		global_page_state(NR_UNSTABLE_NFS) +
		get_nr_dirty_inodes();
}

1733 1734
static long wb_check_background_flush(struct bdi_writeback *wb)
{
1735
	if (wb_over_bg_thresh(wb)) {
1736 1737 1738 1739 1740 1741

		struct wb_writeback_work work = {
			.nr_pages	= LONG_MAX,
			.sync_mode	= WB_SYNC_NONE,
			.for_background	= 1,
			.range_cyclic	= 1,
1742
			.reason		= WB_REASON_BACKGROUND,
1743 1744 1745 1746 1747 1748 1749 1750
		};

		return wb_writeback(wb, &work);
	}

	return 0;
}

1751 1752 1753 1754 1755
static long wb_check_old_data_flush(struct bdi_writeback *wb)
{
	unsigned long expired;
	long nr_pages;

1756 1757 1758 1759 1760 1761
	/*
	 * When set to zero, disable periodic writeback
	 */
	if (!dirty_writeback_interval)
		return 0;

1762 1763 1764 1765 1766 1767
	expired = wb->last_old_flush +
			msecs_to_jiffies(dirty_writeback_interval * 10);
	if (time_before(jiffies, expired))
		return 0;

	wb->last_old_flush = jiffies;
1768
	nr_pages = get_nr_dirty_pages();
1769

1770
	if (nr_pages) {
1771
		struct wb_writeback_work work = {
1772 1773 1774 1775
			.nr_pages	= nr_pages,
			.sync_mode	= WB_SYNC_NONE,
			.for_kupdate	= 1,
			.range_cyclic	= 1,
1776
			.reason		= WB_REASON_PERIODIC,
1777 1778
		};

1779
		return wb_writeback(wb, &work);
1780
	}
1781 1782 1783 1784 1785 1786 1787

	return 0;
}

/*
 * Retrieve work items and do the writeback they describe
 */
1788
static long wb_do_writeback(struct bdi_writeback *wb)
1789
{
1790
	struct wb_writeback_work *work;
1791
	long wrote = 0;
1792

1793
	set_bit(WB_writeback_running, &wb->state);
1794
	while ((work = get_next_work_item(wb)) != NULL) {
1795
		struct wb_completion *done = work->done;
1796
		bool need_wake_up = false;
1797

1798
		trace_writeback_exec(wb->bdi, work);
1799

1800
		wrote += wb_writeback(wb, work);
1801

1802 1803 1804 1805 1806 1807 1808
		if (work->single_wait) {
			WARN_ON_ONCE(work->auto_free);
			/* paired w/ rmb in wb_wait_for_single_work() */
			smp_wmb();
			work->single_done = 1;
			need_wake_up = true;
		} else if (work->auto_free) {
1809
			kfree(work);
1810 1811
		}

1812
		if (done && atomic_dec_and_test(&done->cnt))
1813 1814 1815
			need_wake_up = true;

		if (need_wake_up)
1816
			wake_up_all(&wb->bdi->wb_waitq);
1817 1818 1819 1820 1821 1822
	}

	/*
	 * Check for periodic writeback, kupdated() style
	 */
	wrote += wb_check_old_data_flush(wb);
1823
	wrote += wb_check_background_flush(wb);
1824
	clear_bit(WB_writeback_running, &wb->state);
1825 1826 1827 1828 1829 1830

	return wrote;
}

/*
 * Handle writeback of dirty data for the device backed by this bdi. Also
1831
 * reschedules periodically and does kupdated style flushing.
1832
 */
1833
void wb_workfn(struct work_struct *work)
1834
{
1835 1836
	struct bdi_writeback *wb = container_of(to_delayed_work(work),
						struct bdi_writeback, dwork);
1837 1838
	long pages_written;

1839
	set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
P
Peter Zijlstra 已提交
1840
	current->flags |= PF_SWAPWRITE;
1841

1842
	if (likely(!current_is_workqueue_rescuer() ||
1843
		   !test_bit(WB_registered, &wb->state))) {
1844
		/*
1845
		 * The normal path.  Keep writing back @wb until its
1846
		 * work_list is empty.  Note that this path is also taken
1847
		 * if @wb is shutting down even when we're running off the
1848
		 * rescuer as work_list needs to be drained.
1849
		 */
1850
		do {
1851
			pages_written = wb_do_writeback(wb);
1852
			trace_writeback_pages_written(pages_written);
1853
		} while (!list_empty(&wb->work_list));
1854 1855 1856 1857 1858 1859
	} else {
		/*
		 * bdi_wq can't get enough workers and we're running off
		 * the emergency worker.  Don't hog it.  Hopefully, 1024 is
		 * enough for efficient IO.
		 */
1860
		pages_written = writeback_inodes_wb(wb, 1024,
1861
						    WB_REASON_FORKER_THREAD);
1862
		trace_writeback_pages_written(pages_written);
1863 1864
	}

1865
	if (!list_empty(&wb->work_list))
1866 1867
		mod_delayed_work(bdi_wq, &wb->dwork, 0);
	else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
1868
		wb_wakeup_delayed(wb);
1869

1870
	current->flags &= ~PF_SWAPWRITE;
1871 1872 1873
}

/*
1874 1875
 * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
 * the whole world.
1876
 */
1877
void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
1878
{
1879
	struct backing_dev_info *bdi;
1880

1881 1882
	if (!nr_pages)
		nr_pages = get_nr_dirty_pages();
1883

1884
	rcu_read_lock();
1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895
	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
		struct bdi_writeback *wb;
		struct wb_iter iter;

		if (!bdi_has_dirty_io(bdi))
			continue;

		bdi_for_each_wb(wb, bdi, &iter, 0)
			wb_start_writeback(wb, wb_split_bdi_pages(wb, nr_pages),
					   false, reason);
	}
1896
	rcu_read_unlock();
L
Linus Torvalds 已提交
1897 1898
}

1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922
/*
 * Wake up bdi's periodically to make sure dirtytime inodes gets
 * written back periodically.  We deliberately do *not* check the
 * b_dirtytime list in wb_has_dirty_io(), since this would cause the
 * kernel to be constantly waking up once there are any dirtytime
 * inodes on the system.  So instead we define a separate delayed work
 * function which gets called much more rarely.  (By default, only
 * once every 12 hours.)
 *
 * If there is any other write activity going on in the file system,
 * this function won't be necessary.  But if the only thing that has
 * happened on the file system is a dirtytime inode caused by an atime
 * update, we need this infrastructure below to make sure that inode
 * eventually gets pushed out to disk.
 */
static void wakeup_dirtytime_writeback(struct work_struct *w);
static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);

static void wakeup_dirtytime_writeback(struct work_struct *w)
{
	struct backing_dev_info *bdi;

	rcu_read_lock();
	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1923 1924 1925 1926 1927 1928
		struct bdi_writeback *wb;
		struct wb_iter iter;

		bdi_for_each_wb(wb, bdi, &iter, 0)
			if (!list_empty(&bdi->wb.b_dirty_time))
				wb_wakeup(&bdi->wb);
1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940
	}
	rcu_read_unlock();
	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
}

static int __init start_dirtytime_writeback(void)
{
	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
	return 0;
}
__initcall(start_dirtytime_writeback);

1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
int dirtytime_interval_handler(struct ctl_table *table, int write,
			       void __user *buffer, size_t *lenp, loff_t *ppos)
{
	int ret;

	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
	if (ret == 0 && write)
		mod_delayed_work(system_wq, &dirtytime_work, 0);
	return ret;
}

1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979
static noinline void block_dump___mark_inode_dirty(struct inode *inode)
{
	if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
		struct dentry *dentry;
		const char *name = "?";

		dentry = d_find_alias(inode);
		if (dentry) {
			spin_lock(&dentry->d_lock);
			name = (const char *) dentry->d_name.name;
		}
		printk(KERN_DEBUG
		       "%s(%d): dirtied inode %lu (%s) on %s\n",
		       current->comm, task_pid_nr(current), inode->i_ino,
		       name, inode->i_sb->s_id);
		if (dentry) {
			spin_unlock(&dentry->d_lock);
			dput(dentry);
		}
	}
}

/**
 *	__mark_inode_dirty -	internal function
 *	@inode: inode to mark
 *	@flags: what kind of dirty (i.e. I_DIRTY_SYNC)
 *	Mark an inode as dirty. Callers should use mark_inode_dirty or
 *  	mark_inode_dirty_sync.
L
Linus Torvalds 已提交
1980
 *
1981 1982 1983 1984 1985 1986 1987 1988 1989
 * Put the inode on the super block's dirty list.
 *
 * CAREFUL! We mark it dirty unconditionally, but move it onto the
 * dirty list only if it is hashed or if it refers to a blockdev.
 * If it was not hashed, it will never be added to the dirty list
 * even if it is later hashed, as it will have been marked dirty already.
 *
 * In short, make sure you hash any inodes _before_ you start marking
 * them dirty.
L
Linus Torvalds 已提交
1990
 *
1991 1992 1993 1994 1995 1996
 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
 * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
 * the kernel-internal blockdev inode represents the dirtying time of the
 * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
 * page->mapping->host, so the page-dirtying time is recorded in the internal
 * blockdev inode.
L
Linus Torvalds 已提交
1997
 */
1998
#define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC)
1999
void __mark_inode_dirty(struct inode *inode, int flags)
L
Linus Torvalds 已提交
2000
{
2001
	struct super_block *sb = inode->i_sb;
2002 2003 2004
	int dirtytime;

	trace_writeback_mark_inode_dirty(inode, flags);
L
Linus Torvalds 已提交
2005

2006 2007 2008 2009
	/*
	 * Don't do this for I_DIRTY_PAGES - that doesn't actually
	 * dirty the inode itself
	 */
2010
	if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC | I_DIRTY_TIME)) {
T
Tejun Heo 已提交
2011 2012
		trace_writeback_dirty_inode_start(inode, flags);

2013
		if (sb->s_op->dirty_inode)
2014
			sb->s_op->dirty_inode(inode, flags);
T
Tejun Heo 已提交
2015 2016

		trace_writeback_dirty_inode(inode, flags);
2017
	}
2018 2019 2020
	if (flags & I_DIRTY_INODE)
		flags &= ~I_DIRTY_TIME;
	dirtytime = flags & I_DIRTY_TIME;
2021 2022

	/*
2023 2024
	 * Paired with smp_mb() in __writeback_single_inode() for the
	 * following lockless i_state test.  See there for details.
2025 2026 2027
	 */
	smp_mb();

2028 2029
	if (((inode->i_state & flags) == flags) ||
	    (dirtytime && (inode->i_state & I_DIRTY_INODE)))
2030 2031 2032 2033 2034
		return;

	if (unlikely(block_dump))
		block_dump___mark_inode_dirty(inode);

2035
	spin_lock(&inode->i_lock);
2036 2037
	if (dirtytime && (inode->i_state & I_DIRTY_INODE))
		goto out_unlock_inode;
2038 2039 2040
	if ((inode->i_state & flags) != flags) {
		const int was_dirty = inode->i_state & I_DIRTY;

2041 2042
		inode_attach_wb(inode, NULL);

2043 2044
		if (flags & I_DIRTY_INODE)
			inode->i_state &= ~I_DIRTY_TIME;
2045 2046 2047 2048 2049 2050 2051 2052
		inode->i_state |= flags;

		/*
		 * If the inode is being synced, just update its dirty state.
		 * The unlocker will place the inode on the appropriate
		 * superblock list, based upon its state.
		 */
		if (inode->i_state & I_SYNC)
2053
			goto out_unlock_inode;
2054 2055 2056 2057 2058 2059

		/*
		 * Only add valid (hashed) inodes to the superblock's
		 * dirty list.  Add blockdev inodes as well.
		 */
		if (!S_ISBLK(inode->i_mode)) {
A
Al Viro 已提交
2060
			if (inode_unhashed(inode))
2061
				goto out_unlock_inode;
2062
		}
A
Al Viro 已提交
2063
		if (inode->i_state & I_FREEING)
2064
			goto out_unlock_inode;
2065 2066 2067 2068 2069 2070

		/*
		 * If the inode was already on b_dirty/b_io/b_more_io, don't
		 * reposition it (that would break b_dirty time-ordering).
		 */
		if (!was_dirty) {
2071
			struct bdi_writeback *wb;
2072
			struct list_head *dirty_list;
2073
			bool wakeup_bdi = false;
2074

2075
			wb = locked_inode_to_wb_and_lock_list(inode);
2076

2077 2078 2079
			WARN(bdi_cap_writeback_dirty(wb->bdi) &&
			     !test_bit(WB_registered, &wb->state),
			     "bdi-%s not registered\n", wb->bdi->name);
2080 2081

			inode->dirtied_when = jiffies;
2082 2083
			if (dirtytime)
				inode->dirtied_time_when = jiffies;
2084

2085
			if (inode->i_state & (I_DIRTY_INODE | I_DIRTY_PAGES))
2086
				dirty_list = &wb->b_dirty;
2087
			else
2088
				dirty_list = &wb->b_dirty_time;
2089

2090
			wakeup_bdi = inode_wb_list_move_locked(inode, wb,
2091 2092
							       dirty_list);

2093
			spin_unlock(&wb->list_lock);
2094
			trace_writeback_dirty_inode_enqueue(inode);
2095

2096 2097 2098 2099 2100 2101
			/*
			 * If this is the first dirty inode for this bdi,
			 * we have to wake-up the corresponding bdi thread
			 * to make sure background write-back happens
			 * later.
			 */
2102 2103
			if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi)
				wb_wakeup_delayed(wb);
2104
			return;
L
Linus Torvalds 已提交
2105 2106
		}
	}
2107 2108
out_unlock_inode:
	spin_unlock(&inode->i_lock);
2109

2110 2111 2112
}
EXPORT_SYMBOL(__mark_inode_dirty);

2113
static void wait_sb_inodes(struct super_block *sb)
2114 2115 2116 2117 2118 2119 2120
{
	struct inode *inode, *old_inode = NULL;

	/*
	 * We need to be protected against the filesystem going from
	 * r/o to r/w or vice versa.
	 */
2121
	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2122

2123
	spin_lock(&inode_sb_list_lock);
2124 2125 2126 2127 2128 2129 2130 2131

	/*
	 * Data integrity sync. Must wait for all pages under writeback,
	 * because there may have been pages dirtied before our sync
	 * call, but which had writeout started before we write it out.
	 * In which case, the inode may not be on the dirty list, but
	 * we still have to wait for that writeout.
	 */
2132
	list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
2133
		struct address_space *mapping = inode->i_mapping;
2134

2135 2136 2137 2138
		spin_lock(&inode->i_lock);
		if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
		    (mapping->nrpages == 0)) {
			spin_unlock(&inode->i_lock);
2139
			continue;
2140
		}
2141
		__iget(inode);
2142
		spin_unlock(&inode->i_lock);
2143 2144
		spin_unlock(&inode_sb_list_lock);

2145
		/*
2146 2147 2148 2149 2150 2151
		 * We hold a reference to 'inode' so it couldn't have been
		 * removed from s_inodes list while we dropped the
		 * inode_sb_list_lock.  We cannot iput the inode now as we can
		 * be holding the last reference and we cannot iput it under
		 * inode_sb_list_lock. So we keep the reference and iput it
		 * later.
2152 2153 2154 2155 2156 2157 2158 2159
		 */
		iput(old_inode);
		old_inode = inode;

		filemap_fdatawait(mapping);

		cond_resched();

2160
		spin_lock(&inode_sb_list_lock);
2161
	}
2162
	spin_unlock(&inode_sb_list_lock);
2163
	iput(old_inode);
L
Linus Torvalds 已提交
2164 2165
}

2166 2167
static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
				     enum wb_reason reason, bool skip_if_busy)
L
Linus Torvalds 已提交
2168
{
2169
	DEFINE_WB_COMPLETION_ONSTACK(done);
2170
	struct wb_writeback_work work = {
2171 2172 2173 2174 2175
		.sb			= sb,
		.sync_mode		= WB_SYNC_NONE,
		.tagged_writepages	= 1,
		.done			= &done,
		.nr_pages		= nr,
2176
		.reason			= reason,
2177
	};
2178
	struct backing_dev_info *bdi = sb->s_bdi;
2179

2180
	if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2181
		return;
2182
	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2183

2184
	bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2185
	wb_wait_for_completion(bdi, &done);
2186
}
2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203

/**
 * writeback_inodes_sb_nr -	writeback dirty inodes from given super_block
 * @sb: the superblock
 * @nr: the number of pages to write
 * @reason: reason why some writeback work initiated
 *
 * Start writeback on some inodes on this super_block. No guarantees are made
 * on how many (if any) will be written, and this function does not wait
 * for IO completion of submitted IO.
 */
void writeback_inodes_sb_nr(struct super_block *sb,
			    unsigned long nr,
			    enum wb_reason reason)
{
	__writeback_inodes_sb_nr(sb, nr, reason, false);
}
2204 2205 2206 2207 2208
EXPORT_SYMBOL(writeback_inodes_sb_nr);

/**
 * writeback_inodes_sb	-	writeback dirty inodes from given super_block
 * @sb: the superblock
2209
 * @reason: reason why some writeback work was initiated
2210 2211 2212 2213 2214
 *
 * Start writeback on some inodes on this super_block. No guarantees are made
 * on how many (if any) will be written, and this function does not wait
 * for IO completion of submitted IO.
 */
2215
void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2216
{
2217
	return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2218
}
2219
EXPORT_SYMBOL(writeback_inodes_sb);
2220

2221
/**
2222
 * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
2223
 * @sb: the superblock
2224 2225
 * @nr: the number of pages to write
 * @reason: the reason of writeback
2226
 *
2227
 * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
2228 2229
 * Returns 1 if writeback was started, 0 if not.
 */
2230 2231
bool try_to_writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
				   enum wb_reason reason)
2232
{
2233
	if (!down_read_trylock(&sb->s_umount))
2234
		return false;
2235

2236
	__writeback_inodes_sb_nr(sb, nr, reason, true);
2237
	up_read(&sb->s_umount);
2238
	return true;
2239
}
2240
EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr);
2241

2242
/**
2243
 * try_to_writeback_inodes_sb - try to start writeback if none underway
2244
 * @sb: the superblock
2245
 * @reason: reason why some writeback work was initiated
2246
 *
2247
 * Implement by try_to_writeback_inodes_sb_nr()
2248 2249
 * Returns 1 if writeback was started, 0 if not.
 */
2250
bool try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2251
{
2252
	return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2253
}
2254
EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2255

2256 2257
/**
 * sync_inodes_sb	-	sync sb inode pages
2258
 * @sb: the superblock
2259 2260
 *
 * This function writes and waits on any dirty inode belonging to this
2261
 * super_block.
2262
 */
2263
void sync_inodes_sb(struct super_block *sb)
2264
{
2265
	DEFINE_WB_COMPLETION_ONSTACK(done);
2266
	struct wb_writeback_work work = {
2267 2268 2269 2270
		.sb		= sb,
		.sync_mode	= WB_SYNC_ALL,
		.nr_pages	= LONG_MAX,
		.range_cyclic	= 0,
2271
		.done		= &done,
2272
		.reason		= WB_REASON_SYNC,
2273
		.for_sync	= 1,
2274
	};
2275
	struct backing_dev_info *bdi = sb->s_bdi;
2276

2277
	/* Nothing to do? */
2278
	if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2279
		return;
2280 2281
	WARN_ON(!rwsem_is_locked(&sb->s_umount));

2282
	bdi_split_work_to_wbs(bdi, &work, false);
2283
	wb_wait_for_completion(bdi, &done);
2284

2285
	wait_sb_inodes(sb);
L
Linus Torvalds 已提交
2286
}
2287
EXPORT_SYMBOL(sync_inodes_sb);
L
Linus Torvalds 已提交
2288 2289

/**
2290 2291 2292 2293 2294 2295
 * write_inode_now	-	write an inode to disk
 * @inode: inode to write to disk
 * @sync: whether the write should be synchronous or not
 *
 * This function commits an inode to disk immediately if it is dirty. This is
 * primarily needed by knfsd.
L
Linus Torvalds 已提交
2296
 *
2297
 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
L
Linus Torvalds 已提交
2298 2299 2300
 */
int write_inode_now(struct inode *inode, int sync)
{
2301
	struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
L
Linus Torvalds 已提交
2302 2303
	struct writeback_control wbc = {
		.nr_to_write = LONG_MAX,
2304
		.sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2305 2306
		.range_start = 0,
		.range_end = LLONG_MAX,
L
Linus Torvalds 已提交
2307 2308 2309
	};

	if (!mapping_cap_writeback_dirty(inode->i_mapping))
2310
		wbc.nr_to_write = 0;
L
Linus Torvalds 已提交
2311 2312

	might_sleep();
2313
	return writeback_single_inode(inode, wb, &wbc);
L
Linus Torvalds 已提交
2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329
}
EXPORT_SYMBOL(write_inode_now);

/**
 * sync_inode - write an inode and its pages to disk.
 * @inode: the inode to sync
 * @wbc: controls the writeback mode
 *
 * sync_inode() will write an inode and its pages to disk.  It will also
 * correctly update the inode on its superblock's dirty inode lists and will
 * update inode->i_state.
 *
 * The caller must have a ref on the inode.
 */
int sync_inode(struct inode *inode, struct writeback_control *wbc)
{
2330
	return writeback_single_inode(inode, &inode_to_bdi(inode)->wb, wbc);
L
Linus Torvalds 已提交
2331 2332
}
EXPORT_SYMBOL(sync_inode);
C
Christoph Hellwig 已提交
2333 2334

/**
A
Andrew Morton 已提交
2335
 * sync_inode_metadata - write an inode to disk
C
Christoph Hellwig 已提交
2336 2337 2338
 * @inode: the inode to sync
 * @wait: wait for I/O to complete.
 *
A
Andrew Morton 已提交
2339
 * Write an inode to disk and adjust its dirty state after completion.
C
Christoph Hellwig 已提交
2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352
 *
 * Note: only writes the actual inode, no associated data or other metadata.
 */
int sync_inode_metadata(struct inode *inode, int wait)
{
	struct writeback_control wbc = {
		.sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
		.nr_to_write = 0, /* metadata-only */
	};

	return sync_inode(inode, &wbc);
}
EXPORT_SYMBOL(sync_inode_metadata);