perf_event.c 36.6 KB
Newer Older
I
Ingo Molnar 已提交
1
/*
2
 * Performance events x86 architecture code
I
Ingo Molnar 已提交
3
 *
4 5 6 7 8
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
 *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2009 Jaswinder Singh Rajput
 *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
 *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
9
 *  Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10
 *  Copyright (C) 2009 Google, Inc., Stephane Eranian
I
Ingo Molnar 已提交
11 12 13 14
 *
 *  For licencing details see kernel-base/COPYING
 */

15
#include <linux/perf_event.h>
I
Ingo Molnar 已提交
16 17 18 19
#include <linux/capability.h>
#include <linux/notifier.h>
#include <linux/hardirq.h>
#include <linux/kprobes.h>
20
#include <linux/module.h>
I
Ingo Molnar 已提交
21 22
#include <linux/kdebug.h>
#include <linux/sched.h>
23
#include <linux/uaccess.h>
24
#include <linux/highmem.h>
25
#include <linux/cpu.h>
26
#include <linux/bitops.h>
I
Ingo Molnar 已提交
27 28

#include <asm/apic.h>
29
#include <asm/stacktrace.h>
P
Peter Zijlstra 已提交
30
#include <asm/nmi.h>
I
Ingo Molnar 已提交
31

32
static u64 perf_event_mask __read_mostly;
33

34 35
/* The maximal number of PEBS events: */
#define MAX_PEBS_EVENTS	4
36 37 38 39 40

/* The size of a BTS record in bytes: */
#define BTS_RECORD_SIZE		24

/* The size of a per-cpu BTS buffer in bytes: */
41
#define BTS_BUFFER_SIZE		(BTS_RECORD_SIZE * 2048)
42 43

/* The BTS overflow threshold in bytes from the end of the buffer: */
44
#define BTS_OVFL_TH		(BTS_RECORD_SIZE * 128)
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69


/*
 * Bits in the debugctlmsr controlling branch tracing.
 */
#define X86_DEBUGCTL_TR			(1 << 6)
#define X86_DEBUGCTL_BTS		(1 << 7)
#define X86_DEBUGCTL_BTINT		(1 << 8)
#define X86_DEBUGCTL_BTS_OFF_OS		(1 << 9)
#define X86_DEBUGCTL_BTS_OFF_USR	(1 << 10)

/*
 * A debug store configuration.
 *
 * We only support architectures that use 64bit fields.
 */
struct debug_store {
	u64	bts_buffer_base;
	u64	bts_index;
	u64	bts_absolute_maximum;
	u64	bts_interrupt_threshold;
	u64	pebs_buffer_base;
	u64	pebs_index;
	u64	pebs_absolute_maximum;
	u64	pebs_interrupt_threshold;
70
	u64	pebs_event_reset[MAX_PEBS_EVENTS];
71 72
};

73
struct event_constraint {
74 75 76 77
	union {
		unsigned long	idxmsk[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
		u64		idxmsk64[1];
	};
78 79
	int	code;
	int	cmask;
80
	int	weight;
81 82
};

83 84 85 86 87 88 89
struct amd_nb {
	int nb_id;  /* NorthBridge id */
	int refcnt; /* reference count */
	struct perf_event *owners[X86_PMC_IDX_MAX];
	struct event_constraint event_constraints[X86_PMC_IDX_MAX];
};

90
struct cpu_hw_events {
91
	struct perf_event	*events[X86_PMC_IDX_MAX]; /* in counter order */
92
	unsigned long		active_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
93
	unsigned long		interrupts;
94
	int			enabled;
95
	struct debug_store	*ds;
I
Ingo Molnar 已提交
96

97 98 99
	int			n_events;
	int			n_added;
	int			assign[X86_PMC_IDX_MAX]; /* event to counter assignment */
100
	u64			tags[X86_PMC_IDX_MAX];
101
	struct perf_event	*event_list[X86_PMC_IDX_MAX]; /* in enabled order */
102
	struct amd_nb		*amd_nb;
103 104
};

105
#define __EVENT_CONSTRAINT(c, n, m, w) {\
106 107 108
	{ .idxmsk64[0] = (n) },		\
	.code = (c),			\
	.cmask = (m),			\
109
	.weight = (w),			\
110
}
111

112 113 114
#define EVENT_CONSTRAINT(c, n, m)	\
	__EVENT_CONSTRAINT(c, n, m, HWEIGHT(n))

115 116
#define INTEL_EVENT_CONSTRAINT(c, n)	\
	EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVTSEL_MASK)
117

118 119
#define FIXED_EVENT_CONSTRAINT(c, n)	\
	EVENT_CONSTRAINT(c, n, INTEL_ARCH_FIXED_MASK)
120

121 122 123 124 125
#define EVENT_CONSTRAINT_END		\
	EVENT_CONSTRAINT(0, 0, 0)

#define for_each_event_constraint(e, c)	\
	for ((e) = (c); (e)->cmask; (e)++)
126

I
Ingo Molnar 已提交
127
/*
128
 * struct x86_pmu - generic x86 pmu
I
Ingo Molnar 已提交
129
 */
130
struct x86_pmu {
131 132
	const char	*name;
	int		version;
133
	int		(*handle_irq)(struct pt_regs *);
134 135
	void		(*disable_all)(void);
	void		(*enable_all)(void);
136 137
	void		(*enable)(struct hw_perf_event *, int);
	void		(*disable)(struct hw_perf_event *, int);
138 139
	unsigned	eventsel;
	unsigned	perfctr;
140 141
	u64		(*event_map)(int);
	u64		(*raw_event)(u64);
142
	int		max_events;
143 144 145 146
	int		num_events;
	int		num_events_fixed;
	int		event_bits;
	u64		event_mask;
147
	int		apic;
148
	u64		max_period;
149
	u64		intel_ctrl;
150 151
	void		(*enable_bts)(u64 config);
	void		(*disable_bts)(void);
152 153 154 155 156

	struct event_constraint *
			(*get_event_constraints)(struct cpu_hw_events *cpuc,
						 struct perf_event *event);

157 158
	void		(*put_event_constraints)(struct cpu_hw_events *cpuc,
						 struct perf_event *event);
159
	struct event_constraint *event_constraints;
160 161
};

162
static struct x86_pmu x86_pmu __read_mostly;
163

164
static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
165 166
	.enabled = 1,
};
I
Ingo Molnar 已提交
167

168 169
static int x86_perf_event_set_period(struct perf_event *event,
			     struct hw_perf_event *hwc, int idx);
170

171
/*
172
 * Generalized hw caching related hw_event table, filled
173
 * in on a per model basis. A value of 0 means
174 175
 * 'not supported', -1 means 'hw_event makes no sense on
 * this CPU', any other value means the raw hw_event
176 177 178 179 180 181 182 183 184 185
 * ID.
 */

#define C(x) PERF_COUNT_HW_CACHE_##x

static u64 __read_mostly hw_cache_event_ids
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX];

186
/*
187 188
 * Propagate event elapsed time into the generic event.
 * Can only be executed on the CPU where the event is active.
189 190
 * Returns the delta events processed.
 */
191
static u64
192 193
x86_perf_event_update(struct perf_event *event,
			struct hw_perf_event *hwc, int idx)
194
{
195
	int shift = 64 - x86_pmu.event_bits;
196 197
	u64 prev_raw_count, new_raw_count;
	s64 delta;
198

199 200 201
	if (idx == X86_PMC_IDX_FIXED_BTS)
		return 0;

202
	/*
203
	 * Careful: an NMI might modify the previous event value.
204 205 206
	 *
	 * Our tactic to handle this is to first atomically read and
	 * exchange a new raw count - then add that new-prev delta
207
	 * count to the generic event atomically:
208 209 210
	 */
again:
	prev_raw_count = atomic64_read(&hwc->prev_count);
211
	rdmsrl(hwc->event_base + idx, new_raw_count);
212 213 214 215 216 217 218 219

	if (atomic64_cmpxchg(&hwc->prev_count, prev_raw_count,
					new_raw_count) != prev_raw_count)
		goto again;

	/*
	 * Now we have the new raw value and have updated the prev
	 * timestamp already. We can now calculate the elapsed delta
220
	 * (event-)time and add that to the generic event.
221 222
	 *
	 * Careful, not all hw sign-extends above the physical width
223
	 * of the count.
224
	 */
225 226
	delta = (new_raw_count << shift) - (prev_raw_count << shift);
	delta >>= shift;
227

228
	atomic64_add(delta, &event->count);
229
	atomic64_sub(delta, &hwc->period_left);
230 231

	return new_raw_count;
232 233
}

234
static atomic_t active_events;
P
Peter Zijlstra 已提交
235 236 237 238
static DEFINE_MUTEX(pmc_reserve_mutex);

static bool reserve_pmc_hardware(void)
{
239
#ifdef CONFIG_X86_LOCAL_APIC
P
Peter Zijlstra 已提交
240 241 242 243 244
	int i;

	if (nmi_watchdog == NMI_LOCAL_APIC)
		disable_lapic_nmi_watchdog();

245
	for (i = 0; i < x86_pmu.num_events; i++) {
246
		if (!reserve_perfctr_nmi(x86_pmu.perfctr + i))
P
Peter Zijlstra 已提交
247 248 249
			goto perfctr_fail;
	}

250
	for (i = 0; i < x86_pmu.num_events; i++) {
251
		if (!reserve_evntsel_nmi(x86_pmu.eventsel + i))
P
Peter Zijlstra 已提交
252 253
			goto eventsel_fail;
	}
254
#endif
P
Peter Zijlstra 已提交
255 256 257

	return true;

258
#ifdef CONFIG_X86_LOCAL_APIC
P
Peter Zijlstra 已提交
259 260
eventsel_fail:
	for (i--; i >= 0; i--)
261
		release_evntsel_nmi(x86_pmu.eventsel + i);
P
Peter Zijlstra 已提交
262

263
	i = x86_pmu.num_events;
P
Peter Zijlstra 已提交
264 265 266

perfctr_fail:
	for (i--; i >= 0; i--)
267
		release_perfctr_nmi(x86_pmu.perfctr + i);
P
Peter Zijlstra 已提交
268 269 270 271 272

	if (nmi_watchdog == NMI_LOCAL_APIC)
		enable_lapic_nmi_watchdog();

	return false;
273
#endif
P
Peter Zijlstra 已提交
274 275 276 277
}

static void release_pmc_hardware(void)
{
278
#ifdef CONFIG_X86_LOCAL_APIC
P
Peter Zijlstra 已提交
279 280
	int i;

281
	for (i = 0; i < x86_pmu.num_events; i++) {
282 283
		release_perfctr_nmi(x86_pmu.perfctr + i);
		release_evntsel_nmi(x86_pmu.eventsel + i);
P
Peter Zijlstra 已提交
284 285 286 287
	}

	if (nmi_watchdog == NMI_LOCAL_APIC)
		enable_lapic_nmi_watchdog();
288
#endif
P
Peter Zijlstra 已提交
289 290
}

291 292 293 294 295 296 297
static inline bool bts_available(void)
{
	return x86_pmu.enable_bts != NULL;
}

static inline void init_debug_store_on_cpu(int cpu)
{
298
	struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
299 300 301 302 303

	if (!ds)
		return;

	wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA,
304 305
		     (u32)((u64)(unsigned long)ds),
		     (u32)((u64)(unsigned long)ds >> 32));
306 307 308 309
}

static inline void fini_debug_store_on_cpu(int cpu)
{
310
	if (!per_cpu(cpu_hw_events, cpu).ds)
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
		return;

	wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA, 0, 0);
}

static void release_bts_hardware(void)
{
	int cpu;

	if (!bts_available())
		return;

	get_online_cpus();

	for_each_online_cpu(cpu)
		fini_debug_store_on_cpu(cpu);

	for_each_possible_cpu(cpu) {
329
		struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
330 331 332 333

		if (!ds)
			continue;

334
		per_cpu(cpu_hw_events, cpu).ds = NULL;
335

336
		kfree((void *)(unsigned long)ds->bts_buffer_base);
337 338 339 340 341 342 343 344 345 346 347
		kfree(ds);
	}

	put_online_cpus();
}

static int reserve_bts_hardware(void)
{
	int cpu, err = 0;

	if (!bts_available())
348
		return 0;
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366

	get_online_cpus();

	for_each_possible_cpu(cpu) {
		struct debug_store *ds;
		void *buffer;

		err = -ENOMEM;
		buffer = kzalloc(BTS_BUFFER_SIZE, GFP_KERNEL);
		if (unlikely(!buffer))
			break;

		ds = kzalloc(sizeof(*ds), GFP_KERNEL);
		if (unlikely(!ds)) {
			kfree(buffer);
			break;
		}

367
		ds->bts_buffer_base = (u64)(unsigned long)buffer;
368 369 370 371 372 373
		ds->bts_index = ds->bts_buffer_base;
		ds->bts_absolute_maximum =
			ds->bts_buffer_base + BTS_BUFFER_SIZE;
		ds->bts_interrupt_threshold =
			ds->bts_absolute_maximum - BTS_OVFL_TH;

374
		per_cpu(cpu_hw_events, cpu).ds = ds;
375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
		err = 0;
	}

	if (err)
		release_bts_hardware();
	else {
		for_each_online_cpu(cpu)
			init_debug_store_on_cpu(cpu);
	}

	put_online_cpus();

	return err;
}

390
static void hw_perf_event_destroy(struct perf_event *event)
P
Peter Zijlstra 已提交
391
{
392
	if (atomic_dec_and_mutex_lock(&active_events, &pmc_reserve_mutex)) {
P
Peter Zijlstra 已提交
393
		release_pmc_hardware();
394
		release_bts_hardware();
P
Peter Zijlstra 已提交
395 396 397 398
		mutex_unlock(&pmc_reserve_mutex);
	}
}

399 400 401 402 403
static inline int x86_pmu_initialized(void)
{
	return x86_pmu.handle_irq != NULL;
}

404
static inline int
405
set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event_attr *attr)
406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
{
	unsigned int cache_type, cache_op, cache_result;
	u64 config, val;

	config = attr->config;

	cache_type = (config >>  0) & 0xff;
	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
		return -EINVAL;

	cache_op = (config >>  8) & 0xff;
	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
		return -EINVAL;

	cache_result = (config >> 16) & 0xff;
	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
		return -EINVAL;

	val = hw_cache_event_ids[cache_type][cache_op][cache_result];

	if (val == 0)
		return -ENOENT;

	if (val == -1)
		return -EINVAL;

	hwc->config |= val;

	return 0;
}

I
Ingo Molnar 已提交
437
/*
438
 * Setup the hardware configuration for a given attr_type
I
Ingo Molnar 已提交
439
 */
440
static int __hw_perf_event_init(struct perf_event *event)
I
Ingo Molnar 已提交
441
{
442 443
	struct perf_event_attr *attr = &event->attr;
	struct hw_perf_event *hwc = &event->hw;
444
	u64 config;
P
Peter Zijlstra 已提交
445
	int err;
I
Ingo Molnar 已提交
446

447 448
	if (!x86_pmu_initialized())
		return -ENODEV;
I
Ingo Molnar 已提交
449

P
Peter Zijlstra 已提交
450
	err = 0;
451
	if (!atomic_inc_not_zero(&active_events)) {
P
Peter Zijlstra 已提交
452
		mutex_lock(&pmc_reserve_mutex);
453
		if (atomic_read(&active_events) == 0) {
454 455 456
			if (!reserve_pmc_hardware())
				err = -EBUSY;
			else
457
				err = reserve_bts_hardware();
458 459
		}
		if (!err)
460
			atomic_inc(&active_events);
P
Peter Zijlstra 已提交
461 462 463 464 465
		mutex_unlock(&pmc_reserve_mutex);
	}
	if (err)
		return err;

466
	event->destroy = hw_perf_event_destroy;
467

I
Ingo Molnar 已提交
468
	/*
469
	 * Generate PMC IRQs:
I
Ingo Molnar 已提交
470 471
	 * (keep 'enabled' bit clear for now)
	 */
472
	hwc->config = ARCH_PERFMON_EVENTSEL_INT;
I
Ingo Molnar 已提交
473

474
	hwc->idx = -1;
475 476
	hwc->last_cpu = -1;
	hwc->last_tag = ~0ULL;
477

I
Ingo Molnar 已提交
478
	/*
479
	 * Count user and OS events unless requested not to.
I
Ingo Molnar 已提交
480
	 */
481
	if (!attr->exclude_user)
482
		hwc->config |= ARCH_PERFMON_EVENTSEL_USR;
483
	if (!attr->exclude_kernel)
I
Ingo Molnar 已提交
484
		hwc->config |= ARCH_PERFMON_EVENTSEL_OS;
485

486
	if (!hwc->sample_period) {
487
		hwc->sample_period = x86_pmu.max_period;
488
		hwc->last_period = hwc->sample_period;
489
		atomic64_set(&hwc->period_left, hwc->sample_period);
490 491 492 493
	} else {
		/*
		 * If we have a PMU initialized but no APIC
		 * interrupts, we cannot sample hardware
494 495
		 * events (user-space has to fall back and
		 * sample via a hrtimer based software event):
496 497 498
		 */
		if (!x86_pmu.apic)
			return -EOPNOTSUPP;
499
	}
500

I
Ingo Molnar 已提交
501
	/*
502
	 * Raw hw_event type provide the config in the hw_event structure
I
Ingo Molnar 已提交
503
	 */
504 505
	if (attr->type == PERF_TYPE_RAW) {
		hwc->config |= x86_pmu.raw_event(attr->config);
506
		return 0;
I
Ingo Molnar 已提交
507 508
	}

509 510 511 512 513
	if (attr->type == PERF_TYPE_HW_CACHE)
		return set_ext_hw_attr(hwc, attr);

	if (attr->config >= x86_pmu.max_events)
		return -EINVAL;
514

515 516 517
	/*
	 * The generic map:
	 */
518 519 520 521 522 523 524 525
	config = x86_pmu.event_map(attr->config);

	if (config == 0)
		return -ENOENT;

	if (config == -1LL)
		return -EINVAL;

526 527 528 529
	/*
	 * Branch tracing:
	 */
	if ((attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS) &&
530 531 532 533 534 535 536 537 538
	    (hwc->sample_period == 1)) {
		/* BTS is not supported by this architecture. */
		if (!bts_available())
			return -EOPNOTSUPP;

		/* BTS is currently only allowed for user-mode. */
		if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
			return -EOPNOTSUPP;
	}
539

540
	hwc->config |= config;
P
Peter Zijlstra 已提交
541

I
Ingo Molnar 已提交
542 543 544
	return 0;
}

545
static void x86_pmu_disable_all(void)
546
{
547
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
548 549
	int idx;

550
	for (idx = 0; idx < x86_pmu.num_events; idx++) {
551 552
		u64 val;

553
		if (!test_bit(idx, cpuc->active_mask))
554
			continue;
555
		rdmsrl(x86_pmu.eventsel + idx, val);
556 557 558
		if (!(val & ARCH_PERFMON_EVENTSEL0_ENABLE))
			continue;
		val &= ~ARCH_PERFMON_EVENTSEL0_ENABLE;
559
		wrmsrl(x86_pmu.eventsel + idx, val);
560 561 562
	}
}

563
void hw_perf_disable(void)
564
{
565 566
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);

567
	if (!x86_pmu_initialized())
568
		return;
569

570 571 572 573 574 575
	if (!cpuc->enabled)
		return;

	cpuc->n_added = 0;
	cpuc->enabled = 0;
	barrier();
576 577

	x86_pmu.disable_all();
578
}
I
Ingo Molnar 已提交
579

580
static void x86_pmu_enable_all(void)
581
{
582
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
583 584
	int idx;

585 586
	for (idx = 0; idx < x86_pmu.num_events; idx++) {
		struct perf_event *event = cpuc->events[idx];
587
		u64 val;
588

589
		if (!test_bit(idx, cpuc->active_mask))
590
			continue;
591

592
		val = event->hw.config;
593
		val |= ARCH_PERFMON_EVENTSEL0_ENABLE;
594
		wrmsrl(x86_pmu.eventsel + idx, val);
595 596 597
	}
}

598 599 600 601 602 603 604 605 606
static const struct pmu pmu;

static inline int is_x86_event(struct perf_event *event)
{
	return event->pmu == &pmu;
}

static int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
{
607
	struct event_constraint *c, *constraints[X86_PMC_IDX_MAX];
608
	unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
609
	int i, j, w, wmax, num = 0;
610 611 612 613 614
	struct hw_perf_event *hwc;

	bitmap_zero(used_mask, X86_PMC_IDX_MAX);

	for (i = 0; i < n; i++) {
615 616
		constraints[i] =
		  x86_pmu.get_event_constraints(cpuc, cpuc->event_list[i]);
617 618
	}

619 620 621
	/*
	 * fastpath, try to reuse previous register
	 */
622
	for (i = 0; i < n; i++) {
623
		hwc = &cpuc->event_list[i]->hw;
624
		c = constraints[i];
625 626 627 628 629 630

		/* never assigned */
		if (hwc->idx == -1)
			break;

		/* constraint still honored */
631
		if (!test_bit(hwc->idx, c->idxmsk))
632 633 634 635 636 637 638 639 640 641
			break;

		/* not already used */
		if (test_bit(hwc->idx, used_mask))
			break;

		set_bit(hwc->idx, used_mask);
		if (assign)
			assign[i] = hwc->idx;
	}
642
	if (i == n)
643 644 645 646 647 648 649 650
		goto done;

	/*
	 * begin slow path
	 */

	bitmap_zero(used_mask, X86_PMC_IDX_MAX);

651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
	/*
	 * weight = number of possible counters
	 *
	 * 1    = most constrained, only works on one counter
	 * wmax = least constrained, works on any counter
	 *
	 * assign events to counters starting with most
	 * constrained events.
	 */
	wmax = x86_pmu.num_events;

	/*
	 * when fixed event counters are present,
	 * wmax is incremented by 1 to account
	 * for one more choice
	 */
	if (x86_pmu.num_events_fixed)
		wmax++;

670
	for (w = 1, num = n; num && w <= wmax; w++) {
671
		/* for each event */
672
		for (i = 0; num && i < n; i++) {
673
			c = constraints[i];
674 675
			hwc = &cpuc->event_list[i]->hw;

676
			if (c->weight != w)
677 678
				continue;

679
			for_each_bit(j, c->idxmsk, X86_PMC_IDX_MAX) {
680 681 682 683 684 685 686
				if (!test_bit(j, used_mask))
					break;
			}

			if (j == X86_PMC_IDX_MAX)
				break;

687 688
			set_bit(j, used_mask);

689 690 691 692 693
			if (assign)
				assign[i] = j;
			num--;
		}
	}
694
done:
695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732
	/*
	 * scheduling failed or is just a simulation,
	 * free resources if necessary
	 */
	if (!assign || num) {
		for (i = 0; i < n; i++) {
			if (x86_pmu.put_event_constraints)
				x86_pmu.put_event_constraints(cpuc, cpuc->event_list[i]);
		}
	}
	return num ? -ENOSPC : 0;
}

/*
 * dogrp: true if must collect siblings events (group)
 * returns total number of events and error code
 */
static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
{
	struct perf_event *event;
	int n, max_count;

	max_count = x86_pmu.num_events + x86_pmu.num_events_fixed;

	/* current number of events already accepted */
	n = cpuc->n_events;

	if (is_x86_event(leader)) {
		if (n >= max_count)
			return -ENOSPC;
		cpuc->event_list[n] = leader;
		n++;
	}
	if (!dogrp)
		return n;

	list_for_each_entry(event, &leader->sibling_list, group_entry) {
		if (!is_x86_event(event) ||
733
		    event->state <= PERF_EVENT_STATE_OFF)
734 735 736 737 738 739 740 741 742 743 744 745
			continue;

		if (n >= max_count)
			return -ENOSPC;

		cpuc->event_list[n] = event;
		n++;
	}
	return n;
}

static inline void x86_assign_hw_event(struct perf_event *event,
746
				struct cpu_hw_events *cpuc, int i)
747
{
748 749 750 751 752
	struct hw_perf_event *hwc = &event->hw;

	hwc->idx = cpuc->assign[i];
	hwc->last_cpu = smp_processor_id();
	hwc->last_tag = ++cpuc->tags[i];
753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770

	if (hwc->idx == X86_PMC_IDX_FIXED_BTS) {
		hwc->config_base = 0;
		hwc->event_base	= 0;
	} else if (hwc->idx >= X86_PMC_IDX_FIXED) {
		hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
		/*
		 * We set it so that event_base + idx in wrmsr/rdmsr maps to
		 * MSR_ARCH_PERFMON_FIXED_CTR0 ... CTR2:
		 */
		hwc->event_base =
			MSR_ARCH_PERFMON_FIXED_CTR0 - X86_PMC_IDX_FIXED;
	} else {
		hwc->config_base = x86_pmu.eventsel;
		hwc->event_base  = x86_pmu.perfctr;
	}
}

771 772 773 774 775 776 777 778 779
static inline int match_prev_assignment(struct hw_perf_event *hwc,
					struct cpu_hw_events *cpuc,
					int i)
{
	return hwc->idx == cpuc->assign[i] &&
		hwc->last_cpu == smp_processor_id() &&
		hwc->last_tag == cpuc->tags[i];
}

780
static void x86_pmu_stop(struct perf_event *event);
781

782
void hw_perf_enable(void)
783
{
784 785 786 787 788
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
	struct perf_event *event;
	struct hw_perf_event *hwc;
	int i;

789
	if (!x86_pmu_initialized())
790
		return;
791 792 793 794

	if (cpuc->enabled)
		return;

795 796 797 798 799 800 801 802 803 804 805 806 807
	if (cpuc->n_added) {
		/*
		 * apply assignment obtained either from
		 * hw_perf_group_sched_in() or x86_pmu_enable()
		 *
		 * step1: save events moving to new counters
		 * step2: reprogram moved events into new counters
		 */
		for (i = 0; i < cpuc->n_events; i++) {

			event = cpuc->event_list[i];
			hwc = &event->hw;

808 809 810 811 812 813 814 815
			/*
			 * we can avoid reprogramming counter if:
			 * - assigned same counter as last time
			 * - running on same CPU as last time
			 * - no other event has used the counter since
			 */
			if (hwc->idx == -1 ||
			    match_prev_assignment(hwc, cpuc, i))
816 817
				continue;

818
			x86_pmu_stop(event);
819 820 821 822 823 824 825 826 827 828

			hwc->idx = -1;
		}

		for (i = 0; i < cpuc->n_events; i++) {

			event = cpuc->event_list[i];
			hwc = &event->hw;

			if (hwc->idx == -1) {
829
				x86_assign_hw_event(event, cpuc, i);
830 831 832 833
				x86_perf_event_set_period(event, hwc, hwc->idx);
			}
			/*
			 * need to mark as active because x86_pmu_disable()
834
			 * clear active_mask and events[] yet it preserves
835 836 837 838 839 840 841 842 843 844 845
			 * idx
			 */
			set_bit(hwc->idx, cpuc->active_mask);
			cpuc->events[hwc->idx] = event;

			x86_pmu.enable(hwc, hwc->idx);
			perf_event_update_userpage(event);
		}
		cpuc->n_added = 0;
		perf_events_lapic_init();
	}
846 847 848 849

	cpuc->enabled = 1;
	barrier();

850
	x86_pmu.enable_all();
851 852
}

853
static inline void __x86_pmu_enable_event(struct hw_perf_event *hwc, int idx)
854
{
V
Vince Weaver 已提交
855
	(void)checking_wrmsrl(hwc->config_base + idx,
856
			      hwc->config | ARCH_PERFMON_EVENTSEL0_ENABLE);
857 858
}

859
static inline void x86_pmu_disable_event(struct hw_perf_event *hwc, int idx)
860
{
V
Vince Weaver 已提交
861
	(void)checking_wrmsrl(hwc->config_base + idx, hwc->config);
862 863
}

864
static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
I
Ingo Molnar 已提交
865

866 867
/*
 * Set the next IRQ period, based on the hwc->period_left value.
868
 * To be called with the event disabled in hw:
869
 */
870
static int
871 872
x86_perf_event_set_period(struct perf_event *event,
			     struct hw_perf_event *hwc, int idx)
I
Ingo Molnar 已提交
873
{
874
	s64 left = atomic64_read(&hwc->period_left);
875 876
	s64 period = hwc->sample_period;
	int err, ret = 0;
877

878 879 880
	if (idx == X86_PMC_IDX_FIXED_BTS)
		return 0;

881
	/*
882
	 * If we are way outside a reasonable range then just skip forward:
883 884 885 886
	 */
	if (unlikely(left <= -period)) {
		left = period;
		atomic64_set(&hwc->period_left, left);
887
		hwc->last_period = period;
888
		ret = 1;
889 890 891 892 893
	}

	if (unlikely(left <= 0)) {
		left += period;
		atomic64_set(&hwc->period_left, left);
894
		hwc->last_period = period;
895
		ret = 1;
896
	}
897
	/*
898
	 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
899 900 901
	 */
	if (unlikely(left < 2))
		left = 2;
I
Ingo Molnar 已提交
902

903 904 905
	if (left > x86_pmu.max_period)
		left = x86_pmu.max_period;

906
	per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
907 908

	/*
909
	 * The hw event starts counting from this event offset,
910 911
	 * mark it to be able to extra future deltas:
	 */
912
	atomic64_set(&hwc->prev_count, (u64)-left);
913

914 915
	err = checking_wrmsrl(hwc->event_base + idx,
			     (u64)(-left) & x86_pmu.event_mask);
916

917
	perf_event_update_userpage(event);
918

919
	return ret;
920 921
}

922
static void x86_pmu_enable_event(struct hw_perf_event *hwc, int idx)
923
{
924
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
925
	if (cpuc->enabled)
926
		__x86_pmu_enable_event(hwc, idx);
I
Ingo Molnar 已提交
927 928
}

929
/*
930 931 932 933 934 935 936
 * activate a single event
 *
 * The event is added to the group of enabled events
 * but only if it can be scehduled with existing events.
 *
 * Called with PMU disabled. If successful and return value 1,
 * then guaranteed to call perf_enable() and hw_perf_enable()
937 938 939 940
 */
static int x86_pmu_enable(struct perf_event *event)
{
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
941 942 943
	struct hw_perf_event *hwc;
	int assign[X86_PMC_IDX_MAX];
	int n, n0, ret;
944

945
	hwc = &event->hw;
946

947 948 949 950
	n0 = cpuc->n_events;
	n = collect_events(cpuc, event, false);
	if (n < 0)
		return n;
951

952 953 954 955 956 957 958 959
	ret = x86_schedule_events(cpuc, n, assign);
	if (ret)
		return ret;
	/*
	 * copy new assignment, now we know it is possible
	 * will be used by hw_perf_enable()
	 */
	memcpy(cpuc->assign, assign, n*sizeof(int));
960

961 962
	cpuc->n_events = n;
	cpuc->n_added  = n - n0;
963 964

	return 0;
I
Ingo Molnar 已提交
965 966
}

967 968 969 970 971 972 973 974 975 976 977 978 979
static int x86_pmu_start(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (hwc->idx == -1)
		return -EAGAIN;

	x86_perf_event_set_period(event, hwc, hwc->idx);
	x86_pmu.enable(hwc, hwc->idx);

	return 0;
}

980
static void x86_pmu_unthrottle(struct perf_event *event)
981
{
982 983
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
	struct hw_perf_event *hwc = &event->hw;
984 985

	if (WARN_ON_ONCE(hwc->idx >= X86_PMC_IDX_MAX ||
986
				cpuc->events[hwc->idx] != event))
987 988 989 990 991
		return;

	x86_pmu.enable(hwc, hwc->idx);
}

992
void perf_event_print_debug(void)
I
Ingo Molnar 已提交
993
{
994
	u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
995
	struct cpu_hw_events *cpuc;
996
	unsigned long flags;
997 998
	int cpu, idx;

999
	if (!x86_pmu.num_events)
1000
		return;
I
Ingo Molnar 已提交
1001

1002
	local_irq_save(flags);
I
Ingo Molnar 已提交
1003 1004

	cpu = smp_processor_id();
1005
	cpuc = &per_cpu(cpu_hw_events, cpu);
I
Ingo Molnar 已提交
1006

1007
	if (x86_pmu.version >= 2) {
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
		rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
		rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
		rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
		rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);

		pr_info("\n");
		pr_info("CPU#%d: ctrl:       %016llx\n", cpu, ctrl);
		pr_info("CPU#%d: status:     %016llx\n", cpu, status);
		pr_info("CPU#%d: overflow:   %016llx\n", cpu, overflow);
		pr_info("CPU#%d: fixed:      %016llx\n", cpu, fixed);
1018
	}
1019
	pr_info("CPU#%d: active:       %016llx\n", cpu, *(u64 *)cpuc->active_mask);
I
Ingo Molnar 已提交
1020

1021
	for (idx = 0; idx < x86_pmu.num_events; idx++) {
1022 1023
		rdmsrl(x86_pmu.eventsel + idx, pmc_ctrl);
		rdmsrl(x86_pmu.perfctr  + idx, pmc_count);
I
Ingo Molnar 已提交
1024

1025
		prev_left = per_cpu(pmc_prev_left[idx], cpu);
I
Ingo Molnar 已提交
1026

1027
		pr_info("CPU#%d:   gen-PMC%d ctrl:  %016llx\n",
I
Ingo Molnar 已提交
1028
			cpu, idx, pmc_ctrl);
1029
		pr_info("CPU#%d:   gen-PMC%d count: %016llx\n",
I
Ingo Molnar 已提交
1030
			cpu, idx, pmc_count);
1031
		pr_info("CPU#%d:   gen-PMC%d left:  %016llx\n",
1032
			cpu, idx, prev_left);
I
Ingo Molnar 已提交
1033
	}
1034
	for (idx = 0; idx < x86_pmu.num_events_fixed; idx++) {
1035 1036
		rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);

1037
		pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1038 1039
			cpu, idx, pmc_count);
	}
1040
	local_irq_restore(flags);
I
Ingo Molnar 已提交
1041 1042
}

1043
static void x86_pmu_stop(struct perf_event *event)
I
Ingo Molnar 已提交
1044
{
1045
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1046
	struct hw_perf_event *hwc = &event->hw;
1047
	int idx = hwc->idx;
I
Ingo Molnar 已提交
1048

1049 1050 1051 1052
	/*
	 * Must be done before we disable, otherwise the nmi handler
	 * could reenable again:
	 */
1053
	clear_bit(idx, cpuc->active_mask);
1054
	x86_pmu.disable(hwc, idx);
I
Ingo Molnar 已提交
1055

1056
	/*
1057
	 * Drain the remaining delta count out of a event
1058 1059
	 * that we are disabling:
	 */
1060
	x86_perf_event_update(event, hwc, idx);
1061

1062
	cpuc->events[idx] = NULL;
1063 1064 1065 1066 1067 1068 1069
}

static void x86_pmu_disable(struct perf_event *event)
{
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
	int i;

1070
	x86_pmu_stop(event);
1071

1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
	for (i = 0; i < cpuc->n_events; i++) {
		if (event == cpuc->event_list[i]) {

			if (x86_pmu.put_event_constraints)
				x86_pmu.put_event_constraints(cpuc, event);

			while (++i < cpuc->n_events)
				cpuc->event_list[i-1] = cpuc->event_list[i];

			--cpuc->n_events;
1082
			break;
1083 1084
		}
	}
1085
	perf_event_update_userpage(event);
I
Ingo Molnar 已提交
1086 1087
}

1088
static int x86_pmu_handle_irq(struct pt_regs *regs)
1089
{
1090
	struct perf_sample_data data;
1091 1092 1093
	struct cpu_hw_events *cpuc;
	struct perf_event *event;
	struct hw_perf_event *hwc;
V
Vince Weaver 已提交
1094
	int idx, handled = 0;
1095 1096
	u64 val;

1097
	data.addr = 0;
1098
	data.raw = NULL;
1099

1100
	cpuc = &__get_cpu_var(cpu_hw_events);
1101

1102
	for (idx = 0; idx < x86_pmu.num_events; idx++) {
1103
		if (!test_bit(idx, cpuc->active_mask))
1104
			continue;
1105

1106 1107
		event = cpuc->events[idx];
		hwc = &event->hw;
1108

1109 1110
		val = x86_perf_event_update(event, hwc, idx);
		if (val & (1ULL << (x86_pmu.event_bits - 1)))
1111
			continue;
1112

1113
		/*
1114
		 * event overflow
1115 1116
		 */
		handled		= 1;
1117
		data.period	= event->hw.last_period;
1118

1119
		if (!x86_perf_event_set_period(event, hwc, idx))
1120 1121
			continue;

1122
		if (perf_event_overflow(event, 1, &data, regs))
1123
			x86_pmu.disable(hwc, idx);
1124
	}
1125

1126 1127 1128
	if (handled)
		inc_irq_stat(apic_perf_irqs);

1129 1130
	return handled;
}
1131

1132 1133 1134 1135 1136
void smp_perf_pending_interrupt(struct pt_regs *regs)
{
	irq_enter();
	ack_APIC_irq();
	inc_irq_stat(apic_pending_irqs);
1137
	perf_event_do_pending();
1138 1139 1140
	irq_exit();
}

1141
void set_perf_event_pending(void)
1142
{
1143
#ifdef CONFIG_X86_LOCAL_APIC
1144 1145 1146
	if (!x86_pmu.apic || !x86_pmu_initialized())
		return;

1147
	apic->send_IPI_self(LOCAL_PENDING_VECTOR);
1148
#endif
1149 1150
}

1151
void perf_events_lapic_init(void)
I
Ingo Molnar 已提交
1152
{
1153 1154
#ifdef CONFIG_X86_LOCAL_APIC
	if (!x86_pmu.apic || !x86_pmu_initialized())
I
Ingo Molnar 已提交
1155
		return;
1156

I
Ingo Molnar 已提交
1157
	/*
1158
	 * Always use NMI for PMU
I
Ingo Molnar 已提交
1159
	 */
1160
	apic_write(APIC_LVTPC, APIC_DM_NMI);
1161
#endif
I
Ingo Molnar 已提交
1162 1163 1164
}

static int __kprobes
1165
perf_event_nmi_handler(struct notifier_block *self,
I
Ingo Molnar 已提交
1166 1167 1168 1169
			 unsigned long cmd, void *__args)
{
	struct die_args *args = __args;
	struct pt_regs *regs;
1170

1171
	if (!atomic_read(&active_events))
1172 1173
		return NOTIFY_DONE;

1174 1175 1176 1177
	switch (cmd) {
	case DIE_NMI:
	case DIE_NMI_IPI:
		break;
I
Ingo Molnar 已提交
1178

1179
	default:
I
Ingo Molnar 已提交
1180
		return NOTIFY_DONE;
1181
	}
I
Ingo Molnar 已提交
1182 1183 1184

	regs = args->regs;

1185
#ifdef CONFIG_X86_LOCAL_APIC
I
Ingo Molnar 已提交
1186
	apic_write(APIC_LVTPC, APIC_DM_NMI);
1187
#endif
1188 1189
	/*
	 * Can't rely on the handled return value to say it was our NMI, two
1190
	 * events could trigger 'simultaneously' raising two back-to-back NMIs.
1191 1192 1193 1194
	 *
	 * If the first NMI handles both, the latter will be empty and daze
	 * the CPU.
	 */
1195
	x86_pmu.handle_irq(regs);
I
Ingo Molnar 已提交
1196

1197
	return NOTIFY_STOP;
I
Ingo Molnar 已提交
1198 1199
}

1200 1201 1202 1203 1204 1205
static __read_mostly struct notifier_block perf_event_nmi_notifier = {
	.notifier_call		= perf_event_nmi_handler,
	.next			= NULL,
	.priority		= 1
};

1206
static struct event_constraint unconstrained;
1207
static struct event_constraint emptyconstraint;
1208 1209

static struct event_constraint *
1210
x86_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
1211
{
1212
	struct event_constraint *c;
1213 1214 1215

	if (x86_pmu.event_constraints) {
		for_each_event_constraint(c, x86_pmu.event_constraints) {
1216 1217
			if ((event->hw.config & c->cmask) == c->code)
				return c;
1218 1219
		}
	}
1220 1221

	return &unconstrained;
1222 1223 1224
}

static int x86_event_sched_in(struct perf_event *event,
1225
			  struct perf_cpu_context *cpuctx)
1226 1227 1228 1229
{
	int ret = 0;

	event->state = PERF_EVENT_STATE_ACTIVE;
1230
	event->oncpu = smp_processor_id();
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
	event->tstamp_running += event->ctx->time - event->tstamp_stopped;

	if (!is_x86_event(event))
		ret = event->pmu->enable(event);

	if (!ret && !is_software_event(event))
		cpuctx->active_oncpu++;

	if (!ret && event->attr.exclusive)
		cpuctx->exclusive = 1;

	return ret;
}

static void x86_event_sched_out(struct perf_event *event,
1246
			    struct perf_cpu_context *cpuctx)
1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
{
	event->state = PERF_EVENT_STATE_INACTIVE;
	event->oncpu = -1;

	if (!is_x86_event(event))
		event->pmu->disable(event);

	event->tstamp_running -= event->ctx->time - event->tstamp_stopped;

	if (!is_software_event(event))
		cpuctx->active_oncpu--;

	if (event->attr.exclusive || !cpuctx->active_oncpu)
		cpuctx->exclusive = 0;
}

/*
 * Called to enable a whole group of events.
 * Returns 1 if the group was enabled, or -EAGAIN if it could not be.
 * Assumes the caller has disabled interrupts and has
 * frozen the PMU with hw_perf_save_disable.
 *
 * called with PMU disabled. If successful and return value 1,
 * then guaranteed to call perf_enable() and hw_perf_enable()
 */
int hw_perf_group_sched_in(struct perf_event *leader,
	       struct perf_cpu_context *cpuctx,
1274
	       struct perf_event_context *ctx)
1275
{
1276
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
	struct perf_event *sub;
	int assign[X86_PMC_IDX_MAX];
	int n0, n1, ret;

	/* n0 = total number of events */
	n0 = collect_events(cpuc, leader, true);
	if (n0 < 0)
		return n0;

	ret = x86_schedule_events(cpuc, n0, assign);
	if (ret)
		return ret;

1290
	ret = x86_event_sched_in(leader, cpuctx);
1291 1292 1293 1294 1295
	if (ret)
		return ret;

	n1 = 1;
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
1296
		if (sub->state > PERF_EVENT_STATE_OFF) {
1297
			ret = x86_event_sched_in(sub, cpuctx);
1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
			if (ret)
				goto undo;
			++n1;
		}
	}
	/*
	 * copy new assignment, now we know it is possible
	 * will be used by hw_perf_enable()
	 */
	memcpy(cpuc->assign, assign, n0*sizeof(int));

	cpuc->n_events  = n0;
	cpuc->n_added   = n1;
	ctx->nr_active += n1;

	/*
	 * 1 means successful and events are active
	 * This is not quite true because we defer
	 * actual activation until hw_perf_enable() but
	 * this way we* ensure caller won't try to enable
	 * individual events
	 */
	return 1;
undo:
1322
	x86_event_sched_out(leader, cpuctx);
1323 1324 1325
	n0  = 1;
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
1326
			x86_event_sched_out(sub, cpuctx);
1327 1328 1329 1330 1331 1332 1333
			if (++n0 == n1)
				break;
		}
	}
	return ret;
}

1334 1335 1336
#include "perf_event_amd.c"
#include "perf_event_p6.c"
#include "perf_event_intel.c"
1337

1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
static void __init pmu_check_apic(void)
{
	if (cpu_has_apic)
		return;

	x86_pmu.apic = 0;
	pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
	pr_info("no hardware sampling interrupt available.\n");
}

1348
void __init init_hw_perf_events(void)
1349
{
1350 1351
	int err;

1352
	pr_info("Performance Events: ");
1353

1354 1355
	switch (boot_cpu_data.x86_vendor) {
	case X86_VENDOR_INTEL:
1356
		err = intel_pmu_init();
1357
		break;
1358
	case X86_VENDOR_AMD:
1359
		err = amd_pmu_init();
1360
		break;
1361 1362
	default:
		return;
1363
	}
1364
	if (err != 0) {
1365
		pr_cont("no PMU driver, software events only.\n");
1366
		return;
1367
	}
1368

1369 1370
	pmu_check_apic();

1371
	pr_cont("%s PMU driver.\n", x86_pmu.name);
1372

1373 1374 1375 1376
	if (x86_pmu.num_events > X86_PMC_MAX_GENERIC) {
		WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
		     x86_pmu.num_events, X86_PMC_MAX_GENERIC);
		x86_pmu.num_events = X86_PMC_MAX_GENERIC;
I
Ingo Molnar 已提交
1377
	}
1378 1379
	perf_event_mask = (1 << x86_pmu.num_events) - 1;
	perf_max_events = x86_pmu.num_events;
I
Ingo Molnar 已提交
1380

1381 1382 1383 1384
	if (x86_pmu.num_events_fixed > X86_PMC_MAX_FIXED) {
		WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
		     x86_pmu.num_events_fixed, X86_PMC_MAX_FIXED);
		x86_pmu.num_events_fixed = X86_PMC_MAX_FIXED;
1385
	}
1386

1387 1388 1389
	perf_event_mask |=
		((1LL << x86_pmu.num_events_fixed)-1) << X86_PMC_IDX_FIXED;
	x86_pmu.intel_ctrl = perf_event_mask;
I
Ingo Molnar 已提交
1390

1391 1392
	perf_events_lapic_init();
	register_die_notifier(&perf_event_nmi_notifier);
1393

1394
	unconstrained = (struct event_constraint)
1395 1396
		__EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_events) - 1,
				   0, x86_pmu.num_events);
1397

I
Ingo Molnar 已提交
1398 1399 1400 1401 1402 1403 1404
	pr_info("... version:                %d\n",     x86_pmu.version);
	pr_info("... bit width:              %d\n",     x86_pmu.event_bits);
	pr_info("... generic registers:      %d\n",     x86_pmu.num_events);
	pr_info("... value mask:             %016Lx\n", x86_pmu.event_mask);
	pr_info("... max period:             %016Lx\n", x86_pmu.max_period);
	pr_info("... fixed-purpose events:   %d\n",     x86_pmu.num_events_fixed);
	pr_info("... event mask:             %016Lx\n", perf_event_mask);
I
Ingo Molnar 已提交
1405
}
I
Ingo Molnar 已提交
1406

1407
static inline void x86_pmu_read(struct perf_event *event)
1408
{
1409
	x86_perf_event_update(event, &event->hw, event->hw.idx);
1410 1411
}

1412 1413 1414
static const struct pmu pmu = {
	.enable		= x86_pmu_enable,
	.disable	= x86_pmu_disable,
1415 1416
	.start		= x86_pmu_start,
	.stop		= x86_pmu_stop,
1417
	.read		= x86_pmu_read,
1418
	.unthrottle	= x86_pmu_unthrottle,
I
Ingo Molnar 已提交
1419 1420
};

1421 1422 1423 1424
/*
 * validate a single event group
 *
 * validation include:
1425 1426 1427
 *	- check events are compatible which each other
 *	- events do not compete for the same counter
 *	- number of events <= number of counters
1428 1429 1430 1431
 *
 * validation ensures the group can be loaded onto the
 * PMU if it was the only group available.
 */
1432 1433
static int validate_group(struct perf_event *event)
{
1434
	struct perf_event *leader = event->group_leader;
1435 1436
	struct cpu_hw_events *fake_cpuc;
	int ret, n;
1437

1438 1439 1440 1441
	ret = -ENOMEM;
	fake_cpuc = kmalloc(sizeof(*fake_cpuc), GFP_KERNEL | __GFP_ZERO);
	if (!fake_cpuc)
		goto out;
1442

1443 1444 1445 1446 1447 1448
	/*
	 * the event is not yet connected with its
	 * siblings therefore we must first collect
	 * existing siblings, then add the new event
	 * before we can simulate the scheduling
	 */
1449 1450
	ret = -ENOSPC;
	n = collect_events(fake_cpuc, leader, true);
1451
	if (n < 0)
1452
		goto out_free;
1453

1454 1455
	fake_cpuc->n_events = n;
	n = collect_events(fake_cpuc, event, false);
1456
	if (n < 0)
1457
		goto out_free;
1458

1459
	fake_cpuc->n_events = n;
1460

1461 1462 1463 1464 1465 1466
	ret = x86_schedule_events(fake_cpuc, n, NULL);

out_free:
	kfree(fake_cpuc);
out:
	return ret;
1467 1468
}

1469
const struct pmu *hw_perf_event_init(struct perf_event *event)
I
Ingo Molnar 已提交
1470
{
1471
	const struct pmu *tmp;
I
Ingo Molnar 已提交
1472 1473
	int err;

1474
	err = __hw_perf_event_init(event);
1475
	if (!err) {
1476 1477 1478 1479 1480 1481 1482 1483
		/*
		 * we temporarily connect event to its pmu
		 * such that validate_group() can classify
		 * it as an x86 event using is_x86_event()
		 */
		tmp = event->pmu;
		event->pmu = &pmu;

1484 1485
		if (event->group_leader != event)
			err = validate_group(event);
1486 1487

		event->pmu = tmp;
1488
	}
1489
	if (err) {
1490 1491
		if (event->destroy)
			event->destroy(event);
1492
		return ERR_PTR(err);
1493
	}
I
Ingo Molnar 已提交
1494

1495
	return &pmu;
I
Ingo Molnar 已提交
1496
}
1497 1498 1499 1500 1501 1502

/*
 * callchain support
 */

static inline
1503
void callchain_store(struct perf_callchain_entry *entry, u64 ip)
1504
{
1505
	if (entry->nr < PERF_MAX_STACK_DEPTH)
1506 1507 1508
		entry->ip[entry->nr++] = ip;
}

1509 1510
static DEFINE_PER_CPU(struct perf_callchain_entry, pmc_irq_entry);
static DEFINE_PER_CPU(struct perf_callchain_entry, pmc_nmi_entry);
1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525


static void
backtrace_warning_symbol(void *data, char *msg, unsigned long symbol)
{
	/* Ignore warnings */
}

static void backtrace_warning(void *data, char *msg)
{
	/* Ignore warnings */
}

static int backtrace_stack(void *data, char *name)
{
1526
	return 0;
1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541
}

static void backtrace_address(void *data, unsigned long addr, int reliable)
{
	struct perf_callchain_entry *entry = data;

	if (reliable)
		callchain_store(entry, addr);
}

static const struct stacktrace_ops backtrace_ops = {
	.warning		= backtrace_warning,
	.warning_symbol		= backtrace_warning_symbol,
	.stack			= backtrace_stack,
	.address		= backtrace_address,
1542
	.walk_stack		= print_context_stack_bp,
1543 1544
};

1545 1546
#include "../dumpstack.h"

1547 1548 1549
static void
perf_callchain_kernel(struct pt_regs *regs, struct perf_callchain_entry *entry)
{
1550
	callchain_store(entry, PERF_CONTEXT_KERNEL);
1551
	callchain_store(entry, regs->ip);
1552

1553
	dump_trace(NULL, regs, NULL, regs->bp, &backtrace_ops, entry);
1554 1555
}

1556 1557 1558 1559 1560
/*
 * best effort, GUP based copy_from_user() that assumes IRQ or NMI context
 */
static unsigned long
copy_from_user_nmi(void *to, const void __user *from, unsigned long n)
1561
{
1562 1563 1564 1565 1566
	unsigned long offset, addr = (unsigned long)from;
	int type = in_nmi() ? KM_NMI : KM_IRQ0;
	unsigned long size, len = 0;
	struct page *page;
	void *map;
1567 1568
	int ret;

1569 1570 1571 1572
	do {
		ret = __get_user_pages_fast(addr, 1, 0, &page);
		if (!ret)
			break;
1573

1574 1575
		offset = addr & (PAGE_SIZE - 1);
		size = min(PAGE_SIZE - offset, n - len);
1576

1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597
		map = kmap_atomic(page, type);
		memcpy(to, map+offset, size);
		kunmap_atomic(map, type);
		put_page(page);

		len  += size;
		to   += size;
		addr += size;

	} while (len < n);

	return len;
}

static int copy_stack_frame(const void __user *fp, struct stack_frame *frame)
{
	unsigned long bytes;

	bytes = copy_from_user_nmi(frame, fp, sizeof(*frame));

	return bytes == sizeof(*frame);
1598 1599 1600 1601 1602 1603 1604 1605
}

static void
perf_callchain_user(struct pt_regs *regs, struct perf_callchain_entry *entry)
{
	struct stack_frame frame;
	const void __user *fp;

1606 1607 1608
	if (!user_mode(regs))
		regs = task_pt_regs(current);

1609
	fp = (void __user *)regs->bp;
1610

1611
	callchain_store(entry, PERF_CONTEXT_USER);
1612 1613
	callchain_store(entry, regs->ip);

1614
	while (entry->nr < PERF_MAX_STACK_DEPTH) {
1615
		frame.next_frame	     = NULL;
1616 1617 1618 1619 1620
		frame.return_address = 0;

		if (!copy_stack_frame(fp, &frame))
			break;

1621
		if ((unsigned long)fp < regs->sp)
1622 1623 1624
			break;

		callchain_store(entry, frame.return_address);
1625
		fp = frame.next_frame;
1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653
	}
}

static void
perf_do_callchain(struct pt_regs *regs, struct perf_callchain_entry *entry)
{
	int is_user;

	if (!regs)
		return;

	is_user = user_mode(regs);

	if (is_user && current->state != TASK_RUNNING)
		return;

	if (!is_user)
		perf_callchain_kernel(regs, entry);

	if (current->mm)
		perf_callchain_user(regs, entry);
}

struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
{
	struct perf_callchain_entry *entry;

	if (in_nmi())
1654
		entry = &__get_cpu_var(pmc_nmi_entry);
1655
	else
1656
		entry = &__get_cpu_var(pmc_irq_entry);
1657 1658 1659 1660 1661 1662 1663

	entry->nr = 0;

	perf_do_callchain(regs, entry);

	return entry;
}
1664

1665
void hw_perf_event_setup_online(int cpu)
1666 1667
{
	init_debug_store_on_cpu(cpu);
1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688

	switch (boot_cpu_data.x86_vendor) {
	case X86_VENDOR_AMD:
		amd_pmu_cpu_online(cpu);
		break;
	default:
		return;
	}
}

void hw_perf_event_setup_offline(int cpu)
{
	init_debug_store_on_cpu(cpu);

	switch (boot_cpu_data.x86_vendor) {
	case X86_VENDOR_AMD:
		amd_pmu_cpu_offline(cpu);
		break;
	default:
		return;
	}
1689
}