perf_event.c 74.6 KB
Newer Older
I
Ingo Molnar 已提交
1
/*
2
 * Performance events x86 architecture code
I
Ingo Molnar 已提交
3
 *
4 5 6 7 8
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
 *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2009 Jaswinder Singh Rajput
 *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
 *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
9
 *  Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10
 *  Copyright (C) 2009 Google, Inc., Stephane Eranian
I
Ingo Molnar 已提交
11 12 13 14
 *
 *  For licencing details see kernel-base/COPYING
 */

15
#include <linux/perf_event.h>
I
Ingo Molnar 已提交
16 17 18 19
#include <linux/capability.h>
#include <linux/notifier.h>
#include <linux/hardirq.h>
#include <linux/kprobes.h>
20
#include <linux/module.h>
I
Ingo Molnar 已提交
21 22
#include <linux/kdebug.h>
#include <linux/sched.h>
23
#include <linux/uaccess.h>
24
#include <linux/highmem.h>
25
#include <linux/cpu.h>
26
#include <linux/bitops.h>
I
Ingo Molnar 已提交
27 28

#include <asm/apic.h>
29
#include <asm/stacktrace.h>
P
Peter Zijlstra 已提交
30
#include <asm/nmi.h>
I
Ingo Molnar 已提交
31

32
static u64 perf_event_mask __read_mostly;
33

34 35
/* The maximal number of PEBS events: */
#define MAX_PEBS_EVENTS	4
36 37 38 39 40

/* The size of a BTS record in bytes: */
#define BTS_RECORD_SIZE		24

/* The size of a per-cpu BTS buffer in bytes: */
41
#define BTS_BUFFER_SIZE		(BTS_RECORD_SIZE * 2048)
42 43

/* The BTS overflow threshold in bytes from the end of the buffer: */
44
#define BTS_OVFL_TH		(BTS_RECORD_SIZE * 128)
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69


/*
 * Bits in the debugctlmsr controlling branch tracing.
 */
#define X86_DEBUGCTL_TR			(1 << 6)
#define X86_DEBUGCTL_BTS		(1 << 7)
#define X86_DEBUGCTL_BTINT		(1 << 8)
#define X86_DEBUGCTL_BTS_OFF_OS		(1 << 9)
#define X86_DEBUGCTL_BTS_OFF_USR	(1 << 10)

/*
 * A debug store configuration.
 *
 * We only support architectures that use 64bit fields.
 */
struct debug_store {
	u64	bts_buffer_base;
	u64	bts_index;
	u64	bts_absolute_maximum;
	u64	bts_interrupt_threshold;
	u64	pebs_buffer_base;
	u64	pebs_index;
	u64	pebs_absolute_maximum;
	u64	pebs_interrupt_threshold;
70
	u64	pebs_event_reset[MAX_PEBS_EVENTS];
71 72
};

73
struct event_constraint {
74 75 76 77
	union {
		unsigned long	idxmsk[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
		u64		idxmsk64[1];
	};
78 79
	int	code;
	int	cmask;
80
	int	weight;
81 82
};

83 84 85 86 87 88 89
struct amd_nb {
	int nb_id;  /* NorthBridge id */
	int refcnt; /* reference count */
	struct perf_event *owners[X86_PMC_IDX_MAX];
	struct event_constraint event_constraints[X86_PMC_IDX_MAX];
};

90
struct cpu_hw_events {
91
	struct perf_event	*events[X86_PMC_IDX_MAX]; /* in counter order */
92
	unsigned long		active_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
93
	unsigned long		interrupts;
94
	int			enabled;
95
	struct debug_store	*ds;
I
Ingo Molnar 已提交
96

97 98 99
	int			n_events;
	int			n_added;
	int			assign[X86_PMC_IDX_MAX]; /* event to counter assignment */
100
	u64			tags[X86_PMC_IDX_MAX];
101
	struct perf_event	*event_list[X86_PMC_IDX_MAX]; /* in enabled order */
102
	struct amd_nb		*amd_nb;
103 104
};

105
#define __EVENT_CONSTRAINT(c, n, m, w) {\
106 107 108
	{ .idxmsk64[0] = (n) },		\
	.code = (c),			\
	.cmask = (m),			\
109
	.weight = (w),			\
110
}
111

112 113 114
#define EVENT_CONSTRAINT(c, n, m)	\
	__EVENT_CONSTRAINT(c, n, m, HWEIGHT(n))

115 116
#define INTEL_EVENT_CONSTRAINT(c, n)	\
	EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVTSEL_MASK)
117

118 119
#define FIXED_EVENT_CONSTRAINT(c, n)	\
	EVENT_CONSTRAINT(c, n, INTEL_ARCH_FIXED_MASK)
120

121 122 123 124 125
#define EVENT_CONSTRAINT_END		\
	EVENT_CONSTRAINT(0, 0, 0)

#define for_each_event_constraint(e, c)	\
	for ((e) = (c); (e)->cmask; (e)++)
126

I
Ingo Molnar 已提交
127
/*
128
 * struct x86_pmu - generic x86 pmu
I
Ingo Molnar 已提交
129
 */
130
struct x86_pmu {
131 132
	const char	*name;
	int		version;
133
	int		(*handle_irq)(struct pt_regs *);
134 135
	void		(*disable_all)(void);
	void		(*enable_all)(void);
136 137
	void		(*enable)(struct hw_perf_event *, int);
	void		(*disable)(struct hw_perf_event *, int);
138 139
	unsigned	eventsel;
	unsigned	perfctr;
140 141
	u64		(*event_map)(int);
	u64		(*raw_event)(u64);
142
	int		max_events;
143 144 145 146
	int		num_events;
	int		num_events_fixed;
	int		event_bits;
	u64		event_mask;
147
	int		apic;
148
	u64		max_period;
149
	u64		intel_ctrl;
150 151
	void		(*enable_bts)(u64 config);
	void		(*disable_bts)(void);
152 153 154 155 156

	struct event_constraint *
			(*get_event_constraints)(struct cpu_hw_events *cpuc,
						 struct perf_event *event);

157 158
	void		(*put_event_constraints)(struct cpu_hw_events *cpuc,
						 struct perf_event *event);
159
	struct event_constraint *event_constraints;
160 161
};

162
static struct x86_pmu x86_pmu __read_mostly;
163

164 165
static raw_spinlock_t amd_nb_lock;

166
static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
167 168
	.enabled = 1,
};
I
Ingo Molnar 已提交
169

170 171
static int x86_perf_event_set_period(struct perf_event *event,
			     struct hw_perf_event *hwc, int idx);
172

V
Vince Weaver 已提交
173 174 175 176 177 178 179
/*
 * Not sure about some of these
 */
static const u64 p6_perfmon_event_map[] =
{
  [PERF_COUNT_HW_CPU_CYCLES]		= 0x0079,
  [PERF_COUNT_HW_INSTRUCTIONS]		= 0x00c0,
180 181
  [PERF_COUNT_HW_CACHE_REFERENCES]	= 0x0f2e,
  [PERF_COUNT_HW_CACHE_MISSES]		= 0x012e,
V
Vince Weaver 已提交
182 183 184 185 186
  [PERF_COUNT_HW_BRANCH_INSTRUCTIONS]	= 0x00c4,
  [PERF_COUNT_HW_BRANCH_MISSES]		= 0x00c5,
  [PERF_COUNT_HW_BUS_CYCLES]		= 0x0062,
};

187
static u64 p6_pmu_event_map(int hw_event)
V
Vince Weaver 已提交
188
{
189
	return p6_perfmon_event_map[hw_event];
V
Vince Weaver 已提交
190 191
}

192
/*
193
 * Event setting that is specified not to count anything.
194 195 196 197
 * We use this to effectively disable a counter.
 *
 * L2_RQSTS with 0 MESI unit mask.
 */
198
#define P6_NOP_EVENT			0x0000002EULL
199

200
static u64 p6_pmu_raw_event(u64 hw_event)
V
Vince Weaver 已提交
201 202 203 204 205
{
#define P6_EVNTSEL_EVENT_MASK		0x000000FFULL
#define P6_EVNTSEL_UNIT_MASK		0x0000FF00ULL
#define P6_EVNTSEL_EDGE_MASK		0x00040000ULL
#define P6_EVNTSEL_INV_MASK		0x00800000ULL
206
#define P6_EVNTSEL_REG_MASK		0xFF000000ULL
V
Vince Weaver 已提交
207 208 209 210 211 212

#define P6_EVNTSEL_MASK			\
	(P6_EVNTSEL_EVENT_MASK |	\
	 P6_EVNTSEL_UNIT_MASK  |	\
	 P6_EVNTSEL_EDGE_MASK  |	\
	 P6_EVNTSEL_INV_MASK   |	\
213
	 P6_EVNTSEL_REG_MASK)
V
Vince Weaver 已提交
214

215
	return hw_event & P6_EVNTSEL_MASK;
V
Vince Weaver 已提交
216 217
}

218
static struct event_constraint intel_p6_event_constraints[] =
219
{
220 221 222 223 224 225
	INTEL_EVENT_CONSTRAINT(0xc1, 0x1),	/* FLOPS */
	INTEL_EVENT_CONSTRAINT(0x10, 0x1),	/* FP_COMP_OPS_EXE */
	INTEL_EVENT_CONSTRAINT(0x11, 0x1),	/* FP_ASSIST */
	INTEL_EVENT_CONSTRAINT(0x12, 0x2),	/* MUL */
	INTEL_EVENT_CONSTRAINT(0x13, 0x2),	/* DIV */
	INTEL_EVENT_CONSTRAINT(0x14, 0x1),	/* CYCLES_DIV_BUSY */
226 227
	EVENT_CONSTRAINT_END
};
V
Vince Weaver 已提交
228

229 230 231
/*
 * Intel PerfMon v3. Used on Core2 and later.
 */
232
static const u64 intel_perfmon_event_map[] =
I
Ingo Molnar 已提交
233
{
234 235 236 237 238 239 240
  [PERF_COUNT_HW_CPU_CYCLES]		= 0x003c,
  [PERF_COUNT_HW_INSTRUCTIONS]		= 0x00c0,
  [PERF_COUNT_HW_CACHE_REFERENCES]	= 0x4f2e,
  [PERF_COUNT_HW_CACHE_MISSES]		= 0x412e,
  [PERF_COUNT_HW_BRANCH_INSTRUCTIONS]	= 0x00c4,
  [PERF_COUNT_HW_BRANCH_MISSES]		= 0x00c5,
  [PERF_COUNT_HW_BUS_CYCLES]		= 0x013c,
I
Ingo Molnar 已提交
241 242
};

243
static struct event_constraint intel_core_event_constraints[] =
244 245 246 247 248 249 250 251 252 253 254
{
	INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
	INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
	INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
	INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
	INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
	INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
	EVENT_CONSTRAINT_END
};

static struct event_constraint intel_core2_event_constraints[] =
255
{
256 257 258 259 260 261 262 263 264 265 266
	FIXED_EVENT_CONSTRAINT(0xc0, (0x3|(1ULL<<32))), /* INSTRUCTIONS_RETIRED */
	FIXED_EVENT_CONSTRAINT(0x3c, (0x3|(1ULL<<33))), /* UNHALTED_CORE_CYCLES */
	INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
	INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
	INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
	INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
	INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
	INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
	INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
	INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
	INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
267 268 269
	EVENT_CONSTRAINT_END
};

270 271
static struct event_constraint intel_nehalem_event_constraints[] =
{
272 273
	FIXED_EVENT_CONSTRAINT(0xc0, (0xf|(1ULL<<32))), /* INSTRUCTIONS_RETIRED */
	FIXED_EVENT_CONSTRAINT(0x3c, (0xf|(1ULL<<33))), /* UNHALTED_CORE_CYCLES */
274 275 276 277
	INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
	INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
	INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
	INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
278
	INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
279 280
	INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
	INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
281 282 283 284 285 286 287 288 289 290 291
	INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
	EVENT_CONSTRAINT_END
};

static struct event_constraint intel_westmere_event_constraints[] =
{
	FIXED_EVENT_CONSTRAINT(0xc0, (0xf|(1ULL<<32))), /* INSTRUCTIONS_RETIRED */
	FIXED_EVENT_CONSTRAINT(0x3c, (0xf|(1ULL<<33))), /* UNHALTED_CORE_CYCLES */
	INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
	INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
	INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
292 293 294 295 296
	EVENT_CONSTRAINT_END
};

static struct event_constraint intel_gen_event_constraints[] =
{
297 298
	FIXED_EVENT_CONSTRAINT(0xc0, (0x3|(1ULL<<32))), /* INSTRUCTIONS_RETIRED */
	FIXED_EVENT_CONSTRAINT(0x3c, (0x3|(1ULL<<33))), /* UNHALTED_CORE_CYCLES */
299 300 301
	EVENT_CONSTRAINT_END
};

302
static u64 intel_pmu_event_map(int hw_event)
303
{
304
	return intel_perfmon_event_map[hw_event];
305
}
I
Ingo Molnar 已提交
306

307
/*
308
 * Generalized hw caching related hw_event table, filled
309
 * in on a per model basis. A value of 0 means
310 311
 * 'not supported', -1 means 'hw_event makes no sense on
 * this CPU', any other value means the raw hw_event
312 313 314 315 316 317 318 319 320 321
 * ID.
 */

#define C(x) PERF_COUNT_HW_CACHE_##x

static u64 __read_mostly hw_cache_event_ids
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX];

322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
static __initconst u64 westmere_hw_cache_event_ids
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(L1D) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
		[ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
		[ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
	},
 },
 [ C(L1I ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0324, /* L2_RQSTS.LOADS               */
		[ C(RESULT_MISS)   ] = 0x0224, /* L2_RQSTS.LD_MISS             */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x0c24, /* L2_RQSTS.RFOS                */
		[ C(RESULT_MISS)   ] = 0x0824, /* L2_RQSTS.RFO_MISS            */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x4f2e, /* LLC Reference                */
		[ C(RESULT_MISS)   ] = 0x412e, /* LLC Misses                   */
	},
 },
 [ C(DTLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
		[ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(ITLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
		[ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.ANY              */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
 [ C(BPU ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
		[ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
};

413
static __initconst u64 nehalem_hw_cache_event_ids
414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(L1D) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI            */
		[ C(RESULT_MISS)   ] = 0x0140, /* L1D_CACHE_LD.I_STATE         */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI            */
		[ C(RESULT_MISS)   ] = 0x0141, /* L1D_CACHE_ST.I_STATE         */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
		[ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
	},
 },
 [ C(L1I ) ] = {
	[ C(OP_READ) ] = {
434
		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
435 436 437 438 439 440 441 442 443 444 445
		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
446
 [ C(LL  ) ] = {
447 448 449 450 451 452 453 454 455
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0324, /* L2_RQSTS.LOADS               */
		[ C(RESULT_MISS)   ] = 0x0224, /* L2_RQSTS.LD_MISS             */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x0c24, /* L2_RQSTS.RFOS                */
		[ C(RESULT_MISS)   ] = 0x0824, /* L2_RQSTS.RFO_MISS            */
	},
	[ C(OP_PREFETCH) ] = {
456 457
		[ C(RESULT_ACCESS) ] = 0x4f2e, /* LLC Reference                */
		[ C(RESULT_MISS)   ] = 0x412e, /* LLC Misses                   */
458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
	},
 },
 [ C(DTLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI   (alias)  */
		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI   (alias)  */
		[ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(ITLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
477
		[ C(RESULT_MISS)   ] = 0x20c8, /* ITLB_MISS_RETIRED            */
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
 [ C(BPU ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
		[ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
};

504
static __initconst u64 core2_hw_cache_event_ids
505 506 507 508
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
 [ C(L1D) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI          */
		[ C(RESULT_MISS)   ] = 0x0140, /* L1D_CACHE_LD.I_STATE       */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI          */
		[ C(RESULT_MISS)   ] = 0x0141, /* L1D_CACHE_ST.I_STATE       */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS      */
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(L1I ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS                  */
		[ C(RESULT_MISS)   ] = 0x0081, /* L1I.MISSES                 */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
537
 [ C(LL  ) ] = {
538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
		[ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
		[ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(DTLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI  (alias) */
		[ C(RESULT_MISS)   ] = 0x0208, /* DTLB_MISSES.MISS_LD        */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI  (alias) */
		[ C(RESULT_MISS)   ] = 0x0808, /* DTLB_MISSES.MISS_ST        */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(ITLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
		[ C(RESULT_MISS)   ] = 0x1282, /* ITLBMISSES                 */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
 [ C(BPU ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
593 594
};

595
static __initconst u64 atom_hw_cache_event_ids
596 597 598 599
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
600 601 602 603 604 605
 [ C(L1D) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD               */
		[ C(RESULT_MISS)   ] = 0,
	},
	[ C(OP_WRITE) ] = {
606
		[ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST               */
607 608 609 610 611 612 613 614 615
		[ C(RESULT_MISS)   ] = 0,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(L1I ) ] = {
	[ C(OP_READ) ] = {
616 617
		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                  */
		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                 */
618 619 620 621 622 623 624 625 626 627
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
628
 [ C(LL  ) ] = {
629 630 631 632 633 634 635 636 637 638 639 640 641 642 643
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
		[ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
		[ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(DTLB) ] = {
	[ C(OP_READ) ] = {
644
		[ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI  (alias) */
645 646 647
		[ C(RESULT_MISS)   ] = 0x0508, /* DTLB_MISSES.MISS_LD        */
	},
	[ C(OP_WRITE) ] = {
648
		[ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI  (alias) */
649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
		[ C(RESULT_MISS)   ] = 0x0608, /* DTLB_MISSES.MISS_ST        */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(ITLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
		[ C(RESULT_MISS)   ] = 0x0282, /* ITLB.MISSES                */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
 [ C(BPU ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
684 685
};

686
static u64 intel_pmu_raw_event(u64 hw_event)
687
{
688 689
#define CORE_EVNTSEL_EVENT_MASK		0x000000FFULL
#define CORE_EVNTSEL_UNIT_MASK		0x0000FF00ULL
690 691
#define CORE_EVNTSEL_EDGE_MASK		0x00040000ULL
#define CORE_EVNTSEL_INV_MASK		0x00800000ULL
692
#define CORE_EVNTSEL_REG_MASK		0xFF000000ULL
693

694
#define CORE_EVNTSEL_MASK		\
695 696 697 698 699
	(INTEL_ARCH_EVTSEL_MASK |	\
	 INTEL_ARCH_UNIT_MASK   |	\
	 INTEL_ARCH_EDGE_MASK   |	\
	 INTEL_ARCH_INV_MASK    |	\
	 INTEL_ARCH_CNT_MASK)
700

701
	return hw_event & CORE_EVNTSEL_MASK;
702 703
}

704
static __initconst u64 amd_hw_cache_event_ids
705 706 707 708 709 710
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(L1D) ] = {
	[ C(OP_READ) ] = {
711 712
		[ C(RESULT_ACCESS) ] = 0x0040, /* Data Cache Accesses        */
		[ C(RESULT_MISS)   ] = 0x0041, /* Data Cache Misses          */
713 714
	},
	[ C(OP_WRITE) ] = {
715
		[ C(RESULT_ACCESS) ] = 0x0142, /* Data Cache Refills :system */
716 717 718
		[ C(RESULT_MISS)   ] = 0,
	},
	[ C(OP_PREFETCH) ] = {
719 720
		[ C(RESULT_ACCESS) ] = 0x0267, /* Data Prefetcher :attempts  */
		[ C(RESULT_MISS)   ] = 0x0167, /* Data Prefetcher :cancelled */
721 722 723 724 725 726 727 728 729 730 731 732
	},
 },
 [ C(L1I ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0080, /* Instruction cache fetches  */
		[ C(RESULT_MISS)   ] = 0x0081, /* Instruction cache misses   */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
733
		[ C(RESULT_ACCESS) ] = 0x014B, /* Prefetch Instructions :Load */
734 735 736
		[ C(RESULT_MISS)   ] = 0,
	},
 },
737
 [ C(LL  ) ] = {
738
	[ C(OP_READ) ] = {
739 740
		[ C(RESULT_ACCESS) ] = 0x037D, /* Requests to L2 Cache :IC+DC */
		[ C(RESULT_MISS)   ] = 0x037E, /* L2 Cache Misses : IC+DC     */
741 742
	},
	[ C(OP_WRITE) ] = {
743
		[ C(RESULT_ACCESS) ] = 0x017F, /* L2 Fill/Writeback           */
744 745 746 747 748 749 750 751 752
		[ C(RESULT_MISS)   ] = 0,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(DTLB) ] = {
	[ C(OP_READ) ] = {
753 754
		[ C(RESULT_ACCESS) ] = 0x0040, /* Data Cache Accesses        */
		[ C(RESULT_MISS)   ] = 0x0046, /* L1 DTLB and L2 DLTB Miss   */
755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(ITLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0080, /* Instruction fecthes        */
		[ C(RESULT_MISS)   ] = 0x0085, /* Instr. fetch ITLB misses   */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
 [ C(BPU ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x00c2, /* Retired Branch Instr.      */
		[ C(RESULT_MISS)   ] = 0x00c3, /* Retired Mispredicted BI    */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
};

795 796 797
/*
 * AMD Performance Monitor K7 and later.
 */
798
static const u64 amd_perfmon_event_map[] =
799
{
800 801 802 803 804 805
  [PERF_COUNT_HW_CPU_CYCLES]		= 0x0076,
  [PERF_COUNT_HW_INSTRUCTIONS]		= 0x00c0,
  [PERF_COUNT_HW_CACHE_REFERENCES]	= 0x0080,
  [PERF_COUNT_HW_CACHE_MISSES]		= 0x0081,
  [PERF_COUNT_HW_BRANCH_INSTRUCTIONS]	= 0x00c4,
  [PERF_COUNT_HW_BRANCH_MISSES]		= 0x00c5,
806 807
};

808
static u64 amd_pmu_event_map(int hw_event)
809
{
810
	return amd_perfmon_event_map[hw_event];
811 812
}

813
static u64 amd_pmu_raw_event(u64 hw_event)
814
{
815
#define K7_EVNTSEL_EVENT_MASK	0xF000000FFULL
816
#define K7_EVNTSEL_UNIT_MASK	0x00000FF00ULL
817 818
#define K7_EVNTSEL_EDGE_MASK	0x000040000ULL
#define K7_EVNTSEL_INV_MASK	0x000800000ULL
819
#define K7_EVNTSEL_REG_MASK	0x0FF000000ULL
820 821 822 823

#define K7_EVNTSEL_MASK			\
	(K7_EVNTSEL_EVENT_MASK |	\
	 K7_EVNTSEL_UNIT_MASK  |	\
824 825
	 K7_EVNTSEL_EDGE_MASK  |	\
	 K7_EVNTSEL_INV_MASK   |	\
826
	 K7_EVNTSEL_REG_MASK)
827

828
	return hw_event & K7_EVNTSEL_MASK;
829 830
}

831
/*
832 833
 * Propagate event elapsed time into the generic event.
 * Can only be executed on the CPU where the event is active.
834 835
 * Returns the delta events processed.
 */
836
static u64
837 838
x86_perf_event_update(struct perf_event *event,
			struct hw_perf_event *hwc, int idx)
839
{
840
	int shift = 64 - x86_pmu.event_bits;
841 842
	u64 prev_raw_count, new_raw_count;
	s64 delta;
843

844 845 846
	if (idx == X86_PMC_IDX_FIXED_BTS)
		return 0;

847
	/*
848
	 * Careful: an NMI might modify the previous event value.
849 850 851
	 *
	 * Our tactic to handle this is to first atomically read and
	 * exchange a new raw count - then add that new-prev delta
852
	 * count to the generic event atomically:
853 854 855
	 */
again:
	prev_raw_count = atomic64_read(&hwc->prev_count);
856
	rdmsrl(hwc->event_base + idx, new_raw_count);
857 858 859 860 861 862 863 864

	if (atomic64_cmpxchg(&hwc->prev_count, prev_raw_count,
					new_raw_count) != prev_raw_count)
		goto again;

	/*
	 * Now we have the new raw value and have updated the prev
	 * timestamp already. We can now calculate the elapsed delta
865
	 * (event-)time and add that to the generic event.
866 867
	 *
	 * Careful, not all hw sign-extends above the physical width
868
	 * of the count.
869
	 */
870 871
	delta = (new_raw_count << shift) - (prev_raw_count << shift);
	delta >>= shift;
872

873
	atomic64_add(delta, &event->count);
874
	atomic64_sub(delta, &hwc->period_left);
875 876

	return new_raw_count;
877 878
}

879
static atomic_t active_events;
P
Peter Zijlstra 已提交
880 881 882 883
static DEFINE_MUTEX(pmc_reserve_mutex);

static bool reserve_pmc_hardware(void)
{
884
#ifdef CONFIG_X86_LOCAL_APIC
P
Peter Zijlstra 已提交
885 886 887 888 889
	int i;

	if (nmi_watchdog == NMI_LOCAL_APIC)
		disable_lapic_nmi_watchdog();

890
	for (i = 0; i < x86_pmu.num_events; i++) {
891
		if (!reserve_perfctr_nmi(x86_pmu.perfctr + i))
P
Peter Zijlstra 已提交
892 893 894
			goto perfctr_fail;
	}

895
	for (i = 0; i < x86_pmu.num_events; i++) {
896
		if (!reserve_evntsel_nmi(x86_pmu.eventsel + i))
P
Peter Zijlstra 已提交
897 898
			goto eventsel_fail;
	}
899
#endif
P
Peter Zijlstra 已提交
900 901 902

	return true;

903
#ifdef CONFIG_X86_LOCAL_APIC
P
Peter Zijlstra 已提交
904 905
eventsel_fail:
	for (i--; i >= 0; i--)
906
		release_evntsel_nmi(x86_pmu.eventsel + i);
P
Peter Zijlstra 已提交
907

908
	i = x86_pmu.num_events;
P
Peter Zijlstra 已提交
909 910 911

perfctr_fail:
	for (i--; i >= 0; i--)
912
		release_perfctr_nmi(x86_pmu.perfctr + i);
P
Peter Zijlstra 已提交
913 914 915 916 917

	if (nmi_watchdog == NMI_LOCAL_APIC)
		enable_lapic_nmi_watchdog();

	return false;
918
#endif
P
Peter Zijlstra 已提交
919 920 921 922
}

static void release_pmc_hardware(void)
{
923
#ifdef CONFIG_X86_LOCAL_APIC
P
Peter Zijlstra 已提交
924 925
	int i;

926
	for (i = 0; i < x86_pmu.num_events; i++) {
927 928
		release_perfctr_nmi(x86_pmu.perfctr + i);
		release_evntsel_nmi(x86_pmu.eventsel + i);
P
Peter Zijlstra 已提交
929 930 931 932
	}

	if (nmi_watchdog == NMI_LOCAL_APIC)
		enable_lapic_nmi_watchdog();
933
#endif
P
Peter Zijlstra 已提交
934 935
}

936 937 938 939 940 941 942
static inline bool bts_available(void)
{
	return x86_pmu.enable_bts != NULL;
}

static inline void init_debug_store_on_cpu(int cpu)
{
943
	struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
944 945 946 947 948

	if (!ds)
		return;

	wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA,
949 950
		     (u32)((u64)(unsigned long)ds),
		     (u32)((u64)(unsigned long)ds >> 32));
951 952 953 954
}

static inline void fini_debug_store_on_cpu(int cpu)
{
955
	if (!per_cpu(cpu_hw_events, cpu).ds)
956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973
		return;

	wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA, 0, 0);
}

static void release_bts_hardware(void)
{
	int cpu;

	if (!bts_available())
		return;

	get_online_cpus();

	for_each_online_cpu(cpu)
		fini_debug_store_on_cpu(cpu);

	for_each_possible_cpu(cpu) {
974
		struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
975 976 977 978

		if (!ds)
			continue;

979
		per_cpu(cpu_hw_events, cpu).ds = NULL;
980

981
		kfree((void *)(unsigned long)ds->bts_buffer_base);
982 983 984 985 986 987 988 989 990 991 992
		kfree(ds);
	}

	put_online_cpus();
}

static int reserve_bts_hardware(void)
{
	int cpu, err = 0;

	if (!bts_available())
993
		return 0;
994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011

	get_online_cpus();

	for_each_possible_cpu(cpu) {
		struct debug_store *ds;
		void *buffer;

		err = -ENOMEM;
		buffer = kzalloc(BTS_BUFFER_SIZE, GFP_KERNEL);
		if (unlikely(!buffer))
			break;

		ds = kzalloc(sizeof(*ds), GFP_KERNEL);
		if (unlikely(!ds)) {
			kfree(buffer);
			break;
		}

1012
		ds->bts_buffer_base = (u64)(unsigned long)buffer;
1013 1014 1015 1016 1017 1018
		ds->bts_index = ds->bts_buffer_base;
		ds->bts_absolute_maximum =
			ds->bts_buffer_base + BTS_BUFFER_SIZE;
		ds->bts_interrupt_threshold =
			ds->bts_absolute_maximum - BTS_OVFL_TH;

1019
		per_cpu(cpu_hw_events, cpu).ds = ds;
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
		err = 0;
	}

	if (err)
		release_bts_hardware();
	else {
		for_each_online_cpu(cpu)
			init_debug_store_on_cpu(cpu);
	}

	put_online_cpus();

	return err;
}

1035
static void hw_perf_event_destroy(struct perf_event *event)
P
Peter Zijlstra 已提交
1036
{
1037
	if (atomic_dec_and_mutex_lock(&active_events, &pmc_reserve_mutex)) {
P
Peter Zijlstra 已提交
1038
		release_pmc_hardware();
1039
		release_bts_hardware();
P
Peter Zijlstra 已提交
1040 1041 1042 1043
		mutex_unlock(&pmc_reserve_mutex);
	}
}

1044 1045 1046 1047 1048
static inline int x86_pmu_initialized(void)
{
	return x86_pmu.handle_irq != NULL;
}

1049
static inline int
1050
set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event_attr *attr)
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
{
	unsigned int cache_type, cache_op, cache_result;
	u64 config, val;

	config = attr->config;

	cache_type = (config >>  0) & 0xff;
	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
		return -EINVAL;

	cache_op = (config >>  8) & 0xff;
	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
		return -EINVAL;

	cache_result = (config >> 16) & 0xff;
	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
		return -EINVAL;

	val = hw_cache_event_ids[cache_type][cache_op][cache_result];

	if (val == 0)
		return -ENOENT;

	if (val == -1)
		return -EINVAL;

	hwc->config |= val;

	return 0;
}

1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
static void intel_pmu_enable_bts(u64 config)
{
	unsigned long debugctlmsr;

	debugctlmsr = get_debugctlmsr();

	debugctlmsr |= X86_DEBUGCTL_TR;
	debugctlmsr |= X86_DEBUGCTL_BTS;
	debugctlmsr |= X86_DEBUGCTL_BTINT;

	if (!(config & ARCH_PERFMON_EVENTSEL_OS))
		debugctlmsr |= X86_DEBUGCTL_BTS_OFF_OS;

	if (!(config & ARCH_PERFMON_EVENTSEL_USR))
		debugctlmsr |= X86_DEBUGCTL_BTS_OFF_USR;

	update_debugctlmsr(debugctlmsr);
}

static void intel_pmu_disable_bts(void)
{
1103
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
	unsigned long debugctlmsr;

	if (!cpuc->ds)
		return;

	debugctlmsr = get_debugctlmsr();

	debugctlmsr &=
		~(X86_DEBUGCTL_TR | X86_DEBUGCTL_BTS | X86_DEBUGCTL_BTINT |
		  X86_DEBUGCTL_BTS_OFF_OS | X86_DEBUGCTL_BTS_OFF_USR);

	update_debugctlmsr(debugctlmsr);
}

I
Ingo Molnar 已提交
1118
/*
1119
 * Setup the hardware configuration for a given attr_type
I
Ingo Molnar 已提交
1120
 */
1121
static int __hw_perf_event_init(struct perf_event *event)
I
Ingo Molnar 已提交
1122
{
1123 1124
	struct perf_event_attr *attr = &event->attr;
	struct hw_perf_event *hwc = &event->hw;
1125
	u64 config;
P
Peter Zijlstra 已提交
1126
	int err;
I
Ingo Molnar 已提交
1127

1128 1129
	if (!x86_pmu_initialized())
		return -ENODEV;
I
Ingo Molnar 已提交
1130

P
Peter Zijlstra 已提交
1131
	err = 0;
1132
	if (!atomic_inc_not_zero(&active_events)) {
P
Peter Zijlstra 已提交
1133
		mutex_lock(&pmc_reserve_mutex);
1134
		if (atomic_read(&active_events) == 0) {
1135 1136 1137
			if (!reserve_pmc_hardware())
				err = -EBUSY;
			else
1138
				err = reserve_bts_hardware();
1139 1140
		}
		if (!err)
1141
			atomic_inc(&active_events);
P
Peter Zijlstra 已提交
1142 1143 1144 1145 1146
		mutex_unlock(&pmc_reserve_mutex);
	}
	if (err)
		return err;

1147
	event->destroy = hw_perf_event_destroy;
1148

I
Ingo Molnar 已提交
1149
	/*
1150
	 * Generate PMC IRQs:
I
Ingo Molnar 已提交
1151 1152
	 * (keep 'enabled' bit clear for now)
	 */
1153
	hwc->config = ARCH_PERFMON_EVENTSEL_INT;
I
Ingo Molnar 已提交
1154

1155
	hwc->idx = -1;
1156 1157
	hwc->last_cpu = -1;
	hwc->last_tag = ~0ULL;
1158

I
Ingo Molnar 已提交
1159
	/*
1160
	 * Count user and OS events unless requested not to.
I
Ingo Molnar 已提交
1161
	 */
1162
	if (!attr->exclude_user)
1163
		hwc->config |= ARCH_PERFMON_EVENTSEL_USR;
1164
	if (!attr->exclude_kernel)
I
Ingo Molnar 已提交
1165
		hwc->config |= ARCH_PERFMON_EVENTSEL_OS;
1166

1167
	if (!hwc->sample_period) {
1168
		hwc->sample_period = x86_pmu.max_period;
1169
		hwc->last_period = hwc->sample_period;
1170
		atomic64_set(&hwc->period_left, hwc->sample_period);
1171 1172 1173 1174
	} else {
		/*
		 * If we have a PMU initialized but no APIC
		 * interrupts, we cannot sample hardware
1175 1176
		 * events (user-space has to fall back and
		 * sample via a hrtimer based software event):
1177 1178 1179
		 */
		if (!x86_pmu.apic)
			return -EOPNOTSUPP;
1180
	}
1181

I
Ingo Molnar 已提交
1182
	/*
1183
	 * Raw hw_event type provide the config in the hw_event structure
I
Ingo Molnar 已提交
1184
	 */
1185 1186
	if (attr->type == PERF_TYPE_RAW) {
		hwc->config |= x86_pmu.raw_event(attr->config);
1187
		return 0;
I
Ingo Molnar 已提交
1188 1189
	}

1190 1191 1192 1193 1194
	if (attr->type == PERF_TYPE_HW_CACHE)
		return set_ext_hw_attr(hwc, attr);

	if (attr->config >= x86_pmu.max_events)
		return -EINVAL;
1195

1196 1197 1198
	/*
	 * The generic map:
	 */
1199 1200 1201 1202 1203 1204 1205 1206
	config = x86_pmu.event_map(attr->config);

	if (config == 0)
		return -ENOENT;

	if (config == -1LL)
		return -EINVAL;

1207 1208 1209 1210
	/*
	 * Branch tracing:
	 */
	if ((attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS) &&
1211 1212 1213 1214 1215 1216 1217 1218 1219
	    (hwc->sample_period == 1)) {
		/* BTS is not supported by this architecture. */
		if (!bts_available())
			return -EOPNOTSUPP;

		/* BTS is currently only allowed for user-mode. */
		if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
			return -EOPNOTSUPP;
	}
1220

1221
	hwc->config |= config;
P
Peter Zijlstra 已提交
1222

I
Ingo Molnar 已提交
1223 1224 1225
	return 0;
}

V
Vince Weaver 已提交
1226 1227
static void p6_pmu_disable_all(void)
{
1228
	u64 val;
V
Vince Weaver 已提交
1229 1230 1231 1232 1233 1234 1235

	/* p6 only has one enable register */
	rdmsrl(MSR_P6_EVNTSEL0, val);
	val &= ~ARCH_PERFMON_EVENTSEL0_ENABLE;
	wrmsrl(MSR_P6_EVNTSEL0, val);
}

1236
static void intel_pmu_disable_all(void)
1237
{
1238
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1239

1240
	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
1241 1242 1243

	if (test_bit(X86_PMC_IDX_FIXED_BTS, cpuc->active_mask))
		intel_pmu_disable_bts();
I
Ingo Molnar 已提交
1244
}
1245

1246
static void x86_pmu_disable_all(void)
1247
{
1248
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1249 1250
	int idx;

1251
	for (idx = 0; idx < x86_pmu.num_events; idx++) {
1252 1253
		u64 val;

1254
		if (!test_bit(idx, cpuc->active_mask))
1255
			continue;
1256
		rdmsrl(x86_pmu.eventsel + idx, val);
1257 1258 1259
		if (!(val & ARCH_PERFMON_EVENTSEL0_ENABLE))
			continue;
		val &= ~ARCH_PERFMON_EVENTSEL0_ENABLE;
1260
		wrmsrl(x86_pmu.eventsel + idx, val);
1261 1262 1263
	}
}

1264
void hw_perf_disable(void)
1265
{
1266 1267
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);

1268
	if (!x86_pmu_initialized())
1269
		return;
1270

1271 1272 1273 1274 1275 1276
	if (!cpuc->enabled)
		return;

	cpuc->n_added = 0;
	cpuc->enabled = 0;
	barrier();
1277 1278

	x86_pmu.disable_all();
1279
}
I
Ingo Molnar 已提交
1280

V
Vince Weaver 已提交
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
static void p6_pmu_enable_all(void)
{
	unsigned long val;

	/* p6 only has one enable register */
	rdmsrl(MSR_P6_EVNTSEL0, val);
	val |= ARCH_PERFMON_EVENTSEL0_ENABLE;
	wrmsrl(MSR_P6_EVNTSEL0, val);
}

1291
static void intel_pmu_enable_all(void)
1292
{
1293
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1294

1295
	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, x86_pmu.intel_ctrl);
1296 1297

	if (test_bit(X86_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
1298 1299
		struct perf_event *event =
			cpuc->events[X86_PMC_IDX_FIXED_BTS];
1300

1301
		if (WARN_ON_ONCE(!event))
1302 1303
			return;

1304
		intel_pmu_enable_bts(event->hw.config);
1305
	}
1306 1307
}

1308
static void x86_pmu_enable_all(void)
1309
{
1310
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1311 1312
	int idx;

1313 1314
	for (idx = 0; idx < x86_pmu.num_events; idx++) {
		struct perf_event *event = cpuc->events[idx];
1315
		u64 val;
1316

1317
		if (!test_bit(idx, cpuc->active_mask))
1318
			continue;
1319

1320
		val = event->hw.config;
1321
		val |= ARCH_PERFMON_EVENTSEL0_ENABLE;
1322
		wrmsrl(x86_pmu.eventsel + idx, val);
1323 1324 1325
	}
}

1326 1327 1328 1329 1330 1331 1332 1333 1334
static const struct pmu pmu;

static inline int is_x86_event(struct perf_event *event)
{
	return event->pmu == &pmu;
}

static int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
{
1335
	struct event_constraint *c, *constraints[X86_PMC_IDX_MAX];
1336
	unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
1337
	int i, j, w, wmax, num = 0;
1338 1339 1340 1341 1342
	struct hw_perf_event *hwc;

	bitmap_zero(used_mask, X86_PMC_IDX_MAX);

	for (i = 0; i < n; i++) {
1343 1344
		constraints[i] =
		  x86_pmu.get_event_constraints(cpuc, cpuc->event_list[i]);
1345 1346
	}

1347 1348 1349
	/*
	 * fastpath, try to reuse previous register
	 */
1350
	for (i = 0; i < n; i++) {
1351
		hwc = &cpuc->event_list[i]->hw;
1352
		c = constraints[i];
1353 1354 1355 1356 1357 1358

		/* never assigned */
		if (hwc->idx == -1)
			break;

		/* constraint still honored */
1359
		if (!test_bit(hwc->idx, c->idxmsk))
1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
			break;

		/* not already used */
		if (test_bit(hwc->idx, used_mask))
			break;

		set_bit(hwc->idx, used_mask);
		if (assign)
			assign[i] = hwc->idx;
	}
1370
	if (i == n)
1371 1372 1373 1374 1375 1376 1377 1378
		goto done;

	/*
	 * begin slow path
	 */

	bitmap_zero(used_mask, X86_PMC_IDX_MAX);

1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
	/*
	 * weight = number of possible counters
	 *
	 * 1    = most constrained, only works on one counter
	 * wmax = least constrained, works on any counter
	 *
	 * assign events to counters starting with most
	 * constrained events.
	 */
	wmax = x86_pmu.num_events;

	/*
	 * when fixed event counters are present,
	 * wmax is incremented by 1 to account
	 * for one more choice
	 */
	if (x86_pmu.num_events_fixed)
		wmax++;

1398
	for (w = 1, num = n; num && w <= wmax; w++) {
1399
		/* for each event */
1400
		for (i = 0; num && i < n; i++) {
1401
			c = constraints[i];
1402 1403
			hwc = &cpuc->event_list[i]->hw;

1404
			if (c->weight != w)
1405 1406
				continue;

1407
			for_each_bit(j, c->idxmsk, X86_PMC_IDX_MAX) {
1408 1409 1410 1411 1412 1413 1414
				if (!test_bit(j, used_mask))
					break;
			}

			if (j == X86_PMC_IDX_MAX)
				break;

1415 1416
			set_bit(j, used_mask);

1417 1418 1419 1420 1421
			if (assign)
				assign[i] = j;
			num--;
		}
	}
1422
done:
1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460
	/*
	 * scheduling failed or is just a simulation,
	 * free resources if necessary
	 */
	if (!assign || num) {
		for (i = 0; i < n; i++) {
			if (x86_pmu.put_event_constraints)
				x86_pmu.put_event_constraints(cpuc, cpuc->event_list[i]);
		}
	}
	return num ? -ENOSPC : 0;
}

/*
 * dogrp: true if must collect siblings events (group)
 * returns total number of events and error code
 */
static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
{
	struct perf_event *event;
	int n, max_count;

	max_count = x86_pmu.num_events + x86_pmu.num_events_fixed;

	/* current number of events already accepted */
	n = cpuc->n_events;

	if (is_x86_event(leader)) {
		if (n >= max_count)
			return -ENOSPC;
		cpuc->event_list[n] = leader;
		n++;
	}
	if (!dogrp)
		return n;

	list_for_each_entry(event, &leader->sibling_list, group_entry) {
		if (!is_x86_event(event) ||
1461
		    event->state <= PERF_EVENT_STATE_OFF)
1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473
			continue;

		if (n >= max_count)
			return -ENOSPC;

		cpuc->event_list[n] = event;
		n++;
	}
	return n;
}

static inline void x86_assign_hw_event(struct perf_event *event,
1474
				struct cpu_hw_events *cpuc, int i)
1475
{
1476 1477 1478 1479 1480
	struct hw_perf_event *hwc = &event->hw;

	hwc->idx = cpuc->assign[i];
	hwc->last_cpu = smp_processor_id();
	hwc->last_tag = ++cpuc->tags[i];
1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498

	if (hwc->idx == X86_PMC_IDX_FIXED_BTS) {
		hwc->config_base = 0;
		hwc->event_base	= 0;
	} else if (hwc->idx >= X86_PMC_IDX_FIXED) {
		hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
		/*
		 * We set it so that event_base + idx in wrmsr/rdmsr maps to
		 * MSR_ARCH_PERFMON_FIXED_CTR0 ... CTR2:
		 */
		hwc->event_base =
			MSR_ARCH_PERFMON_FIXED_CTR0 - X86_PMC_IDX_FIXED;
	} else {
		hwc->config_base = x86_pmu.eventsel;
		hwc->event_base  = x86_pmu.perfctr;
	}
}

1499 1500 1501 1502 1503 1504 1505 1506 1507
static inline int match_prev_assignment(struct hw_perf_event *hwc,
					struct cpu_hw_events *cpuc,
					int i)
{
	return hwc->idx == cpuc->assign[i] &&
		hwc->last_cpu == smp_processor_id() &&
		hwc->last_tag == cpuc->tags[i];
}

1508
static void x86_pmu_stop(struct perf_event *event);
1509

1510
void hw_perf_enable(void)
1511
{
1512 1513 1514 1515 1516
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
	struct perf_event *event;
	struct hw_perf_event *hwc;
	int i;

1517
	if (!x86_pmu_initialized())
1518
		return;
1519 1520 1521 1522

	if (cpuc->enabled)
		return;

1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535
	if (cpuc->n_added) {
		/*
		 * apply assignment obtained either from
		 * hw_perf_group_sched_in() or x86_pmu_enable()
		 *
		 * step1: save events moving to new counters
		 * step2: reprogram moved events into new counters
		 */
		for (i = 0; i < cpuc->n_events; i++) {

			event = cpuc->event_list[i];
			hwc = &event->hw;

1536 1537 1538 1539 1540 1541 1542 1543
			/*
			 * we can avoid reprogramming counter if:
			 * - assigned same counter as last time
			 * - running on same CPU as last time
			 * - no other event has used the counter since
			 */
			if (hwc->idx == -1 ||
			    match_prev_assignment(hwc, cpuc, i))
1544 1545
				continue;

1546
			x86_pmu_stop(event);
1547 1548 1549 1550 1551 1552 1553 1554 1555 1556

			hwc->idx = -1;
		}

		for (i = 0; i < cpuc->n_events; i++) {

			event = cpuc->event_list[i];
			hwc = &event->hw;

			if (hwc->idx == -1) {
1557
				x86_assign_hw_event(event, cpuc, i);
1558 1559 1560 1561
				x86_perf_event_set_period(event, hwc, hwc->idx);
			}
			/*
			 * need to mark as active because x86_pmu_disable()
1562
			 * clear active_mask and events[] yet it preserves
1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
			 * idx
			 */
			set_bit(hwc->idx, cpuc->active_mask);
			cpuc->events[hwc->idx] = event;

			x86_pmu.enable(hwc, hwc->idx);
			perf_event_update_userpage(event);
		}
		cpuc->n_added = 0;
		perf_events_lapic_init();
	}
1574 1575 1576 1577

	cpuc->enabled = 1;
	barrier();

1578
	x86_pmu.enable_all();
1579 1580
}

1581
static inline u64 intel_pmu_get_status(void)
1582 1583 1584
{
	u64 status;

1585
	rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1586

1587
	return status;
1588 1589
}

1590
static inline void intel_pmu_ack_status(u64 ack)
1591 1592 1593 1594
{
	wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
}

1595
static inline void __x86_pmu_enable_event(struct hw_perf_event *hwc, int idx)
1596
{
V
Vince Weaver 已提交
1597
	(void)checking_wrmsrl(hwc->config_base + idx,
1598
			      hwc->config | ARCH_PERFMON_EVENTSEL0_ENABLE);
1599 1600
}

1601
static inline void x86_pmu_disable_event(struct hw_perf_event *hwc, int idx)
1602
{
V
Vince Weaver 已提交
1603
	(void)checking_wrmsrl(hwc->config_base + idx, hwc->config);
1604 1605
}

1606
static inline void
1607
intel_pmu_disable_fixed(struct hw_perf_event *hwc, int __idx)
1608 1609 1610 1611 1612 1613 1614 1615
{
	int idx = __idx - X86_PMC_IDX_FIXED;
	u64 ctrl_val, mask;

	mask = 0xfULL << (idx * 4);

	rdmsrl(hwc->config_base, ctrl_val);
	ctrl_val &= ~mask;
V
Vince Weaver 已提交
1616 1617 1618 1619
	(void)checking_wrmsrl(hwc->config_base, ctrl_val);
}

static inline void
1620
p6_pmu_disable_event(struct hw_perf_event *hwc, int idx)
V
Vince Weaver 已提交
1621
{
1622 1623
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
	u64 val = P6_NOP_EVENT;
V
Vince Weaver 已提交
1624

1625 1626
	if (cpuc->enabled)
		val |= ARCH_PERFMON_EVENTSEL0_ENABLE;
V
Vince Weaver 已提交
1627 1628

	(void)checking_wrmsrl(hwc->config_base + idx, val);
1629 1630
}

1631
static inline void
1632
intel_pmu_disable_event(struct hw_perf_event *hwc, int idx)
1633
{
1634 1635 1636 1637 1638
	if (unlikely(idx == X86_PMC_IDX_FIXED_BTS)) {
		intel_pmu_disable_bts();
		return;
	}

1639 1640 1641 1642 1643
	if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
		intel_pmu_disable_fixed(hwc, idx);
		return;
	}

1644
	x86_pmu_disable_event(hwc, idx);
1645 1646
}

1647
static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
I
Ingo Molnar 已提交
1648

1649 1650
/*
 * Set the next IRQ period, based on the hwc->period_left value.
1651
 * To be called with the event disabled in hw:
1652
 */
1653
static int
1654 1655
x86_perf_event_set_period(struct perf_event *event,
			     struct hw_perf_event *hwc, int idx)
I
Ingo Molnar 已提交
1656
{
1657
	s64 left = atomic64_read(&hwc->period_left);
1658 1659
	s64 period = hwc->sample_period;
	int err, ret = 0;
1660

1661 1662 1663
	if (idx == X86_PMC_IDX_FIXED_BTS)
		return 0;

1664
	/*
1665
	 * If we are way outside a reasonable range then just skip forward:
1666 1667 1668 1669
	 */
	if (unlikely(left <= -period)) {
		left = period;
		atomic64_set(&hwc->period_left, left);
1670
		hwc->last_period = period;
1671
		ret = 1;
1672 1673 1674 1675 1676
	}

	if (unlikely(left <= 0)) {
		left += period;
		atomic64_set(&hwc->period_left, left);
1677
		hwc->last_period = period;
1678
		ret = 1;
1679
	}
1680
	/*
1681
	 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1682 1683 1684
	 */
	if (unlikely(left < 2))
		left = 2;
I
Ingo Molnar 已提交
1685

1686 1687 1688
	if (left > x86_pmu.max_period)
		left = x86_pmu.max_period;

1689
	per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
1690 1691

	/*
1692
	 * The hw event starts counting from this event offset,
1693 1694
	 * mark it to be able to extra future deltas:
	 */
1695
	atomic64_set(&hwc->prev_count, (u64)-left);
1696

1697 1698
	err = checking_wrmsrl(hwc->event_base + idx,
			     (u64)(-left) & x86_pmu.event_mask);
1699

1700
	perf_event_update_userpage(event);
1701

1702
	return ret;
1703 1704 1705
}

static inline void
1706
intel_pmu_enable_fixed(struct hw_perf_event *hwc, int __idx)
1707 1708 1709 1710 1711 1712
{
	int idx = __idx - X86_PMC_IDX_FIXED;
	u64 ctrl_val, bits, mask;
	int err;

	/*
1713 1714 1715
	 * Enable IRQ generation (0x8),
	 * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
	 * if requested:
1716
	 */
1717 1718 1719
	bits = 0x8ULL;
	if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
		bits |= 0x2;
1720 1721
	if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
		bits |= 0x1;
1722 1723 1724 1725 1726 1727 1728

	/*
	 * ANY bit is supported in v3 and up
	 */
	if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
		bits |= 0x4;

1729 1730 1731 1732 1733 1734 1735
	bits <<= (idx * 4);
	mask = 0xfULL << (idx * 4);

	rdmsrl(hwc->config_base, ctrl_val);
	ctrl_val &= ~mask;
	ctrl_val |= bits;
	err = checking_wrmsrl(hwc->config_base, ctrl_val);
1736 1737
}

1738
static void p6_pmu_enable_event(struct hw_perf_event *hwc, int idx)
V
Vince Weaver 已提交
1739
{
1740
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1741
	u64 val;
V
Vince Weaver 已提交
1742

1743
	val = hwc->config;
V
Vince Weaver 已提交
1744
	if (cpuc->enabled)
1745 1746 1747
		val |= ARCH_PERFMON_EVENTSEL0_ENABLE;

	(void)checking_wrmsrl(hwc->config_base + idx, val);
V
Vince Weaver 已提交
1748 1749 1750
}


1751
static void intel_pmu_enable_event(struct hw_perf_event *hwc, int idx)
1752
{
1753
	if (unlikely(idx == X86_PMC_IDX_FIXED_BTS)) {
1754
		if (!__get_cpu_var(cpu_hw_events).enabled)
1755 1756 1757 1758 1759 1760
			return;

		intel_pmu_enable_bts(hwc->config);
		return;
	}

1761 1762 1763 1764 1765
	if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
		intel_pmu_enable_fixed(hwc, idx);
		return;
	}

1766
	__x86_pmu_enable_event(hwc, idx);
1767 1768
}

1769
static void x86_pmu_enable_event(struct hw_perf_event *hwc, int idx)
1770
{
1771
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1772
	if (cpuc->enabled)
1773
		__x86_pmu_enable_event(hwc, idx);
I
Ingo Molnar 已提交
1774 1775
}

1776
/*
1777 1778 1779 1780 1781 1782 1783
 * activate a single event
 *
 * The event is added to the group of enabled events
 * but only if it can be scehduled with existing events.
 *
 * Called with PMU disabled. If successful and return value 1,
 * then guaranteed to call perf_enable() and hw_perf_enable()
1784 1785 1786 1787
 */
static int x86_pmu_enable(struct perf_event *event)
{
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1788 1789 1790
	struct hw_perf_event *hwc;
	int assign[X86_PMC_IDX_MAX];
	int n, n0, ret;
1791

1792
	hwc = &event->hw;
1793

1794 1795 1796 1797
	n0 = cpuc->n_events;
	n = collect_events(cpuc, event, false);
	if (n < 0)
		return n;
1798

1799 1800 1801 1802 1803 1804 1805 1806
	ret = x86_schedule_events(cpuc, n, assign);
	if (ret)
		return ret;
	/*
	 * copy new assignment, now we know it is possible
	 * will be used by hw_perf_enable()
	 */
	memcpy(cpuc->assign, assign, n*sizeof(int));
1807

1808 1809
	cpuc->n_events = n;
	cpuc->n_added  = n - n0;
1810 1811

	return 0;
I
Ingo Molnar 已提交
1812 1813
}

1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826
static int x86_pmu_start(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (hwc->idx == -1)
		return -EAGAIN;

	x86_perf_event_set_period(event, hwc, hwc->idx);
	x86_pmu.enable(hwc, hwc->idx);

	return 0;
}

1827
static void x86_pmu_unthrottle(struct perf_event *event)
1828
{
1829 1830
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
	struct hw_perf_event *hwc = &event->hw;
1831 1832

	if (WARN_ON_ONCE(hwc->idx >= X86_PMC_IDX_MAX ||
1833
				cpuc->events[hwc->idx] != event))
1834 1835 1836 1837 1838
		return;

	x86_pmu.enable(hwc, hwc->idx);
}

1839
void perf_event_print_debug(void)
I
Ingo Molnar 已提交
1840
{
1841
	u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1842
	struct cpu_hw_events *cpuc;
1843
	unsigned long flags;
1844 1845
	int cpu, idx;

1846
	if (!x86_pmu.num_events)
1847
		return;
I
Ingo Molnar 已提交
1848

1849
	local_irq_save(flags);
I
Ingo Molnar 已提交
1850 1851

	cpu = smp_processor_id();
1852
	cpuc = &per_cpu(cpu_hw_events, cpu);
I
Ingo Molnar 已提交
1853

1854
	if (x86_pmu.version >= 2) {
1855 1856 1857 1858 1859 1860 1861 1862 1863 1864
		rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
		rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
		rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
		rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);

		pr_info("\n");
		pr_info("CPU#%d: ctrl:       %016llx\n", cpu, ctrl);
		pr_info("CPU#%d: status:     %016llx\n", cpu, status);
		pr_info("CPU#%d: overflow:   %016llx\n", cpu, overflow);
		pr_info("CPU#%d: fixed:      %016llx\n", cpu, fixed);
1865
	}
1866
	pr_info("CPU#%d: active:       %016llx\n", cpu, *(u64 *)cpuc->active_mask);
I
Ingo Molnar 已提交
1867

1868
	for (idx = 0; idx < x86_pmu.num_events; idx++) {
1869 1870
		rdmsrl(x86_pmu.eventsel + idx, pmc_ctrl);
		rdmsrl(x86_pmu.perfctr  + idx, pmc_count);
I
Ingo Molnar 已提交
1871

1872
		prev_left = per_cpu(pmc_prev_left[idx], cpu);
I
Ingo Molnar 已提交
1873

1874
		pr_info("CPU#%d:   gen-PMC%d ctrl:  %016llx\n",
I
Ingo Molnar 已提交
1875
			cpu, idx, pmc_ctrl);
1876
		pr_info("CPU#%d:   gen-PMC%d count: %016llx\n",
I
Ingo Molnar 已提交
1877
			cpu, idx, pmc_count);
1878
		pr_info("CPU#%d:   gen-PMC%d left:  %016llx\n",
1879
			cpu, idx, prev_left);
I
Ingo Molnar 已提交
1880
	}
1881
	for (idx = 0; idx < x86_pmu.num_events_fixed; idx++) {
1882 1883
		rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);

1884
		pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1885 1886
			cpu, idx, pmc_count);
	}
1887
	local_irq_restore(flags);
I
Ingo Molnar 已提交
1888 1889
}

1890
static void intel_pmu_drain_bts_buffer(struct cpu_hw_events *cpuc)
1891 1892 1893 1894 1895 1896 1897
{
	struct debug_store *ds = cpuc->ds;
	struct bts_record {
		u64	from;
		u64	to;
		u64	flags;
	};
1898
	struct perf_event *event = cpuc->events[X86_PMC_IDX_FIXED_BTS];
1899
	struct bts_record *at, *top;
1900 1901 1902 1903
	struct perf_output_handle handle;
	struct perf_event_header header;
	struct perf_sample_data data;
	struct pt_regs regs;
1904

1905
	if (!event)
1906 1907 1908 1909 1910
		return;

	if (!ds)
		return;

1911 1912
	at  = (struct bts_record *)(unsigned long)ds->bts_buffer_base;
	top = (struct bts_record *)(unsigned long)ds->bts_index;
1913

1914 1915 1916
	if (top <= at)
		return;

1917 1918
	ds->bts_index = ds->bts_buffer_base;

1919

1920
	data.period	= event->hw.last_period;
1921
	data.addr	= 0;
1922
	data.raw	= NULL;
1923 1924 1925 1926 1927 1928 1929
	regs.ip		= 0;

	/*
	 * Prepare a generic sample, i.e. fill in the invariant fields.
	 * We will overwrite the from and to address before we output
	 * the sample.
	 */
1930
	perf_prepare_sample(&header, &data, event, &regs);
1931

1932
	if (perf_output_begin(&handle, event,
1933 1934 1935
			      header.size * (top - at), 1, 1))
		return;

1936
	for (; at < top; at++) {
1937 1938
		data.ip		= at->from;
		data.addr	= at->to;
1939

1940
		perf_output_sample(&handle, &header, &data, event);
1941 1942
	}

1943
	perf_output_end(&handle);
1944 1945

	/* There's new data available. */
1946 1947
	event->hw.interrupts++;
	event->pending_kill = POLL_IN;
1948 1949
}

1950
static void x86_pmu_stop(struct perf_event *event)
I
Ingo Molnar 已提交
1951
{
1952
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1953
	struct hw_perf_event *hwc = &event->hw;
1954
	int idx = hwc->idx;
I
Ingo Molnar 已提交
1955

1956 1957 1958 1959
	/*
	 * Must be done before we disable, otherwise the nmi handler
	 * could reenable again:
	 */
1960
	clear_bit(idx, cpuc->active_mask);
1961
	x86_pmu.disable(hwc, idx);
I
Ingo Molnar 已提交
1962

1963
	/*
1964
	 * Drain the remaining delta count out of a event
1965 1966
	 * that we are disabling:
	 */
1967
	x86_perf_event_update(event, hwc, idx);
1968 1969

	/* Drain the remaining BTS records. */
1970 1971
	if (unlikely(idx == X86_PMC_IDX_FIXED_BTS))
		intel_pmu_drain_bts_buffer(cpuc);
1972

1973
	cpuc->events[idx] = NULL;
1974 1975 1976 1977 1978 1979 1980
}

static void x86_pmu_disable(struct perf_event *event)
{
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
	int i;

1981
	x86_pmu_stop(event);
1982

1983 1984 1985 1986 1987 1988 1989 1990 1991 1992
	for (i = 0; i < cpuc->n_events; i++) {
		if (event == cpuc->event_list[i]) {

			if (x86_pmu.put_event_constraints)
				x86_pmu.put_event_constraints(cpuc, event);

			while (++i < cpuc->n_events)
				cpuc->event_list[i-1] = cpuc->event_list[i];

			--cpuc->n_events;
1993
			break;
1994 1995
		}
	}
1996
	perf_event_update_userpage(event);
I
Ingo Molnar 已提交
1997 1998
}

1999
/*
2000 2001
 * Save and restart an expired event. Called by NMI contexts,
 * so it has to be careful about preempting normal event ops:
2002
 */
2003
static int intel_pmu_save_and_restart(struct perf_event *event)
I
Ingo Molnar 已提交
2004
{
2005
	struct hw_perf_event *hwc = &event->hw;
I
Ingo Molnar 已提交
2006
	int idx = hwc->idx;
2007
	int ret;
I
Ingo Molnar 已提交
2008

2009 2010
	x86_perf_event_update(event, hwc, idx);
	ret = x86_perf_event_set_period(event, hwc, idx);
2011

2012
	return ret;
I
Ingo Molnar 已提交
2013 2014
}

2015 2016
static void intel_pmu_reset(void)
{
2017
	struct debug_store *ds = __get_cpu_var(cpu_hw_events).ds;
2018 2019 2020
	unsigned long flags;
	int idx;

2021
	if (!x86_pmu.num_events)
2022 2023 2024 2025 2026 2027
		return;

	local_irq_save(flags);

	printk("clearing PMU state on CPU#%d\n", smp_processor_id());

2028
	for (idx = 0; idx < x86_pmu.num_events; idx++) {
2029 2030 2031
		checking_wrmsrl(x86_pmu.eventsel + idx, 0ull);
		checking_wrmsrl(x86_pmu.perfctr  + idx, 0ull);
	}
2032
	for (idx = 0; idx < x86_pmu.num_events_fixed; idx++) {
2033 2034
		checking_wrmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
	}
2035 2036
	if (ds)
		ds->bts_index = ds->bts_buffer_base;
2037 2038 2039 2040

	local_irq_restore(flags);
}

I
Ingo Molnar 已提交
2041 2042 2043 2044
/*
 * This handler is triggered by the local APIC, so the APIC IRQ handling
 * rules apply:
 */
2045
static int intel_pmu_handle_irq(struct pt_regs *regs)
I
Ingo Molnar 已提交
2046
{
2047
	struct perf_sample_data data;
2048
	struct cpu_hw_events *cpuc;
V
Vince Weaver 已提交
2049
	int bit, loops;
2050
	u64 ack, status;
2051

2052
	data.addr = 0;
2053
	data.raw = NULL;
2054

2055
	cpuc = &__get_cpu_var(cpu_hw_events);
I
Ingo Molnar 已提交
2056

2057
	perf_disable();
2058
	intel_pmu_drain_bts_buffer(cpuc);
2059
	status = intel_pmu_get_status();
2060 2061 2062 2063
	if (!status) {
		perf_enable();
		return 0;
	}
2064

2065
	loops = 0;
I
Ingo Molnar 已提交
2066
again:
2067
	if (++loops > 100) {
2068 2069
		WARN_ONCE(1, "perfevents: irq loop stuck!\n");
		perf_event_print_debug();
2070 2071
		intel_pmu_reset();
		perf_enable();
2072 2073 2074
		return 1;
	}

2075
	inc_irq_stat(apic_perf_irqs);
I
Ingo Molnar 已提交
2076
	ack = status;
2077
	for_each_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
2078
		struct perf_event *event = cpuc->events[bit];
I
Ingo Molnar 已提交
2079 2080

		clear_bit(bit, (unsigned long *) &status);
2081
		if (!test_bit(bit, cpuc->active_mask))
I
Ingo Molnar 已提交
2082 2083
			continue;

2084
		if (!intel_pmu_save_and_restart(event))
2085 2086
			continue;

2087
		data.period = event->hw.last_period;
2088

2089 2090
		if (perf_event_overflow(event, 1, &data, regs))
			intel_pmu_disable_event(&event->hw, bit);
I
Ingo Molnar 已提交
2091 2092
	}

2093
	intel_pmu_ack_status(ack);
I
Ingo Molnar 已提交
2094 2095 2096 2097

	/*
	 * Repeat if there is more work to be done:
	 */
2098
	status = intel_pmu_get_status();
I
Ingo Molnar 已提交
2099 2100
	if (status)
		goto again;
2101

2102
	perf_enable();
2103 2104

	return 1;
2105 2106
}

2107
static int x86_pmu_handle_irq(struct pt_regs *regs)
2108
{
2109
	struct perf_sample_data data;
2110 2111 2112
	struct cpu_hw_events *cpuc;
	struct perf_event *event;
	struct hw_perf_event *hwc;
V
Vince Weaver 已提交
2113
	int idx, handled = 0;
2114 2115
	u64 val;

2116
	data.addr = 0;
2117
	data.raw = NULL;
2118

2119
	cpuc = &__get_cpu_var(cpu_hw_events);
2120

2121
	for (idx = 0; idx < x86_pmu.num_events; idx++) {
2122
		if (!test_bit(idx, cpuc->active_mask))
2123
			continue;
2124

2125 2126
		event = cpuc->events[idx];
		hwc = &event->hw;
2127

2128 2129
		val = x86_perf_event_update(event, hwc, idx);
		if (val & (1ULL << (x86_pmu.event_bits - 1)))
2130
			continue;
2131

2132
		/*
2133
		 * event overflow
2134 2135
		 */
		handled		= 1;
2136
		data.period	= event->hw.last_period;
2137

2138
		if (!x86_perf_event_set_period(event, hwc, idx))
2139 2140
			continue;

2141
		if (perf_event_overflow(event, 1, &data, regs))
2142
			x86_pmu.disable(hwc, idx);
2143
	}
2144

2145 2146 2147
	if (handled)
		inc_irq_stat(apic_perf_irqs);

2148 2149
	return handled;
}
2150

2151 2152 2153 2154 2155
void smp_perf_pending_interrupt(struct pt_regs *regs)
{
	irq_enter();
	ack_APIC_irq();
	inc_irq_stat(apic_pending_irqs);
2156
	perf_event_do_pending();
2157 2158 2159
	irq_exit();
}

2160
void set_perf_event_pending(void)
2161
{
2162
#ifdef CONFIG_X86_LOCAL_APIC
2163 2164 2165
	if (!x86_pmu.apic || !x86_pmu_initialized())
		return;

2166
	apic->send_IPI_self(LOCAL_PENDING_VECTOR);
2167
#endif
2168 2169
}

2170
void perf_events_lapic_init(void)
I
Ingo Molnar 已提交
2171
{
2172 2173
#ifdef CONFIG_X86_LOCAL_APIC
	if (!x86_pmu.apic || !x86_pmu_initialized())
I
Ingo Molnar 已提交
2174
		return;
2175

I
Ingo Molnar 已提交
2176
	/*
2177
	 * Always use NMI for PMU
I
Ingo Molnar 已提交
2178
	 */
2179
	apic_write(APIC_LVTPC, APIC_DM_NMI);
2180
#endif
I
Ingo Molnar 已提交
2181 2182 2183
}

static int __kprobes
2184
perf_event_nmi_handler(struct notifier_block *self,
I
Ingo Molnar 已提交
2185 2186 2187 2188
			 unsigned long cmd, void *__args)
{
	struct die_args *args = __args;
	struct pt_regs *regs;
2189

2190
	if (!atomic_read(&active_events))
2191 2192
		return NOTIFY_DONE;

2193 2194 2195 2196
	switch (cmd) {
	case DIE_NMI:
	case DIE_NMI_IPI:
		break;
I
Ingo Molnar 已提交
2197

2198
	default:
I
Ingo Molnar 已提交
2199
		return NOTIFY_DONE;
2200
	}
I
Ingo Molnar 已提交
2201 2202 2203

	regs = args->regs;

2204
#ifdef CONFIG_X86_LOCAL_APIC
I
Ingo Molnar 已提交
2205
	apic_write(APIC_LVTPC, APIC_DM_NMI);
2206
#endif
2207 2208
	/*
	 * Can't rely on the handled return value to say it was our NMI, two
2209
	 * events could trigger 'simultaneously' raising two back-to-back NMIs.
2210 2211 2212 2213
	 *
	 * If the first NMI handles both, the latter will be empty and daze
	 * the CPU.
	 */
2214
	x86_pmu.handle_irq(regs);
I
Ingo Molnar 已提交
2215

2216
	return NOTIFY_STOP;
I
Ingo Molnar 已提交
2217 2218
}

2219
static struct event_constraint unconstrained;
2220
static struct event_constraint emptyconstraint;
2221

2222 2223
static struct event_constraint bts_constraint =
	EVENT_CONSTRAINT(0, 1ULL << X86_PMC_IDX_FIXED_BTS, 0);
2224

2225 2226
static struct event_constraint *
intel_special_constraints(struct perf_event *event)
2227 2228 2229 2230 2231 2232 2233 2234 2235
{
	unsigned int hw_event;

	hw_event = event->hw.config & INTEL_ARCH_EVENT_MASK;

	if (unlikely((hw_event ==
		      x86_pmu.event_map(PERF_COUNT_HW_BRANCH_INSTRUCTIONS)) &&
		     (event->hw.sample_period == 1))) {

2236
		return &bts_constraint;
2237
	}
2238
	return NULL;
2239 2240
}

2241 2242
static struct event_constraint *
intel_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
2243
{
2244
	struct event_constraint *c;
2245

2246 2247 2248
	c = intel_special_constraints(event);
	if (c)
		return c;
2249 2250 2251

	if (x86_pmu.event_constraints) {
		for_each_event_constraint(c, x86_pmu.event_constraints) {
2252 2253
			if ((event->hw.config & c->cmask) == c->code)
				return c;
2254 2255
		}
	}
2256 2257

	return &unconstrained;
2258 2259
}

2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332
/*
 * AMD64 events are detected based on their event codes.
 */
static inline int amd_is_nb_event(struct hw_perf_event *hwc)
{
	return (hwc->config & 0xe0) == 0xe0;
}

static void amd_put_event_constraints(struct cpu_hw_events *cpuc,
				      struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;
	struct amd_nb *nb = cpuc->amd_nb;
	int i;

	/*
	 * only care about NB events
	 */
	if (!(nb && amd_is_nb_event(hwc)))
		return;

	/*
	 * need to scan whole list because event may not have
	 * been assigned during scheduling
	 *
	 * no race condition possible because event can only
	 * be removed on one CPU at a time AND PMU is disabled
	 * when we come here
	 */
	for (i = 0; i < x86_pmu.num_events; i++) {
		if (nb->owners[i] == event) {
			cmpxchg(nb->owners+i, event, NULL);
			break;
		}
	}
}

 /*
  * AMD64 NorthBridge events need special treatment because
  * counter access needs to be synchronized across all cores
  * of a package. Refer to BKDG section 3.12
  *
  * NB events are events measuring L3 cache, Hypertransport
  * traffic. They are identified by an event code >= 0xe00.
  * They measure events on the NorthBride which is shared
  * by all cores on a package. NB events are counted on a
  * shared set of counters. When a NB event is programmed
  * in a counter, the data actually comes from a shared
  * counter. Thus, access to those counters needs to be
  * synchronized.
  *
  * We implement the synchronization such that no two cores
  * can be measuring NB events using the same counters. Thus,
  * we maintain a per-NB allocation table. The available slot
  * is propagated using the event_constraint structure.
  *
  * We provide only one choice for each NB event based on
  * the fact that only NB events have restrictions. Consequently,
  * if a counter is available, there is a guarantee the NB event
  * will be assigned to it. If no slot is available, an empty
  * constraint is returned and scheduling will eventually fail
  * for this event.
  *
  * Note that all cores attached the same NB compete for the same
  * counters to host NB events, this is why we use atomic ops. Some
  * multi-chip CPUs may have more than one NB.
  *
  * Given that resources are allocated (cmpxchg), they must be
  * eventually freed for others to use. This is accomplished by
  * calling amd_put_event_constraints().
  *
  * Non NB events are not impacted by this restriction.
  */
2333 2334
static struct event_constraint *
amd_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
2335
{
2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399
	struct hw_perf_event *hwc = &event->hw;
	struct amd_nb *nb = cpuc->amd_nb;
	struct perf_event *old = NULL;
	int max = x86_pmu.num_events;
	int i, j, k = -1;

	/*
	 * if not NB event or no NB, then no constraints
	 */
	if (!(nb && amd_is_nb_event(hwc)))
		return &unconstrained;

	/*
	 * detect if already present, if so reuse
	 *
	 * cannot merge with actual allocation
	 * because of possible holes
	 *
	 * event can already be present yet not assigned (in hwc->idx)
	 * because of successive calls to x86_schedule_events() from
	 * hw_perf_group_sched_in() without hw_perf_enable()
	 */
	for (i = 0; i < max; i++) {
		/*
		 * keep track of first free slot
		 */
		if (k == -1 && !nb->owners[i])
			k = i;

		/* already present, reuse */
		if (nb->owners[i] == event)
			goto done;
	}
	/*
	 * not present, so grab a new slot
	 * starting either at:
	 */
	if (hwc->idx != -1) {
		/* previous assignment */
		i = hwc->idx;
	} else if (k != -1) {
		/* start from free slot found */
		i = k;
	} else {
		/*
		 * event not found, no slot found in
		 * first pass, try again from the
		 * beginning
		 */
		i = 0;
	}
	j = i;
	do {
		old = cmpxchg(nb->owners+i, NULL, event);
		if (!old)
			break;
		if (++i == max)
			i = 0;
	} while (i != j);
done:
	if (!old)
		return &nb->event_constraints[i];

	return &emptyconstraint;
2400 2401 2402
}

static int x86_event_sched_in(struct perf_event *event,
2403
			  struct perf_cpu_context *cpuctx)
2404 2405 2406 2407
{
	int ret = 0;

	event->state = PERF_EVENT_STATE_ACTIVE;
2408
	event->oncpu = smp_processor_id();
2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423
	event->tstamp_running += event->ctx->time - event->tstamp_stopped;

	if (!is_x86_event(event))
		ret = event->pmu->enable(event);

	if (!ret && !is_software_event(event))
		cpuctx->active_oncpu++;

	if (!ret && event->attr.exclusive)
		cpuctx->exclusive = 1;

	return ret;
}

static void x86_event_sched_out(struct perf_event *event,
2424
			    struct perf_cpu_context *cpuctx)
2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451
{
	event->state = PERF_EVENT_STATE_INACTIVE;
	event->oncpu = -1;

	if (!is_x86_event(event))
		event->pmu->disable(event);

	event->tstamp_running -= event->ctx->time - event->tstamp_stopped;

	if (!is_software_event(event))
		cpuctx->active_oncpu--;

	if (event->attr.exclusive || !cpuctx->active_oncpu)
		cpuctx->exclusive = 0;
}

/*
 * Called to enable a whole group of events.
 * Returns 1 if the group was enabled, or -EAGAIN if it could not be.
 * Assumes the caller has disabled interrupts and has
 * frozen the PMU with hw_perf_save_disable.
 *
 * called with PMU disabled. If successful and return value 1,
 * then guaranteed to call perf_enable() and hw_perf_enable()
 */
int hw_perf_group_sched_in(struct perf_event *leader,
	       struct perf_cpu_context *cpuctx,
2452
	       struct perf_event_context *ctx)
2453
{
2454
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467
	struct perf_event *sub;
	int assign[X86_PMC_IDX_MAX];
	int n0, n1, ret;

	/* n0 = total number of events */
	n0 = collect_events(cpuc, leader, true);
	if (n0 < 0)
		return n0;

	ret = x86_schedule_events(cpuc, n0, assign);
	if (ret)
		return ret;

2468
	ret = x86_event_sched_in(leader, cpuctx);
2469 2470 2471 2472 2473
	if (ret)
		return ret;

	n1 = 1;
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2474
		if (sub->state > PERF_EVENT_STATE_OFF) {
2475
			ret = x86_event_sched_in(sub, cpuctx);
2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499
			if (ret)
				goto undo;
			++n1;
		}
	}
	/*
	 * copy new assignment, now we know it is possible
	 * will be used by hw_perf_enable()
	 */
	memcpy(cpuc->assign, assign, n0*sizeof(int));

	cpuc->n_events  = n0;
	cpuc->n_added   = n1;
	ctx->nr_active += n1;

	/*
	 * 1 means successful and events are active
	 * This is not quite true because we defer
	 * actual activation until hw_perf_enable() but
	 * this way we* ensure caller won't try to enable
	 * individual events
	 */
	return 1;
undo:
2500
	x86_event_sched_out(leader, cpuctx);
2501 2502 2503
	n0  = 1;
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
2504
			x86_event_sched_out(sub, cpuctx);
2505 2506 2507 2508 2509 2510 2511
			if (++n0 == n1)
				break;
		}
	}
	return ret;
}

2512 2513
static __read_mostly struct notifier_block perf_event_nmi_notifier = {
	.notifier_call		= perf_event_nmi_handler,
2514 2515
	.next			= NULL,
	.priority		= 1
I
Ingo Molnar 已提交
2516 2517
};

2518
static __initconst struct x86_pmu p6_pmu = {
V
Vince Weaver 已提交
2519
	.name			= "p6",
2520
	.handle_irq		= x86_pmu_handle_irq,
V
Vince Weaver 已提交
2521 2522
	.disable_all		= p6_pmu_disable_all,
	.enable_all		= p6_pmu_enable_all,
2523 2524
	.enable			= p6_pmu_enable_event,
	.disable		= p6_pmu_disable_event,
V
Vince Weaver 已提交
2525 2526 2527 2528 2529
	.eventsel		= MSR_P6_EVNTSEL0,
	.perfctr		= MSR_P6_PERFCTR0,
	.event_map		= p6_pmu_event_map,
	.raw_event		= p6_pmu_raw_event,
	.max_events		= ARRAY_SIZE(p6_perfmon_event_map),
2530
	.apic			= 1,
V
Vince Weaver 已提交
2531 2532
	.max_period		= (1ULL << 31) - 1,
	.version		= 0,
2533
	.num_events		= 2,
V
Vince Weaver 已提交
2534
	/*
2535
	 * Events have 40 bits implemented. However they are designed such
V
Vince Weaver 已提交
2536
	 * that bits [32-39] are sign extensions of bit 31. As such the
2537
	 * effective width of a event for P6-like PMU is 32 bits only.
V
Vince Weaver 已提交
2538 2539 2540
	 *
	 * See IA-32 Intel Architecture Software developer manual Vol 3B
	 */
2541 2542
	.event_bits		= 32,
	.event_mask		= (1ULL << 32) - 1,
2543 2544
	.get_event_constraints	= intel_get_event_constraints,
	.event_constraints	= intel_p6_event_constraints
V
Vince Weaver 已提交
2545 2546
};

2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569
static __initconst struct x86_pmu core_pmu = {
	.name			= "core",
	.handle_irq		= x86_pmu_handle_irq,
	.disable_all		= x86_pmu_disable_all,
	.enable_all		= x86_pmu_enable_all,
	.enable			= x86_pmu_enable_event,
	.disable		= x86_pmu_disable_event,
	.eventsel		= MSR_ARCH_PERFMON_EVENTSEL0,
	.perfctr		= MSR_ARCH_PERFMON_PERFCTR0,
	.event_map		= intel_pmu_event_map,
	.raw_event		= intel_pmu_raw_event,
	.max_events		= ARRAY_SIZE(intel_perfmon_event_map),
	.apic			= 1,
	/*
	 * Intel PMCs cannot be accessed sanely above 32 bit width,
	 * so we install an artificial 1<<31 period regardless of
	 * the generic event period:
	 */
	.max_period		= (1ULL << 31) - 1,
	.get_event_constraints	= intel_get_event_constraints,
	.event_constraints	= intel_core_event_constraints,
};

2570
static __initconst struct x86_pmu intel_pmu = {
2571
	.name			= "Intel",
2572
	.handle_irq		= intel_pmu_handle_irq,
2573 2574
	.disable_all		= intel_pmu_disable_all,
	.enable_all		= intel_pmu_enable_all,
2575 2576
	.enable			= intel_pmu_enable_event,
	.disable		= intel_pmu_disable_event,
2577 2578
	.eventsel		= MSR_ARCH_PERFMON_EVENTSEL0,
	.perfctr		= MSR_ARCH_PERFMON_PERFCTR0,
2579 2580
	.event_map		= intel_pmu_event_map,
	.raw_event		= intel_pmu_raw_event,
2581
	.max_events		= ARRAY_SIZE(intel_perfmon_event_map),
2582
	.apic			= 1,
2583 2584 2585
	/*
	 * Intel PMCs cannot be accessed sanely above 32 bit width,
	 * so we install an artificial 1<<31 period regardless of
2586
	 * the generic event period:
2587 2588
	 */
	.max_period		= (1ULL << 31) - 1,
2589 2590
	.enable_bts		= intel_pmu_enable_bts,
	.disable_bts		= intel_pmu_disable_bts,
2591
	.get_event_constraints	= intel_get_event_constraints
2592 2593
};

2594
static __initconst struct x86_pmu amd_pmu = {
2595
	.name			= "AMD",
2596 2597 2598 2599 2600
	.handle_irq		= x86_pmu_handle_irq,
	.disable_all		= x86_pmu_disable_all,
	.enable_all		= x86_pmu_enable_all,
	.enable			= x86_pmu_enable_event,
	.disable		= x86_pmu_disable_event,
2601 2602
	.eventsel		= MSR_K7_EVNTSEL0,
	.perfctr		= MSR_K7_PERFCTR0,
2603 2604
	.event_map		= amd_pmu_event_map,
	.raw_event		= amd_pmu_raw_event,
2605
	.max_events		= ARRAY_SIZE(amd_perfmon_event_map),
2606 2607 2608
	.num_events		= 4,
	.event_bits		= 48,
	.event_mask		= (1ULL << 48) - 1,
2609
	.apic			= 1,
2610 2611
	/* use highest bit to detect overflow */
	.max_period		= (1ULL << 47) - 1,
2612 2613
	.get_event_constraints	= amd_get_event_constraints,
	.put_event_constraints	= amd_put_event_constraints
2614 2615
};

2616
static __init int p6_pmu_init(void)
V
Vince Weaver 已提交
2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627
{
	switch (boot_cpu_data.x86_model) {
	case 1:
	case 3:  /* Pentium Pro */
	case 5:
	case 6:  /* Pentium II */
	case 7:
	case 8:
	case 11: /* Pentium III */
	case 9:
	case 13:
2628 2629
		/* Pentium M */
		break;
V
Vince Weaver 已提交
2630 2631 2632 2633 2634 2635
	default:
		pr_cont("unsupported p6 CPU model %d ",
			boot_cpu_data.x86_model);
		return -ENODEV;
	}

2636 2637
	x86_pmu = p6_pmu;

V
Vince Weaver 已提交
2638 2639 2640
	return 0;
}

2641
static __init int intel_pmu_init(void)
I
Ingo Molnar 已提交
2642
{
2643
	union cpuid10_edx edx;
I
Ingo Molnar 已提交
2644
	union cpuid10_eax eax;
2645
	unsigned int unused;
2646
	unsigned int ebx;
2647
	int version;
I
Ingo Molnar 已提交
2648

V
Vince Weaver 已提交
2649 2650 2651 2652 2653
	if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
		/* check for P6 processor family */
	   if (boot_cpu_data.x86 == 6) {
		return p6_pmu_init();
	   } else {
2654
		return -ENODEV;
V
Vince Weaver 已提交
2655 2656
	   }
	}
2657

I
Ingo Molnar 已提交
2658 2659
	/*
	 * Check whether the Architectural PerfMon supports
2660
	 * Branch Misses Retired hw_event or not.
I
Ingo Molnar 已提交
2661
	 */
2662
	cpuid(10, &eax.full, &ebx, &unused, &edx.full);
I
Ingo Molnar 已提交
2663
	if (eax.split.mask_length <= ARCH_PERFMON_BRANCH_MISSES_RETIRED)
2664
		return -ENODEV;
I
Ingo Molnar 已提交
2665

2666 2667
	version = eax.split.version_id;
	if (version < 2)
2668 2669 2670
		x86_pmu = core_pmu;
	else
		x86_pmu = intel_pmu;
2671

2672
	x86_pmu.version			= version;
2673 2674 2675
	x86_pmu.num_events		= eax.split.num_events;
	x86_pmu.event_bits		= eax.split.bit_width;
	x86_pmu.event_mask		= (1ULL << eax.split.bit_width) - 1;
2676 2677

	/*
2678 2679
	 * Quirk: v2 perfmon does not report fixed-purpose events, so
	 * assume at least 3 events:
2680
	 */
2681 2682
	if (version > 1)
		x86_pmu.num_events_fixed = max((int)edx.split.num_events_fixed, 3);
2683

2684
	/*
2685
	 * Install the hw-cache-events table:
2686 2687
	 */
	switch (boot_cpu_data.x86_model) {
2688 2689 2690 2691
	case 14: /* 65 nm core solo/duo, "Yonah" */
		pr_cont("Core events, ");
		break;

2692 2693 2694 2695
	case 15: /* original 65 nm celeron/pentium/core2/xeon, "Merom"/"Conroe" */
	case 22: /* single-core 65 nm celeron/core2solo "Merom-L"/"Conroe-L" */
	case 23: /* current 45 nm celeron/core2/xeon "Penryn"/"Wolfdale" */
	case 29: /* six-core 45 nm xeon "Dunnington" */
2696
		memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
2697
		       sizeof(hw_cache_event_ids));
2698

2699
		x86_pmu.event_constraints = intel_core2_event_constraints;
2700
		pr_cont("Core2 events, ");
2701
		break;
2702 2703 2704

	case 26: /* 45 nm nehalem, "Bloomfield" */
	case 30: /* 45 nm nehalem, "Lynnfield" */
2705
		memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
2706
		       sizeof(hw_cache_event_ids));
2707

2708
		x86_pmu.event_constraints = intel_nehalem_event_constraints;
2709
		pr_cont("Nehalem/Corei7 events, ");
2710 2711 2712
		break;
	case 28:
		memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
2713
		       sizeof(hw_cache_event_ids));
2714

2715
		x86_pmu.event_constraints = intel_gen_event_constraints;
2716
		pr_cont("Atom events, ");
2717
		break;
2718 2719 2720 2721 2722 2723 2724 2725 2726

	case 37: /* 32 nm nehalem, "Clarkdale" */
	case 44: /* 32 nm nehalem, "Gulftown" */
		memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
		       sizeof(hw_cache_event_ids));

		x86_pmu.event_constraints = intel_westmere_event_constraints;
		pr_cont("Westmere events, ");
		break;
2727 2728 2729 2730 2731 2732
	default:
		/*
		 * default constraints for v2 and up
		 */
		x86_pmu.event_constraints = intel_gen_event_constraints;
		pr_cont("generic architected perfmon, ");
2733
	}
2734
	return 0;
2735 2736
}

2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821
static struct amd_nb *amd_alloc_nb(int cpu, int nb_id)
{
	struct amd_nb *nb;
	int i;

	nb = kmalloc(sizeof(struct amd_nb), GFP_KERNEL);
	if (!nb)
		return NULL;

	memset(nb, 0, sizeof(*nb));
	nb->nb_id = nb_id;

	/*
	 * initialize all possible NB constraints
	 */
	for (i = 0; i < x86_pmu.num_events; i++) {
		set_bit(i, nb->event_constraints[i].idxmsk);
		nb->event_constraints[i].weight = 1;
	}
	return nb;
}

static void amd_pmu_cpu_online(int cpu)
{
	struct cpu_hw_events *cpu1, *cpu2;
	struct amd_nb *nb = NULL;
	int i, nb_id;

	if (boot_cpu_data.x86_max_cores < 2)
		return;

	/*
	 * function may be called too early in the
	 * boot process, in which case nb_id is bogus
	 */
	nb_id = amd_get_nb_id(cpu);
	if (nb_id == BAD_APICID)
		return;

	cpu1 = &per_cpu(cpu_hw_events, cpu);
	cpu1->amd_nb = NULL;

	raw_spin_lock(&amd_nb_lock);

	for_each_online_cpu(i) {
		cpu2 = &per_cpu(cpu_hw_events, i);
		nb = cpu2->amd_nb;
		if (!nb)
			continue;
		if (nb->nb_id == nb_id)
			goto found;
	}

	nb = amd_alloc_nb(cpu, nb_id);
	if (!nb) {
		pr_err("perf_events: failed NB allocation for CPU%d\n", cpu);
		raw_spin_unlock(&amd_nb_lock);
		return;
	}
found:
	nb->refcnt++;
	cpu1->amd_nb = nb;

	raw_spin_unlock(&amd_nb_lock);
}

static void amd_pmu_cpu_offline(int cpu)
{
	struct cpu_hw_events *cpuhw;

	if (boot_cpu_data.x86_max_cores < 2)
		return;

	cpuhw = &per_cpu(cpu_hw_events, cpu);

	raw_spin_lock(&amd_nb_lock);

	if (--cpuhw->amd_nb->refcnt == 0)
		kfree(cpuhw->amd_nb);

	cpuhw->amd_nb = NULL;

	raw_spin_unlock(&amd_nb_lock);
}

2822
static __init int amd_pmu_init(void)
2823
{
2824 2825 2826 2827
	/* Performance-monitoring supported from K7 and later: */
	if (boot_cpu_data.x86 < 6)
		return -ENODEV;

2828
	x86_pmu = amd_pmu;
2829

2830 2831 2832
	/* Events are common for all AMDs */
	memcpy(hw_cache_event_ids, amd_hw_cache_event_ids,
	       sizeof(hw_cache_event_ids));
2833

2834 2835 2836 2837 2838
	/*
	 * explicitly initialize the boot cpu, other cpus will get
	 * the cpu hotplug callbacks from smp_init()
	 */
	amd_pmu_cpu_online(smp_processor_id());
2839
	return 0;
2840 2841
}

2842 2843 2844 2845 2846 2847 2848 2849 2850 2851
static void __init pmu_check_apic(void)
{
	if (cpu_has_apic)
		return;

	x86_pmu.apic = 0;
	pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
	pr_info("no hardware sampling interrupt available.\n");
}

2852
void __init init_hw_perf_events(void)
2853
{
2854 2855
	int err;

2856
	pr_info("Performance Events: ");
2857

2858 2859
	switch (boot_cpu_data.x86_vendor) {
	case X86_VENDOR_INTEL:
2860
		err = intel_pmu_init();
2861
		break;
2862
	case X86_VENDOR_AMD:
2863
		err = amd_pmu_init();
2864
		break;
2865 2866
	default:
		return;
2867
	}
2868
	if (err != 0) {
2869
		pr_cont("no PMU driver, software events only.\n");
2870
		return;
2871
	}
2872

2873 2874
	pmu_check_apic();

2875
	pr_cont("%s PMU driver.\n", x86_pmu.name);
2876

2877 2878 2879 2880
	if (x86_pmu.num_events > X86_PMC_MAX_GENERIC) {
		WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
		     x86_pmu.num_events, X86_PMC_MAX_GENERIC);
		x86_pmu.num_events = X86_PMC_MAX_GENERIC;
I
Ingo Molnar 已提交
2881
	}
2882 2883
	perf_event_mask = (1 << x86_pmu.num_events) - 1;
	perf_max_events = x86_pmu.num_events;
I
Ingo Molnar 已提交
2884

2885 2886 2887 2888
	if (x86_pmu.num_events_fixed > X86_PMC_MAX_FIXED) {
		WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
		     x86_pmu.num_events_fixed, X86_PMC_MAX_FIXED);
		x86_pmu.num_events_fixed = X86_PMC_MAX_FIXED;
2889
	}
2890

2891 2892 2893
	perf_event_mask |=
		((1LL << x86_pmu.num_events_fixed)-1) << X86_PMC_IDX_FIXED;
	x86_pmu.intel_ctrl = perf_event_mask;
I
Ingo Molnar 已提交
2894

2895 2896
	perf_events_lapic_init();
	register_die_notifier(&perf_event_nmi_notifier);
2897

2898
	unconstrained = (struct event_constraint)
2899 2900
		__EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_events) - 1,
				   0, x86_pmu.num_events);
2901

I
Ingo Molnar 已提交
2902 2903 2904 2905 2906 2907 2908
	pr_info("... version:                %d\n",     x86_pmu.version);
	pr_info("... bit width:              %d\n",     x86_pmu.event_bits);
	pr_info("... generic registers:      %d\n",     x86_pmu.num_events);
	pr_info("... value mask:             %016Lx\n", x86_pmu.event_mask);
	pr_info("... max period:             %016Lx\n", x86_pmu.max_period);
	pr_info("... fixed-purpose events:   %d\n",     x86_pmu.num_events_fixed);
	pr_info("... event mask:             %016Lx\n", perf_event_mask);
I
Ingo Molnar 已提交
2909
}
I
Ingo Molnar 已提交
2910

2911
static inline void x86_pmu_read(struct perf_event *event)
2912
{
2913
	x86_perf_event_update(event, &event->hw, event->hw.idx);
2914 2915
}

2916 2917 2918
static const struct pmu pmu = {
	.enable		= x86_pmu_enable,
	.disable	= x86_pmu_disable,
2919 2920
	.start		= x86_pmu_start,
	.stop		= x86_pmu_stop,
2921
	.read		= x86_pmu_read,
2922
	.unthrottle	= x86_pmu_unthrottle,
I
Ingo Molnar 已提交
2923 2924
};

2925 2926 2927 2928
/*
 * validate a single event group
 *
 * validation include:
2929 2930 2931
 *	- check events are compatible which each other
 *	- events do not compete for the same counter
 *	- number of events <= number of counters
2932 2933 2934 2935
 *
 * validation ensures the group can be loaded onto the
 * PMU if it was the only group available.
 */
2936 2937
static int validate_group(struct perf_event *event)
{
2938
	struct perf_event *leader = event->group_leader;
2939 2940
	struct cpu_hw_events *fake_cpuc;
	int ret, n;
2941

2942 2943 2944 2945
	ret = -ENOMEM;
	fake_cpuc = kmalloc(sizeof(*fake_cpuc), GFP_KERNEL | __GFP_ZERO);
	if (!fake_cpuc)
		goto out;
2946

2947 2948 2949 2950 2951 2952
	/*
	 * the event is not yet connected with its
	 * siblings therefore we must first collect
	 * existing siblings, then add the new event
	 * before we can simulate the scheduling
	 */
2953 2954
	ret = -ENOSPC;
	n = collect_events(fake_cpuc, leader, true);
2955
	if (n < 0)
2956
		goto out_free;
2957

2958 2959
	fake_cpuc->n_events = n;
	n = collect_events(fake_cpuc, event, false);
2960
	if (n < 0)
2961
		goto out_free;
2962

2963
	fake_cpuc->n_events = n;
2964

2965 2966 2967 2968 2969 2970
	ret = x86_schedule_events(fake_cpuc, n, NULL);

out_free:
	kfree(fake_cpuc);
out:
	return ret;
2971 2972
}

2973
const struct pmu *hw_perf_event_init(struct perf_event *event)
I
Ingo Molnar 已提交
2974
{
2975
	const struct pmu *tmp;
I
Ingo Molnar 已提交
2976 2977
	int err;

2978
	err = __hw_perf_event_init(event);
2979
	if (!err) {
2980 2981 2982 2983 2984 2985 2986 2987
		/*
		 * we temporarily connect event to its pmu
		 * such that validate_group() can classify
		 * it as an x86 event using is_x86_event()
		 */
		tmp = event->pmu;
		event->pmu = &pmu;

2988 2989
		if (event->group_leader != event)
			err = validate_group(event);
2990 2991

		event->pmu = tmp;
2992
	}
2993
	if (err) {
2994 2995
		if (event->destroy)
			event->destroy(event);
2996
		return ERR_PTR(err);
2997
	}
I
Ingo Molnar 已提交
2998

2999
	return &pmu;
I
Ingo Molnar 已提交
3000
}
3001 3002 3003 3004 3005 3006

/*
 * callchain support
 */

static inline
3007
void callchain_store(struct perf_callchain_entry *entry, u64 ip)
3008
{
3009
	if (entry->nr < PERF_MAX_STACK_DEPTH)
3010 3011 3012
		entry->ip[entry->nr++] = ip;
}

3013 3014
static DEFINE_PER_CPU(struct perf_callchain_entry, pmc_irq_entry);
static DEFINE_PER_CPU(struct perf_callchain_entry, pmc_nmi_entry);
3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029


static void
backtrace_warning_symbol(void *data, char *msg, unsigned long symbol)
{
	/* Ignore warnings */
}

static void backtrace_warning(void *data, char *msg)
{
	/* Ignore warnings */
}

static int backtrace_stack(void *data, char *name)
{
3030
	return 0;
3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045
}

static void backtrace_address(void *data, unsigned long addr, int reliable)
{
	struct perf_callchain_entry *entry = data;

	if (reliable)
		callchain_store(entry, addr);
}

static const struct stacktrace_ops backtrace_ops = {
	.warning		= backtrace_warning,
	.warning_symbol		= backtrace_warning_symbol,
	.stack			= backtrace_stack,
	.address		= backtrace_address,
3046
	.walk_stack		= print_context_stack_bp,
3047 3048
};

3049 3050
#include "../dumpstack.h"

3051 3052 3053
static void
perf_callchain_kernel(struct pt_regs *regs, struct perf_callchain_entry *entry)
{
3054
	callchain_store(entry, PERF_CONTEXT_KERNEL);
3055
	callchain_store(entry, regs->ip);
3056

3057
	dump_trace(NULL, regs, NULL, regs->bp, &backtrace_ops, entry);
3058 3059
}

3060 3061 3062 3063 3064
/*
 * best effort, GUP based copy_from_user() that assumes IRQ or NMI context
 */
static unsigned long
copy_from_user_nmi(void *to, const void __user *from, unsigned long n)
3065
{
3066 3067 3068 3069 3070
	unsigned long offset, addr = (unsigned long)from;
	int type = in_nmi() ? KM_NMI : KM_IRQ0;
	unsigned long size, len = 0;
	struct page *page;
	void *map;
3071 3072
	int ret;

3073 3074 3075 3076
	do {
		ret = __get_user_pages_fast(addr, 1, 0, &page);
		if (!ret)
			break;
3077

3078 3079
		offset = addr & (PAGE_SIZE - 1);
		size = min(PAGE_SIZE - offset, n - len);
3080

3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101
		map = kmap_atomic(page, type);
		memcpy(to, map+offset, size);
		kunmap_atomic(map, type);
		put_page(page);

		len  += size;
		to   += size;
		addr += size;

	} while (len < n);

	return len;
}

static int copy_stack_frame(const void __user *fp, struct stack_frame *frame)
{
	unsigned long bytes;

	bytes = copy_from_user_nmi(frame, fp, sizeof(*frame));

	return bytes == sizeof(*frame);
3102 3103 3104 3105 3106 3107 3108 3109
}

static void
perf_callchain_user(struct pt_regs *regs, struct perf_callchain_entry *entry)
{
	struct stack_frame frame;
	const void __user *fp;

3110 3111 3112
	if (!user_mode(regs))
		regs = task_pt_regs(current);

3113
	fp = (void __user *)regs->bp;
3114

3115
	callchain_store(entry, PERF_CONTEXT_USER);
3116 3117
	callchain_store(entry, regs->ip);

3118
	while (entry->nr < PERF_MAX_STACK_DEPTH) {
3119
		frame.next_frame	     = NULL;
3120 3121 3122 3123 3124
		frame.return_address = 0;

		if (!copy_stack_frame(fp, &frame))
			break;

3125
		if ((unsigned long)fp < regs->sp)
3126 3127 3128
			break;

		callchain_store(entry, frame.return_address);
3129
		fp = frame.next_frame;
3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157
	}
}

static void
perf_do_callchain(struct pt_regs *regs, struct perf_callchain_entry *entry)
{
	int is_user;

	if (!regs)
		return;

	is_user = user_mode(regs);

	if (is_user && current->state != TASK_RUNNING)
		return;

	if (!is_user)
		perf_callchain_kernel(regs, entry);

	if (current->mm)
		perf_callchain_user(regs, entry);
}

struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
{
	struct perf_callchain_entry *entry;

	if (in_nmi())
3158
		entry = &__get_cpu_var(pmc_nmi_entry);
3159
	else
3160
		entry = &__get_cpu_var(pmc_irq_entry);
3161 3162 3163 3164 3165 3166 3167

	entry->nr = 0;

	perf_do_callchain(regs, entry);

	return entry;
}
3168

3169
void hw_perf_event_setup_online(int cpu)
3170 3171
{
	init_debug_store_on_cpu(cpu);
3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192

	switch (boot_cpu_data.x86_vendor) {
	case X86_VENDOR_AMD:
		amd_pmu_cpu_online(cpu);
		break;
	default:
		return;
	}
}

void hw_perf_event_setup_offline(int cpu)
{
	init_debug_store_on_cpu(cpu);

	switch (boot_cpu_data.x86_vendor) {
	case X86_VENDOR_AMD:
		amd_pmu_cpu_offline(cpu);
		break;
	default:
		return;
	}
3193
}