memcontrol.c 60.7 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
B
Balbir Singh 已提交
9 10 11 12 13 14 15 16 17 18 19 20 21 22
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
23
#include <linux/mm.h>
K
KAMEZAWA Hiroyuki 已提交
24
#include <linux/pagemap.h>
25
#include <linux/smp.h>
26
#include <linux/page-flags.h>
27
#include <linux/backing-dev.h>
28 29
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
30
#include <linux/limits.h>
31
#include <linux/mutex.h>
32
#include <linux/slab.h>
33 34 35
#include <linux/swap.h>
#include <linux/spinlock.h>
#include <linux/fs.h>
36
#include <linux/seq_file.h>
37
#include <linux/vmalloc.h>
38
#include <linux/mm_inline.h>
39
#include <linux/page_cgroup.h>
K
KAMEZAWA Hiroyuki 已提交
40
#include "internal.h"
B
Balbir Singh 已提交
41

42 43
#include <asm/uaccess.h>

44 45
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
#define MEM_CGROUP_RECLAIM_RETRIES	5
B
Balbir Singh 已提交
46

47 48 49 50 51 52 53 54
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 0 */
int do_swap_account __read_mostly;
static int really_do_swap_account __initdata = 1; /* for remember boot option*/
#else
#define do_swap_account		(0)
#endif

55
static DEFINE_MUTEX(memcg_tasklist);	/* can be hold under cgroup_mutex */
56

57 58 59 60 61 62 63 64 65
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as rss */
66 67
	MEM_CGROUP_STAT_PGPGIN_COUNT,	/* # of pages paged in */
	MEM_CGROUP_STAT_PGPGOUT_COUNT,	/* # of pages paged out */
68 69 70 71 72 73 74 75 76

	MEM_CGROUP_STAT_NSTATS,
};

struct mem_cgroup_stat_cpu {
	s64 count[MEM_CGROUP_STAT_NSTATS];
} ____cacheline_aligned_in_smp;

struct mem_cgroup_stat {
77
	struct mem_cgroup_stat_cpu cpustat[0];
78 79 80 81 82
};

/*
 * For accounting under irq disable, no need for increment preempt count.
 */
83
static inline void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat_cpu *stat,
84 85
		enum mem_cgroup_stat_index idx, int val)
{
86
	stat->count[idx] += val;
87 88 89 90 91 92 93 94 95 96 97 98
}

static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
		enum mem_cgroup_stat_index idx)
{
	int cpu;
	s64 ret = 0;
	for_each_possible_cpu(cpu)
		ret += stat->cpustat[cpu].count[idx];
	return ret;
}

K
KAMEZAWA Hiroyuki 已提交
99 100 101 102 103 104 105 106 107
static s64 mem_cgroup_local_usage(struct mem_cgroup_stat *stat)
{
	s64 ret;

	ret = mem_cgroup_read_stat(stat, MEM_CGROUP_STAT_CACHE);
	ret += mem_cgroup_read_stat(stat, MEM_CGROUP_STAT_RSS);
	return ret;
}

108 109 110 111
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
112 113 114
	/*
	 * spin_lock to protect the per cgroup LRU
	 */
115 116
	struct list_head	lists[NR_LRU_LISTS];
	unsigned long		count[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
117 118

	struct zone_reclaim_stat reclaim_stat;
119 120 121 122 123 124 125 126 127 128 129 130
};
/* Macro for accessing counter */
#define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

struct mem_cgroup_lru_info {
	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
};

B
Balbir Singh 已提交
131 132 133 134 135 136 137
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
138 139 140
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
141 142 143 144 145 146 147
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
148 149 150 151
	/*
	 * the counter to account for mem+swap usage.
	 */
	struct res_counter memsw;
152 153 154 155
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 */
156
	struct mem_cgroup_lru_info info;
157

K
KOSAKI Motohiro 已提交
158 159 160 161 162
	/*
	  protect against reclaim related member.
	*/
	spinlock_t reclaim_param_lock;

163
	int	prev_priority;	/* for recording reclaim priority */
164 165 166

	/*
	 * While reclaiming in a hiearchy, we cache the last child we
K
KAMEZAWA Hiroyuki 已提交
167
	 * reclaimed from.
168
	 */
K
KAMEZAWA Hiroyuki 已提交
169
	int last_scanned_child;
170 171 172 173
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
174
	unsigned long	last_oom_jiffies;
175
	atomic_t	refcnt;
176

K
KOSAKI Motohiro 已提交
177 178
	unsigned int	swappiness;

179
	/*
180
	 * statistics. This must be placed at the end of memcg.
181 182
	 */
	struct mem_cgroup_stat stat;
B
Balbir Singh 已提交
183 184
};

185 186 187
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
	MEM_CGROUP_CHARGE_TYPE_MAPPED,
188
	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
189
	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
K
KAMEZAWA Hiroyuki 已提交
190
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
191 192 193
	NR_CHARGE_TYPE,
};

194 195 196 197
/* only for here (for easy reading.) */
#define PCGF_CACHE	(1UL << PCG_CACHE)
#define PCGF_USED	(1UL << PCG_USED)
#define PCGF_LOCK	(1UL << PCG_LOCK)
198 199
static const unsigned long
pcg_default_flags[NR_CHARGE_TYPE] = {
K
KAMEZAWA Hiroyuki 已提交
200 201 202
	PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* File Cache */
	PCGF_USED | PCGF_LOCK, /* Anon */
	PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* Shmem */
203
	0, /* FORCE */
204 205
};

206 207 208 209 210 211 212 213 214
/* for encoding cft->private value on file */
#define _MEM			(0)
#define _MEMSWAP		(1)
#define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
#define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
#define MEMFILE_ATTR(val)	((val) & 0xffff)

static void mem_cgroup_get(struct mem_cgroup *mem);
static void mem_cgroup_put(struct mem_cgroup *mem);
215
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
216

217 218 219
static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
					 struct page_cgroup *pc,
					 bool charge)
220 221 222
{
	int val = (charge)? 1 : -1;
	struct mem_cgroup_stat *stat = &mem->stat;
223
	struct mem_cgroup_stat_cpu *cpustat;
K
KAMEZAWA Hiroyuki 已提交
224
	int cpu = get_cpu();
225

K
KAMEZAWA Hiroyuki 已提交
226
	cpustat = &stat->cpustat[cpu];
227
	if (PageCgroupCache(pc))
228
		__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_CACHE, val);
229
	else
230
		__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_RSS, val);
231 232

	if (charge)
233
		__mem_cgroup_stat_add_safe(cpustat,
234 235
				MEM_CGROUP_STAT_PGPGIN_COUNT, 1);
	else
236
		__mem_cgroup_stat_add_safe(cpustat,
237
				MEM_CGROUP_STAT_PGPGOUT_COUNT, 1);
K
KAMEZAWA Hiroyuki 已提交
238
	put_cpu();
239 240
}

241
static struct mem_cgroup_per_zone *
242 243 244 245 246
mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
{
	return &mem->info.nodeinfo[nid]->zoneinfo[zid];
}

247
static struct mem_cgroup_per_zone *
248 249 250 251 252
page_cgroup_zoneinfo(struct page_cgroup *pc)
{
	struct mem_cgroup *mem = pc->mem_cgroup;
	int nid = page_cgroup_nid(pc);
	int zid = page_cgroup_zid(pc);
253

254 255 256
	if (!mem)
		return NULL;

257 258 259
	return mem_cgroup_zoneinfo(mem, nid, zid);
}

K
KAMEZAWA Hiroyuki 已提交
260
static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
261
					enum lru_list idx)
262 263 264 265 266 267 268 269 270 271 272
{
	int nid, zid;
	struct mem_cgroup_per_zone *mz;
	u64 total = 0;

	for_each_online_node(nid)
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			mz = mem_cgroup_zoneinfo(mem, nid, zid);
			total += MEM_CGROUP_ZSTAT(mz, idx);
		}
	return total;
273 274
}

275
static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
B
Balbir Singh 已提交
276 277 278 279 280 281
{
	return container_of(cgroup_subsys_state(cont,
				mem_cgroup_subsys_id), struct mem_cgroup,
				css);
}

282
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
283
{
284 285 286 287 288 289 290 291
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

292 293 294 295
	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
				struct mem_cgroup, css);
}

296 297 298
static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
{
	struct mem_cgroup *mem = NULL;
299 300 301

	if (!mm)
		return NULL;
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
		mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!mem))
			break;
	} while (!css_tryget(&mem->css));
	rcu_read_unlock();
	return mem;
}

static bool mem_cgroup_is_obsolete(struct mem_cgroup *mem)
{
	if (!mem)
		return true;
	return css_is_removed(&mem->css);
}

K
KAMEZAWA Hiroyuki 已提交
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359

/*
 * Call callback function against all cgroup under hierarchy tree.
 */
static int mem_cgroup_walk_tree(struct mem_cgroup *root, void *data,
			  int (*func)(struct mem_cgroup *, void *))
{
	int found, ret, nextid;
	struct cgroup_subsys_state *css;
	struct mem_cgroup *mem;

	if (!root->use_hierarchy)
		return (*func)(root, data);

	nextid = 1;
	do {
		ret = 0;
		mem = NULL;

		rcu_read_lock();
		css = css_get_next(&mem_cgroup_subsys, nextid, &root->css,
				   &found);
		if (css && css_tryget(css))
			mem = container_of(css, struct mem_cgroup, css);
		rcu_read_unlock();

		if (mem) {
			ret = (*func)(mem, data);
			css_put(&mem->css);
		}
		nextid = found + 1;
	} while (!ret && css);

	return ret;
}

K
KAMEZAWA Hiroyuki 已提交
360 361 362 363 364 365 366 367 368 369 370 371 372
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
373

K
KAMEZAWA Hiroyuki 已提交
374 375 376 377 378
void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
{
	struct page_cgroup *pc;
	struct mem_cgroup *mem;
	struct mem_cgroup_per_zone *mz;
379

380
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
381 382 383
		return;
	pc = lookup_page_cgroup(page);
	/* can happen while we handle swapcache. */
384
	if (list_empty(&pc->lru) || !pc->mem_cgroup)
K
KAMEZAWA Hiroyuki 已提交
385
		return;
386 387 388 389
	/*
	 * We don't check PCG_USED bit. It's cleared when the "page" is finally
	 * removed from global LRU.
	 */
K
KAMEZAWA Hiroyuki 已提交
390 391
	mz = page_cgroup_zoneinfo(pc);
	mem = pc->mem_cgroup;
392
	MEM_CGROUP_ZSTAT(mz, lru) -= 1;
K
KAMEZAWA Hiroyuki 已提交
393 394
	list_del_init(&pc->lru);
	return;
395 396
}

K
KAMEZAWA Hiroyuki 已提交
397
void mem_cgroup_del_lru(struct page *page)
398
{
K
KAMEZAWA Hiroyuki 已提交
399 400
	mem_cgroup_del_lru_list(page, page_lru(page));
}
401

K
KAMEZAWA Hiroyuki 已提交
402 403 404 405
void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
{
	struct mem_cgroup_per_zone *mz;
	struct page_cgroup *pc;
406

407
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
408
		return;
409

K
KAMEZAWA Hiroyuki 已提交
410
	pc = lookup_page_cgroup(page);
411 412 413 414
	/*
	 * Used bit is set without atomic ops but after smp_wmb().
	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
	 */
K
KAMEZAWA Hiroyuki 已提交
415 416 417 418 419 420
	smp_rmb();
	/* unused page is not rotated. */
	if (!PageCgroupUsed(pc))
		return;
	mz = page_cgroup_zoneinfo(pc);
	list_move(&pc->lru, &mz->lists[lru]);
421 422
}

K
KAMEZAWA Hiroyuki 已提交
423
void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
424
{
K
KAMEZAWA Hiroyuki 已提交
425 426
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
427

428
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
429 430
		return;
	pc = lookup_page_cgroup(page);
431 432 433 434
	/*
	 * Used bit is set without atomic ops but after smp_wmb().
	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
	 */
K
KAMEZAWA Hiroyuki 已提交
435 436
	smp_rmb();
	if (!PageCgroupUsed(pc))
L
Lee Schermerhorn 已提交
437
		return;
438

K
KAMEZAWA Hiroyuki 已提交
439
	mz = page_cgroup_zoneinfo(pc);
440
	MEM_CGROUP_ZSTAT(mz, lru) += 1;
K
KAMEZAWA Hiroyuki 已提交
441 442
	list_add(&pc->lru, &mz->lists[lru]);
}
443

K
KAMEZAWA Hiroyuki 已提交
444
/*
445 446 447 448 449
 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
 * lru because the page may.be reused after it's fully uncharged (because of
 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
 * it again. This function is only used to charge SwapCache. It's done under
 * lock_page and expected that zone->lru_lock is never held.
K
KAMEZAWA Hiroyuki 已提交
450
 */
451
static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
K
KAMEZAWA Hiroyuki 已提交
452
{
453 454 455 456 457 458 459 460 461 462 463 464
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);

	spin_lock_irqsave(&zone->lru_lock, flags);
	/*
	 * Forget old LRU when this page_cgroup is *not* used. This Used bit
	 * is guarded by lock_page() because the page is SwapCache.
	 */
	if (!PageCgroupUsed(pc))
		mem_cgroup_del_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
K
KAMEZAWA Hiroyuki 已提交
465 466
}

467 468 469 470 471 472 473 474 475 476 477 478 479 480
static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
{
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);

	spin_lock_irqsave(&zone->lru_lock, flags);
	/* link when the page is linked to LRU but page_cgroup isn't */
	if (PageLRU(page) && list_empty(&pc->lru))
		mem_cgroup_add_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
}


K
KAMEZAWA Hiroyuki 已提交
481 482 483
void mem_cgroup_move_lists(struct page *page,
			   enum lru_list from, enum lru_list to)
{
484
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
485 486 487
		return;
	mem_cgroup_del_lru_list(page, from);
	mem_cgroup_add_lru_list(page, to);
488 489
}

490 491 492
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
{
	int ret;
493
	struct mem_cgroup *curr = NULL;
494 495

	task_lock(task);
496 497 498
	rcu_read_lock();
	curr = try_get_mem_cgroup_from_mm(task->mm);
	rcu_read_unlock();
499
	task_unlock(task);
500 501 502 503 504 505 506
	if (!curr)
		return 0;
	if (curr->use_hierarchy)
		ret = css_is_ancestor(&curr->css, &mem->css);
	else
		ret = (curr == mem);
	css_put(&curr->css);
507 508 509
	return ret;
}

510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
/*
 * Calculate mapped_ratio under memory controller. This will be used in
 * vmscan.c for deteremining we have to reclaim mapped pages.
 */
int mem_cgroup_calc_mapped_ratio(struct mem_cgroup *mem)
{
	long total, rss;

	/*
	 * usage is recorded in bytes. But, here, we assume the number of
	 * physical pages can be represented by "long" on any arch.
	 */
	total = (long) (mem->res.usage >> PAGE_SHIFT) + 1L;
	rss = (long)mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
	return (int)((rss * 100L) / total);
}
526

527 528 529 530 531
/*
 * prev_priority control...this will be used in memory reclaim path.
 */
int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
{
K
KOSAKI Motohiro 已提交
532 533 534 535 536 537 538
	int prev_priority;

	spin_lock(&mem->reclaim_param_lock);
	prev_priority = mem->prev_priority;
	spin_unlock(&mem->reclaim_param_lock);

	return prev_priority;
539 540 541 542
}

void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
{
K
KOSAKI Motohiro 已提交
543
	spin_lock(&mem->reclaim_param_lock);
544 545
	if (priority < mem->prev_priority)
		mem->prev_priority = priority;
K
KOSAKI Motohiro 已提交
546
	spin_unlock(&mem->reclaim_param_lock);
547 548 549 550
}

void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
{
K
KOSAKI Motohiro 已提交
551
	spin_lock(&mem->reclaim_param_lock);
552
	mem->prev_priority = priority;
K
KOSAKI Motohiro 已提交
553
	spin_unlock(&mem->reclaim_param_lock);
554 555
}

556
static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
557 558 559
{
	unsigned long active;
	unsigned long inactive;
560 561
	unsigned long gb;
	unsigned long inactive_ratio;
562

K
KAMEZAWA Hiroyuki 已提交
563 564
	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
565

566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

	if (present_pages) {
		present_pages[0] = inactive;
		present_pages[1] = active;
	}

	return inactive_ratio;
}

int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
{
	unsigned long active;
	unsigned long inactive;
	unsigned long present_pages[2];
	unsigned long inactive_ratio;

	inactive_ratio = calc_inactive_ratio(memcg, present_pages);

	inactive = present_pages[0];
	active = present_pages[1];

	if (inactive * inactive_ratio < active)
593 594 595 596 597
		return 1;

	return 0;
}

598 599 600 601 602 603 604 605 606 607 608
unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
				       struct zone *zone,
				       enum lru_list lru)
{
	int nid = zone->zone_pgdat->node_id;
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return MEM_CGROUP_ZSTAT(mz, lru);
}

K
KOSAKI Motohiro 已提交
609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628
struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
						      struct zone *zone)
{
	int nid = zone->zone_pgdat->node_id;
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return &mz->reclaim_stat;
}

struct zone_reclaim_stat *
mem_cgroup_get_reclaim_stat_from_page(struct page *page)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;

	if (mem_cgroup_disabled())
		return NULL;

	pc = lookup_page_cgroup(page);
629 630 631 632 633 634 635 636
	/*
	 * Used bit is set without atomic ops but after smp_wmb().
	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
	 */
	smp_rmb();
	if (!PageCgroupUsed(pc))
		return NULL;

K
KOSAKI Motohiro 已提交
637 638 639 640 641 642 643
	mz = page_cgroup_zoneinfo(pc);
	if (!mz)
		return NULL;

	return &mz->reclaim_stat;
}

644 645 646 647 648
unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
					struct list_head *dst,
					unsigned long *scanned, int order,
					int mode, struct zone *z,
					struct mem_cgroup *mem_cont,
649
					int active, int file)
650 651 652 653 654 655
{
	unsigned long nr_taken = 0;
	struct page *page;
	unsigned long scan;
	LIST_HEAD(pc_list);
	struct list_head *src;
656
	struct page_cgroup *pc, *tmp;
657 658 659
	int nid = z->zone_pgdat->node_id;
	int zid = zone_idx(z);
	struct mem_cgroup_per_zone *mz;
660
	int lru = LRU_FILE * !!file + !!active;
661

662
	BUG_ON(!mem_cont);
663
	mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
664
	src = &mz->lists[lru];
665

666 667
	scan = 0;
	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
H
Hugh Dickins 已提交
668
		if (scan >= nr_to_scan)
669
			break;
K
KAMEZAWA Hiroyuki 已提交
670 671

		page = pc->page;
672 673
		if (unlikely(!PageCgroupUsed(pc)))
			continue;
H
Hugh Dickins 已提交
674
		if (unlikely(!PageLRU(page)))
675 676
			continue;

H
Hugh Dickins 已提交
677
		scan++;
678
		if (__isolate_lru_page(page, mode, file) == 0) {
679 680 681 682 683 684 685 686 687
			list_move(&page->lru, dst);
			nr_taken++;
		}
	}

	*scanned = scan;
	return nr_taken;
}

688 689 690
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

691 692 693 694 695 696 697 698 699 700 701 702
static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
{
	if (do_swap_account) {
		if (res_counter_check_under_limit(&mem->res) &&
			res_counter_check_under_limit(&mem->memsw))
			return true;
	} else
		if (res_counter_check_under_limit(&mem->res))
			return true;
	return false;
}

K
KOSAKI Motohiro 已提交
703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718
static unsigned int get_swappiness(struct mem_cgroup *memcg)
{
	struct cgroup *cgrp = memcg->css.cgroup;
	unsigned int swappiness;

	/* root ? */
	if (cgrp->parent == NULL)
		return vm_swappiness;

	spin_lock(&memcg->reclaim_param_lock);
	swappiness = memcg->swappiness;
	spin_unlock(&memcg->reclaim_param_lock);

	return swappiness;
}

719 720 721 722 723 724
static int mem_cgroup_count_children_cb(struct mem_cgroup *mem, void *data)
{
	int *val = data;
	(*val)++;
	return 0;
}
725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792

/**
 * mem_cgroup_print_mem_info: Called from OOM with tasklist_lock held in read mode.
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;

	if (!memcg)
		return;


	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	printk(KERN_INFO "Task in %s killed", memcg_name);

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
done:

	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
		"failcnt %llu\n",
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
}

793 794 795 796 797 798 799 800 801 802 803
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
static int mem_cgroup_count_children(struct mem_cgroup *mem)
{
	int num = 0;
 	mem_cgroup_walk_tree(mem, &num, mem_cgroup_count_children_cb);
	return num;
}

804
/*
K
KAMEZAWA Hiroyuki 已提交
805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846
 * Visit the first child (need not be the first child as per the ordering
 * of the cgroup list, since we track last_scanned_child) of @mem and use
 * that to reclaim free pages from.
 */
static struct mem_cgroup *
mem_cgroup_select_victim(struct mem_cgroup *root_mem)
{
	struct mem_cgroup *ret = NULL;
	struct cgroup_subsys_state *css;
	int nextid, found;

	if (!root_mem->use_hierarchy) {
		css_get(&root_mem->css);
		ret = root_mem;
	}

	while (!ret) {
		rcu_read_lock();
		nextid = root_mem->last_scanned_child + 1;
		css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
				   &found);
		if (css && css_tryget(css))
			ret = container_of(css, struct mem_cgroup, css);

		rcu_read_unlock();
		/* Updates scanning parameter */
		spin_lock(&root_mem->reclaim_param_lock);
		if (!css) {
			/* this means start scan from ID:1 */
			root_mem->last_scanned_child = 0;
		} else
			root_mem->last_scanned_child = found;
		spin_unlock(&root_mem->reclaim_param_lock);
	}

	return ret;
}

/*
 * Scan the hierarchy if needed to reclaim memory. We remember the last child
 * we reclaimed from, so that we don't end up penalizing one child extensively
 * based on its position in the children list.
847 848
 *
 * root_mem is the original ancestor that we've been reclaim from.
K
KAMEZAWA Hiroyuki 已提交
849 850 851
 *
 * We give up and return to the caller when we visit root_mem twice.
 * (other groups can be removed while we're walking....)
852 853
 *
 * If shrink==true, for avoiding to free too much, this returns immedieately.
854 855
 */
static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
856
				   gfp_t gfp_mask, bool noswap, bool shrink)
857
{
K
KAMEZAWA Hiroyuki 已提交
858 859 860 861 862 863 864 865 866 867 868
	struct mem_cgroup *victim;
	int ret, total = 0;
	int loop = 0;

	while (loop < 2) {
		victim = mem_cgroup_select_victim(root_mem);
		if (victim == root_mem)
			loop++;
		if (!mem_cgroup_local_usage(&victim->stat)) {
			/* this cgroup's local usage == 0 */
			css_put(&victim->css);
869 870
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
871 872 873 874
		/* we use swappiness of local cgroup */
		ret = try_to_free_mem_cgroup_pages(victim, gfp_mask, noswap,
						   get_swappiness(victim));
		css_put(&victim->css);
875 876 877 878 879 880 881
		/*
		 * At shrinking usage, we can't check we should stop here or
		 * reclaim more. It's depends on callers. last_scanned_child
		 * will work enough for keeping fairness under tree.
		 */
		if (shrink)
			return ret;
K
KAMEZAWA Hiroyuki 已提交
882
		total += ret;
883
		if (mem_cgroup_check_under_limit(root_mem))
K
KAMEZAWA Hiroyuki 已提交
884
			return 1 + total;
885
	}
K
KAMEZAWA Hiroyuki 已提交
886
	return total;
887 888
}

889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904
bool mem_cgroup_oom_called(struct task_struct *task)
{
	bool ret = false;
	struct mem_cgroup *mem;
	struct mm_struct *mm;

	rcu_read_lock();
	mm = task->mm;
	if (!mm)
		mm = &init_mm;
	mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (mem && time_before(jiffies, mem->last_oom_jiffies + HZ/10))
		ret = true;
	rcu_read_unlock();
	return ret;
}
905 906 907 908 909 910 911 912 913 914 915 916 917

static int record_last_oom_cb(struct mem_cgroup *mem, void *data)
{
	mem->last_oom_jiffies = jiffies;
	return 0;
}

static void record_last_oom(struct mem_cgroup *mem)
{
	mem_cgroup_walk_tree(mem, NULL, record_last_oom_cb);
}


918 919 920
/*
 * Unlike exported interface, "oom" parameter is added. if oom==true,
 * oom-killer can be invoked.
921
 */
922
static int __mem_cgroup_try_charge(struct mm_struct *mm,
923 924
			gfp_t gfp_mask, struct mem_cgroup **memcg,
			bool oom)
925
{
926
	struct mem_cgroup *mem, *mem_over_limit;
927
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
928
	struct res_counter *fail_res;
929 930 931 932 933 934 935

	if (unlikely(test_thread_flag(TIF_MEMDIE))) {
		/* Don't account this! */
		*memcg = NULL;
		return 0;
	}

936
	/*
937 938
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
939 940 941
	 * thread group leader migrates. It's possible that mm is not
	 * set, if so charge the init_mm (happens for pagecache usage).
	 */
942 943 944
	mem = *memcg;
	if (likely(!mem)) {
		mem = try_get_mem_cgroup_from_mm(mm);
945
		*memcg = mem;
946
	} else {
947
		css_get(&mem->css);
948
	}
949 950 951 952
	if (unlikely(!mem))
		return 0;

	VM_BUG_ON(mem_cgroup_is_obsolete(mem));
953

954 955 956
	while (1) {
		int ret;
		bool noswap = false;
957

958
		ret = res_counter_charge(&mem->res, PAGE_SIZE, &fail_res);
959 960 961
		if (likely(!ret)) {
			if (!do_swap_account)
				break;
962 963
			ret = res_counter_charge(&mem->memsw, PAGE_SIZE,
							&fail_res);
964 965 966 967 968
			if (likely(!ret))
				break;
			/* mem+swap counter fails */
			res_counter_uncharge(&mem->res, PAGE_SIZE);
			noswap = true;
969 970 971 972 973 974 975
			mem_over_limit = mem_cgroup_from_res_counter(fail_res,
									memsw);
		} else
			/* mem counter fails */
			mem_over_limit = mem_cgroup_from_res_counter(fail_res,
									res);

976
		if (!(gfp_mask & __GFP_WAIT))
977
			goto nomem;
978

979
		ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, gfp_mask,
980
							noswap, false);
981 982
		if (ret)
			continue;
983 984

		/*
985 986 987 988 989
		 * try_to_free_mem_cgroup_pages() might not give us a full
		 * picture of reclaim. Some pages are reclaimed and might be
		 * moved to swap cache or just unmapped from the cgroup.
		 * Check the limit again to see if the reclaim reduced the
		 * current usage of the cgroup before giving up
990
		 *
991
		 */
992 993
		if (mem_cgroup_check_under_limit(mem_over_limit))
			continue;
994 995

		if (!nr_retries--) {
996
			if (oom) {
997
				mutex_lock(&memcg_tasklist);
998
				mem_cgroup_out_of_memory(mem_over_limit, gfp_mask);
999
				mutex_unlock(&memcg_tasklist);
1000
				record_last_oom(mem_over_limit);
1001
			}
1002
			goto nomem;
1003
		}
1004
	}
1005 1006 1007 1008 1009
	return 0;
nomem:
	css_put(&mem->css);
	return -ENOMEM;
}
1010

1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
static struct mem_cgroup *try_get_mem_cgroup_from_swapcache(struct page *page)
{
	struct mem_cgroup *mem;
	swp_entry_t ent;

	if (!PageSwapCache(page))
		return NULL;

	ent.val = page_private(page);
	mem = lookup_swap_cgroup(ent);
	if (!mem)
		return NULL;
	if (!css_tryget(&mem->css))
		return NULL;
	return mem;
}

1028
/*
1029
 * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
 * USED state. If already USED, uncharge and return.
 */

static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
				     struct page_cgroup *pc,
				     enum charge_type ctype)
{
	/* try_charge() can return NULL to *memcg, taking care of it. */
	if (!mem)
		return;
1040 1041 1042 1043 1044

	lock_page_cgroup(pc);
	if (unlikely(PageCgroupUsed(pc))) {
		unlock_page_cgroup(pc);
		res_counter_uncharge(&mem->res, PAGE_SIZE);
1045 1046
		if (do_swap_account)
			res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1047
		css_put(&mem->css);
1048
		return;
1049
	}
1050
	pc->mem_cgroup = mem;
K
KAMEZAWA Hiroyuki 已提交
1051
	smp_wmb();
1052
	pc->flags = pcg_default_flags[ctype];
1053

K
KAMEZAWA Hiroyuki 已提交
1054
	mem_cgroup_charge_statistics(mem, pc, true);
1055 1056

	unlock_page_cgroup(pc);
1057
}
1058

1059 1060 1061 1062 1063 1064 1065
/**
 * mem_cgroup_move_account - move account of the page
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
1066
 * - page is not on LRU (isolate_page() is useful.)
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
 *
 * returns 0 at success,
 * returns -EBUSY when lock is busy or "pc" is unstable.
 *
 * This function does "uncharge" from old cgroup but doesn't do "charge" to
 * new cgroup. It should be done by a caller.
 */

static int mem_cgroup_move_account(struct page_cgroup *pc,
	struct mem_cgroup *from, struct mem_cgroup *to)
{
	struct mem_cgroup_per_zone *from_mz, *to_mz;
	int nid, zid;
	int ret = -EBUSY;

	VM_BUG_ON(from == to);
K
KAMEZAWA Hiroyuki 已提交
1083
	VM_BUG_ON(PageLRU(pc->page));
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098

	nid = page_cgroup_nid(pc);
	zid = page_cgroup_zid(pc);
	from_mz =  mem_cgroup_zoneinfo(from, nid, zid);
	to_mz =  mem_cgroup_zoneinfo(to, nid, zid);

	if (!trylock_page_cgroup(pc))
		return ret;

	if (!PageCgroupUsed(pc))
		goto out;

	if (pc->mem_cgroup != from)
		goto out;

K
KAMEZAWA Hiroyuki 已提交
1099 1100 1101 1102
	res_counter_uncharge(&from->res, PAGE_SIZE);
	mem_cgroup_charge_statistics(from, pc, false);
	if (do_swap_account)
		res_counter_uncharge(&from->memsw, PAGE_SIZE);
1103 1104 1105
	css_put(&from->css);

	css_get(&to->css);
K
KAMEZAWA Hiroyuki 已提交
1106 1107 1108
	pc->mem_cgroup = to;
	mem_cgroup_charge_statistics(to, pc, true);
	ret = 0;
1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
out:
	unlock_page_cgroup(pc);
	return ret;
}

/*
 * move charges to its parent.
 */

static int mem_cgroup_move_parent(struct page_cgroup *pc,
				  struct mem_cgroup *child,
				  gfp_t gfp_mask)
{
K
KAMEZAWA Hiroyuki 已提交
1122
	struct page *page = pc->page;
1123 1124 1125 1126 1127 1128 1129 1130 1131
	struct cgroup *cg = child->css.cgroup;
	struct cgroup *pcg = cg->parent;
	struct mem_cgroup *parent;
	int ret;

	/* Is ROOT ? */
	if (!pcg)
		return -EINVAL;

K
KAMEZAWA Hiroyuki 已提交
1132

1133 1134
	parent = mem_cgroup_from_cont(pcg);

K
KAMEZAWA Hiroyuki 已提交
1135

1136
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false);
1137
	if (ret || !parent)
1138 1139
		return ret;

1140 1141 1142 1143
	if (!get_page_unless_zero(page)) {
		ret = -EBUSY;
		goto uncharge;
	}
K
KAMEZAWA Hiroyuki 已提交
1144 1145 1146 1147 1148

	ret = isolate_lru_page(page);

	if (ret)
		goto cancel;
1149 1150 1151

	ret = mem_cgroup_move_account(pc, child, parent);

K
KAMEZAWA Hiroyuki 已提交
1152 1153 1154
	putback_lru_page(page);
	if (!ret) {
		put_page(page);
1155 1156
		/* drop extra refcnt by try_charge() */
		css_put(&parent->css);
K
KAMEZAWA Hiroyuki 已提交
1157
		return 0;
1158
	}
1159

K
KAMEZAWA Hiroyuki 已提交
1160
cancel:
1161 1162 1163 1164 1165
	put_page(page);
uncharge:
	/* drop extra refcnt by try_charge() */
	css_put(&parent->css);
	/* uncharge if move fails */
K
KAMEZAWA Hiroyuki 已提交
1166 1167 1168
	res_counter_uncharge(&parent->res, PAGE_SIZE);
	if (do_swap_account)
		res_counter_uncharge(&parent->memsw, PAGE_SIZE);
1169 1170 1171
	return ret;
}

1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask, enum charge_type ctype,
				struct mem_cgroup *memcg)
{
	struct mem_cgroup *mem;
	struct page_cgroup *pc;
	int ret;

	pc = lookup_page_cgroup(page);
	/* can happen at boot */
	if (unlikely(!pc))
		return 0;
	prefetchw(pc);

	mem = memcg;
1193
	ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true);
1194
	if (ret || !mem)
1195 1196 1197
		return ret;

	__mem_cgroup_commit_charge(mem, pc, ctype);
1198 1199 1200
	return 0;
}

1201 1202
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
1203
{
1204
	if (mem_cgroup_disabled())
1205
		return 0;
1206 1207
	if (PageCompound(page))
		return 0;
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
	/*
	 * If already mapped, we don't have to account.
	 * If page cache, page->mapping has address_space.
	 * But page->mapping may have out-of-use anon_vma pointer,
	 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
	 * is NULL.
  	 */
	if (page_mapped(page) || (page->mapping && !PageAnon(page)))
		return 0;
	if (unlikely(!mm))
		mm = &init_mm;
1219
	return mem_cgroup_charge_common(page, mm, gfp_mask,
1220
				MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
1221 1222
}

1223 1224
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
1225
{
1226 1227 1228
	struct mem_cgroup *mem = NULL;
	int ret;

1229
	if (mem_cgroup_disabled())
1230
		return 0;
1231 1232
	if (PageCompound(page))
		return 0;
1233 1234 1235 1236 1237 1238 1239 1240
	/*
	 * Corner case handling. This is called from add_to_page_cache()
	 * in usual. But some FS (shmem) precharges this page before calling it
	 * and call add_to_page_cache() with GFP_NOWAIT.
	 *
	 * For GFP_NOWAIT case, the page may be pre-charged before calling
	 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
	 * charge twice. (It works but has to pay a bit larger cost.)
1241 1242
	 * And when the page is SwapCache, it should take swap information
	 * into account. This is under lock_page() now.
1243 1244 1245 1246
	 */
	if (!(gfp_mask & __GFP_WAIT)) {
		struct page_cgroup *pc;

1247 1248 1249 1250 1251 1252 1253

		pc = lookup_page_cgroup(page);
		if (!pc)
			return 0;
		lock_page_cgroup(pc);
		if (PageCgroupUsed(pc)) {
			unlock_page_cgroup(pc);
1254 1255
			return 0;
		}
1256
		unlock_page_cgroup(pc);
1257 1258
	}

1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
	if (do_swap_account && PageSwapCache(page)) {
		mem = try_get_mem_cgroup_from_swapcache(page);
		if (mem)
			mm = NULL;
		  else
			mem = NULL;
		/* SwapCache may be still linked to LRU now. */
		mem_cgroup_lru_del_before_commit_swapcache(page);
	}

	if (unlikely(!mm && !mem))
1270
		mm = &init_mm;
1271

1272 1273
	if (page_is_file_cache(page))
		return mem_cgroup_charge_common(page, mm, gfp_mask,
1274
				MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292

	ret = mem_cgroup_charge_common(page, mm, gfp_mask,
				MEM_CGROUP_CHARGE_TYPE_SHMEM, mem);
	if (mem)
		css_put(&mem->css);
	if (PageSwapCache(page))
		mem_cgroup_lru_add_after_commit_swapcache(page);

	if (do_swap_account && !ret && PageSwapCache(page)) {
		swp_entry_t ent = {.val = page_private(page)};
		/* avoid double counting */
		mem = swap_cgroup_record(ent, NULL);
		if (mem) {
			res_counter_uncharge(&mem->memsw, PAGE_SIZE);
			mem_cgroup_put(mem);
		}
	}
	return ret;
1293 1294
}

1295 1296 1297 1298 1299 1300
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
 * struct page_cgroup is aquired. This refcnt will be cumsumed by
 * "commit()" or removed by "cancel()"
 */
1301 1302 1303 1304 1305
int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
				 struct page *page,
				 gfp_t mask, struct mem_cgroup **ptr)
{
	struct mem_cgroup *mem;
1306
	int ret;
1307

1308
	if (mem_cgroup_disabled())
1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
		return 0;

	if (!do_swap_account)
		goto charge_cur_mm;
	/*
	 * A racing thread's fault, or swapoff, may have already updated
	 * the pte, and even removed page from swap cache: return success
	 * to go on to do_swap_page()'s pte_same() test, which should fail.
	 */
	if (!PageSwapCache(page))
		return 0;
1320
	mem = try_get_mem_cgroup_from_swapcache(page);
1321 1322
	if (!mem)
		goto charge_cur_mm;
1323
	*ptr = mem;
1324 1325 1326 1327
	ret = __mem_cgroup_try_charge(NULL, mask, ptr, true);
	/* drop extra refcnt from tryget */
	css_put(&mem->css);
	return ret;
1328 1329 1330 1331 1332 1333
charge_cur_mm:
	if (unlikely(!mm))
		mm = &init_mm;
	return __mem_cgroup_try_charge(mm, mask, ptr, true);
}

1334 1335 1336 1337
void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
{
	struct page_cgroup *pc;

1338
	if (mem_cgroup_disabled())
1339 1340 1341 1342
		return;
	if (!ptr)
		return;
	pc = lookup_page_cgroup(page);
1343
	mem_cgroup_lru_del_before_commit_swapcache(page);
1344
	__mem_cgroup_commit_charge(ptr, pc, MEM_CGROUP_CHARGE_TYPE_MAPPED);
1345
	mem_cgroup_lru_add_after_commit_swapcache(page);
1346 1347 1348
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
1349 1350 1351
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
1352
	 */
1353
	if (do_swap_account && PageSwapCache(page)) {
1354 1355 1356 1357 1358 1359 1360 1361 1362
		swp_entry_t ent = {.val = page_private(page)};
		struct mem_cgroup *memcg;
		memcg = swap_cgroup_record(ent, NULL);
		if (memcg) {
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
			mem_cgroup_put(memcg);
		}

	}
K
KAMEZAWA Hiroyuki 已提交
1363
	/* add this page(page_cgroup) to the LRU we want. */
1364

1365 1366 1367 1368
}

void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
{
1369
	if (mem_cgroup_disabled())
1370 1371 1372 1373
		return;
	if (!mem)
		return;
	res_counter_uncharge(&mem->res, PAGE_SIZE);
1374 1375
	if (do_swap_account)
		res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1376 1377 1378 1379
	css_put(&mem->css);
}


1380
/*
1381
 * uncharge if !page_mapped(page)
1382
 */
1383
static struct mem_cgroup *
1384
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
1385
{
H
Hugh Dickins 已提交
1386
	struct page_cgroup *pc;
1387
	struct mem_cgroup *mem = NULL;
1388
	struct mem_cgroup_per_zone *mz;
1389

1390
	if (mem_cgroup_disabled())
1391
		return NULL;
1392

K
KAMEZAWA Hiroyuki 已提交
1393
	if (PageSwapCache(page))
1394
		return NULL;
K
KAMEZAWA Hiroyuki 已提交
1395

1396
	/*
1397
	 * Check if our page_cgroup is valid
1398
	 */
1399 1400
	pc = lookup_page_cgroup(page);
	if (unlikely(!pc || !PageCgroupUsed(pc)))
1401
		return NULL;
1402

1403
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
1404

1405 1406
	mem = pc->mem_cgroup;

K
KAMEZAWA Hiroyuki 已提交
1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
	if (!PageCgroupUsed(pc))
		goto unlock_out;

	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
		if (page_mapped(page))
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
1424
	}
K
KAMEZAWA Hiroyuki 已提交
1425

1426 1427 1428
	res_counter_uncharge(&mem->res, PAGE_SIZE);
	if (do_swap_account && (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT))
		res_counter_uncharge(&mem->memsw, PAGE_SIZE);
K
KAMEZAWA Hiroyuki 已提交
1429
	mem_cgroup_charge_statistics(mem, pc, false);
K
KAMEZAWA Hiroyuki 已提交
1430

1431
	ClearPageCgroupUsed(pc);
1432 1433 1434 1435 1436 1437
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
1438

1439
	mz = page_cgroup_zoneinfo(pc);
1440
	unlock_page_cgroup(pc);
H
Hugh Dickins 已提交
1441

K
KAMEZAWA Hiroyuki 已提交
1442 1443 1444
	/* at swapout, this memcg will be accessed to record to swap */
	if (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		css_put(&mem->css);
1445

1446
	return mem;
K
KAMEZAWA Hiroyuki 已提交
1447 1448 1449

unlock_out:
	unlock_page_cgroup(pc);
1450
	return NULL;
1451 1452
}

1453 1454
void mem_cgroup_uncharge_page(struct page *page)
{
1455 1456 1457 1458 1459
	/* early check. */
	if (page_mapped(page))
		return;
	if (page->mapping && !PageAnon(page))
		return;
1460 1461 1462 1463 1464 1465
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
1466
	VM_BUG_ON(page->mapping);
1467 1468 1469
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
}

1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484
/*
 * called from __delete_from_swap_cache() and drop "page" account.
 * memcg information is recorded to swap_cgroup of "ent"
 */
void mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent)
{
	struct mem_cgroup *memcg;

	memcg = __mem_cgroup_uncharge_common(page,
					MEM_CGROUP_CHARGE_TYPE_SWAPOUT);
	/* record memcg information */
	if (do_swap_account && memcg) {
		swap_cgroup_record(ent, memcg);
		mem_cgroup_get(memcg);
	}
K
KAMEZAWA Hiroyuki 已提交
1485 1486
	if (memcg)
		css_put(&memcg->css);
1487 1488 1489 1490 1491 1492 1493 1494
}

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
1495
{
1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
	struct mem_cgroup *memcg;

	if (!do_swap_account)
		return;

	memcg = swap_cgroup_record(ent, NULL);
	if (memcg) {
		res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
		mem_cgroup_put(memcg);
	}
K
KAMEZAWA Hiroyuki 已提交
1506
}
1507
#endif
K
KAMEZAWA Hiroyuki 已提交
1508

1509
/*
1510 1511
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
1512
 */
1513
int mem_cgroup_prepare_migration(struct page *page, struct mem_cgroup **ptr)
1514 1515
{
	struct page_cgroup *pc;
1516 1517
	struct mem_cgroup *mem = NULL;
	int ret = 0;
1518

1519
	if (mem_cgroup_disabled())
1520 1521
		return 0;

1522 1523 1524
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
1525 1526 1527
		mem = pc->mem_cgroup;
		css_get(&mem->css);
	}
1528
	unlock_page_cgroup(pc);
1529

1530
	if (mem) {
1531
		ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false);
1532 1533
		css_put(&mem->css);
	}
1534
	*ptr = mem;
1535
	return ret;
1536
}
1537

1538
/* remove redundant charge if migration failed*/
1539 1540
void mem_cgroup_end_migration(struct mem_cgroup *mem,
		struct page *oldpage, struct page *newpage)
1541
{
1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565
	struct page *target, *unused;
	struct page_cgroup *pc;
	enum charge_type ctype;

	if (!mem)
		return;

	/* at migration success, oldpage->mapping is NULL. */
	if (oldpage->mapping) {
		target = oldpage;
		unused = NULL;
	} else {
		target = newpage;
		unused = oldpage;
	}

	if (PageAnon(target))
		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
	else if (page_is_file_cache(target))
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
	else
		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;

	/* unused page is not on radix-tree now. */
K
KAMEZAWA Hiroyuki 已提交
1566
	if (unused)
1567 1568 1569
		__mem_cgroup_uncharge_common(unused, ctype);

	pc = lookup_page_cgroup(target);
1570
	/*
1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584
	 * __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup.
	 * So, double-counting is effectively avoided.
	 */
	__mem_cgroup_commit_charge(mem, pc, ctype);

	/*
	 * Both of oldpage and newpage are still under lock_page().
	 * Then, we don't have to care about race in radix-tree.
	 * But we have to be careful that this page is unmapped or not.
	 *
	 * There is a case for !page_mapped(). At the start of
	 * migration, oldpage was mapped. But now, it's zapped.
	 * But we know *target* page is not freed/reused under us.
	 * mem_cgroup_uncharge_page() does all necessary checks.
1585
	 */
1586 1587
	if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
		mem_cgroup_uncharge_page(target);
1588
}
1589

1590 1591 1592 1593 1594
/*
 * A call to try to shrink memory usage under specified resource controller.
 * This is typically used for page reclaiming for shmem for reducing side
 * effect of page allocation from shmem, which is used by some mem_cgroup.
 */
1595 1596 1597
int mem_cgroup_shrink_usage(struct page *page,
			    struct mm_struct *mm,
			    gfp_t gfp_mask)
1598
{
1599
	struct mem_cgroup *mem = NULL;
1600 1601 1602
	int progress = 0;
	int retry = MEM_CGROUP_RECLAIM_RETRIES;

1603
	if (mem_cgroup_disabled())
1604
		return 0;
1605 1606 1607 1608
	if (page)
		mem = try_get_mem_cgroup_from_swapcache(page);
	if (!mem && mm)
		mem = try_get_mem_cgroup_from_mm(mm);
1609
	if (unlikely(!mem))
1610
		return 0;
1611 1612

	do {
1613 1614
		progress = mem_cgroup_hierarchical_reclaim(mem,
					gfp_mask, true, false);
1615
		progress += mem_cgroup_check_under_limit(mem);
1616 1617 1618 1619 1620 1621 1622 1623
	} while (!progress && --retry);

	css_put(&mem->css);
	if (!retry)
		return -ENOMEM;
	return 0;
}

1624 1625
static DEFINE_MUTEX(set_limit_mutex);

1626
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
1627
				unsigned long long val)
1628
{
1629
	int retry_count;
1630
	int progress;
1631
	u64 memswlimit;
1632
	int ret = 0;
1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
1644

1645
	while (retry_count) {
1646 1647 1648 1649
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
1650 1651 1652 1653 1654 1655 1656 1657 1658 1659
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
		 * We have to guarantee mem->res.limit < mem->memsw.limit.
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
1660 1661
			break;
		}
1662 1663 1664 1665 1666 1667
		ret = res_counter_set_limit(&memcg->res, val);
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

1668
		progress = mem_cgroup_hierarchical_reclaim(memcg, GFP_KERNEL,
1669 1670 1671 1672 1673 1674 1675
						   false, true);
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
1676
	}
1677

1678 1679 1680 1681 1682 1683
	return ret;
}

int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
				unsigned long long val)
{
1684
	int retry_count;
1685
	u64 memlimit, oldusage, curusage;
1686 1687
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
1688 1689 1690

	if (!do_swap_account)
		return -EINVAL;
1691 1692 1693
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
		 * We have to guarantee mem->res.limit < mem->memsw.limit.
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
		ret = res_counter_set_limit(&memcg->memsw, val);
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

1717
		mem_cgroup_hierarchical_reclaim(memcg, GFP_KERNEL, true, true);
1718
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
1719
		/* Usage is reduced ? */
1720
		if (curusage >= oldusage)
1721
			retry_count--;
1722 1723
		else
			oldusage = curusage;
1724 1725 1726 1727
	}
	return ret;
}

1728 1729 1730 1731
/*
 * This routine traverse page_cgroup in given list and drop them all.
 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
 */
1732
static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
K
KAMEZAWA Hiroyuki 已提交
1733
				int node, int zid, enum lru_list lru)
1734
{
K
KAMEZAWA Hiroyuki 已提交
1735 1736
	struct zone *zone;
	struct mem_cgroup_per_zone *mz;
1737
	struct page_cgroup *pc, *busy;
K
KAMEZAWA Hiroyuki 已提交
1738
	unsigned long flags, loop;
1739
	struct list_head *list;
1740
	int ret = 0;
1741

K
KAMEZAWA Hiroyuki 已提交
1742 1743
	zone = &NODE_DATA(node)->node_zones[zid];
	mz = mem_cgroup_zoneinfo(mem, node, zid);
1744
	list = &mz->lists[lru];
1745

1746 1747 1748 1749 1750 1751
	loop = MEM_CGROUP_ZSTAT(mz, lru);
	/* give some margin against EBUSY etc...*/
	loop += 256;
	busy = NULL;
	while (loop--) {
		ret = 0;
K
KAMEZAWA Hiroyuki 已提交
1752
		spin_lock_irqsave(&zone->lru_lock, flags);
1753
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
1754
			spin_unlock_irqrestore(&zone->lru_lock, flags);
1755
			break;
1756 1757 1758 1759 1760
		}
		pc = list_entry(list->prev, struct page_cgroup, lru);
		if (busy == pc) {
			list_move(&pc->lru, list);
			busy = 0;
K
KAMEZAWA Hiroyuki 已提交
1761
			spin_unlock_irqrestore(&zone->lru_lock, flags);
1762 1763
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
1764
		spin_unlock_irqrestore(&zone->lru_lock, flags);
1765

K
KAMEZAWA Hiroyuki 已提交
1766
		ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
1767
		if (ret == -ENOMEM)
1768
			break;
1769 1770 1771 1772 1773 1774 1775

		if (ret == -EBUSY || ret == -EINVAL) {
			/* found lock contention or "pc" is obsolete. */
			busy = pc;
			cond_resched();
		} else
			busy = NULL;
1776
	}
K
KAMEZAWA Hiroyuki 已提交
1777

1778 1779 1780
	if (!ret && !list_empty(list))
		return -EBUSY;
	return ret;
1781 1782 1783 1784 1785 1786
}

/*
 * make mem_cgroup's charge to be 0 if there is no task.
 * This enables deleting this mem_cgroup.
 */
1787
static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
1788
{
1789 1790 1791
	int ret;
	int node, zid, shrink;
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1792
	struct cgroup *cgrp = mem->css.cgroup;
1793

1794
	css_get(&mem->css);
1795 1796

	shrink = 0;
1797 1798 1799
	/* should free all ? */
	if (free_all)
		goto try_to_free;
1800
move_account:
1801
	while (mem->res.usage > 0) {
1802
		ret = -EBUSY;
1803 1804 1805 1806
		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
			goto out;
		ret = -EINTR;
		if (signal_pending(current))
1807
			goto out;
1808 1809
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
1810
		ret = 0;
1811
		for_each_node_state(node, N_HIGH_MEMORY) {
1812
			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
1813
				enum lru_list l;
1814 1815
				for_each_lru(l) {
					ret = mem_cgroup_force_empty_list(mem,
K
KAMEZAWA Hiroyuki 已提交
1816
							node, zid, l);
1817 1818 1819
					if (ret)
						break;
				}
1820
			}
1821 1822 1823 1824 1825 1826
			if (ret)
				break;
		}
		/* it seems parent cgroup doesn't have enough mem */
		if (ret == -ENOMEM)
			goto try_to_free;
1827
		cond_resched();
1828 1829 1830 1831 1832
	}
	ret = 0;
out:
	css_put(&mem->css);
	return ret;
1833 1834

try_to_free:
1835 1836
	/* returns EBUSY if there is a task or if we come here twice. */
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
1837 1838 1839
		ret = -EBUSY;
		goto out;
	}
1840 1841
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
1842 1843 1844 1845
	/* try to free all pages in this cgroup */
	shrink = 1;
	while (nr_retries && mem->res.usage > 0) {
		int progress;
1846 1847 1848 1849 1850

		if (signal_pending(current)) {
			ret = -EINTR;
			goto out;
		}
K
KOSAKI Motohiro 已提交
1851 1852
		progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
						false, get_swappiness(mem));
1853
		if (!progress) {
1854
			nr_retries--;
1855 1856 1857
			/* maybe some writeback is necessary */
			congestion_wait(WRITE, HZ/10);
		}
1858 1859

	}
K
KAMEZAWA Hiroyuki 已提交
1860
	lru_add_drain();
1861 1862 1863 1864 1865
	/* try move_account...there may be some *locked* pages. */
	if (mem->res.usage)
		goto move_account;
	ret = 0;
	goto out;
1866 1867
}

1868 1869 1870 1871 1872 1873
int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
{
	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
}


1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
{
	return mem_cgroup_from_cont(cont)->use_hierarchy;
}

static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
					u64 val)
{
	int retval = 0;
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
	struct cgroup *parent = cont->parent;
	struct mem_cgroup *parent_mem = NULL;

	if (parent)
		parent_mem = mem_cgroup_from_cont(parent);

	cgroup_lock();
	/*
	 * If parent's use_hiearchy is set, we can't make any modifications
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
	if ((!parent_mem || !parent_mem->use_hierarchy) &&
				(val == 1 || val == 0)) {
		if (list_empty(&cont->children))
			mem->use_hierarchy = val;
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
	cgroup_unlock();

	return retval;
}

1912
static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
B
Balbir Singh 已提交
1913
{
1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
	u64 val = 0;
	int type, name;

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (type) {
	case _MEM:
		val = res_counter_read_u64(&mem->res, name);
		break;
	case _MEMSWAP:
		if (do_swap_account)
			val = res_counter_read_u64(&mem->memsw, name);
		break;
	default:
		BUG();
		break;
	}
	return val;
B
Balbir Singh 已提交
1933
}
1934 1935 1936 1937
/*
 * The user of this function is...
 * RES_LIMIT.
 */
1938 1939
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
			    const char *buffer)
B
Balbir Singh 已提交
1940
{
1941
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
1942
	int type, name;
1943 1944 1945
	unsigned long long val;
	int ret;

1946 1947 1948
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (name) {
1949 1950 1951
	case RES_LIMIT:
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
1952 1953 1954
		if (ret)
			break;
		if (type == _MEM)
1955
			ret = mem_cgroup_resize_limit(memcg, val);
1956 1957
		else
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
1958 1959 1960 1961 1962 1963
		break;
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
1964 1965
}

1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	struct cgroup *cgroup;
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	cgroup = memcg->css.cgroup;
	if (!memcg->use_hierarchy)
		goto out;

	while (cgroup->parent) {
		cgroup = cgroup->parent;
		memcg = mem_cgroup_from_cont(cgroup);
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
	return;
}

1994
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
1995 1996
{
	struct mem_cgroup *mem;
1997
	int type, name;
1998 1999

	mem = mem_cgroup_from_cont(cont);
2000 2001 2002
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
	switch (name) {
2003
	case RES_MAX_USAGE:
2004 2005 2006 2007
		if (type == _MEM)
			res_counter_reset_max(&mem->res);
		else
			res_counter_reset_max(&mem->memsw);
2008 2009
		break;
	case RES_FAILCNT:
2010 2011 2012 2013
		if (type == _MEM)
			res_counter_reset_failcnt(&mem->res);
		else
			res_counter_reset_failcnt(&mem->memsw);
2014 2015
		break;
	}
2016
	return 0;
2017 2018
}

K
KAMEZAWA Hiroyuki 已提交
2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035

/* For read statistics */
enum {
	MCS_CACHE,
	MCS_RSS,
	MCS_PGPGIN,
	MCS_PGPGOUT,
	MCS_INACTIVE_ANON,
	MCS_ACTIVE_ANON,
	MCS_INACTIVE_FILE,
	MCS_ACTIVE_FILE,
	MCS_UNEVICTABLE,
	NR_MCS_STAT,
};

struct mcs_total_stat {
	s64 stat[NR_MCS_STAT];
2036 2037
};

K
KAMEZAWA Hiroyuki 已提交
2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088
struct {
	char *local_name;
	char *total_name;
} memcg_stat_strings[NR_MCS_STAT] = {
	{"cache", "total_cache"},
	{"rss", "total_rss"},
	{"pgpgin", "total_pgpgin"},
	{"pgpgout", "total_pgpgout"},
	{"inactive_anon", "total_inactive_anon"},
	{"active_anon", "total_active_anon"},
	{"inactive_file", "total_inactive_file"},
	{"active_file", "total_active_file"},
	{"unevictable", "total_unevictable"}
};


static int mem_cgroup_get_local_stat(struct mem_cgroup *mem, void *data)
{
	struct mcs_total_stat *s = data;
	s64 val;

	/* per cpu stat */
	val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_CACHE);
	s->stat[MCS_CACHE] += val * PAGE_SIZE;
	val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
	s->stat[MCS_RSS] += val * PAGE_SIZE;
	val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_PGPGIN_COUNT);
	s->stat[MCS_PGPGIN] += val;
	val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_PGPGOUT_COUNT);
	s->stat[MCS_PGPGOUT] += val;

	/* per zone stat */
	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
	return 0;
}

static void
mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
{
	mem_cgroup_walk_tree(mem, s, mem_cgroup_get_local_stat);
}

2089 2090
static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
				 struct cgroup_map_cb *cb)
2091 2092
{
	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
K
KAMEZAWA Hiroyuki 已提交
2093
	struct mcs_total_stat mystat;
2094 2095
	int i;

K
KAMEZAWA Hiroyuki 已提交
2096 2097
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_local_stat(mem_cont, &mystat);
2098

K
KAMEZAWA Hiroyuki 已提交
2099 2100
	for (i = 0; i < NR_MCS_STAT; i++)
		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
L
Lee Schermerhorn 已提交
2101

K
KAMEZAWA Hiroyuki 已提交
2102
	/* Hierarchical information */
2103 2104 2105 2106 2107 2108 2109
	{
		unsigned long long limit, memsw_limit;
		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
		cb->fill(cb, "hierarchical_memory_limit", limit);
		if (do_swap_account)
			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
	}
K
KOSAKI Motohiro 已提交
2110

K
KAMEZAWA Hiroyuki 已提交
2111 2112 2113 2114 2115 2116
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_total_stat(mem_cont, &mystat);
	for (i = 0; i < NR_MCS_STAT; i++)
		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);


K
KOSAKI Motohiro 已提交
2117
#ifdef CONFIG_DEBUG_VM
2118
	cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
K
KOSAKI Motohiro 已提交
2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145

	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);

				recent_rotated[0] +=
					mz->reclaim_stat.recent_rotated[0];
				recent_rotated[1] +=
					mz->reclaim_stat.recent_rotated[1];
				recent_scanned[0] +=
					mz->reclaim_stat.recent_scanned[0];
				recent_scanned[1] +=
					mz->reclaim_stat.recent_scanned[1];
			}
		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
	}
#endif

2146 2147 2148
	return 0;
}

K
KOSAKI Motohiro 已提交
2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160
static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);

	return get_swappiness(memcg);
}

static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
				       u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;
2161

K
KOSAKI Motohiro 已提交
2162 2163 2164 2165 2166 2167 2168
	if (val > 100)
		return -EINVAL;

	if (cgrp->parent == NULL)
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);
2169 2170 2171

	cgroup_lock();

K
KOSAKI Motohiro 已提交
2172 2173
	/* If under hierarchy, only empty-root can set this value */
	if ((parent->use_hierarchy) ||
2174 2175
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
K
KOSAKI Motohiro 已提交
2176
		return -EINVAL;
2177
	}
K
KOSAKI Motohiro 已提交
2178 2179 2180 2181 2182

	spin_lock(&memcg->reclaim_param_lock);
	memcg->swappiness = val;
	spin_unlock(&memcg->reclaim_param_lock);

2183 2184
	cgroup_unlock();

K
KOSAKI Motohiro 已提交
2185 2186 2187
	return 0;
}

2188

B
Balbir Singh 已提交
2189 2190
static struct cftype mem_cgroup_files[] = {
	{
2191
		.name = "usage_in_bytes",
2192
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
2193
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
2194
	},
2195 2196
	{
		.name = "max_usage_in_bytes",
2197
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
2198
		.trigger = mem_cgroup_reset,
2199 2200
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
2201
	{
2202
		.name = "limit_in_bytes",
2203
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
2204
		.write_string = mem_cgroup_write,
2205
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
2206 2207 2208
	},
	{
		.name = "failcnt",
2209
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
2210
		.trigger = mem_cgroup_reset,
2211
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
2212
	},
2213 2214
	{
		.name = "stat",
2215
		.read_map = mem_control_stat_show,
2216
	},
2217 2218 2219 2220
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
2221 2222 2223 2224 2225
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
2226 2227 2228 2229 2230
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
B
Balbir Singh 已提交
2231 2232
};

2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
};

static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	if (!do_swap_account)
		return 0;
	return cgroup_add_files(cont, ss, memsw_cgroup_files,
				ARRAY_SIZE(memsw_cgroup_files));
};
#else
static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	return 0;
}
#endif

2274 2275 2276
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
	struct mem_cgroup_per_node *pn;
2277
	struct mem_cgroup_per_zone *mz;
2278
	enum lru_list l;
2279
	int zone, tmp = node;
2280 2281 2282 2283 2284 2285 2286 2287
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
2288 2289 2290
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
	pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
2291 2292
	if (!pn)
		return 1;
2293

2294 2295
	mem->info.nodeinfo[node] = pn;
	memset(pn, 0, sizeof(*pn));
2296 2297 2298

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
2299 2300
		for_each_lru(l)
			INIT_LIST_HEAD(&mz->lists[l]);
2301
	}
2302 2303 2304
	return 0;
}

2305 2306 2307 2308 2309
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
	kfree(mem->info.nodeinfo[node]);
}

2310 2311 2312 2313 2314 2315
static int mem_cgroup_size(void)
{
	int cpustat_size = nr_cpu_ids * sizeof(struct mem_cgroup_stat_cpu);
	return sizeof(struct mem_cgroup) + cpustat_size;
}

2316 2317 2318
static struct mem_cgroup *mem_cgroup_alloc(void)
{
	struct mem_cgroup *mem;
2319
	int size = mem_cgroup_size();
2320

2321 2322
	if (size < PAGE_SIZE)
		mem = kmalloc(size, GFP_KERNEL);
2323
	else
2324
		mem = vmalloc(size);
2325 2326

	if (mem)
2327
		memset(mem, 0, size);
2328 2329 2330
	return mem;
}

2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341
/*
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
 */

2342
static void __mem_cgroup_free(struct mem_cgroup *mem)
2343
{
K
KAMEZAWA Hiroyuki 已提交
2344 2345
	int node;

K
KAMEZAWA Hiroyuki 已提交
2346 2347
	free_css_id(&mem_cgroup_subsys, &mem->css);

K
KAMEZAWA Hiroyuki 已提交
2348 2349 2350
	for_each_node_state(node, N_POSSIBLE)
		free_mem_cgroup_per_zone_info(mem, node);

2351
	if (mem_cgroup_size() < PAGE_SIZE)
2352 2353 2354 2355 2356
		kfree(mem);
	else
		vfree(mem);
}

2357 2358 2359 2360 2361 2362 2363
static void mem_cgroup_get(struct mem_cgroup *mem)
{
	atomic_inc(&mem->refcnt);
}

static void mem_cgroup_put(struct mem_cgroup *mem)
{
2364 2365
	if (atomic_dec_and_test(&mem->refcnt)) {
		struct mem_cgroup *parent = parent_mem_cgroup(mem);
2366
		__mem_cgroup_free(mem);
2367 2368 2369
		if (parent)
			mem_cgroup_put(parent);
	}
2370 2371
}

2372 2373 2374 2375 2376 2377 2378 2379 2380
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
{
	if (!mem->res.parent)
		return NULL;
	return mem_cgroup_from_res_counter(mem->res.parent, res);
}
2381

2382 2383 2384
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static void __init enable_swap_cgroup(void)
{
2385
	if (!mem_cgroup_disabled() && really_do_swap_account)
2386 2387 2388 2389 2390 2391 2392 2393
		do_swap_account = 1;
}
#else
static void __init enable_swap_cgroup(void)
{
}
#endif

L
Li Zefan 已提交
2394
static struct cgroup_subsys_state * __ref
B
Balbir Singh 已提交
2395 2396
mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
{
2397
	struct mem_cgroup *mem, *parent;
K
KAMEZAWA Hiroyuki 已提交
2398
	long error = -ENOMEM;
2399
	int node;
B
Balbir Singh 已提交
2400

2401 2402
	mem = mem_cgroup_alloc();
	if (!mem)
K
KAMEZAWA Hiroyuki 已提交
2403
		return ERR_PTR(error);
2404

2405 2406 2407
	for_each_node_state(node, N_POSSIBLE)
		if (alloc_mem_cgroup_per_zone_info(mem, node))
			goto free_out;
2408
	/* root ? */
2409
	if (cont->parent == NULL) {
2410
		enable_swap_cgroup();
2411
		parent = NULL;
2412
	} else {
2413
		parent = mem_cgroup_from_cont(cont->parent);
2414 2415
		mem->use_hierarchy = parent->use_hierarchy;
	}
2416

2417 2418 2419
	if (parent && parent->use_hierarchy) {
		res_counter_init(&mem->res, &parent->res);
		res_counter_init(&mem->memsw, &parent->memsw);
2420 2421 2422 2423 2424 2425 2426
		/*
		 * We increment refcnt of the parent to ensure that we can
		 * safely access it on res_counter_charge/uncharge.
		 * This refcnt will be decremented when freeing this
		 * mem_cgroup(see mem_cgroup_put).
		 */
		mem_cgroup_get(parent);
2427 2428 2429 2430
	} else {
		res_counter_init(&mem->res, NULL);
		res_counter_init(&mem->memsw, NULL);
	}
K
KAMEZAWA Hiroyuki 已提交
2431
	mem->last_scanned_child = 0;
K
KOSAKI Motohiro 已提交
2432
	spin_lock_init(&mem->reclaim_param_lock);
2433

K
KOSAKI Motohiro 已提交
2434 2435
	if (parent)
		mem->swappiness = get_swappiness(parent);
2436
	atomic_set(&mem->refcnt, 1);
B
Balbir Singh 已提交
2437
	return &mem->css;
2438
free_out:
2439
	__mem_cgroup_free(mem);
K
KAMEZAWA Hiroyuki 已提交
2440
	return ERR_PTR(error);
B
Balbir Singh 已提交
2441 2442
}

2443
static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
2444 2445 2446
					struct cgroup *cont)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
2447 2448

	return mem_cgroup_force_empty(mem, false);
2449 2450
}

B
Balbir Singh 已提交
2451 2452 2453
static void mem_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
2454 2455 2456
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);

	mem_cgroup_put(mem);
B
Balbir Singh 已提交
2457 2458 2459 2460 2461
}

static int mem_cgroup_populate(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
2462 2463 2464 2465 2466 2467 2468 2469
	int ret;

	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
				ARRAY_SIZE(mem_cgroup_files));

	if (!ret)
		ret = register_memsw_files(cont, ss);
	return ret;
B
Balbir Singh 已提交
2470 2471
}

B
Balbir Singh 已提交
2472 2473 2474 2475 2476
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
				struct cgroup *old_cont,
				struct task_struct *p)
{
2477
	mutex_lock(&memcg_tasklist);
B
Balbir Singh 已提交
2478
	/*
2479 2480
	 * FIXME: It's better to move charges of this process from old
	 * memcg to new memcg. But it's just on TODO-List now.
B
Balbir Singh 已提交
2481
	 */
2482
	mutex_unlock(&memcg_tasklist);
B
Balbir Singh 已提交
2483 2484
}

B
Balbir Singh 已提交
2485 2486 2487 2488
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
	.create = mem_cgroup_create,
2489
	.pre_destroy = mem_cgroup_pre_destroy,
B
Balbir Singh 已提交
2490 2491
	.destroy = mem_cgroup_destroy,
	.populate = mem_cgroup_populate,
B
Balbir Singh 已提交
2492
	.attach = mem_cgroup_move_task,
2493
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
2494
	.use_id = 1,
B
Balbir Singh 已提交
2495
};
2496 2497 2498 2499 2500 2501 2502 2503 2504 2505

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP

static int __init disable_swap_account(char *s)
{
	really_do_swap_account = 0;
	return 1;
}
__setup("noswapaccount", disable_swap_account);
#endif