dma-mapping.c 55.1 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 *  linux/arch/arm/mm/dma-mapping.c
L
Linus Torvalds 已提交
3 4 5 6 7 8 9 10 11
 *
 *  Copyright (C) 2000-2004 Russell King
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 *  DMA uncached mapping support.
 */
12
#include <linux/bootmem.h>
L
Linus Torvalds 已提交
13 14
#include <linux/module.h>
#include <linux/mm.h>
15
#include <linux/genalloc.h>
16
#include <linux/gfp.h>
L
Linus Torvalds 已提交
17 18 19 20 21
#include <linux/errno.h>
#include <linux/list.h>
#include <linux/init.h>
#include <linux/device.h>
#include <linux/dma-mapping.h>
22
#include <linux/dma-contiguous.h>
23
#include <linux/highmem.h>
24
#include <linux/memblock.h>
25
#include <linux/slab.h>
26
#include <linux/iommu.h>
27
#include <linux/io.h>
28
#include <linux/vmalloc.h>
29
#include <linux/sizes.h>
30
#include <linux/cma.h>
L
Linus Torvalds 已提交
31

32
#include <asm/memory.h>
33
#include <asm/highmem.h>
L
Linus Torvalds 已提交
34 35
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
36
#include <asm/mach/arch.h>
37
#include <asm/dma-iommu.h>
38 39 40
#include <asm/mach/map.h>
#include <asm/system_info.h>
#include <asm/dma-contiguous.h>
41

42 43
#include "mm.h"

44 45 46 47 48 49 50 51 52 53 54 55
/*
 * The DMA API is built upon the notion of "buffer ownership".  A buffer
 * is either exclusively owned by the CPU (and therefore may be accessed
 * by it) or exclusively owned by the DMA device.  These helper functions
 * represent the transitions between these two ownership states.
 *
 * Note, however, that on later ARMs, this notion does not work due to
 * speculative prefetches.  We model our approach on the assumption that
 * the CPU does do speculative prefetches, which means we clean caches
 * before transfers and delay cache invalidation until transfer completion.
 *
 */
56
static void __dma_page_cpu_to_dev(struct page *, unsigned long,
57
		size_t, enum dma_data_direction);
58
static void __dma_page_dev_to_cpu(struct page *, unsigned long,
59 60
		size_t, enum dma_data_direction);

61 62 63 64 65 66 67 68 69 70 71 72 73 74
/**
 * arm_dma_map_page - map a portion of a page for streaming DMA
 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 * @page: page that buffer resides in
 * @offset: offset into page for start of buffer
 * @size: size of buffer to map
 * @dir: DMA transfer direction
 *
 * Ensure that any data held in the cache is appropriately discarded
 * or written back.
 *
 * The device owns this memory once this call has completed.  The CPU
 * can regain ownership by calling dma_unmap_page().
 */
75
static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
76 77 78
	     unsigned long offset, size_t size, enum dma_data_direction dir,
	     struct dma_attrs *attrs)
{
R
Rob Herring 已提交
79
	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
80 81
		__dma_page_cpu_to_dev(page, offset, size, dir);
	return pfn_to_dma(dev, page_to_pfn(page)) + offset;
82 83
}

R
Rob Herring 已提交
84 85 86 87 88 89 90
static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page,
	     unsigned long offset, size_t size, enum dma_data_direction dir,
	     struct dma_attrs *attrs)
{
	return pfn_to_dma(dev, page_to_pfn(page)) + offset;
}

91 92 93 94 95 96 97 98 99 100 101 102 103 104
/**
 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 * @handle: DMA address of buffer
 * @size: size of buffer (same as passed to dma_map_page)
 * @dir: DMA transfer direction (same as passed to dma_map_page)
 *
 * Unmap a page streaming mode DMA translation.  The handle and size
 * must match what was provided in the previous dma_map_page() call.
 * All other usages are undefined.
 *
 * After this call, reads by the CPU to the buffer are guaranteed to see
 * whatever the device wrote there.
 */
105
static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
106 107 108
		size_t size, enum dma_data_direction dir,
		struct dma_attrs *attrs)
{
R
Rob Herring 已提交
109
	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
110 111
		__dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
				      handle & ~PAGE_MASK, size, dir);
112 113
}

114
static void arm_dma_sync_single_for_cpu(struct device *dev,
115 116 117 118
		dma_addr_t handle, size_t size, enum dma_data_direction dir)
{
	unsigned int offset = handle & (PAGE_SIZE - 1);
	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
R
Rob Herring 已提交
119
	__dma_page_dev_to_cpu(page, offset, size, dir);
120 121
}

122
static void arm_dma_sync_single_for_device(struct device *dev,
123 124 125 126
		dma_addr_t handle, size_t size, enum dma_data_direction dir)
{
	unsigned int offset = handle & (PAGE_SIZE - 1);
	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
R
Rob Herring 已提交
127
	__dma_page_cpu_to_dev(page, offset, size, dir);
128 129 130
}

struct dma_map_ops arm_dma_ops = {
131 132 133
	.alloc			= arm_dma_alloc,
	.free			= arm_dma_free,
	.mmap			= arm_dma_mmap,
134
	.get_sgtable		= arm_dma_get_sgtable,
135 136 137 138 139 140 141 142 143 144 145 146
	.map_page		= arm_dma_map_page,
	.unmap_page		= arm_dma_unmap_page,
	.map_sg			= arm_dma_map_sg,
	.unmap_sg		= arm_dma_unmap_sg,
	.sync_single_for_cpu	= arm_dma_sync_single_for_cpu,
	.sync_single_for_device	= arm_dma_sync_single_for_device,
	.sync_sg_for_cpu	= arm_dma_sync_sg_for_cpu,
	.sync_sg_for_device	= arm_dma_sync_sg_for_device,
	.set_dma_mask		= arm_dma_set_mask,
};
EXPORT_SYMBOL(arm_dma_ops);

R
Rob Herring 已提交
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
	dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs);
static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
				  dma_addr_t handle, struct dma_attrs *attrs);

struct dma_map_ops arm_coherent_dma_ops = {
	.alloc			= arm_coherent_dma_alloc,
	.free			= arm_coherent_dma_free,
	.mmap			= arm_dma_mmap,
	.get_sgtable		= arm_dma_get_sgtable,
	.map_page		= arm_coherent_dma_map_page,
	.map_sg			= arm_dma_map_sg,
	.set_dma_mask		= arm_dma_set_mask,
};
EXPORT_SYMBOL(arm_coherent_dma_ops);

163 164 165 166 167 168 169 170 171 172 173
static int __dma_supported(struct device *dev, u64 mask, bool warn)
{
	unsigned long max_dma_pfn;

	/*
	 * If the mask allows for more memory than we can address,
	 * and we actually have that much memory, then we must
	 * indicate that DMA to this device is not supported.
	 */
	if (sizeof(mask) != sizeof(dma_addr_t) &&
	    mask > (dma_addr_t)~0 &&
174
	    dma_to_pfn(dev, ~0) < max_pfn - 1) {
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
		if (warn) {
			dev_warn(dev, "Coherent DMA mask %#llx is larger than dma_addr_t allows\n",
				 mask);
			dev_warn(dev, "Driver did not use or check the return value from dma_set_coherent_mask()?\n");
		}
		return 0;
	}

	max_dma_pfn = min(max_pfn, arm_dma_pfn_limit);

	/*
	 * Translate the device's DMA mask to a PFN limit.  This
	 * PFN number includes the page which we can DMA to.
	 */
	if (dma_to_pfn(dev, mask) < max_dma_pfn) {
		if (warn)
			dev_warn(dev, "Coherent DMA mask %#llx (pfn %#lx-%#lx) covers a smaller range of system memory than the DMA zone pfn 0x0-%#lx\n",
				 mask,
				 dma_to_pfn(dev, 0), dma_to_pfn(dev, mask) + 1,
				 max_dma_pfn + 1);
		return 0;
	}

	return 1;
}

201 202
static u64 get_coherent_dma_mask(struct device *dev)
{
203
	u64 mask = (u64)DMA_BIT_MASK(32);
204 205 206 207 208 209 210 211 212 213 214 215 216

	if (dev) {
		mask = dev->coherent_dma_mask;

		/*
		 * Sanity check the DMA mask - it must be non-zero, and
		 * must be able to be satisfied by a DMA allocation.
		 */
		if (mask == 0) {
			dev_warn(dev, "coherent DMA mask is unset\n");
			return 0;
		}

217
		if (!__dma_supported(dev, mask, true))
218 219
			return 0;
	}
L
Linus Torvalds 已提交
220

221 222 223
	return mask;
}

224 225 226 227 228 229
static void __dma_clear_buffer(struct page *page, size_t size)
{
	/*
	 * Ensure that the allocated pages are zeroed, and that any data
	 * lurking in the kernel direct-mapped region is invalidated.
	 */
230 231 232 233 234 235 236 237 238 239 240 241 242 243
	if (PageHighMem(page)) {
		phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
		phys_addr_t end = base + size;
		while (size > 0) {
			void *ptr = kmap_atomic(page);
			memset(ptr, 0, PAGE_SIZE);
			dmac_flush_range(ptr, ptr + PAGE_SIZE);
			kunmap_atomic(ptr);
			page++;
			size -= PAGE_SIZE;
		}
		outer_flush_range(base, end);
	} else {
		void *ptr = page_address(page);
244 245 246 247
		memset(ptr, 0, size);
		dmac_flush_range(ptr, ptr + size);
		outer_flush_range(__pa(ptr), __pa(ptr) + size);
	}
248 249
}

250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
/*
 * Allocate a DMA buffer for 'dev' of size 'size' using the
 * specified gfp mask.  Note that 'size' must be page aligned.
 */
static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
{
	unsigned long order = get_order(size);
	struct page *page, *p, *e;

	page = alloc_pages(gfp, order);
	if (!page)
		return NULL;

	/*
	 * Now split the huge page and free the excess pages
	 */
	split_page(page, order);
	for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
		__free_page(p);

270
	__dma_clear_buffer(page, size);
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287

	return page;
}

/*
 * Free a DMA buffer.  'size' must be page aligned.
 */
static void __dma_free_buffer(struct page *page, size_t size)
{
	struct page *e = page + (size >> PAGE_SHIFT);

	while (page < e) {
		__free_page(page);
		page++;
	}
}

288
#ifdef CONFIG_MMU
289

290
static void *__alloc_from_contiguous(struct device *dev, size_t size,
291
				     pgprot_t prot, struct page **ret_page,
292
				     const void *caller, bool want_vaddr);
293

294 295
static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
				 pgprot_t prot, struct page **ret_page,
296
				 const void *caller, bool want_vaddr);
297

298 299 300
static void *
__dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
	const void *caller)
301
{
302 303 304 305
	/*
	 * DMA allocation can be mapped to user space, so lets
	 * set VM_USERMAP flags too.
	 */
306 307 308
	return dma_common_contiguous_remap(page, size,
			VM_ARM_DMA_CONSISTENT | VM_USERMAP,
			prot, caller);
309
}
L
Linus Torvalds 已提交
310

311
static void __dma_free_remap(void *cpu_addr, size_t size)
312
{
313 314
	dma_common_free_remap(cpu_addr, size,
			VM_ARM_DMA_CONSISTENT | VM_USERMAP);
315 316
}

317
#define DEFAULT_DMA_COHERENT_POOL_SIZE	SZ_256K
318
static struct gen_pool *atomic_pool;
319

320
static size_t atomic_pool_size = DEFAULT_DMA_COHERENT_POOL_SIZE;
321 322 323

static int __init early_coherent_pool(char *p)
{
324
	atomic_pool_size = memparse(p, &p);
325 326 327 328
	return 0;
}
early_param("coherent_pool", early_coherent_pool);

329 330 331 332 333
void __init init_dma_coherent_pool_size(unsigned long size)
{
	/*
	 * Catch any attempt to set the pool size too late.
	 */
334
	BUG_ON(atomic_pool);
335 336 337 338 339

	/*
	 * Set architecture specific coherent pool size only if
	 * it has not been changed by kernel command line parameter.
	 */
340 341
	if (atomic_pool_size == DEFAULT_DMA_COHERENT_POOL_SIZE)
		atomic_pool_size = size;
342 343
}

344 345 346
/*
 * Initialise the coherent pool for atomic allocations.
 */
347
static int __init atomic_pool_init(void)
348
{
349
	pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL);
350
	gfp_t gfp = GFP_KERNEL | GFP_DMA;
351 352 353
	struct page *page;
	void *ptr;

354 355 356
	atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
	if (!atomic_pool)
		goto out;
357

358
	if (dev_get_cma_area(NULL))
359
		ptr = __alloc_from_contiguous(NULL, atomic_pool_size, prot,
360
					      &page, atomic_pool_init, true);
361
	else
362
		ptr = __alloc_remap_buffer(NULL, atomic_pool_size, gfp, prot,
363
					   &page, atomic_pool_init, true);
364
	if (ptr) {
365 366 367 368 369 370 371 372 373 374 375 376 377
		int ret;

		ret = gen_pool_add_virt(atomic_pool, (unsigned long)ptr,
					page_to_phys(page),
					atomic_pool_size, -1);
		if (ret)
			goto destroy_genpool;

		gen_pool_set_algo(atomic_pool,
				gen_pool_first_fit_order_align,
				(void *)PAGE_SHIFT);
		pr_info("DMA: preallocated %zd KiB pool for atomic coherent allocations\n",
		       atomic_pool_size / 1024);
378 379
		return 0;
	}
380

381 382 383 384 385 386
destroy_genpool:
	gen_pool_destroy(atomic_pool);
	atomic_pool = NULL;
out:
	pr_err("DMA: failed to allocate %zx KiB pool for atomic coherent allocation\n",
	       atomic_pool_size / 1024);
387 388 389 390 391
	return -ENOMEM;
}
/*
 * CMA is activated by core_initcall, so we must be called after it.
 */
392
postcore_initcall(atomic_pool_init);
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421

struct dma_contig_early_reserve {
	phys_addr_t base;
	unsigned long size;
};

static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;

static int dma_mmu_remap_num __initdata;

void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
{
	dma_mmu_remap[dma_mmu_remap_num].base = base;
	dma_mmu_remap[dma_mmu_remap_num].size = size;
	dma_mmu_remap_num++;
}

void __init dma_contiguous_remap(void)
{
	int i;
	for (i = 0; i < dma_mmu_remap_num; i++) {
		phys_addr_t start = dma_mmu_remap[i].base;
		phys_addr_t end = start + dma_mmu_remap[i].size;
		struct map_desc map;
		unsigned long addr;

		if (end > arm_lowmem_limit)
			end = arm_lowmem_limit;
		if (start >= end)
422
			continue;
423 424 425 426 427 428 429

		map.pfn = __phys_to_pfn(start);
		map.virtual = __phys_to_virt(start);
		map.length = end - start;
		map.type = MT_MEMORY_DMA_READY;

		/*
430 431 432 433 434 435 436
		 * Clear previous low-memory mapping to ensure that the
		 * TLB does not see any conflicting entries, then flush
		 * the TLB of the old entries before creating new mappings.
		 *
		 * This ensures that any speculatively loaded TLB entries
		 * (even though they may be rare) can not cause any problems,
		 * and ensures that this code is architecturally compliant.
437 438
		 */
		for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
439
		     addr += PMD_SIZE)
440 441
			pmd_clear(pmd_off_k(addr));

442 443 444
		flush_tlb_kernel_range(__phys_to_virt(start),
				       __phys_to_virt(end));

445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
		iotable_init(&map, 1);
	}
}

static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr,
			    void *data)
{
	struct page *page = virt_to_page(addr);
	pgprot_t prot = *(pgprot_t *)data;

	set_pte_ext(pte, mk_pte(page, prot), 0);
	return 0;
}

static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
{
	unsigned long start = (unsigned long) page_address(page);
	unsigned end = start + size;

	apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
	flush_tlb_kernel_range(start, end);
}

static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
				 pgprot_t prot, struct page **ret_page,
470
				 const void *caller, bool want_vaddr)
471 472
{
	struct page *page;
473
	void *ptr = NULL;
474 475 476
	page = __dma_alloc_buffer(dev, size, gfp);
	if (!page)
		return NULL;
477 478
	if (!want_vaddr)
		goto out;
479 480 481 482 483 484 485

	ptr = __dma_alloc_remap(page, size, gfp, prot, caller);
	if (!ptr) {
		__dma_free_buffer(page, size);
		return NULL;
	}

486
 out:
487 488 489 490
	*ret_page = page;
	return ptr;
}

491
static void *__alloc_from_pool(size_t size, struct page **ret_page)
492
{
493
	unsigned long val;
494
	void *ptr = NULL;
495

496
	if (!atomic_pool) {
497
		WARN(1, "coherent pool not initialised!\n");
498 499 500
		return NULL;
	}

501 502 503 504 505 506
	val = gen_pool_alloc(atomic_pool, size);
	if (val) {
		phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);

		*ret_page = phys_to_page(phys);
		ptr = (void *)val;
507
	}
508 509

	return ptr;
510 511
}

512 513
static bool __in_atomic_pool(void *start, size_t size)
{
514
	return addr_in_gen_pool(atomic_pool, (unsigned long)start, size);
515 516
}

517
static int __free_from_pool(void *start, size_t size)
518
{
519
	if (!__in_atomic_pool(start, size))
520 521
		return 0;

522
	gen_pool_free(atomic_pool, (unsigned long)start, size);
523

524 525 526 527
	return 1;
}

static void *__alloc_from_contiguous(struct device *dev, size_t size,
528
				     pgprot_t prot, struct page **ret_page,
529
				     const void *caller, bool want_vaddr)
530 531 532 533
{
	unsigned long order = get_order(size);
	size_t count = size >> PAGE_SHIFT;
	struct page *page;
534
	void *ptr = NULL;
535 536 537 538 539 540 541

	page = dma_alloc_from_contiguous(dev, count, order);
	if (!page)
		return NULL;

	__dma_clear_buffer(page, size);

542 543 544
	if (!want_vaddr)
		goto out;

545 546 547 548 549 550 551 552 553 554
	if (PageHighMem(page)) {
		ptr = __dma_alloc_remap(page, size, GFP_KERNEL, prot, caller);
		if (!ptr) {
			dma_release_from_contiguous(dev, page, count);
			return NULL;
		}
	} else {
		__dma_remap(page, size, prot);
		ptr = page_address(page);
	}
555 556

 out:
557
	*ret_page = page;
558
	return ptr;
559 560 561
}

static void __free_from_contiguous(struct device *dev, struct page *page,
562
				   void *cpu_addr, size_t size, bool want_vaddr)
563
{
564 565 566 567 568 569
	if (want_vaddr) {
		if (PageHighMem(page))
			__dma_free_remap(cpu_addr, size);
		else
			__dma_remap(page, size, PAGE_KERNEL);
	}
570 571 572
	dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
}

573 574 575 576 577 578 579 580
static inline pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot)
{
	prot = dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs) ?
			    pgprot_writecombine(prot) :
			    pgprot_dmacoherent(prot);
	return prot;
}

581 582
#define nommu() 0

583
#else	/* !CONFIG_MMU */
584

585 586
#define nommu() 1

587 588
#define __get_dma_pgprot(attrs, prot)				__pgprot(0)
#define __alloc_remap_buffer(dev, size, gfp, prot, ret, c, wv)	NULL
589
#define __alloc_from_pool(size, ret_page)			NULL
590
#define __alloc_from_contiguous(dev, size, prot, ret, c, wv)	NULL
591
#define __free_from_pool(cpu_addr, size)			0
592
#define __free_from_contiguous(dev, page, cpu_addr, size, wv)	do { } while (0)
593
#define __dma_free_remap(cpu_addr, size)			do { } while (0)
594 595 596

#endif	/* CONFIG_MMU */

597 598
static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
				   struct page **ret_page)
599
{
600 601 602 603 604 605 606 607 608 609 610 611
	struct page *page;
	page = __dma_alloc_buffer(dev, size, gfp);
	if (!page)
		return NULL;

	*ret_page = page;
	return page_address(page);
}



static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
612 613
			 gfp_t gfp, pgprot_t prot, bool is_coherent,
			 struct dma_attrs *attrs, const void *caller)
614 615
{
	u64 mask = get_coherent_dma_mask(dev);
616
	struct page *page = NULL;
617
	void *addr;
618
	bool want_vaddr;
619

620 621 622 623 624 625 626 627 628 629 630 631 632 633 634
#ifdef CONFIG_DMA_API_DEBUG
	u64 limit = (mask + 1) & ~mask;
	if (limit && size >= limit) {
		dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
			size, mask);
		return NULL;
	}
#endif

	if (!mask)
		return NULL;

	if (mask < 0xffffffffULL)
		gfp |= GFP_DMA;

635 636 637 638 639 640 641 642 643
	/*
	 * Following is a work-around (a.k.a. hack) to prevent pages
	 * with __GFP_COMP being passed to split_page() which cannot
	 * handle them.  The real problem is that this flag probably
	 * should be 0 on ARM as it is not supported on this
	 * platform; see CONFIG_HUGETLBFS.
	 */
	gfp &= ~(__GFP_COMP);

644
	*handle = DMA_ERROR_CODE;
645
	size = PAGE_ALIGN(size);
646
	want_vaddr = !dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs);
647

R
Rob Herring 已提交
648
	if (is_coherent || nommu())
649
		addr = __alloc_simple_buffer(dev, size, gfp, &page);
650
	else if (!(gfp & __GFP_WAIT))
651
		addr = __alloc_from_pool(size, &page);
652
	else if (!dev_get_cma_area(dev))
653
		addr = __alloc_remap_buffer(dev, size, gfp, prot, &page, caller, want_vaddr);
654
	else
655
		addr = __alloc_from_contiguous(dev, size, prot, &page, caller, want_vaddr);
656

657
	if (page)
658
		*handle = pfn_to_dma(dev, page_to_pfn(page));
659

660
	return want_vaddr ? addr : page;
661
}
L
Linus Torvalds 已提交
662 663 664 665 666

/*
 * Allocate DMA-coherent memory space and return both the kernel remapped
 * virtual and bus address for that space.
 */
667 668
void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
		    gfp_t gfp, struct dma_attrs *attrs)
L
Linus Torvalds 已提交
669
{
670
	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
671 672 673 674 675
	void *memory;

	if (dma_alloc_from_coherent(dev, size, handle, &memory))
		return memory;

R
Rob Herring 已提交
676
	return __dma_alloc(dev, size, handle, gfp, prot, false,
677
			   attrs, __builtin_return_address(0));
R
Rob Herring 已提交
678 679 680 681 682
}

static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
	dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
{
683
	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
R
Rob Herring 已提交
684 685 686 687 688 689
	void *memory;

	if (dma_alloc_from_coherent(dev, size, handle, &memory))
		return memory;

	return __dma_alloc(dev, size, handle, gfp, prot, true,
690
			   attrs, __builtin_return_address(0));
L
Linus Torvalds 已提交
691 692 693
}

/*
694
 * Create userspace mapping for the DMA-coherent memory.
L
Linus Torvalds 已提交
695
 */
696 697 698
int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
		 struct dma_attrs *attrs)
L
Linus Torvalds 已提交
699
{
700 701
	int ret = -ENXIO;
#ifdef CONFIG_MMU
702 703
	unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
704
	unsigned long pfn = dma_to_pfn(dev, dma_addr);
705 706
	unsigned long off = vma->vm_pgoff;

707 708
	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);

709 710 711
	if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
		return ret;

712 713 714 715 716 717
	if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
		ret = remap_pfn_range(vma, vma->vm_start,
				      pfn + off,
				      vma->vm_end - vma->vm_start,
				      vma->vm_page_prot);
	}
718
#endif	/* CONFIG_MMU */
L
Linus Torvalds 已提交
719 720 721 722 723

	return ret;
}

/*
724
 * Free a buffer as defined by the above mapping.
L
Linus Torvalds 已提交
725
 */
R
Rob Herring 已提交
726 727 728
static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
			   dma_addr_t handle, struct dma_attrs *attrs,
			   bool is_coherent)
L
Linus Torvalds 已提交
729
{
730
	struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
731
	bool want_vaddr = !dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs);
732

733 734 735
	if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
		return;

736 737
	size = PAGE_ALIGN(size);

R
Rob Herring 已提交
738
	if (is_coherent || nommu()) {
739
		__dma_free_buffer(page, size);
740 741
	} else if (__free_from_pool(cpu_addr, size)) {
		return;
742
	} else if (!dev_get_cma_area(dev)) {
743 744
		if (want_vaddr)
			__dma_free_remap(cpu_addr, size);
745 746 747 748 749 750
		__dma_free_buffer(page, size);
	} else {
		/*
		 * Non-atomic allocations cannot be freed with IRQs disabled
		 */
		WARN_ON(irqs_disabled());
751
		__free_from_contiguous(dev, page, cpu_addr, size, want_vaddr);
752
	}
L
Linus Torvalds 已提交
753
}
754

R
Rob Herring 已提交
755 756 757 758 759 760 761 762 763 764 765 766
void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
		  dma_addr_t handle, struct dma_attrs *attrs)
{
	__arm_dma_free(dev, size, cpu_addr, handle, attrs, false);
}

static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
				  dma_addr_t handle, struct dma_attrs *attrs)
{
	__arm_dma_free(dev, size, cpu_addr, handle, attrs, true);
}

767 768 769 770 771 772 773 774 775 776 777 778 779 780 781
int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
		 void *cpu_addr, dma_addr_t handle, size_t size,
		 struct dma_attrs *attrs)
{
	struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
	int ret;

	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
	if (unlikely(ret))
		return ret;

	sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
	return 0;
}

782
static void dma_cache_maint_page(struct page *page, unsigned long offset,
783 784
	size_t size, enum dma_data_direction dir,
	void (*op)(const void *, size_t, int))
785
{
786 787 788 789 790 791
	unsigned long pfn;
	size_t left = size;

	pfn = page_to_pfn(page) + offset / PAGE_SIZE;
	offset %= PAGE_SIZE;

792 793 794 795 796 797 798 799
	/*
	 * A single sg entry may refer to multiple physically contiguous
	 * pages.  But we still need to process highmem pages individually.
	 * If highmem is not configured then the bulk of this loop gets
	 * optimized out.
	 */
	do {
		size_t len = left;
800 801
		void *vaddr;

802 803
		page = pfn_to_page(pfn);

804
		if (PageHighMem(page)) {
805
			if (len + offset > PAGE_SIZE)
806
				len = PAGE_SIZE - offset;
807 808

			if (cache_is_vipt_nonaliasing()) {
809
				vaddr = kmap_atomic(page);
810
				op(vaddr + offset, len, dir);
811
				kunmap_atomic(vaddr);
812 813 814 815 816 817
			} else {
				vaddr = kmap_high_get(page);
				if (vaddr) {
					op(vaddr + offset, len, dir);
					kunmap_high(page);
				}
818
			}
819 820
		} else {
			vaddr = page_address(page) + offset;
821
			op(vaddr, len, dir);
822 823
		}
		offset = 0;
824
		pfn++;
825 826 827
		left -= len;
	} while (left);
}
828

829 830 831 832 833 834 835
/*
 * Make an area consistent for devices.
 * Note: Drivers should NOT use this function directly, as it will break
 * platforms with CONFIG_DMABOUNCE.
 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
 */
static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
836 837
	size_t size, enum dma_data_direction dir)
{
838
	phys_addr_t paddr;
839

840
	dma_cache_maint_page(page, off, size, dir, dmac_map_area);
841 842

	paddr = page_to_phys(page) + off;
843 844 845 846 847 848
	if (dir == DMA_FROM_DEVICE) {
		outer_inv_range(paddr, paddr + size);
	} else {
		outer_clean_range(paddr, paddr + size);
	}
	/* FIXME: non-speculating: flush on bidirectional mappings? */
849 850
}

851
static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
852 853
	size_t size, enum dma_data_direction dir)
{
854
	phys_addr_t paddr = page_to_phys(page) + off;
855 856

	/* FIXME: non-speculating: not required */
857 858
	/* in any case, don't bother invalidating if DMA to device */
	if (dir != DMA_TO_DEVICE) {
859 860
		outer_inv_range(paddr, paddr + size);

861 862
		dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
	}
863 864

	/*
865
	 * Mark the D-cache clean for these pages to avoid extra flushing.
866
	 */
867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882
	if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
		unsigned long pfn;
		size_t left = size;

		pfn = page_to_pfn(page) + off / PAGE_SIZE;
		off %= PAGE_SIZE;
		if (off) {
			pfn++;
			left -= PAGE_SIZE - off;
		}
		while (left >= PAGE_SIZE) {
			page = pfn_to_page(pfn++);
			set_bit(PG_dcache_clean, &page->flags);
			left -= PAGE_SIZE;
		}
	}
883
}
884

885
/**
886
 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
887 888 889 890 891 892 893 894 895 896 897 898 899 900
 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 * @sg: list of buffers
 * @nents: number of buffers to map
 * @dir: DMA transfer direction
 *
 * Map a set of buffers described by scatterlist in streaming mode for DMA.
 * This is the scatter-gather version of the dma_map_single interface.
 * Here the scatter gather list elements are each tagged with the
 * appropriate dma address and length.  They are obtained via
 * sg_dma_{address,length}.
 *
 * Device ownership issues as mentioned for dma_map_single are the same
 * here.
 */
901 902
int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
		enum dma_data_direction dir, struct dma_attrs *attrs)
903
{
904
	struct dma_map_ops *ops = get_dma_ops(dev);
905
	struct scatterlist *s;
906
	int i, j;
907 908

	for_each_sg(sg, s, nents, i) {
909 910 911
#ifdef CONFIG_NEED_SG_DMA_LENGTH
		s->dma_length = s->length;
#endif
912 913
		s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
						s->length, dir, attrs);
914 915
		if (dma_mapping_error(dev, s->dma_address))
			goto bad_mapping;
916 917
	}
	return nents;
918 919 920

 bad_mapping:
	for_each_sg(sg, s, i, j)
921
		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
922
	return 0;
923 924 925
}

/**
926
 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
927 928
 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 * @sg: list of buffers
929
 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
930 931 932 933 934
 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 *
 * Unmap a set of streaming mode DMA translations.  Again, CPU access
 * rules concerning calls here are the same as for dma_unmap_single().
 */
935 936
void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
		enum dma_data_direction dir, struct dma_attrs *attrs)
937
{
938
	struct dma_map_ops *ops = get_dma_ops(dev);
939 940 941
	struct scatterlist *s;

	int i;
942

943
	for_each_sg(sg, s, nents, i)
944
		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
945 946 947
}

/**
948
 * arm_dma_sync_sg_for_cpu
949 950 951 952 953
 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 * @sg: list of buffers
 * @nents: number of buffers to map (returned from dma_map_sg)
 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 */
954
void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
955 956
			int nents, enum dma_data_direction dir)
{
957
	struct dma_map_ops *ops = get_dma_ops(dev);
958 959 960
	struct scatterlist *s;
	int i;

961 962 963
	for_each_sg(sg, s, nents, i)
		ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
					 dir);
964 965 966
}

/**
967
 * arm_dma_sync_sg_for_device
968 969 970 971 972
 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 * @sg: list of buffers
 * @nents: number of buffers to map (returned from dma_map_sg)
 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 */
973
void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
974 975
			int nents, enum dma_data_direction dir)
{
976
	struct dma_map_ops *ops = get_dma_ops(dev);
977 978 979
	struct scatterlist *s;
	int i;

980 981 982
	for_each_sg(sg, s, nents, i)
		ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
					    dir);
983
}
984

985 986 987 988 989 990 991 992
/*
 * Return whether the given device DMA address mask can be supported
 * properly.  For example, if your device can only drive the low 24-bits
 * during bus mastering, then you would pass 0x00ffffff as the mask
 * to this function.
 */
int dma_supported(struct device *dev, u64 mask)
{
993
	return __dma_supported(dev, mask, false);
994 995 996
}
EXPORT_SYMBOL(dma_supported);

997
int arm_dma_set_mask(struct device *dev, u64 dma_mask)
998 999 1000 1001 1002 1003 1004 1005 1006
{
	if (!dev->dma_mask || !dma_supported(dev, dma_mask))
		return -EIO;

	*dev->dma_mask = dma_mask;

	return 0;
}

1007 1008 1009 1010 1011 1012 1013 1014
#define PREALLOC_DMA_DEBUG_ENTRIES	4096

static int __init dma_debug_do_init(void)
{
	dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
	return 0;
}
fs_initcall(dma_debug_do_init);
1015 1016 1017 1018 1019

#ifdef CONFIG_ARM_DMA_USE_IOMMU

/* IOMMU */

1020 1021
static int extend_iommu_mapping(struct dma_iommu_mapping *mapping);

1022 1023 1024 1025 1026 1027
static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
				      size_t size)
{
	unsigned int order = get_order(size);
	unsigned int align = 0;
	unsigned int count, start;
1028
	size_t mapping_size = mapping->bits << PAGE_SHIFT;
1029
	unsigned long flags;
1030 1031
	dma_addr_t iova;
	int i;
1032

1033 1034 1035
	if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
		order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;

1036 1037
	count = PAGE_ALIGN(size) >> PAGE_SHIFT;
	align = (1 << order) - 1;
1038 1039

	spin_lock_irqsave(&mapping->lock, flags);
1040 1041 1042 1043 1044 1045 1046 1047 1048
	for (i = 0; i < mapping->nr_bitmaps; i++) {
		start = bitmap_find_next_zero_area(mapping->bitmaps[i],
				mapping->bits, 0, count, align);

		if (start > mapping->bits)
			continue;

		bitmap_set(mapping->bitmaps[i], start, count);
		break;
1049 1050
	}

1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
	/*
	 * No unused range found. Try to extend the existing mapping
	 * and perform a second attempt to reserve an IO virtual
	 * address range of size bytes.
	 */
	if (i == mapping->nr_bitmaps) {
		if (extend_iommu_mapping(mapping)) {
			spin_unlock_irqrestore(&mapping->lock, flags);
			return DMA_ERROR_CODE;
		}

		start = bitmap_find_next_zero_area(mapping->bitmaps[i],
				mapping->bits, 0, count, align);

		if (start > mapping->bits) {
			spin_unlock_irqrestore(&mapping->lock, flags);
			return DMA_ERROR_CODE;
		}

		bitmap_set(mapping->bitmaps[i], start, count);
	}
1072 1073
	spin_unlock_irqrestore(&mapping->lock, flags);

1074
	iova = mapping->base + (mapping_size * i);
1075
	iova += start << PAGE_SHIFT;
1076 1077

	return iova;
1078 1079 1080 1081 1082
}

static inline void __free_iova(struct dma_iommu_mapping *mapping,
			       dma_addr_t addr, size_t size)
{
1083
	unsigned int start, count;
1084
	size_t mapping_size = mapping->bits << PAGE_SHIFT;
1085
	unsigned long flags;
1086 1087 1088 1089 1090 1091
	dma_addr_t bitmap_base;
	u32 bitmap_index;

	if (!size)
		return;

1092
	bitmap_index = (u32) (addr - mapping->base) / (u32) mapping_size;
1093 1094
	BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions);

1095
	bitmap_base = mapping->base + mapping_size * bitmap_index;
1096

1097
	start = (addr - bitmap_base) >>	PAGE_SHIFT;
1098

1099
	if (addr + size > bitmap_base + mapping_size) {
1100 1101 1102 1103 1104 1105 1106 1107
		/*
		 * The address range to be freed reaches into the iova
		 * range of the next bitmap. This should not happen as
		 * we don't allow this in __alloc_iova (at the
		 * moment).
		 */
		BUG();
	} else
1108
		count = size >> PAGE_SHIFT;
1109 1110

	spin_lock_irqsave(&mapping->lock, flags);
1111
	bitmap_clear(mapping->bitmaps[bitmap_index], start, count);
1112 1113 1114
	spin_unlock_irqrestore(&mapping->lock, flags);
}

1115 1116
static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
					  gfp_t gfp, struct dma_attrs *attrs)
1117 1118 1119 1120 1121 1122 1123
{
	struct page **pages;
	int count = size >> PAGE_SHIFT;
	int array_size = count * sizeof(struct page *);
	int i = 0;

	if (array_size <= PAGE_SIZE)
1124
		pages = kzalloc(array_size, GFP_KERNEL);
1125 1126 1127 1128 1129
	else
		pages = vzalloc(array_size);
	if (!pages)
		return NULL;

1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
	if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs))
	{
		unsigned long order = get_order(size);
		struct page *page;

		page = dma_alloc_from_contiguous(dev, count, order);
		if (!page)
			goto error;

		__dma_clear_buffer(page, size);

		for (i = 0; i < count; i++)
			pages[i] = page + i;

		return pages;
	}

1147 1148 1149 1150 1151
	/*
	 * IOMMU can map any pages, so himem can also be used here
	 */
	gfp |= __GFP_NOWARN | __GFP_HIGHMEM;

1152
	while (count) {
1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
		int j, order;

		for (order = __fls(count); order > 0; --order) {
			/*
			 * We do not want OOM killer to be invoked as long
			 * as we can fall back to single pages, so we force
			 * __GFP_NORETRY for orders higher than zero.
			 */
			pages[i] = alloc_pages(gfp | __GFP_NORETRY, order);
			if (pages[i])
				break;
		}
1165

1166 1167 1168 1169 1170 1171 1172 1173 1174
		if (!pages[i]) {
			/*
			 * Fall back to single page allocation.
			 * Might invoke OOM killer as last resort.
			 */
			pages[i] = alloc_pages(gfp, 0);
			if (!pages[i])
				goto error;
		}
1175

1176
		if (order) {
1177
			split_page(pages[i], order);
1178 1179 1180 1181
			j = 1 << order;
			while (--j)
				pages[i + j] = pages[i] + j;
		}
1182 1183 1184 1185 1186 1187 1188 1189

		__dma_clear_buffer(pages[i], PAGE_SIZE << order);
		i += 1 << order;
		count -= 1 << order;
	}

	return pages;
error:
1190
	while (i--)
1191 1192
		if (pages[i])
			__free_pages(pages[i], 0);
1193
	if (array_size <= PAGE_SIZE)
1194 1195 1196 1197 1198 1199
		kfree(pages);
	else
		vfree(pages);
	return NULL;
}

1200 1201
static int __iommu_free_buffer(struct device *dev, struct page **pages,
			       size_t size, struct dma_attrs *attrs)
1202 1203 1204 1205
{
	int count = size >> PAGE_SHIFT;
	int array_size = count * sizeof(struct page *);
	int i;
1206 1207 1208 1209 1210 1211 1212 1213 1214

	if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs)) {
		dma_release_from_contiguous(dev, pages[0], count);
	} else {
		for (i = 0; i < count; i++)
			if (pages[i])
				__free_pages(pages[i], 0);
	}

1215
	if (array_size <= PAGE_SIZE)
1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
		kfree(pages);
	else
		vfree(pages);
	return 0;
}

/*
 * Create a CPU mapping for a specified pages
 */
static void *
1226 1227
__iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot,
		    const void *caller)
1228
{
1229 1230
	return dma_common_pages_remap(pages, size,
			VM_ARM_DMA_CONSISTENT | VM_USERMAP, prot, caller);
1231 1232 1233 1234 1235 1236 1237 1238
}

/*
 * Create a mapping in device IO address space for specified pages
 */
static dma_addr_t
__iommu_create_mapping(struct device *dev, struct page **pages, size_t size)
{
1239
	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
	dma_addr_t dma_addr, iova;
	int i, ret = DMA_ERROR_CODE;

	dma_addr = __alloc_iova(mapping, size);
	if (dma_addr == DMA_ERROR_CODE)
		return dma_addr;

	iova = dma_addr;
	for (i = 0; i < count; ) {
		unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
		phys_addr_t phys = page_to_phys(pages[i]);
		unsigned int len, j;

		for (j = i + 1; j < count; j++, next_pfn++)
			if (page_to_pfn(pages[j]) != next_pfn)
				break;

		len = (j - i) << PAGE_SHIFT;
1259 1260
		ret = iommu_map(mapping->domain, iova, phys, len,
				IOMMU_READ|IOMMU_WRITE);
1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
		if (ret < 0)
			goto fail;
		iova += len;
		i = j;
	}
	return dma_addr;
fail:
	iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
	__free_iova(mapping, dma_addr, size);
	return DMA_ERROR_CODE;
}

static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
{
1275
	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288

	/*
	 * add optional in-page offset from iova to size and align
	 * result to page size
	 */
	size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
	iova &= PAGE_MASK;

	iommu_unmap(mapping->domain, iova, size);
	__free_iova(mapping, iova, size);
	return 0;
}

1289 1290
static struct page **__atomic_get_pages(void *addr)
{
1291 1292 1293 1294 1295
	struct page *page;
	phys_addr_t phys;

	phys = gen_pool_virt_to_phys(atomic_pool, (unsigned long)addr);
	page = phys_to_page(phys);
1296

1297
	return (struct page **)page;
1298 1299
}

1300
static struct page **__iommu_get_pages(void *cpu_addr, struct dma_attrs *attrs)
1301 1302 1303
{
	struct vm_struct *area;

1304 1305 1306
	if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
		return __atomic_get_pages(cpu_addr);

1307 1308 1309
	if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
		return cpu_addr;

1310 1311 1312 1313 1314 1315
	area = find_vm_area(cpu_addr);
	if (area && (area->flags & VM_ARM_DMA_CONSISTENT))
		return area->pages;
	return NULL;
}

1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
static void *__iommu_alloc_atomic(struct device *dev, size_t size,
				  dma_addr_t *handle)
{
	struct page *page;
	void *addr;

	addr = __alloc_from_pool(size, &page);
	if (!addr)
		return NULL;

	*handle = __iommu_create_mapping(dev, &page, size);
	if (*handle == DMA_ERROR_CODE)
		goto err_mapping;

	return addr;

err_mapping:
	__free_from_pool(addr, size);
	return NULL;
}

1337
static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
1338 1339 1340
				dma_addr_t handle, size_t size)
{
	__iommu_remove_mapping(dev, handle, size);
1341
	__free_from_pool(cpu_addr, size);
1342 1343
}

1344 1345 1346
static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
	    dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
{
1347
	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
1348 1349 1350 1351 1352 1353
	struct page **pages;
	void *addr = NULL;

	*handle = DMA_ERROR_CODE;
	size = PAGE_ALIGN(size);

1354
	if (!(gfp & __GFP_WAIT))
1355 1356
		return __iommu_alloc_atomic(dev, size, handle);

1357 1358 1359 1360 1361 1362 1363 1364 1365
	/*
	 * Following is a work-around (a.k.a. hack) to prevent pages
	 * with __GFP_COMP being passed to split_page() which cannot
	 * handle them.  The real problem is that this flag probably
	 * should be 0 on ARM as it is not supported on this
	 * platform; see CONFIG_HUGETLBFS.
	 */
	gfp &= ~(__GFP_COMP);

1366
	pages = __iommu_alloc_buffer(dev, size, gfp, attrs);
1367 1368 1369 1370 1371 1372 1373
	if (!pages)
		return NULL;

	*handle = __iommu_create_mapping(dev, pages, size);
	if (*handle == DMA_ERROR_CODE)
		goto err_buffer;

1374 1375 1376
	if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
		return pages;

1377 1378
	addr = __iommu_alloc_remap(pages, size, gfp, prot,
				   __builtin_return_address(0));
1379 1380 1381 1382 1383 1384 1385 1386
	if (!addr)
		goto err_mapping;

	return addr;

err_mapping:
	__iommu_remove_mapping(dev, *handle, size);
err_buffer:
1387
	__iommu_free_buffer(dev, pages, size, attrs);
1388 1389 1390 1391 1392 1393 1394
	return NULL;
}

static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
		    void *cpu_addr, dma_addr_t dma_addr, size_t size,
		    struct dma_attrs *attrs)
{
1395 1396
	unsigned long uaddr = vma->vm_start;
	unsigned long usize = vma->vm_end - vma->vm_start;
1397
	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1398 1399 1400

	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);

1401 1402
	if (!pages)
		return -ENXIO;
1403

1404 1405 1406 1407 1408 1409 1410 1411 1412
	do {
		int ret = vm_insert_page(vma, uaddr, *pages++);
		if (ret) {
			pr_err("Remapping memory failed: %d\n", ret);
			return ret;
		}
		uaddr += PAGE_SIZE;
		usize -= PAGE_SIZE;
	} while (usize > 0);
1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423

	return 0;
}

/*
 * free a page as defined by the above mapping.
 * Must not be called with IRQs disabled.
 */
void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
			  dma_addr_t handle, struct dma_attrs *attrs)
{
1424
	struct page **pages;
1425 1426
	size = PAGE_ALIGN(size);

1427 1428
	if (__in_atomic_pool(cpu_addr, size)) {
		__iommu_free_atomic(dev, cpu_addr, handle, size);
1429
		return;
1430
	}
1431

1432 1433 1434
	pages = __iommu_get_pages(cpu_addr, attrs);
	if (!pages) {
		WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
1435 1436 1437
		return;
	}

1438
	if (!dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) {
1439 1440
		dma_common_free_remap(cpu_addr, size,
			VM_ARM_DMA_CONSISTENT | VM_USERMAP);
1441
	}
1442 1443

	__iommu_remove_mapping(dev, handle, size);
1444
	__iommu_free_buffer(dev, pages, size, attrs);
1445 1446
}

1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
				 void *cpu_addr, dma_addr_t dma_addr,
				 size_t size, struct dma_attrs *attrs)
{
	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
	struct page **pages = __iommu_get_pages(cpu_addr, attrs);

	if (!pages)
		return -ENXIO;

	return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
					 GFP_KERNEL);
1459 1460
}

1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481
static int __dma_direction_to_prot(enum dma_data_direction dir)
{
	int prot;

	switch (dir) {
	case DMA_BIDIRECTIONAL:
		prot = IOMMU_READ | IOMMU_WRITE;
		break;
	case DMA_TO_DEVICE:
		prot = IOMMU_READ;
		break;
	case DMA_FROM_DEVICE:
		prot = IOMMU_WRITE;
		break;
	default:
		prot = 0;
	}

	return prot;
}

1482 1483 1484 1485 1486
/*
 * Map a part of the scatter-gather list into contiguous io address space
 */
static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
			  size_t size, dma_addr_t *handle,
R
Rob Herring 已提交
1487 1488
			  enum dma_data_direction dir, struct dma_attrs *attrs,
			  bool is_coherent)
1489
{
1490
	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1491 1492 1493 1494
	dma_addr_t iova, iova_base;
	int ret = 0;
	unsigned int count;
	struct scatterlist *s;
1495
	int prot;
1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507

	size = PAGE_ALIGN(size);
	*handle = DMA_ERROR_CODE;

	iova_base = iova = __alloc_iova(mapping, size);
	if (iova == DMA_ERROR_CODE)
		return -ENOMEM;

	for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
		phys_addr_t phys = page_to_phys(sg_page(s));
		unsigned int len = PAGE_ALIGN(s->offset + s->length);

R
Rob Herring 已提交
1508 1509
		if (!is_coherent &&
			!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1510 1511
			__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);

1512 1513 1514
		prot = __dma_direction_to_prot(dir);

		ret = iommu_map(mapping->domain, iova, phys, len, prot);
1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528
		if (ret < 0)
			goto fail;
		count += len >> PAGE_SHIFT;
		iova += len;
	}
	*handle = iova_base;

	return 0;
fail:
	iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
	__free_iova(mapping, iova_base, size);
	return ret;
}

R
Rob Herring 已提交
1529 1530 1531
static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
		     enum dma_data_direction dir, struct dma_attrs *attrs,
		     bool is_coherent)
1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546
{
	struct scatterlist *s = sg, *dma = sg, *start = sg;
	int i, count = 0;
	unsigned int offset = s->offset;
	unsigned int size = s->offset + s->length;
	unsigned int max = dma_get_max_seg_size(dev);

	for (i = 1; i < nents; i++) {
		s = sg_next(s);

		s->dma_address = DMA_ERROR_CODE;
		s->dma_length = 0;

		if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
			if (__map_sg_chunk(dev, start, size, &dma->dma_address,
R
Rob Herring 已提交
1547
			    dir, attrs, is_coherent) < 0)
1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559
				goto bad_mapping;

			dma->dma_address += offset;
			dma->dma_length = size - offset;

			size = offset = s->offset;
			start = s;
			dma = sg_next(dma);
			count += 1;
		}
		size += s->length;
	}
R
Rob Herring 已提交
1560 1561
	if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs,
		is_coherent) < 0)
1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575
		goto bad_mapping;

	dma->dma_address += offset;
	dma->dma_length = size - offset;

	return count+1;

bad_mapping:
	for_each_sg(sg, s, count, i)
		__iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
	return 0;
}

/**
R
Rob Herring 已提交
1576
 * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1577 1578
 * @dev: valid struct device pointer
 * @sg: list of buffers
R
Rob Herring 已提交
1579 1580
 * @nents: number of buffers to map
 * @dir: DMA transfer direction
1581
 *
R
Rob Herring 已提交
1582 1583 1584 1585
 * Map a set of i/o coherent buffers described by scatterlist in streaming
 * mode for DMA. The scatter gather list elements are merged together (if
 * possible) and tagged with the appropriate dma address and length. They are
 * obtained via sg_dma_{address,length}.
1586
 */
R
Rob Herring 已提交
1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613
int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg,
		int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
{
	return __iommu_map_sg(dev, sg, nents, dir, attrs, true);
}

/**
 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
 * @dev: valid struct device pointer
 * @sg: list of buffers
 * @nents: number of buffers to map
 * @dir: DMA transfer direction
 *
 * Map a set of buffers described by scatterlist in streaming mode for DMA.
 * The scatter gather list elements are merged together (if possible) and
 * tagged with the appropriate dma address and length. They are obtained via
 * sg_dma_{address,length}.
 */
int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
		int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
{
	return __iommu_map_sg(dev, sg, nents, dir, attrs, false);
}

static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
		int nents, enum dma_data_direction dir, struct dma_attrs *attrs,
		bool is_coherent)
1614 1615 1616 1617 1618 1619 1620 1621
{
	struct scatterlist *s;
	int i;

	for_each_sg(sg, s, nents, i) {
		if (sg_dma_len(s))
			__iommu_remove_mapping(dev, sg_dma_address(s),
					       sg_dma_len(s));
R
Rob Herring 已提交
1622
		if (!is_coherent &&
1623
		    !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1624 1625 1626 1627 1628
			__dma_page_dev_to_cpu(sg_page(s), s->offset,
					      s->length, dir);
	}
}

R
Rob Herring 已提交
1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660
/**
 * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
 * @dev: valid struct device pointer
 * @sg: list of buffers
 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 *
 * Unmap a set of streaming mode DMA translations.  Again, CPU access
 * rules concerning calls here are the same as for dma_unmap_single().
 */
void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
		int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
{
	__iommu_unmap_sg(dev, sg, nents, dir, attrs, true);
}

/**
 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
 * @dev: valid struct device pointer
 * @sg: list of buffers
 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 *
 * Unmap a set of streaming mode DMA translations.  Again, CPU access
 * rules concerning calls here are the same as for dma_unmap_single().
 */
void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
			enum dma_data_direction dir, struct dma_attrs *attrs)
{
	__iommu_unmap_sg(dev, sg, nents, dir, attrs, false);
}

1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674
/**
 * arm_iommu_sync_sg_for_cpu
 * @dev: valid struct device pointer
 * @sg: list of buffers
 * @nents: number of buffers to map (returned from dma_map_sg)
 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 */
void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
			int nents, enum dma_data_direction dir)
{
	struct scatterlist *s;
	int i;

	for_each_sg(sg, s, nents, i)
R
Rob Herring 已提交
1675
		__dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692

}

/**
 * arm_iommu_sync_sg_for_device
 * @dev: valid struct device pointer
 * @sg: list of buffers
 * @nents: number of buffers to map (returned from dma_map_sg)
 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 */
void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
			int nents, enum dma_data_direction dir)
{
	struct scatterlist *s;
	int i;

	for_each_sg(sg, s, nents, i)
R
Rob Herring 已提交
1693
		__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1694 1695 1696 1697
}


/**
R
Rob Herring 已提交
1698
 * arm_coherent_iommu_map_page
1699 1700 1701 1702 1703 1704
 * @dev: valid struct device pointer
 * @page: page that buffer resides in
 * @offset: offset into page for start of buffer
 * @size: size of buffer to map
 * @dir: DMA transfer direction
 *
R
Rob Herring 已提交
1705
 * Coherent IOMMU aware version of arm_dma_map_page()
1706
 */
R
Rob Herring 已提交
1707
static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page,
1708 1709 1710
	     unsigned long offset, size_t size, enum dma_data_direction dir,
	     struct dma_attrs *attrs)
{
1711
	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1712
	dma_addr_t dma_addr;
1713
	int ret, prot, len = PAGE_ALIGN(size + offset);
1714 1715 1716 1717 1718

	dma_addr = __alloc_iova(mapping, len);
	if (dma_addr == DMA_ERROR_CODE)
		return dma_addr;

1719
	prot = __dma_direction_to_prot(dir);
1720 1721

	ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot);
1722 1723 1724 1725 1726 1727 1728 1729 1730
	if (ret < 0)
		goto fail;

	return dma_addr + offset;
fail:
	__free_iova(mapping, dma_addr, len);
	return DMA_ERROR_CODE;
}

R
Rob Herring 已提交
1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763
/**
 * arm_iommu_map_page
 * @dev: valid struct device pointer
 * @page: page that buffer resides in
 * @offset: offset into page for start of buffer
 * @size: size of buffer to map
 * @dir: DMA transfer direction
 *
 * IOMMU aware version of arm_dma_map_page()
 */
static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
	     unsigned long offset, size_t size, enum dma_data_direction dir,
	     struct dma_attrs *attrs)
{
	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
		__dma_page_cpu_to_dev(page, offset, size, dir);

	return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs);
}

/**
 * arm_coherent_iommu_unmap_page
 * @dev: valid struct device pointer
 * @handle: DMA address of buffer
 * @size: size of buffer (same as passed to dma_map_page)
 * @dir: DMA transfer direction (same as passed to dma_map_page)
 *
 * Coherent IOMMU aware version of arm_dma_unmap_page()
 */
static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle,
		size_t size, enum dma_data_direction dir,
		struct dma_attrs *attrs)
{
1764
	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
R
Rob Herring 已提交
1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
	dma_addr_t iova = handle & PAGE_MASK;
	int offset = handle & ~PAGE_MASK;
	int len = PAGE_ALIGN(size + offset);

	if (!iova)
		return;

	iommu_unmap(mapping->domain, iova, len);
	__free_iova(mapping, iova, len);
}

1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788
/**
 * arm_iommu_unmap_page
 * @dev: valid struct device pointer
 * @handle: DMA address of buffer
 * @size: size of buffer (same as passed to dma_map_page)
 * @dir: DMA transfer direction (same as passed to dma_map_page)
 *
 * IOMMU aware version of arm_dma_unmap_page()
 */
static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
		size_t size, enum dma_data_direction dir,
		struct dma_attrs *attrs)
{
1789
	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1790 1791 1792 1793 1794 1795 1796 1797
	dma_addr_t iova = handle & PAGE_MASK;
	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
	int offset = handle & ~PAGE_MASK;
	int len = PAGE_ALIGN(size + offset);

	if (!iova)
		return;

R
Rob Herring 已提交
1798
	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1799 1800 1801 1802 1803 1804 1805 1806 1807
		__dma_page_dev_to_cpu(page, offset, size, dir);

	iommu_unmap(mapping->domain, iova, len);
	__free_iova(mapping, iova, len);
}

static void arm_iommu_sync_single_for_cpu(struct device *dev,
		dma_addr_t handle, size_t size, enum dma_data_direction dir)
{
1808
	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1809 1810 1811 1812 1813 1814 1815
	dma_addr_t iova = handle & PAGE_MASK;
	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
	unsigned int offset = handle & ~PAGE_MASK;

	if (!iova)
		return;

R
Rob Herring 已提交
1816
	__dma_page_dev_to_cpu(page, offset, size, dir);
1817 1818 1819 1820 1821
}

static void arm_iommu_sync_single_for_device(struct device *dev,
		dma_addr_t handle, size_t size, enum dma_data_direction dir)
{
1822
	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836
	dma_addr_t iova = handle & PAGE_MASK;
	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
	unsigned int offset = handle & ~PAGE_MASK;

	if (!iova)
		return;

	__dma_page_cpu_to_dev(page, offset, size, dir);
}

struct dma_map_ops iommu_ops = {
	.alloc		= arm_iommu_alloc_attrs,
	.free		= arm_iommu_free_attrs,
	.mmap		= arm_iommu_mmap_attrs,
1837
	.get_sgtable	= arm_iommu_get_sgtable,
1838 1839 1840 1841 1842 1843 1844 1845 1846 1847

	.map_page		= arm_iommu_map_page,
	.unmap_page		= arm_iommu_unmap_page,
	.sync_single_for_cpu	= arm_iommu_sync_single_for_cpu,
	.sync_single_for_device	= arm_iommu_sync_single_for_device,

	.map_sg			= arm_iommu_map_sg,
	.unmap_sg		= arm_iommu_unmap_sg,
	.sync_sg_for_cpu	= arm_iommu_sync_sg_for_cpu,
	.sync_sg_for_device	= arm_iommu_sync_sg_for_device,
1848 1849

	.set_dma_mask		= arm_dma_set_mask,
1850 1851
};

R
Rob Herring 已提交
1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862
struct dma_map_ops iommu_coherent_ops = {
	.alloc		= arm_iommu_alloc_attrs,
	.free		= arm_iommu_free_attrs,
	.mmap		= arm_iommu_mmap_attrs,
	.get_sgtable	= arm_iommu_get_sgtable,

	.map_page	= arm_coherent_iommu_map_page,
	.unmap_page	= arm_coherent_iommu_unmap_page,

	.map_sg		= arm_coherent_iommu_map_sg,
	.unmap_sg	= arm_coherent_iommu_unmap_sg,
1863 1864

	.set_dma_mask	= arm_dma_set_mask,
R
Rob Herring 已提交
1865 1866
};

1867 1868 1869 1870
/**
 * arm_iommu_create_mapping
 * @bus: pointer to the bus holding the client device (for IOMMU calls)
 * @base: start address of the valid IO address space
1871
 * @size: maximum size of the valid IO address space
1872 1873 1874 1875 1876 1877 1878 1879 1880
 *
 * Creates a mapping structure which holds information about used/unused
 * IO address ranges, which is required to perform memory allocation and
 * mapping with IOMMU aware functions.
 *
 * The client device need to be attached to the mapping with
 * arm_iommu_attach_device function.
 */
struct dma_iommu_mapping *
1881
arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, size_t size)
1882
{
1883 1884
	unsigned int bits = size >> PAGE_SHIFT;
	unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long);
1885
	struct dma_iommu_mapping *mapping;
1886
	int extensions = 1;
1887 1888
	int err = -ENOMEM;

1889
	if (!bitmap_size)
1890 1891
		return ERR_PTR(-EINVAL);

1892 1893 1894 1895 1896
	if (bitmap_size > PAGE_SIZE) {
		extensions = bitmap_size / PAGE_SIZE;
		bitmap_size = PAGE_SIZE;
	}

1897 1898 1899 1900
	mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
	if (!mapping)
		goto err;

1901 1902
	mapping->bitmap_size = bitmap_size;
	mapping->bitmaps = kzalloc(extensions * sizeof(unsigned long *),
1903 1904
				GFP_KERNEL);
	if (!mapping->bitmaps)
1905 1906
		goto err2;

1907
	mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL);
1908 1909 1910 1911 1912
	if (!mapping->bitmaps[0])
		goto err3;

	mapping->nr_bitmaps = 1;
	mapping->extensions = extensions;
1913
	mapping->base = base;
1914
	mapping->bits = BITS_PER_BYTE * bitmap_size;
1915

1916 1917 1918 1919
	spin_lock_init(&mapping->lock);

	mapping->domain = iommu_domain_alloc(bus);
	if (!mapping->domain)
1920
		goto err4;
1921 1922 1923

	kref_init(&mapping->kref);
	return mapping;
1924 1925
err4:
	kfree(mapping->bitmaps[0]);
1926
err3:
1927
	kfree(mapping->bitmaps);
1928 1929 1930 1931 1932
err2:
	kfree(mapping);
err:
	return ERR_PTR(err);
}
1933
EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
1934 1935 1936

static void release_iommu_mapping(struct kref *kref)
{
1937
	int i;
1938 1939 1940 1941
	struct dma_iommu_mapping *mapping =
		container_of(kref, struct dma_iommu_mapping, kref);

	iommu_domain_free(mapping->domain);
1942 1943 1944
	for (i = 0; i < mapping->nr_bitmaps; i++)
		kfree(mapping->bitmaps[i]);
	kfree(mapping->bitmaps);
1945 1946 1947
	kfree(mapping);
}

1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965
static int extend_iommu_mapping(struct dma_iommu_mapping *mapping)
{
	int next_bitmap;

	if (mapping->nr_bitmaps > mapping->extensions)
		return -EINVAL;

	next_bitmap = mapping->nr_bitmaps;
	mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size,
						GFP_ATOMIC);
	if (!mapping->bitmaps[next_bitmap])
		return -ENOMEM;

	mapping->nr_bitmaps++;

	return 0;
}

1966 1967 1968 1969 1970
void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
{
	if (mapping)
		kref_put(&mapping->kref, release_iommu_mapping);
}
1971
EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
1972

1973 1974 1975 1976 1977 1978 1979 1980 1981 1982
static int __arm_iommu_attach_device(struct device *dev,
				     struct dma_iommu_mapping *mapping)
{
	int err;

	err = iommu_attach_device(mapping->domain, dev);
	if (err)
		return err;

	kref_get(&mapping->kref);
1983
	to_dma_iommu_mapping(dev) = mapping;
1984 1985 1986 1987 1988

	pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
	return 0;
}

1989 1990 1991 1992 1993 1994
/**
 * arm_iommu_attach_device
 * @dev: valid struct device pointer
 * @mapping: io address space mapping structure (returned from
 *	arm_iommu_create_mapping)
 *
1995 1996 1997 1998
 * Attaches specified io address space mapping to the provided device.
 * This replaces the dma operations (dma_map_ops pointer) with the
 * IOMMU aware version.
 *
1999 2000
 * More than one client might be attached to the same io address space
 * mapping.
2001 2002 2003 2004 2005 2006
 */
int arm_iommu_attach_device(struct device *dev,
			    struct dma_iommu_mapping *mapping)
{
	int err;

2007
	err = __arm_iommu_attach_device(dev, mapping);
2008 2009 2010
	if (err)
		return err;

2011
	set_dma_ops(dev, &iommu_ops);
2012 2013
	return 0;
}
2014
EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
2015

2016
static void __arm_iommu_detach_device(struct device *dev)
2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027
{
	struct dma_iommu_mapping *mapping;

	mapping = to_dma_iommu_mapping(dev);
	if (!mapping) {
		dev_warn(dev, "Not attached\n");
		return;
	}

	iommu_detach_device(mapping->domain, dev);
	kref_put(&mapping->kref, release_iommu_mapping);
2028
	to_dma_iommu_mapping(dev) = NULL;
2029 2030 2031

	pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
}
2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044

/**
 * arm_iommu_detach_device
 * @dev: valid struct device pointer
 *
 * Detaches the provided device from a previously attached map.
 * This voids the dma operations (dma_map_ops pointer)
 */
void arm_iommu_detach_device(struct device *dev)
{
	__arm_iommu_detach_device(dev);
	set_dma_ops(dev, NULL);
}
2045
EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
2046

2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059
static struct dma_map_ops *arm_get_iommu_dma_map_ops(bool coherent)
{
	return coherent ? &iommu_coherent_ops : &iommu_ops;
}

static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
				    struct iommu_ops *iommu)
{
	struct dma_iommu_mapping *mapping;

	if (!iommu)
		return false;

2060 2061 2062 2063 2064 2065 2066
	/*
	 * currently arm_iommu_create_mapping() takes a max of size_t
	 * for size param. So check this limit for now.
	 */
	if (size > SIZE_MAX)
		return false;

2067 2068 2069 2070 2071 2072 2073
	mapping = arm_iommu_create_mapping(dev->bus, dma_base, size);
	if (IS_ERR(mapping)) {
		pr_warn("Failed to create %llu-byte IOMMU mapping for device %s\n",
				size, dev_name(dev));
		return false;
	}

2074
	if (__arm_iommu_attach_device(dev, mapping)) {
2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085
		pr_warn("Failed to attached device %s to IOMMU_mapping\n",
				dev_name(dev));
		arm_iommu_release_mapping(mapping);
		return false;
	}

	return true;
}

static void arm_teardown_iommu_dma_ops(struct device *dev)
{
2086
	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2087

2088 2089 2090
	if (!mapping)
		return;

2091
	__arm_iommu_detach_device(dev);
2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118
	arm_iommu_release_mapping(mapping);
}

#else

static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
				    struct iommu_ops *iommu)
{
	return false;
}

static void arm_teardown_iommu_dma_ops(struct device *dev) { }

#define arm_get_iommu_dma_map_ops arm_get_dma_map_ops

#endif	/* CONFIG_ARM_DMA_USE_IOMMU */

static struct dma_map_ops *arm_get_dma_map_ops(bool coherent)
{
	return coherent ? &arm_coherent_dma_ops : &arm_dma_ops;
}

void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
			struct iommu_ops *iommu, bool coherent)
{
	struct dma_map_ops *dma_ops;

2119
	dev->archdata.dma_coherent = coherent;
2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131
	if (arm_setup_iommu_dma_ops(dev, dma_base, size, iommu))
		dma_ops = arm_get_iommu_dma_map_ops(coherent);
	else
		dma_ops = arm_get_dma_map_ops(coherent);

	set_dma_ops(dev, dma_ops);
}

void arch_teardown_dma_ops(struct device *dev)
{
	arm_teardown_iommu_dma_ops(dev);
}