dma-mapping.c 43.5 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 *  linux/arch/arm/mm/dma-mapping.c
L
Linus Torvalds 已提交
3 4 5 6 7 8 9 10 11 12 13
 *
 *  Copyright (C) 2000-2004 Russell King
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 *  DMA uncached mapping support.
 */
#include <linux/module.h>
#include <linux/mm.h>
14
#include <linux/gfp.h>
L
Linus Torvalds 已提交
15 16 17 18 19
#include <linux/errno.h>
#include <linux/list.h>
#include <linux/init.h>
#include <linux/device.h>
#include <linux/dma-mapping.h>
20
#include <linux/dma-contiguous.h>
21
#include <linux/highmem.h>
22
#include <linux/memblock.h>
23
#include <linux/slab.h>
24
#include <linux/iommu.h>
25
#include <linux/io.h>
26
#include <linux/vmalloc.h>
27
#include <linux/sizes.h>
L
Linus Torvalds 已提交
28

29
#include <asm/memory.h>
30
#include <asm/highmem.h>
L
Linus Torvalds 已提交
31 32
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
33
#include <asm/mach/arch.h>
34
#include <asm/dma-iommu.h>
35 36 37
#include <asm/mach/map.h>
#include <asm/system_info.h>
#include <asm/dma-contiguous.h>
38

39 40
#include "mm.h"

41 42 43 44 45 46 47 48 49 50 51 52
/*
 * The DMA API is built upon the notion of "buffer ownership".  A buffer
 * is either exclusively owned by the CPU (and therefore may be accessed
 * by it) or exclusively owned by the DMA device.  These helper functions
 * represent the transitions between these two ownership states.
 *
 * Note, however, that on later ARMs, this notion does not work due to
 * speculative prefetches.  We model our approach on the assumption that
 * the CPU does do speculative prefetches, which means we clean caches
 * before transfers and delay cache invalidation until transfer completion.
 *
 */
53
static void __dma_page_cpu_to_dev(struct page *, unsigned long,
54
		size_t, enum dma_data_direction);
55
static void __dma_page_dev_to_cpu(struct page *, unsigned long,
56 57
		size_t, enum dma_data_direction);

58 59 60 61 62 63 64 65 66 67 68 69 70 71
/**
 * arm_dma_map_page - map a portion of a page for streaming DMA
 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 * @page: page that buffer resides in
 * @offset: offset into page for start of buffer
 * @size: size of buffer to map
 * @dir: DMA transfer direction
 *
 * Ensure that any data held in the cache is appropriately discarded
 * or written back.
 *
 * The device owns this memory once this call has completed.  The CPU
 * can regain ownership by calling dma_unmap_page().
 */
72
static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
73 74 75
	     unsigned long offset, size_t size, enum dma_data_direction dir,
	     struct dma_attrs *attrs)
{
76
	if (!arch_is_coherent() && !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
77 78
		__dma_page_cpu_to_dev(page, offset, size, dir);
	return pfn_to_dma(dev, page_to_pfn(page)) + offset;
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
}

/**
 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 * @handle: DMA address of buffer
 * @size: size of buffer (same as passed to dma_map_page)
 * @dir: DMA transfer direction (same as passed to dma_map_page)
 *
 * Unmap a page streaming mode DMA translation.  The handle and size
 * must match what was provided in the previous dma_map_page() call.
 * All other usages are undefined.
 *
 * After this call, reads by the CPU to the buffer are guaranteed to see
 * whatever the device wrote there.
 */
95
static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
96 97 98
		size_t size, enum dma_data_direction dir,
		struct dma_attrs *attrs)
{
99
	if (!arch_is_coherent() && !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
100 101
		__dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
				      handle & ~PAGE_MASK, size, dir);
102 103
}

104
static void arm_dma_sync_single_for_cpu(struct device *dev,
105 106 107 108
		dma_addr_t handle, size_t size, enum dma_data_direction dir)
{
	unsigned int offset = handle & (PAGE_SIZE - 1);
	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
109 110
	if (!arch_is_coherent())
		__dma_page_dev_to_cpu(page, offset, size, dir);
111 112
}

113
static void arm_dma_sync_single_for_device(struct device *dev,
114 115 116 117
		dma_addr_t handle, size_t size, enum dma_data_direction dir)
{
	unsigned int offset = handle & (PAGE_SIZE - 1);
	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
118 119
	if (!arch_is_coherent())
		__dma_page_cpu_to_dev(page, offset, size, dir);
120 121 122 123 124
}

static int arm_dma_set_mask(struct device *dev, u64 dma_mask);

struct dma_map_ops arm_dma_ops = {
125 126 127
	.alloc			= arm_dma_alloc,
	.free			= arm_dma_free,
	.mmap			= arm_dma_mmap,
128
	.get_sgtable		= arm_dma_get_sgtable,
129 130 131 132 133 134 135 136 137 138 139 140
	.map_page		= arm_dma_map_page,
	.unmap_page		= arm_dma_unmap_page,
	.map_sg			= arm_dma_map_sg,
	.unmap_sg		= arm_dma_unmap_sg,
	.sync_single_for_cpu	= arm_dma_sync_single_for_cpu,
	.sync_single_for_device	= arm_dma_sync_single_for_device,
	.sync_sg_for_cpu	= arm_dma_sync_sg_for_cpu,
	.sync_sg_for_device	= arm_dma_sync_sg_for_device,
	.set_dma_mask		= arm_dma_set_mask,
};
EXPORT_SYMBOL(arm_dma_ops);

141 142
static u64 get_coherent_dma_mask(struct device *dev)
{
143
	u64 mask = (u64)arm_dma_limit;
144 145 146 147 148 149 150 151 152 153 154 155 156

	if (dev) {
		mask = dev->coherent_dma_mask;

		/*
		 * Sanity check the DMA mask - it must be non-zero, and
		 * must be able to be satisfied by a DMA allocation.
		 */
		if (mask == 0) {
			dev_warn(dev, "coherent DMA mask is unset\n");
			return 0;
		}

157
		if ((~mask) & (u64)arm_dma_limit) {
158 159
			dev_warn(dev, "coherent DMA mask %#llx is smaller "
				 "than system GFP_DMA mask %#llx\n",
160
				 mask, (u64)arm_dma_limit);
161 162 163
			return 0;
		}
	}
L
Linus Torvalds 已提交
164

165 166 167
	return mask;
}

168 169 170 171 172 173 174 175
static void __dma_clear_buffer(struct page *page, size_t size)
{
	void *ptr;
	/*
	 * Ensure that the allocated pages are zeroed, and that any data
	 * lurking in the kernel direct-mapped region is invalidated.
	 */
	ptr = page_address(page);
176 177 178 179 180
	if (ptr) {
		memset(ptr, 0, size);
		dmac_flush_range(ptr, ptr + size);
		outer_flush_range(__pa(ptr), __pa(ptr) + size);
	}
181 182
}

183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
/*
 * Allocate a DMA buffer for 'dev' of size 'size' using the
 * specified gfp mask.  Note that 'size' must be page aligned.
 */
static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
{
	unsigned long order = get_order(size);
	struct page *page, *p, *e;

	page = alloc_pages(gfp, order);
	if (!page)
		return NULL;

	/*
	 * Now split the huge page and free the excess pages
	 */
	split_page(page, order);
	for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
		__free_page(p);

203
	__dma_clear_buffer(page, size);
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220

	return page;
}

/*
 * Free a DMA buffer.  'size' must be page aligned.
 */
static void __dma_free_buffer(struct page *page, size_t size)
{
	struct page *e = page + (size >> PAGE_SHIFT);

	while (page < e) {
		__free_page(page);
		page++;
	}
}

221
#ifdef CONFIG_MMU
222 223 224
#ifdef CONFIG_HUGETLB_PAGE
#error ARM Coherent DMA allocator does not (yet) support huge TLB
#endif
225

226 227
static void *__alloc_from_contiguous(struct device *dev, size_t size,
				     pgprot_t prot, struct page **ret_page);
228

229 230 231
static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
				 pgprot_t prot, struct page **ret_page,
				 const void *caller);
232

233 234 235
static void *
__dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
	const void *caller)
236
{
237 238
	struct vm_struct *area;
	unsigned long addr;
239

240 241 242 243 244 245 246 247 248 249
	/*
	 * DMA allocation can be mapped to user space, so lets
	 * set VM_USERMAP flags too.
	 */
	area = get_vm_area_caller(size, VM_ARM_DMA_CONSISTENT | VM_USERMAP,
				  caller);
	if (!area)
		return NULL;
	addr = (unsigned long)area->addr;
	area->phys_addr = __pfn_to_phys(page_to_pfn(page));
250

251 252 253 254 255
	if (ioremap_page_range(addr, addr + size, area->phys_addr, prot)) {
		vunmap((void *)addr);
		return NULL;
	}
	return (void *)addr;
256
}
L
Linus Torvalds 已提交
257

258
static void __dma_free_remap(void *cpu_addr, size_t size)
259
{
260 261 262 263 264
	unsigned int flags = VM_ARM_DMA_CONSISTENT | VM_USERMAP;
	struct vm_struct *area = find_vm_area(cpu_addr);
	if (!area || (area->flags & flags) != flags) {
		WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
		return;
265
	}
266 267
	unmap_kernel_range((unsigned long)cpu_addr, size);
	vunmap(cpu_addr);
268 269
}

270 271
#define DEFAULT_DMA_COHERENT_POOL_SIZE	SZ_256K

272 273 274 275 276 277
struct dma_pool {
	size_t size;
	spinlock_t lock;
	unsigned long *bitmap;
	unsigned long nr_pages;
	void *vaddr;
278
	struct page **pages;
279 280
};

281
static struct dma_pool atomic_pool = {
282
	.size = DEFAULT_DMA_COHERENT_POOL_SIZE,
283
};
284 285 286

static int __init early_coherent_pool(char *p)
{
287
	atomic_pool.size = memparse(p, &p);
288 289 290 291
	return 0;
}
early_param("coherent_pool", early_coherent_pool);

292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
void __init init_dma_coherent_pool_size(unsigned long size)
{
	/*
	 * Catch any attempt to set the pool size too late.
	 */
	BUG_ON(atomic_pool.vaddr);

	/*
	 * Set architecture specific coherent pool size only if
	 * it has not been changed by kernel command line parameter.
	 */
	if (atomic_pool.size == DEFAULT_DMA_COHERENT_POOL_SIZE)
		atomic_pool.size = size;
}

307 308 309
/*
 * Initialise the coherent pool for atomic allocations.
 */
310
static int __init atomic_pool_init(void)
311
{
312
	struct dma_pool *pool = &atomic_pool;
313
	pgprot_t prot = pgprot_dmacoherent(pgprot_kernel);
314 315
	unsigned long nr_pages = pool->size >> PAGE_SHIFT;
	unsigned long *bitmap;
316
	struct page *page;
317
	struct page **pages;
318
	void *ptr;
319
	int bitmap_size = BITS_TO_LONGS(nr_pages) * sizeof(long);
320

321 322 323
	bitmap = kzalloc(bitmap_size, GFP_KERNEL);
	if (!bitmap)
		goto no_bitmap;
324

325 326 327 328
	pages = kzalloc(nr_pages * sizeof(struct page *), GFP_KERNEL);
	if (!pages)
		goto no_pages;

329 330 331 332 333
	if (IS_ENABLED(CONFIG_CMA))
		ptr = __alloc_from_contiguous(NULL, pool->size, prot, &page);
	else
		ptr = __alloc_remap_buffer(NULL, pool->size, GFP_KERNEL, prot,
					   &page, NULL);
334
	if (ptr) {
335 336 337 338 339
		int i;

		for (i = 0; i < nr_pages; i++)
			pages[i] = page + i;

340 341
		spin_lock_init(&pool->lock);
		pool->vaddr = ptr;
342
		pool->pages = pages;
343 344 345 346
		pool->bitmap = bitmap;
		pool->nr_pages = nr_pages;
		pr_info("DMA: preallocated %u KiB pool for atomic coherent allocations\n",
		       (unsigned)pool->size / 1024);
347 348
		return 0;
	}
349
no_pages:
350 351 352 353
	kfree(bitmap);
no_bitmap:
	pr_err("DMA: failed to allocate %u KiB pool for atomic coherent allocation\n",
	       (unsigned)pool->size / 1024);
354 355 356 357 358
	return -ENOMEM;
}
/*
 * CMA is activated by core_initcall, so we must be called after it.
 */
359
postcore_initcall(atomic_pool_init);
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388

struct dma_contig_early_reserve {
	phys_addr_t base;
	unsigned long size;
};

static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;

static int dma_mmu_remap_num __initdata;

void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
{
	dma_mmu_remap[dma_mmu_remap_num].base = base;
	dma_mmu_remap[dma_mmu_remap_num].size = size;
	dma_mmu_remap_num++;
}

void __init dma_contiguous_remap(void)
{
	int i;
	for (i = 0; i < dma_mmu_remap_num; i++) {
		phys_addr_t start = dma_mmu_remap[i].base;
		phys_addr_t end = start + dma_mmu_remap[i].size;
		struct map_desc map;
		unsigned long addr;

		if (end > arm_lowmem_limit)
			end = arm_lowmem_limit;
		if (start >= end)
389
			continue;
390 391 392 393 394 395 396 397 398 399

		map.pfn = __phys_to_pfn(start);
		map.virtual = __phys_to_virt(start);
		map.length = end - start;
		map.type = MT_MEMORY_DMA_READY;

		/*
		 * Clear previous low-memory mapping
		 */
		for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
400
		     addr += PMD_SIZE)
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
			pmd_clear(pmd_off_k(addr));

		iotable_init(&map, 1);
	}
}

static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr,
			    void *data)
{
	struct page *page = virt_to_page(addr);
	pgprot_t prot = *(pgprot_t *)data;

	set_pte_ext(pte, mk_pte(page, prot), 0);
	return 0;
}

static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
{
	unsigned long start = (unsigned long) page_address(page);
	unsigned end = start + size;

	apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
	dsb();
	flush_tlb_kernel_range(start, end);
}

static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
				 pgprot_t prot, struct page **ret_page,
				 const void *caller)
{
	struct page *page;
	void *ptr;
	page = __dma_alloc_buffer(dev, size, gfp);
	if (!page)
		return NULL;

	ptr = __dma_alloc_remap(page, size, gfp, prot, caller);
	if (!ptr) {
		__dma_free_buffer(page, size);
		return NULL;
	}

	*ret_page = page;
	return ptr;
}

447
static void *__alloc_from_pool(size_t size, struct page **ret_page)
448
{
449 450 451 452 453
	struct dma_pool *pool = &atomic_pool;
	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
	unsigned int pageno;
	unsigned long flags;
	void *ptr = NULL;
454
	unsigned long align_mask;
455

456 457
	if (!pool->vaddr) {
		WARN(1, "coherent pool not initialised!\n");
458 459 460 461 462 463 464 465
		return NULL;
	}

	/*
	 * Align the region allocation - allocations from pool are rather
	 * small, so align them to their order in pages, minimum is a page
	 * size. This helps reduce fragmentation of the DMA space.
	 */
466
	align_mask = (1 << get_order(size)) - 1;
467 468 469

	spin_lock_irqsave(&pool->lock, flags);
	pageno = bitmap_find_next_zero_area(pool->bitmap, pool->nr_pages,
470
					    0, count, align_mask);
471 472 473
	if (pageno < pool->nr_pages) {
		bitmap_set(pool->bitmap, pageno, count);
		ptr = pool->vaddr + PAGE_SIZE * pageno;
474
		*ret_page = pool->pages[pageno];
475 476 477 478
	} else {
		pr_err_once("ERROR: %u KiB atomic DMA coherent pool is too small!\n"
			    "Please increase it with coherent_pool= kernel parameter!\n",
			    (unsigned)pool->size / 1024);
479
	}
480 481 482
	spin_unlock_irqrestore(&pool->lock, flags);

	return ptr;
483 484
}

485 486 487 488 489 490 491
static bool __in_atomic_pool(void *start, size_t size)
{
	struct dma_pool *pool = &atomic_pool;
	void *end = start + size;
	void *pool_start = pool->vaddr;
	void *pool_end = pool->vaddr + pool->size;

492
	if (start < pool_start || start >= pool_end)
493 494 495 496 497 498 499 500 501 502 503
		return false;

	if (end <= pool_end)
		return true;

	WARN(1, "Wrong coherent size(%p-%p) from atomic pool(%p-%p)\n",
	     start, end - 1, pool_start, pool_end - 1);

	return false;
}

504
static int __free_from_pool(void *start, size_t size)
505
{
506 507 508
	struct dma_pool *pool = &atomic_pool;
	unsigned long pageno, count;
	unsigned long flags;
509

510
	if (!__in_atomic_pool(start, size))
511 512
		return 0;

513 514 515 516 517 518 519
	pageno = (start - pool->vaddr) >> PAGE_SHIFT;
	count = size >> PAGE_SHIFT;

	spin_lock_irqsave(&pool->lock, flags);
	bitmap_clear(pool->bitmap, pageno, count);
	spin_unlock_irqrestore(&pool->lock, flags);

520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
	return 1;
}

static void *__alloc_from_contiguous(struct device *dev, size_t size,
				     pgprot_t prot, struct page **ret_page)
{
	unsigned long order = get_order(size);
	size_t count = size >> PAGE_SHIFT;
	struct page *page;

	page = dma_alloc_from_contiguous(dev, count, order);
	if (!page)
		return NULL;

	__dma_clear_buffer(page, size);
	__dma_remap(page, size, prot);

	*ret_page = page;
	return page_address(page);
}

static void __free_from_contiguous(struct device *dev, struct page *page,
				   size_t size)
{
	__dma_remap(page, size, pgprot_kernel);
	dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
}

548 549 550 551 552 553 554 555
static inline pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot)
{
	prot = dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs) ?
			    pgprot_writecombine(prot) :
			    pgprot_dmacoherent(prot);
	return prot;
}

556 557
#define nommu() 0

558
#else	/* !CONFIG_MMU */
559

560 561
#define nommu() 1

562
#define __get_dma_pgprot(attrs, prot)	__pgprot(0)
563
#define __alloc_remap_buffer(dev, size, gfp, prot, ret, c)	NULL
564
#define __alloc_from_pool(size, ret_page)			NULL
565 566 567 568
#define __alloc_from_contiguous(dev, size, prot, ret)		NULL
#define __free_from_pool(cpu_addr, size)			0
#define __free_from_contiguous(dev, page, size)			do { } while (0)
#define __dma_free_remap(cpu_addr, size)			do { } while (0)
569 570 571

#endif	/* CONFIG_MMU */

572 573
static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
				   struct page **ret_page)
574
{
575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
	struct page *page;
	page = __dma_alloc_buffer(dev, size, gfp);
	if (!page)
		return NULL;

	*ret_page = page;
	return page_address(page);
}



static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
			 gfp_t gfp, pgprot_t prot, const void *caller)
{
	u64 mask = get_coherent_dma_mask(dev);
590
	struct page *page;
591
	void *addr;
592

593 594 595 596 597 598 599 600 601 602 603 604 605 606 607
#ifdef CONFIG_DMA_API_DEBUG
	u64 limit = (mask + 1) & ~mask;
	if (limit && size >= limit) {
		dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
			size, mask);
		return NULL;
	}
#endif

	if (!mask)
		return NULL;

	if (mask < 0xffffffffULL)
		gfp |= GFP_DMA;

608 609 610 611 612 613 614 615 616
	/*
	 * Following is a work-around (a.k.a. hack) to prevent pages
	 * with __GFP_COMP being passed to split_page() which cannot
	 * handle them.  The real problem is that this flag probably
	 * should be 0 on ARM as it is not supported on this
	 * platform; see CONFIG_HUGETLBFS.
	 */
	gfp &= ~(__GFP_COMP);

617
	*handle = DMA_ERROR_CODE;
618
	size = PAGE_ALIGN(size);
619

620 621
	if (arch_is_coherent() || nommu())
		addr = __alloc_simple_buffer(dev, size, gfp, &page);
622 623
	else if (gfp & GFP_ATOMIC)
		addr = __alloc_from_pool(size, &page);
624
	else if (!IS_ENABLED(CONFIG_CMA))
625
		addr = __alloc_remap_buffer(dev, size, gfp, prot, &page, caller);
626
	else
627
		addr = __alloc_from_contiguous(dev, size, prot, &page);
628

629
	if (addr)
630
		*handle = pfn_to_dma(dev, page_to_pfn(page));
631

632 633
	return addr;
}
L
Linus Torvalds 已提交
634 635 636 637 638

/*
 * Allocate DMA-coherent memory space and return both the kernel remapped
 * virtual and bus address for that space.
 */
639 640
void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
		    gfp_t gfp, struct dma_attrs *attrs)
L
Linus Torvalds 已提交
641
{
642
	pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel);
643 644 645 646 647
	void *memory;

	if (dma_alloc_from_coherent(dev, size, handle, &memory))
		return memory;

648
	return __dma_alloc(dev, size, handle, gfp, prot,
649
			   __builtin_return_address(0));
L
Linus Torvalds 已提交
650 651 652
}

/*
653
 * Create userspace mapping for the DMA-coherent memory.
L
Linus Torvalds 已提交
654
 */
655 656 657
int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
		 struct dma_attrs *attrs)
L
Linus Torvalds 已提交
658
{
659 660
	int ret = -ENXIO;
#ifdef CONFIG_MMU
661 662
	unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
663
	unsigned long pfn = dma_to_pfn(dev, dma_addr);
664 665
	unsigned long off = vma->vm_pgoff;

666 667
	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);

668 669 670
	if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
		return ret;

671 672 673 674 675 676
	if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
		ret = remap_pfn_range(vma, vma->vm_start,
				      pfn + off,
				      vma->vm_end - vma->vm_start,
				      vma->vm_page_prot);
	}
677
#endif	/* CONFIG_MMU */
L
Linus Torvalds 已提交
678 679 680 681 682

	return ret;
}

/*
683
 * Free a buffer as defined by the above mapping.
L
Linus Torvalds 已提交
684
 */
685 686
void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
		  dma_addr_t handle, struct dma_attrs *attrs)
L
Linus Torvalds 已提交
687
{
688
	struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
689

690 691 692
	if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
		return;

693 694
	size = PAGE_ALIGN(size);

695 696
	if (arch_is_coherent() || nommu()) {
		__dma_free_buffer(page, size);
697 698
	} else if (__free_from_pool(cpu_addr, size)) {
		return;
699
	} else if (!IS_ENABLED(CONFIG_CMA)) {
700
		__dma_free_remap(cpu_addr, size);
701 702 703 704 705 706 707 708
		__dma_free_buffer(page, size);
	} else {
		/*
		 * Non-atomic allocations cannot be freed with IRQs disabled
		 */
		WARN_ON(irqs_disabled());
		__free_from_contiguous(dev, page, size);
	}
L
Linus Torvalds 已提交
709
}
710

711 712 713 714 715 716 717 718 719 720 721 722 723 724 725
int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
		 void *cpu_addr, dma_addr_t handle, size_t size,
		 struct dma_attrs *attrs)
{
	struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
	int ret;

	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
	if (unlikely(ret))
		return ret;

	sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
	return 0;
}

726
static void dma_cache_maint_page(struct page *page, unsigned long offset,
727 728
	size_t size, enum dma_data_direction dir,
	void (*op)(const void *, size_t, int))
729 730 731 732 733 734 735 736 737 738
{
	/*
	 * A single sg entry may refer to multiple physically contiguous
	 * pages.  But we still need to process highmem pages individually.
	 * If highmem is not configured then the bulk of this loop gets
	 * optimized out.
	 */
	size_t left = size;
	do {
		size_t len = left;
739 740 741 742 743 744 745 746 747 748 749 750 751
		void *vaddr;

		if (PageHighMem(page)) {
			if (len + offset > PAGE_SIZE) {
				if (offset >= PAGE_SIZE) {
					page += offset / PAGE_SIZE;
					offset %= PAGE_SIZE;
				}
				len = PAGE_SIZE - offset;
			}
			vaddr = kmap_high_get(page);
			if (vaddr) {
				vaddr += offset;
752
				op(vaddr, len, dir);
753
				kunmap_high(page);
754
			} else if (cache_is_vipt()) {
755 756
				/* unmapped pages might still be cached */
				vaddr = kmap_atomic(page);
757
				op(vaddr + offset, len, dir);
758
				kunmap_atomic(vaddr);
759
			}
760 761
		} else {
			vaddr = page_address(page) + offset;
762
			op(vaddr, len, dir);
763 764 765 766 767 768
		}
		offset = 0;
		page++;
		left -= len;
	} while (left);
}
769

770 771 772 773 774 775 776
/*
 * Make an area consistent for devices.
 * Note: Drivers should NOT use this function directly, as it will break
 * platforms with CONFIG_DMABOUNCE.
 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
 */
static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
777 778
	size_t size, enum dma_data_direction dir)
{
779 780
	unsigned long paddr;

781
	dma_cache_maint_page(page, off, size, dir, dmac_map_area);
782 783

	paddr = page_to_phys(page) + off;
784 785 786 787 788 789
	if (dir == DMA_FROM_DEVICE) {
		outer_inv_range(paddr, paddr + size);
	} else {
		outer_clean_range(paddr, paddr + size);
	}
	/* FIXME: non-speculating: flush on bidirectional mappings? */
790 791
}

792
static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
793 794
	size_t size, enum dma_data_direction dir)
{
795 796 797 798 799 800 801
	unsigned long paddr = page_to_phys(page) + off;

	/* FIXME: non-speculating: not required */
	/* don't bother invalidating if DMA to device */
	if (dir != DMA_TO_DEVICE)
		outer_inv_range(paddr, paddr + size);

802
	dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
803 804 805 806 807 808

	/*
	 * Mark the D-cache clean for this page to avoid extra flushing.
	 */
	if (dir != DMA_TO_DEVICE && off == 0 && size >= PAGE_SIZE)
		set_bit(PG_dcache_clean, &page->flags);
809
}
810

811
/**
812
 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
813 814 815 816 817 818 819 820 821 822 823 824 825 826
 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 * @sg: list of buffers
 * @nents: number of buffers to map
 * @dir: DMA transfer direction
 *
 * Map a set of buffers described by scatterlist in streaming mode for DMA.
 * This is the scatter-gather version of the dma_map_single interface.
 * Here the scatter gather list elements are each tagged with the
 * appropriate dma address and length.  They are obtained via
 * sg_dma_{address,length}.
 *
 * Device ownership issues as mentioned for dma_map_single are the same
 * here.
 */
827 828
int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
		enum dma_data_direction dir, struct dma_attrs *attrs)
829
{
830
	struct dma_map_ops *ops = get_dma_ops(dev);
831
	struct scatterlist *s;
832
	int i, j;
833 834

	for_each_sg(sg, s, nents, i) {
835 836 837
#ifdef CONFIG_NEED_SG_DMA_LENGTH
		s->dma_length = s->length;
#endif
838 839
		s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
						s->length, dir, attrs);
840 841
		if (dma_mapping_error(dev, s->dma_address))
			goto bad_mapping;
842 843
	}
	return nents;
844 845 846

 bad_mapping:
	for_each_sg(sg, s, i, j)
847
		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
848
	return 0;
849 850 851
}

/**
852
 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
853 854
 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 * @sg: list of buffers
855
 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
856 857 858 859 860
 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 *
 * Unmap a set of streaming mode DMA translations.  Again, CPU access
 * rules concerning calls here are the same as for dma_unmap_single().
 */
861 862
void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
		enum dma_data_direction dir, struct dma_attrs *attrs)
863
{
864
	struct dma_map_ops *ops = get_dma_ops(dev);
865 866 867
	struct scatterlist *s;

	int i;
868

869
	for_each_sg(sg, s, nents, i)
870
		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
871 872 873
}

/**
874
 * arm_dma_sync_sg_for_cpu
875 876 877 878 879
 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 * @sg: list of buffers
 * @nents: number of buffers to map (returned from dma_map_sg)
 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 */
880
void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
881 882
			int nents, enum dma_data_direction dir)
{
883
	struct dma_map_ops *ops = get_dma_ops(dev);
884 885 886
	struct scatterlist *s;
	int i;

887 888 889
	for_each_sg(sg, s, nents, i)
		ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
					 dir);
890 891 892
}

/**
893
 * arm_dma_sync_sg_for_device
894 895 896 897 898
 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 * @sg: list of buffers
 * @nents: number of buffers to map (returned from dma_map_sg)
 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 */
899
void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
900 901
			int nents, enum dma_data_direction dir)
{
902
	struct dma_map_ops *ops = get_dma_ops(dev);
903 904 905
	struct scatterlist *s;
	int i;

906 907 908
	for_each_sg(sg, s, nents, i)
		ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
					    dir);
909
}
910

911 912 913 914 915 916 917 918 919 920 921 922 923 924
/*
 * Return whether the given device DMA address mask can be supported
 * properly.  For example, if your device can only drive the low 24-bits
 * during bus mastering, then you would pass 0x00ffffff as the mask
 * to this function.
 */
int dma_supported(struct device *dev, u64 mask)
{
	if (mask < (u64)arm_dma_limit)
		return 0;
	return 1;
}
EXPORT_SYMBOL(dma_supported);

925
static int arm_dma_set_mask(struct device *dev, u64 dma_mask)
926 927 928 929 930 931 932 933 934
{
	if (!dev->dma_mask || !dma_supported(dev, dma_mask))
		return -EIO;

	*dev->dma_mask = dma_mask;

	return 0;
}

935 936 937 938 939 940 941 942
#define PREALLOC_DMA_DEBUG_ENTRIES	4096

static int __init dma_debug_do_init(void)
{
	dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
	return 0;
}
fs_initcall(dma_debug_do_init);
943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004

#ifdef CONFIG_ARM_DMA_USE_IOMMU

/* IOMMU */

static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
				      size_t size)
{
	unsigned int order = get_order(size);
	unsigned int align = 0;
	unsigned int count, start;
	unsigned long flags;

	count = ((PAGE_ALIGN(size) >> PAGE_SHIFT) +
		 (1 << mapping->order) - 1) >> mapping->order;

	if (order > mapping->order)
		align = (1 << (order - mapping->order)) - 1;

	spin_lock_irqsave(&mapping->lock, flags);
	start = bitmap_find_next_zero_area(mapping->bitmap, mapping->bits, 0,
					   count, align);
	if (start > mapping->bits) {
		spin_unlock_irqrestore(&mapping->lock, flags);
		return DMA_ERROR_CODE;
	}

	bitmap_set(mapping->bitmap, start, count);
	spin_unlock_irqrestore(&mapping->lock, flags);

	return mapping->base + (start << (mapping->order + PAGE_SHIFT));
}

static inline void __free_iova(struct dma_iommu_mapping *mapping,
			       dma_addr_t addr, size_t size)
{
	unsigned int start = (addr - mapping->base) >>
			     (mapping->order + PAGE_SHIFT);
	unsigned int count = ((size >> PAGE_SHIFT) +
			      (1 << mapping->order) - 1) >> mapping->order;
	unsigned long flags;

	spin_lock_irqsave(&mapping->lock, flags);
	bitmap_clear(mapping->bitmap, start, count);
	spin_unlock_irqrestore(&mapping->lock, flags);
}

static struct page **__iommu_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
{
	struct page **pages;
	int count = size >> PAGE_SHIFT;
	int array_size = count * sizeof(struct page *);
	int i = 0;

	if (array_size <= PAGE_SIZE)
		pages = kzalloc(array_size, gfp);
	else
		pages = vzalloc(array_size);
	if (!pages)
		return NULL;

	while (count) {
1005
		int j, order = __fls(count);
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025

		pages[i] = alloc_pages(gfp | __GFP_NOWARN, order);
		while (!pages[i] && order)
			pages[i] = alloc_pages(gfp | __GFP_NOWARN, --order);
		if (!pages[i])
			goto error;

		if (order)
			split_page(pages[i], order);
		j = 1 << order;
		while (--j)
			pages[i + j] = pages[i] + j;

		__dma_clear_buffer(pages[i], PAGE_SIZE << order);
		i += 1 << order;
		count -= 1 << order;
	}

	return pages;
error:
1026
	while (i--)
1027 1028
		if (pages[i])
			__free_pages(pages[i], 0);
1029
	if (array_size <= PAGE_SIZE)
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
		kfree(pages);
	else
		vfree(pages);
	return NULL;
}

static int __iommu_free_buffer(struct device *dev, struct page **pages, size_t size)
{
	int count = size >> PAGE_SHIFT;
	int array_size = count * sizeof(struct page *);
	int i;
	for (i = 0; i < count; i++)
		if (pages[i])
			__free_pages(pages[i], 0);
1044
	if (array_size <= PAGE_SIZE)
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
		kfree(pages);
	else
		vfree(pages);
	return 0;
}

/*
 * Create a CPU mapping for a specified pages
 */
static void *
1055 1056
__iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot,
		    const void *caller)
1057
{
1058 1059 1060
	unsigned int i, nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
	struct vm_struct *area;
	unsigned long p;
1061

1062 1063 1064
	area = get_vm_area_caller(size, VM_ARM_DMA_CONSISTENT | VM_USERMAP,
				  caller);
	if (!area)
1065 1066
		return NULL;

1067 1068 1069
	area->pages = pages;
	area->nr_pages = nr_pages;
	p = (unsigned long)area->addr;
1070

1071 1072 1073 1074 1075
	for (i = 0; i < nr_pages; i++) {
		phys_addr_t phys = __pfn_to_phys(page_to_pfn(pages[i]));
		if (ioremap_page_range(p, p + PAGE_SIZE, phys, prot))
			goto err;
		p += PAGE_SIZE;
1076
	}
1077 1078 1079 1080
	return area->addr;
err:
	unmap_kernel_range((unsigned long)area->addr, size);
	vunmap(area->addr);
1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
	return NULL;
}

/*
 * Create a mapping in device IO address space for specified pages
 */
static dma_addr_t
__iommu_create_mapping(struct device *dev, struct page **pages, size_t size)
{
	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
	dma_addr_t dma_addr, iova;
	int i, ret = DMA_ERROR_CODE;

	dma_addr = __alloc_iova(mapping, size);
	if (dma_addr == DMA_ERROR_CODE)
		return dma_addr;

	iova = dma_addr;
	for (i = 0; i < count; ) {
		unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
		phys_addr_t phys = page_to_phys(pages[i]);
		unsigned int len, j;

		for (j = i + 1; j < count; j++, next_pfn++)
			if (page_to_pfn(pages[j]) != next_pfn)
				break;

		len = (j - i) << PAGE_SHIFT;
		ret = iommu_map(mapping->domain, iova, phys, len, 0);
		if (ret < 0)
			goto fail;
		iova += len;
		i = j;
	}
	return dma_addr;
fail:
	iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
	__free_iova(mapping, dma_addr, size);
	return DMA_ERROR_CODE;
}

static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
{
	struct dma_iommu_mapping *mapping = dev->archdata.mapping;

	/*
	 * add optional in-page offset from iova to size and align
	 * result to page size
	 */
	size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
	iova &= PAGE_MASK;

	iommu_unmap(mapping->domain, iova, size);
	__free_iova(mapping, iova, size);
	return 0;
}

1139 1140 1141 1142 1143 1144 1145 1146 1147
static struct page **__atomic_get_pages(void *addr)
{
	struct dma_pool *pool = &atomic_pool;
	struct page **pages = pool->pages;
	int offs = (addr - pool->vaddr) >> PAGE_SHIFT;

	return pages + offs;
}

1148
static struct page **__iommu_get_pages(void *cpu_addr, struct dma_attrs *attrs)
1149 1150 1151
{
	struct vm_struct *area;

1152 1153 1154
	if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
		return __atomic_get_pages(cpu_addr);

1155 1156 1157
	if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
		return cpu_addr;

1158 1159 1160 1161 1162 1163
	area = find_vm_area(cpu_addr);
	if (area && (area->flags & VM_ARM_DMA_CONSISTENT))
		return area->pages;
	return NULL;
}

1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
static void *__iommu_alloc_atomic(struct device *dev, size_t size,
				  dma_addr_t *handle)
{
	struct page *page;
	void *addr;

	addr = __alloc_from_pool(size, &page);
	if (!addr)
		return NULL;

	*handle = __iommu_create_mapping(dev, &page, size);
	if (*handle == DMA_ERROR_CODE)
		goto err_mapping;

	return addr;

err_mapping:
	__free_from_pool(addr, size);
	return NULL;
}

static void __iommu_free_atomic(struct device *dev, struct page **pages,
				dma_addr_t handle, size_t size)
{
	__iommu_remove_mapping(dev, handle, size);
	__free_from_pool(page_address(pages[0]), size);
}

1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
	    dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
{
	pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel);
	struct page **pages;
	void *addr = NULL;

	*handle = DMA_ERROR_CODE;
	size = PAGE_ALIGN(size);

1202 1203 1204
	if (gfp & GFP_ATOMIC)
		return __iommu_alloc_atomic(dev, size, handle);

1205 1206 1207 1208 1209 1210 1211 1212
	pages = __iommu_alloc_buffer(dev, size, gfp);
	if (!pages)
		return NULL;

	*handle = __iommu_create_mapping(dev, pages, size);
	if (*handle == DMA_ERROR_CODE)
		goto err_buffer;

1213 1214 1215
	if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
		return pages;

1216 1217
	addr = __iommu_alloc_remap(pages, size, gfp, prot,
				   __builtin_return_address(0));
1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
	if (!addr)
		goto err_mapping;

	return addr;

err_mapping:
	__iommu_remove_mapping(dev, *handle, size);
err_buffer:
	__iommu_free_buffer(dev, pages, size);
	return NULL;
}

static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
		    void *cpu_addr, dma_addr_t dma_addr, size_t size,
		    struct dma_attrs *attrs)
{
1234 1235
	unsigned long uaddr = vma->vm_start;
	unsigned long usize = vma->vm_end - vma->vm_start;
1236
	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1237 1238 1239

	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);

1240 1241
	if (!pages)
		return -ENXIO;
1242

1243 1244 1245 1246 1247 1248 1249 1250 1251
	do {
		int ret = vm_insert_page(vma, uaddr, *pages++);
		if (ret) {
			pr_err("Remapping memory failed: %d\n", ret);
			return ret;
		}
		uaddr += PAGE_SIZE;
		usize -= PAGE_SIZE;
	} while (usize > 0);
1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262

	return 0;
}

/*
 * free a page as defined by the above mapping.
 * Must not be called with IRQs disabled.
 */
void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
			  dma_addr_t handle, struct dma_attrs *attrs)
{
1263
	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1264 1265
	size = PAGE_ALIGN(size);

1266 1267 1268
	if (!pages) {
		WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
		return;
1269
	}
1270

1271 1272 1273 1274 1275
	if (__in_atomic_pool(cpu_addr, size)) {
		__iommu_free_atomic(dev, pages, handle, size);
		return;
	}

1276 1277 1278 1279
	if (!dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) {
		unmap_kernel_range((unsigned long)cpu_addr, size);
		vunmap(cpu_addr);
	}
1280 1281 1282

	__iommu_remove_mapping(dev, handle, size);
	__iommu_free_buffer(dev, pages, size);
1283 1284
}

1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
				 void *cpu_addr, dma_addr_t dma_addr,
				 size_t size, struct dma_attrs *attrs)
{
	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
	struct page **pages = __iommu_get_pages(cpu_addr, attrs);

	if (!pages)
		return -ENXIO;

	return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
					 GFP_KERNEL);
1297 1298 1299 1300 1301 1302 1303
}

/*
 * Map a part of the scatter-gather list into contiguous io address space
 */
static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
			  size_t size, dma_addr_t *handle,
1304
			  enum dma_data_direction dir, struct dma_attrs *attrs)
1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
{
	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
	dma_addr_t iova, iova_base;
	int ret = 0;
	unsigned int count;
	struct scatterlist *s;

	size = PAGE_ALIGN(size);
	*handle = DMA_ERROR_CODE;

	iova_base = iova = __alloc_iova(mapping, size);
	if (iova == DMA_ERROR_CODE)
		return -ENOMEM;

	for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
		phys_addr_t phys = page_to_phys(sg_page(s));
		unsigned int len = PAGE_ALIGN(s->offset + s->length);

1323 1324
		if (!arch_is_coherent() &&
		    !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
			__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);

		ret = iommu_map(mapping->domain, iova, phys, len, 0);
		if (ret < 0)
			goto fail;
		count += len >> PAGE_SHIFT;
		iova += len;
	}
	*handle = iova_base;

	return 0;
fail:
	iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
	__free_iova(mapping, iova_base, size);
	return ret;
}

/**
 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
 * @dev: valid struct device pointer
 * @sg: list of buffers
 * @nents: number of buffers to map
 * @dir: DMA transfer direction
 *
 * Map a set of buffers described by scatterlist in streaming mode for DMA.
 * The scatter gather list elements are merged together (if possible) and
 * tagged with the appropriate dma address and length. They are obtained via
 * sg_dma_{address,length}.
 */
int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
		     enum dma_data_direction dir, struct dma_attrs *attrs)
{
	struct scatterlist *s = sg, *dma = sg, *start = sg;
	int i, count = 0;
	unsigned int offset = s->offset;
	unsigned int size = s->offset + s->length;
	unsigned int max = dma_get_max_seg_size(dev);

	for (i = 1; i < nents; i++) {
		s = sg_next(s);

		s->dma_address = DMA_ERROR_CODE;
		s->dma_length = 0;

		if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
			if (__map_sg_chunk(dev, start, size, &dma->dma_address,
1371
			    dir, attrs) < 0)
1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
				goto bad_mapping;

			dma->dma_address += offset;
			dma->dma_length = size - offset;

			size = offset = s->offset;
			start = s;
			dma = sg_next(dma);
			count += 1;
		}
		size += s->length;
	}
1384
	if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs) < 0)
1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
		goto bad_mapping;

	dma->dma_address += offset;
	dma->dma_length = size - offset;

	return count+1;

bad_mapping:
	for_each_sg(sg, s, count, i)
		__iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
	return 0;
}

/**
 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
 * @dev: valid struct device pointer
 * @sg: list of buffers
 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 *
 * Unmap a set of streaming mode DMA translations.  Again, CPU access
 * rules concerning calls here are the same as for dma_unmap_single().
 */
void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
			enum dma_data_direction dir, struct dma_attrs *attrs)
{
	struct scatterlist *s;
	int i;

	for_each_sg(sg, s, nents, i) {
		if (sg_dma_len(s))
			__iommu_remove_mapping(dev, sg_dma_address(s),
					       sg_dma_len(s));
1418 1419
		if (!arch_is_coherent() &&
		    !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480
			__dma_page_dev_to_cpu(sg_page(s), s->offset,
					      s->length, dir);
	}
}

/**
 * arm_iommu_sync_sg_for_cpu
 * @dev: valid struct device pointer
 * @sg: list of buffers
 * @nents: number of buffers to map (returned from dma_map_sg)
 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 */
void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
			int nents, enum dma_data_direction dir)
{
	struct scatterlist *s;
	int i;

	for_each_sg(sg, s, nents, i)
		if (!arch_is_coherent())
			__dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);

}

/**
 * arm_iommu_sync_sg_for_device
 * @dev: valid struct device pointer
 * @sg: list of buffers
 * @nents: number of buffers to map (returned from dma_map_sg)
 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 */
void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
			int nents, enum dma_data_direction dir)
{
	struct scatterlist *s;
	int i;

	for_each_sg(sg, s, nents, i)
		if (!arch_is_coherent())
			__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
}


/**
 * arm_iommu_map_page
 * @dev: valid struct device pointer
 * @page: page that buffer resides in
 * @offset: offset into page for start of buffer
 * @size: size of buffer to map
 * @dir: DMA transfer direction
 *
 * IOMMU aware version of arm_dma_map_page()
 */
static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
	     unsigned long offset, size_t size, enum dma_data_direction dir,
	     struct dma_attrs *attrs)
{
	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
	dma_addr_t dma_addr;
	int ret, len = PAGE_ALIGN(size + offset);

1481
	if (!arch_is_coherent() && !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
		__dma_page_cpu_to_dev(page, offset, size, dir);

	dma_addr = __alloc_iova(mapping, len);
	if (dma_addr == DMA_ERROR_CODE)
		return dma_addr;

	ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, 0);
	if (ret < 0)
		goto fail;

	return dma_addr + offset;
fail:
	__free_iova(mapping, dma_addr, len);
	return DMA_ERROR_CODE;
}

/**
 * arm_iommu_unmap_page
 * @dev: valid struct device pointer
 * @handle: DMA address of buffer
 * @size: size of buffer (same as passed to dma_map_page)
 * @dir: DMA transfer direction (same as passed to dma_map_page)
 *
 * IOMMU aware version of arm_dma_unmap_page()
 */
static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
		size_t size, enum dma_data_direction dir,
		struct dma_attrs *attrs)
{
	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
	dma_addr_t iova = handle & PAGE_MASK;
	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
	int offset = handle & ~PAGE_MASK;
	int len = PAGE_ALIGN(size + offset);

	if (!iova)
		return;

1520
	if (!arch_is_coherent() && !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559
		__dma_page_dev_to_cpu(page, offset, size, dir);

	iommu_unmap(mapping->domain, iova, len);
	__free_iova(mapping, iova, len);
}

static void arm_iommu_sync_single_for_cpu(struct device *dev,
		dma_addr_t handle, size_t size, enum dma_data_direction dir)
{
	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
	dma_addr_t iova = handle & PAGE_MASK;
	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
	unsigned int offset = handle & ~PAGE_MASK;

	if (!iova)
		return;

	if (!arch_is_coherent())
		__dma_page_dev_to_cpu(page, offset, size, dir);
}

static void arm_iommu_sync_single_for_device(struct device *dev,
		dma_addr_t handle, size_t size, enum dma_data_direction dir)
{
	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
	dma_addr_t iova = handle & PAGE_MASK;
	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
	unsigned int offset = handle & ~PAGE_MASK;

	if (!iova)
		return;

	__dma_page_cpu_to_dev(page, offset, size, dir);
}

struct dma_map_ops iommu_ops = {
	.alloc		= arm_iommu_alloc_attrs,
	.free		= arm_iommu_free_attrs,
	.mmap		= arm_iommu_mmap_attrs,
1560
	.get_sgtable	= arm_iommu_get_sgtable,
1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670

	.map_page		= arm_iommu_map_page,
	.unmap_page		= arm_iommu_unmap_page,
	.sync_single_for_cpu	= arm_iommu_sync_single_for_cpu,
	.sync_single_for_device	= arm_iommu_sync_single_for_device,

	.map_sg			= arm_iommu_map_sg,
	.unmap_sg		= arm_iommu_unmap_sg,
	.sync_sg_for_cpu	= arm_iommu_sync_sg_for_cpu,
	.sync_sg_for_device	= arm_iommu_sync_sg_for_device,
};

/**
 * arm_iommu_create_mapping
 * @bus: pointer to the bus holding the client device (for IOMMU calls)
 * @base: start address of the valid IO address space
 * @size: size of the valid IO address space
 * @order: accuracy of the IO addresses allocations
 *
 * Creates a mapping structure which holds information about used/unused
 * IO address ranges, which is required to perform memory allocation and
 * mapping with IOMMU aware functions.
 *
 * The client device need to be attached to the mapping with
 * arm_iommu_attach_device function.
 */
struct dma_iommu_mapping *
arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, size_t size,
			 int order)
{
	unsigned int count = size >> (PAGE_SHIFT + order);
	unsigned int bitmap_size = BITS_TO_LONGS(count) * sizeof(long);
	struct dma_iommu_mapping *mapping;
	int err = -ENOMEM;

	if (!count)
		return ERR_PTR(-EINVAL);

	mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
	if (!mapping)
		goto err;

	mapping->bitmap = kzalloc(bitmap_size, GFP_KERNEL);
	if (!mapping->bitmap)
		goto err2;

	mapping->base = base;
	mapping->bits = BITS_PER_BYTE * bitmap_size;
	mapping->order = order;
	spin_lock_init(&mapping->lock);

	mapping->domain = iommu_domain_alloc(bus);
	if (!mapping->domain)
		goto err3;

	kref_init(&mapping->kref);
	return mapping;
err3:
	kfree(mapping->bitmap);
err2:
	kfree(mapping);
err:
	return ERR_PTR(err);
}

static void release_iommu_mapping(struct kref *kref)
{
	struct dma_iommu_mapping *mapping =
		container_of(kref, struct dma_iommu_mapping, kref);

	iommu_domain_free(mapping->domain);
	kfree(mapping->bitmap);
	kfree(mapping);
}

void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
{
	if (mapping)
		kref_put(&mapping->kref, release_iommu_mapping);
}

/**
 * arm_iommu_attach_device
 * @dev: valid struct device pointer
 * @mapping: io address space mapping structure (returned from
 *	arm_iommu_create_mapping)
 *
 * Attaches specified io address space mapping to the provided device,
 * this replaces the dma operations (dma_map_ops pointer) with the
 * IOMMU aware version. More than one client might be attached to
 * the same io address space mapping.
 */
int arm_iommu_attach_device(struct device *dev,
			    struct dma_iommu_mapping *mapping)
{
	int err;

	err = iommu_attach_device(mapping->domain, dev);
	if (err)
		return err;

	kref_get(&mapping->kref);
	dev->archdata.mapping = mapping;
	set_dma_ops(dev, &iommu_ops);

	pr_info("Attached IOMMU controller to %s device.\n", dev_name(dev));
	return 0;
}

#endif