dma-mapping.c 52.7 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 *  linux/arch/arm/mm/dma-mapping.c
L
Linus Torvalds 已提交
3 4 5 6 7 8 9 10 11
 *
 *  Copyright (C) 2000-2004 Russell King
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 *  DMA uncached mapping support.
 */
12
#include <linux/bootmem.h>
L
Linus Torvalds 已提交
13 14
#include <linux/module.h>
#include <linux/mm.h>
15
#include <linux/gfp.h>
L
Linus Torvalds 已提交
16 17 18 19 20
#include <linux/errno.h>
#include <linux/list.h>
#include <linux/init.h>
#include <linux/device.h>
#include <linux/dma-mapping.h>
21
#include <linux/dma-contiguous.h>
22
#include <linux/highmem.h>
23
#include <linux/memblock.h>
24
#include <linux/slab.h>
25
#include <linux/iommu.h>
26
#include <linux/io.h>
27
#include <linux/vmalloc.h>
28
#include <linux/sizes.h>
L
Linus Torvalds 已提交
29

30
#include <asm/memory.h>
31
#include <asm/highmem.h>
L
Linus Torvalds 已提交
32 33
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
34
#include <asm/mach/arch.h>
35
#include <asm/dma-iommu.h>
36 37 38
#include <asm/mach/map.h>
#include <asm/system_info.h>
#include <asm/dma-contiguous.h>
39

40 41
#include "mm.h"

42 43 44 45 46 47 48 49 50 51 52 53
/*
 * The DMA API is built upon the notion of "buffer ownership".  A buffer
 * is either exclusively owned by the CPU (and therefore may be accessed
 * by it) or exclusively owned by the DMA device.  These helper functions
 * represent the transitions between these two ownership states.
 *
 * Note, however, that on later ARMs, this notion does not work due to
 * speculative prefetches.  We model our approach on the assumption that
 * the CPU does do speculative prefetches, which means we clean caches
 * before transfers and delay cache invalidation until transfer completion.
 *
 */
54
static void __dma_page_cpu_to_dev(struct page *, unsigned long,
55
		size_t, enum dma_data_direction);
56
static void __dma_page_dev_to_cpu(struct page *, unsigned long,
57 58
		size_t, enum dma_data_direction);

59 60 61 62 63 64 65 66 67 68 69 70 71 72
/**
 * arm_dma_map_page - map a portion of a page for streaming DMA
 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 * @page: page that buffer resides in
 * @offset: offset into page for start of buffer
 * @size: size of buffer to map
 * @dir: DMA transfer direction
 *
 * Ensure that any data held in the cache is appropriately discarded
 * or written back.
 *
 * The device owns this memory once this call has completed.  The CPU
 * can regain ownership by calling dma_unmap_page().
 */
73
static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
74 75 76
	     unsigned long offset, size_t size, enum dma_data_direction dir,
	     struct dma_attrs *attrs)
{
R
Rob Herring 已提交
77
	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
78 79
		__dma_page_cpu_to_dev(page, offset, size, dir);
	return pfn_to_dma(dev, page_to_pfn(page)) + offset;
80 81
}

R
Rob Herring 已提交
82 83 84 85 86 87 88
static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page,
	     unsigned long offset, size_t size, enum dma_data_direction dir,
	     struct dma_attrs *attrs)
{
	return pfn_to_dma(dev, page_to_pfn(page)) + offset;
}

89 90 91 92 93 94 95 96 97 98 99 100 101 102
/**
 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 * @handle: DMA address of buffer
 * @size: size of buffer (same as passed to dma_map_page)
 * @dir: DMA transfer direction (same as passed to dma_map_page)
 *
 * Unmap a page streaming mode DMA translation.  The handle and size
 * must match what was provided in the previous dma_map_page() call.
 * All other usages are undefined.
 *
 * After this call, reads by the CPU to the buffer are guaranteed to see
 * whatever the device wrote there.
 */
103
static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
104 105 106
		size_t size, enum dma_data_direction dir,
		struct dma_attrs *attrs)
{
R
Rob Herring 已提交
107
	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
108 109
		__dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
				      handle & ~PAGE_MASK, size, dir);
110 111
}

112
static void arm_dma_sync_single_for_cpu(struct device *dev,
113 114 115 116
		dma_addr_t handle, size_t size, enum dma_data_direction dir)
{
	unsigned int offset = handle & (PAGE_SIZE - 1);
	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
R
Rob Herring 已提交
117
	__dma_page_dev_to_cpu(page, offset, size, dir);
118 119
}

120
static void arm_dma_sync_single_for_device(struct device *dev,
121 122 123 124
		dma_addr_t handle, size_t size, enum dma_data_direction dir)
{
	unsigned int offset = handle & (PAGE_SIZE - 1);
	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
R
Rob Herring 已提交
125
	__dma_page_cpu_to_dev(page, offset, size, dir);
126 127 128
}

struct dma_map_ops arm_dma_ops = {
129 130 131
	.alloc			= arm_dma_alloc,
	.free			= arm_dma_free,
	.mmap			= arm_dma_mmap,
132
	.get_sgtable		= arm_dma_get_sgtable,
133 134 135 136 137 138 139 140 141 142 143 144
	.map_page		= arm_dma_map_page,
	.unmap_page		= arm_dma_unmap_page,
	.map_sg			= arm_dma_map_sg,
	.unmap_sg		= arm_dma_unmap_sg,
	.sync_single_for_cpu	= arm_dma_sync_single_for_cpu,
	.sync_single_for_device	= arm_dma_sync_single_for_device,
	.sync_sg_for_cpu	= arm_dma_sync_sg_for_cpu,
	.sync_sg_for_device	= arm_dma_sync_sg_for_device,
	.set_dma_mask		= arm_dma_set_mask,
};
EXPORT_SYMBOL(arm_dma_ops);

R
Rob Herring 已提交
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
	dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs);
static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
				  dma_addr_t handle, struct dma_attrs *attrs);

struct dma_map_ops arm_coherent_dma_ops = {
	.alloc			= arm_coherent_dma_alloc,
	.free			= arm_coherent_dma_free,
	.mmap			= arm_dma_mmap,
	.get_sgtable		= arm_dma_get_sgtable,
	.map_page		= arm_coherent_dma_map_page,
	.map_sg			= arm_dma_map_sg,
	.set_dma_mask		= arm_dma_set_mask,
};
EXPORT_SYMBOL(arm_coherent_dma_ops);

161 162
static u64 get_coherent_dma_mask(struct device *dev)
{
163
	u64 mask = (u64)DMA_BIT_MASK(32);
164 165

	if (dev) {
166 167
		unsigned long max_dma_pfn;

168 169 170 171 172 173 174 175 176 177 178
		mask = dev->coherent_dma_mask;

		/*
		 * Sanity check the DMA mask - it must be non-zero, and
		 * must be able to be satisfied by a DMA allocation.
		 */
		if (mask == 0) {
			dev_warn(dev, "coherent DMA mask is unset\n");
			return 0;
		}

179 180
		max_dma_pfn = min(max_pfn, arm_dma_pfn_limit);

181 182 183 184 185 186 187
		/*
		 * If the mask allows for more memory than we can address,
		 * and we actually have that much memory, then fail the
		 * allocation.
		 */
		if (sizeof(mask) != sizeof(dma_addr_t) &&
		    mask > (dma_addr_t)~0 &&
188
		    dma_to_pfn(dev, ~0) > max_dma_pfn) {
189 190 191 192 193 194 195 196 197 198 199
			dev_warn(dev, "Coherent DMA mask %#llx is larger than dma_addr_t allows\n",
				 mask);
			dev_warn(dev, "Driver did not use or check the return value from dma_set_coherent_mask()?\n");
			return 0;
		}

		/*
		 * Now check that the mask, when translated to a PFN,
		 * fits within the allowable addresses which we can
		 * allocate.
		 */
200
		if (dma_to_pfn(dev, mask) < max_dma_pfn) {
201 202 203 204
			dev_warn(dev, "Coherent DMA mask %#llx (pfn %#lx-%#lx) covers a smaller range of system memory than the DMA zone pfn 0x0-%#lx\n",
				 mask,
				 dma_to_pfn(dev, 0), dma_to_pfn(dev, mask) + 1,
				 arm_dma_pfn_limit + 1);
205 206 207
			return 0;
		}
	}
L
Linus Torvalds 已提交
208

209 210 211
	return mask;
}

212 213 214 215 216 217
static void __dma_clear_buffer(struct page *page, size_t size)
{
	/*
	 * Ensure that the allocated pages are zeroed, and that any data
	 * lurking in the kernel direct-mapped region is invalidated.
	 */
218 219 220 221 222 223 224 225 226 227 228 229 230 231
	if (PageHighMem(page)) {
		phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
		phys_addr_t end = base + size;
		while (size > 0) {
			void *ptr = kmap_atomic(page);
			memset(ptr, 0, PAGE_SIZE);
			dmac_flush_range(ptr, ptr + PAGE_SIZE);
			kunmap_atomic(ptr);
			page++;
			size -= PAGE_SIZE;
		}
		outer_flush_range(base, end);
	} else {
		void *ptr = page_address(page);
232 233 234 235
		memset(ptr, 0, size);
		dmac_flush_range(ptr, ptr + size);
		outer_flush_range(__pa(ptr), __pa(ptr) + size);
	}
236 237
}

238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
/*
 * Allocate a DMA buffer for 'dev' of size 'size' using the
 * specified gfp mask.  Note that 'size' must be page aligned.
 */
static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
{
	unsigned long order = get_order(size);
	struct page *page, *p, *e;

	page = alloc_pages(gfp, order);
	if (!page)
		return NULL;

	/*
	 * Now split the huge page and free the excess pages
	 */
	split_page(page, order);
	for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
		__free_page(p);

258
	__dma_clear_buffer(page, size);
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275

	return page;
}

/*
 * Free a DMA buffer.  'size' must be page aligned.
 */
static void __dma_free_buffer(struct page *page, size_t size)
{
	struct page *e = page + (size >> PAGE_SHIFT);

	while (page < e) {
		__free_page(page);
		page++;
	}
}

276
#ifdef CONFIG_MMU
277
#ifdef CONFIG_HUGETLB_PAGE
278
#warning ARM Coherent DMA allocator does not (yet) support huge TLB
279
#endif
280

281
static void *__alloc_from_contiguous(struct device *dev, size_t size,
282 283
				     pgprot_t prot, struct page **ret_page,
				     const void *caller);
284

285 286 287
static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
				 pgprot_t prot, struct page **ret_page,
				 const void *caller);
288

289 290 291
static void *
__dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
	const void *caller)
292
{
293 294
	struct vm_struct *area;
	unsigned long addr;
295

296 297 298 299 300 301 302 303 304 305
	/*
	 * DMA allocation can be mapped to user space, so lets
	 * set VM_USERMAP flags too.
	 */
	area = get_vm_area_caller(size, VM_ARM_DMA_CONSISTENT | VM_USERMAP,
				  caller);
	if (!area)
		return NULL;
	addr = (unsigned long)area->addr;
	area->phys_addr = __pfn_to_phys(page_to_pfn(page));
306

307 308 309 310 311
	if (ioremap_page_range(addr, addr + size, area->phys_addr, prot)) {
		vunmap((void *)addr);
		return NULL;
	}
	return (void *)addr;
312
}
L
Linus Torvalds 已提交
313

314
static void __dma_free_remap(void *cpu_addr, size_t size)
315
{
316 317 318 319 320
	unsigned int flags = VM_ARM_DMA_CONSISTENT | VM_USERMAP;
	struct vm_struct *area = find_vm_area(cpu_addr);
	if (!area || (area->flags & flags) != flags) {
		WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
		return;
321
	}
322 323
	unmap_kernel_range((unsigned long)cpu_addr, size);
	vunmap(cpu_addr);
324 325
}

326 327
#define DEFAULT_DMA_COHERENT_POOL_SIZE	SZ_256K

328 329 330 331 332 333
struct dma_pool {
	size_t size;
	spinlock_t lock;
	unsigned long *bitmap;
	unsigned long nr_pages;
	void *vaddr;
334
	struct page **pages;
335 336
};

337
static struct dma_pool atomic_pool = {
338
	.size = DEFAULT_DMA_COHERENT_POOL_SIZE,
339
};
340 341 342

static int __init early_coherent_pool(char *p)
{
343
	atomic_pool.size = memparse(p, &p);
344 345 346 347
	return 0;
}
early_param("coherent_pool", early_coherent_pool);

348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
void __init init_dma_coherent_pool_size(unsigned long size)
{
	/*
	 * Catch any attempt to set the pool size too late.
	 */
	BUG_ON(atomic_pool.vaddr);

	/*
	 * Set architecture specific coherent pool size only if
	 * it has not been changed by kernel command line parameter.
	 */
	if (atomic_pool.size == DEFAULT_DMA_COHERENT_POOL_SIZE)
		atomic_pool.size = size;
}

363 364 365
/*
 * Initialise the coherent pool for atomic allocations.
 */
366
static int __init atomic_pool_init(void)
367
{
368
	struct dma_pool *pool = &atomic_pool;
369
	pgprot_t prot = pgprot_dmacoherent(pgprot_kernel);
370
	gfp_t gfp = GFP_KERNEL | GFP_DMA;
371 372
	unsigned long nr_pages = pool->size >> PAGE_SHIFT;
	unsigned long *bitmap;
373
	struct page *page;
374
	struct page **pages;
375
	void *ptr;
376
	int bitmap_size = BITS_TO_LONGS(nr_pages) * sizeof(long);
377

378 379 380
	bitmap = kzalloc(bitmap_size, GFP_KERNEL);
	if (!bitmap)
		goto no_bitmap;
381

382 383 384 385
	pages = kzalloc(nr_pages * sizeof(struct page *), GFP_KERNEL);
	if (!pages)
		goto no_pages;

386
	if (IS_ENABLED(CONFIG_DMA_CMA))
387 388
		ptr = __alloc_from_contiguous(NULL, pool->size, prot, &page,
					      atomic_pool_init);
389
	else
390 391
		ptr = __alloc_remap_buffer(NULL, pool->size, gfp, prot, &page,
					   atomic_pool_init);
392
	if (ptr) {
393 394 395 396 397
		int i;

		for (i = 0; i < nr_pages; i++)
			pages[i] = page + i;

398 399
		spin_lock_init(&pool->lock);
		pool->vaddr = ptr;
400
		pool->pages = pages;
401 402 403 404
		pool->bitmap = bitmap;
		pool->nr_pages = nr_pages;
		pr_info("DMA: preallocated %u KiB pool for atomic coherent allocations\n",
		       (unsigned)pool->size / 1024);
405 406
		return 0;
	}
407 408

	kfree(pages);
409
no_pages:
410 411 412 413
	kfree(bitmap);
no_bitmap:
	pr_err("DMA: failed to allocate %u KiB pool for atomic coherent allocation\n",
	       (unsigned)pool->size / 1024);
414 415 416 417 418
	return -ENOMEM;
}
/*
 * CMA is activated by core_initcall, so we must be called after it.
 */
419
postcore_initcall(atomic_pool_init);
420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448

struct dma_contig_early_reserve {
	phys_addr_t base;
	unsigned long size;
};

static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;

static int dma_mmu_remap_num __initdata;

void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
{
	dma_mmu_remap[dma_mmu_remap_num].base = base;
	dma_mmu_remap[dma_mmu_remap_num].size = size;
	dma_mmu_remap_num++;
}

void __init dma_contiguous_remap(void)
{
	int i;
	for (i = 0; i < dma_mmu_remap_num; i++) {
		phys_addr_t start = dma_mmu_remap[i].base;
		phys_addr_t end = start + dma_mmu_remap[i].size;
		struct map_desc map;
		unsigned long addr;

		if (end > arm_lowmem_limit)
			end = arm_lowmem_limit;
		if (start >= end)
449
			continue;
450 451 452 453 454 455 456 457 458 459

		map.pfn = __phys_to_pfn(start);
		map.virtual = __phys_to_virt(start);
		map.length = end - start;
		map.type = MT_MEMORY_DMA_READY;

		/*
		 * Clear previous low-memory mapping
		 */
		for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
460
		     addr += PMD_SIZE)
461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
			pmd_clear(pmd_off_k(addr));

		iotable_init(&map, 1);
	}
}

static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr,
			    void *data)
{
	struct page *page = virt_to_page(addr);
	pgprot_t prot = *(pgprot_t *)data;

	set_pte_ext(pte, mk_pte(page, prot), 0);
	return 0;
}

static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
{
	unsigned long start = (unsigned long) page_address(page);
	unsigned end = start + size;

	apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
	flush_tlb_kernel_range(start, end);
}

static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
				 pgprot_t prot, struct page **ret_page,
				 const void *caller)
{
	struct page *page;
	void *ptr;
	page = __dma_alloc_buffer(dev, size, gfp);
	if (!page)
		return NULL;

	ptr = __dma_alloc_remap(page, size, gfp, prot, caller);
	if (!ptr) {
		__dma_free_buffer(page, size);
		return NULL;
	}

	*ret_page = page;
	return ptr;
}

506
static void *__alloc_from_pool(size_t size, struct page **ret_page)
507
{
508 509 510 511 512
	struct dma_pool *pool = &atomic_pool;
	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
	unsigned int pageno;
	unsigned long flags;
	void *ptr = NULL;
513
	unsigned long align_mask;
514

515 516
	if (!pool->vaddr) {
		WARN(1, "coherent pool not initialised!\n");
517 518 519 520 521 522 523 524
		return NULL;
	}

	/*
	 * Align the region allocation - allocations from pool are rather
	 * small, so align them to their order in pages, minimum is a page
	 * size. This helps reduce fragmentation of the DMA space.
	 */
525
	align_mask = (1 << get_order(size)) - 1;
526 527 528

	spin_lock_irqsave(&pool->lock, flags);
	pageno = bitmap_find_next_zero_area(pool->bitmap, pool->nr_pages,
529
					    0, count, align_mask);
530 531 532
	if (pageno < pool->nr_pages) {
		bitmap_set(pool->bitmap, pageno, count);
		ptr = pool->vaddr + PAGE_SIZE * pageno;
533
		*ret_page = pool->pages[pageno];
534 535 536 537
	} else {
		pr_err_once("ERROR: %u KiB atomic DMA coherent pool is too small!\n"
			    "Please increase it with coherent_pool= kernel parameter!\n",
			    (unsigned)pool->size / 1024);
538
	}
539 540 541
	spin_unlock_irqrestore(&pool->lock, flags);

	return ptr;
542 543
}

544 545 546 547 548 549 550
static bool __in_atomic_pool(void *start, size_t size)
{
	struct dma_pool *pool = &atomic_pool;
	void *end = start + size;
	void *pool_start = pool->vaddr;
	void *pool_end = pool->vaddr + pool->size;

551
	if (start < pool_start || start >= pool_end)
552 553 554 555 556 557 558 559 560 561 562
		return false;

	if (end <= pool_end)
		return true;

	WARN(1, "Wrong coherent size(%p-%p) from atomic pool(%p-%p)\n",
	     start, end - 1, pool_start, pool_end - 1);

	return false;
}

563
static int __free_from_pool(void *start, size_t size)
564
{
565 566 567
	struct dma_pool *pool = &atomic_pool;
	unsigned long pageno, count;
	unsigned long flags;
568

569
	if (!__in_atomic_pool(start, size))
570 571
		return 0;

572 573 574 575 576 577 578
	pageno = (start - pool->vaddr) >> PAGE_SHIFT;
	count = size >> PAGE_SHIFT;

	spin_lock_irqsave(&pool->lock, flags);
	bitmap_clear(pool->bitmap, pageno, count);
	spin_unlock_irqrestore(&pool->lock, flags);

579 580 581 582
	return 1;
}

static void *__alloc_from_contiguous(struct device *dev, size_t size,
583 584
				     pgprot_t prot, struct page **ret_page,
				     const void *caller)
585 586 587 588
{
	unsigned long order = get_order(size);
	size_t count = size >> PAGE_SHIFT;
	struct page *page;
589
	void *ptr;
590 591 592 593 594 595 596

	page = dma_alloc_from_contiguous(dev, count, order);
	if (!page)
		return NULL;

	__dma_clear_buffer(page, size);

597 598 599 600 601 602 603 604 605 606
	if (PageHighMem(page)) {
		ptr = __dma_alloc_remap(page, size, GFP_KERNEL, prot, caller);
		if (!ptr) {
			dma_release_from_contiguous(dev, page, count);
			return NULL;
		}
	} else {
		__dma_remap(page, size, prot);
		ptr = page_address(page);
	}
607
	*ret_page = page;
608
	return ptr;
609 610 611
}

static void __free_from_contiguous(struct device *dev, struct page *page,
612
				   void *cpu_addr, size_t size)
613
{
614 615 616 617
	if (PageHighMem(page))
		__dma_free_remap(cpu_addr, size);
	else
		__dma_remap(page, size, pgprot_kernel);
618 619 620
	dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
}

621 622 623 624 625 626 627 628
static inline pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot)
{
	prot = dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs) ?
			    pgprot_writecombine(prot) :
			    pgprot_dmacoherent(prot);
	return prot;
}

629 630
#define nommu() 0

631
#else	/* !CONFIG_MMU */
632

633 634
#define nommu() 1

635
#define __get_dma_pgprot(attrs, prot)	__pgprot(0)
636
#define __alloc_remap_buffer(dev, size, gfp, prot, ret, c)	NULL
637
#define __alloc_from_pool(size, ret_page)			NULL
638
#define __alloc_from_contiguous(dev, size, prot, ret, c)	NULL
639
#define __free_from_pool(cpu_addr, size)			0
640
#define __free_from_contiguous(dev, page, cpu_addr, size)	do { } while (0)
641
#define __dma_free_remap(cpu_addr, size)			do { } while (0)
642 643 644

#endif	/* CONFIG_MMU */

645 646
static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
				   struct page **ret_page)
647
{
648 649 650 651 652 653 654 655 656 657 658 659
	struct page *page;
	page = __dma_alloc_buffer(dev, size, gfp);
	if (!page)
		return NULL;

	*ret_page = page;
	return page_address(page);
}



static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
R
Rob Herring 已提交
660
			 gfp_t gfp, pgprot_t prot, bool is_coherent, const void *caller)
661 662
{
	u64 mask = get_coherent_dma_mask(dev);
663
	struct page *page = NULL;
664
	void *addr;
665

666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
#ifdef CONFIG_DMA_API_DEBUG
	u64 limit = (mask + 1) & ~mask;
	if (limit && size >= limit) {
		dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
			size, mask);
		return NULL;
	}
#endif

	if (!mask)
		return NULL;

	if (mask < 0xffffffffULL)
		gfp |= GFP_DMA;

681 682 683 684 685 686 687 688 689
	/*
	 * Following is a work-around (a.k.a. hack) to prevent pages
	 * with __GFP_COMP being passed to split_page() which cannot
	 * handle them.  The real problem is that this flag probably
	 * should be 0 on ARM as it is not supported on this
	 * platform; see CONFIG_HUGETLBFS.
	 */
	gfp &= ~(__GFP_COMP);

690
	*handle = DMA_ERROR_CODE;
691
	size = PAGE_ALIGN(size);
692

R
Rob Herring 已提交
693
	if (is_coherent || nommu())
694
		addr = __alloc_simple_buffer(dev, size, gfp, &page);
695
	else if (!(gfp & __GFP_WAIT))
696
		addr = __alloc_from_pool(size, &page);
697
	else if (!IS_ENABLED(CONFIG_DMA_CMA))
698
		addr = __alloc_remap_buffer(dev, size, gfp, prot, &page, caller);
699
	else
700
		addr = __alloc_from_contiguous(dev, size, prot, &page, caller);
701

702
	if (addr)
703
		*handle = pfn_to_dma(dev, page_to_pfn(page));
704

705 706
	return addr;
}
L
Linus Torvalds 已提交
707 708 709 710 711

/*
 * Allocate DMA-coherent memory space and return both the kernel remapped
 * virtual and bus address for that space.
 */
712 713
void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
		    gfp_t gfp, struct dma_attrs *attrs)
L
Linus Torvalds 已提交
714
{
715
	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
716 717 718 719 720
	void *memory;

	if (dma_alloc_from_coherent(dev, size, handle, &memory))
		return memory;

R
Rob Herring 已提交
721 722 723 724 725 726 727
	return __dma_alloc(dev, size, handle, gfp, prot, false,
			   __builtin_return_address(0));
}

static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
	dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
{
728
	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
R
Rob Herring 已提交
729 730 731 732 733 734
	void *memory;

	if (dma_alloc_from_coherent(dev, size, handle, &memory))
		return memory;

	return __dma_alloc(dev, size, handle, gfp, prot, true,
735
			   __builtin_return_address(0));
L
Linus Torvalds 已提交
736 737 738
}

/*
739
 * Create userspace mapping for the DMA-coherent memory.
L
Linus Torvalds 已提交
740
 */
741 742 743
int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
		 struct dma_attrs *attrs)
L
Linus Torvalds 已提交
744
{
745 746
	int ret = -ENXIO;
#ifdef CONFIG_MMU
747 748
	unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
749
	unsigned long pfn = dma_to_pfn(dev, dma_addr);
750 751
	unsigned long off = vma->vm_pgoff;

752 753
	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);

754 755 756
	if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
		return ret;

757 758 759 760 761 762
	if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
		ret = remap_pfn_range(vma, vma->vm_start,
				      pfn + off,
				      vma->vm_end - vma->vm_start,
				      vma->vm_page_prot);
	}
763
#endif	/* CONFIG_MMU */
L
Linus Torvalds 已提交
764 765 766 767 768

	return ret;
}

/*
769
 * Free a buffer as defined by the above mapping.
L
Linus Torvalds 已提交
770
 */
R
Rob Herring 已提交
771 772 773
static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
			   dma_addr_t handle, struct dma_attrs *attrs,
			   bool is_coherent)
L
Linus Torvalds 已提交
774
{
775
	struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
776

777 778 779
	if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
		return;

780 781
	size = PAGE_ALIGN(size);

R
Rob Herring 已提交
782
	if (is_coherent || nommu()) {
783
		__dma_free_buffer(page, size);
784 785
	} else if (__free_from_pool(cpu_addr, size)) {
		return;
786
	} else if (!IS_ENABLED(CONFIG_DMA_CMA)) {
787
		__dma_free_remap(cpu_addr, size);
788 789 790 791 792 793
		__dma_free_buffer(page, size);
	} else {
		/*
		 * Non-atomic allocations cannot be freed with IRQs disabled
		 */
		WARN_ON(irqs_disabled());
794
		__free_from_contiguous(dev, page, cpu_addr, size);
795
	}
L
Linus Torvalds 已提交
796
}
797

R
Rob Herring 已提交
798 799 800 801 802 803 804 805 806 807 808 809
void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
		  dma_addr_t handle, struct dma_attrs *attrs)
{
	__arm_dma_free(dev, size, cpu_addr, handle, attrs, false);
}

static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
				  dma_addr_t handle, struct dma_attrs *attrs)
{
	__arm_dma_free(dev, size, cpu_addr, handle, attrs, true);
}

810 811 812 813 814 815 816 817 818 819 820 821 822 823 824
int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
		 void *cpu_addr, dma_addr_t handle, size_t size,
		 struct dma_attrs *attrs)
{
	struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
	int ret;

	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
	if (unlikely(ret))
		return ret;

	sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
	return 0;
}

825
static void dma_cache_maint_page(struct page *page, unsigned long offset,
826 827
	size_t size, enum dma_data_direction dir,
	void (*op)(const void *, size_t, int))
828
{
829 830 831 832 833 834
	unsigned long pfn;
	size_t left = size;

	pfn = page_to_pfn(page) + offset / PAGE_SIZE;
	offset %= PAGE_SIZE;

835 836 837 838 839 840 841 842
	/*
	 * A single sg entry may refer to multiple physically contiguous
	 * pages.  But we still need to process highmem pages individually.
	 * If highmem is not configured then the bulk of this loop gets
	 * optimized out.
	 */
	do {
		size_t len = left;
843 844
		void *vaddr;

845 846
		page = pfn_to_page(pfn);

847
		if (PageHighMem(page)) {
848
			if (len + offset > PAGE_SIZE)
849
				len = PAGE_SIZE - offset;
850 851

			if (cache_is_vipt_nonaliasing()) {
852
				vaddr = kmap_atomic(page);
853
				op(vaddr + offset, len, dir);
854
				kunmap_atomic(vaddr);
855 856 857 858 859 860
			} else {
				vaddr = kmap_high_get(page);
				if (vaddr) {
					op(vaddr + offset, len, dir);
					kunmap_high(page);
				}
861
			}
862 863
		} else {
			vaddr = page_address(page) + offset;
864
			op(vaddr, len, dir);
865 866
		}
		offset = 0;
867
		pfn++;
868 869 870
		left -= len;
	} while (left);
}
871

872 873 874 875 876 877 878
/*
 * Make an area consistent for devices.
 * Note: Drivers should NOT use this function directly, as it will break
 * platforms with CONFIG_DMABOUNCE.
 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
 */
static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
879 880
	size_t size, enum dma_data_direction dir)
{
881 882
	unsigned long paddr;

883
	dma_cache_maint_page(page, off, size, dir, dmac_map_area);
884 885

	paddr = page_to_phys(page) + off;
886 887 888 889 890 891
	if (dir == DMA_FROM_DEVICE) {
		outer_inv_range(paddr, paddr + size);
	} else {
		outer_clean_range(paddr, paddr + size);
	}
	/* FIXME: non-speculating: flush on bidirectional mappings? */
892 893
}

894
static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
895 896
	size_t size, enum dma_data_direction dir)
{
897 898 899 900 901 902 903
	unsigned long paddr = page_to_phys(page) + off;

	/* FIXME: non-speculating: not required */
	/* don't bother invalidating if DMA to device */
	if (dir != DMA_TO_DEVICE)
		outer_inv_range(paddr, paddr + size);

904
	dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
905 906

	/*
907
	 * Mark the D-cache clean for these pages to avoid extra flushing.
908
	 */
909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924
	if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
		unsigned long pfn;
		size_t left = size;

		pfn = page_to_pfn(page) + off / PAGE_SIZE;
		off %= PAGE_SIZE;
		if (off) {
			pfn++;
			left -= PAGE_SIZE - off;
		}
		while (left >= PAGE_SIZE) {
			page = pfn_to_page(pfn++);
			set_bit(PG_dcache_clean, &page->flags);
			left -= PAGE_SIZE;
		}
	}
925
}
926

927
/**
928
 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
929 930 931 932 933 934 935 936 937 938 939 940 941 942
 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 * @sg: list of buffers
 * @nents: number of buffers to map
 * @dir: DMA transfer direction
 *
 * Map a set of buffers described by scatterlist in streaming mode for DMA.
 * This is the scatter-gather version of the dma_map_single interface.
 * Here the scatter gather list elements are each tagged with the
 * appropriate dma address and length.  They are obtained via
 * sg_dma_{address,length}.
 *
 * Device ownership issues as mentioned for dma_map_single are the same
 * here.
 */
943 944
int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
		enum dma_data_direction dir, struct dma_attrs *attrs)
945
{
946
	struct dma_map_ops *ops = get_dma_ops(dev);
947
	struct scatterlist *s;
948
	int i, j;
949 950

	for_each_sg(sg, s, nents, i) {
951 952 953
#ifdef CONFIG_NEED_SG_DMA_LENGTH
		s->dma_length = s->length;
#endif
954 955
		s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
						s->length, dir, attrs);
956 957
		if (dma_mapping_error(dev, s->dma_address))
			goto bad_mapping;
958 959
	}
	return nents;
960 961 962

 bad_mapping:
	for_each_sg(sg, s, i, j)
963
		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
964
	return 0;
965 966 967
}

/**
968
 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
969 970
 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 * @sg: list of buffers
971
 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
972 973 974 975 976
 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 *
 * Unmap a set of streaming mode DMA translations.  Again, CPU access
 * rules concerning calls here are the same as for dma_unmap_single().
 */
977 978
void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
		enum dma_data_direction dir, struct dma_attrs *attrs)
979
{
980
	struct dma_map_ops *ops = get_dma_ops(dev);
981 982 983
	struct scatterlist *s;

	int i;
984

985
	for_each_sg(sg, s, nents, i)
986
		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
987 988 989
}

/**
990
 * arm_dma_sync_sg_for_cpu
991 992 993 994 995
 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 * @sg: list of buffers
 * @nents: number of buffers to map (returned from dma_map_sg)
 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 */
996
void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
997 998
			int nents, enum dma_data_direction dir)
{
999
	struct dma_map_ops *ops = get_dma_ops(dev);
1000 1001 1002
	struct scatterlist *s;
	int i;

1003 1004 1005
	for_each_sg(sg, s, nents, i)
		ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
					 dir);
1006 1007 1008
}

/**
1009
 * arm_dma_sync_sg_for_device
1010 1011 1012 1013 1014
 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 * @sg: list of buffers
 * @nents: number of buffers to map (returned from dma_map_sg)
 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 */
1015
void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1016 1017
			int nents, enum dma_data_direction dir)
{
1018
	struct dma_map_ops *ops = get_dma_ops(dev);
1019 1020 1021
	struct scatterlist *s;
	int i;

1022 1023 1024
	for_each_sg(sg, s, nents, i)
		ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
					    dir);
1025
}
1026

1027 1028 1029 1030 1031 1032 1033 1034
/*
 * Return whether the given device DMA address mask can be supported
 * properly.  For example, if your device can only drive the low 24-bits
 * during bus mastering, then you would pass 0x00ffffff as the mask
 * to this function.
 */
int dma_supported(struct device *dev, u64 mask)
{
1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
	unsigned long limit;

	/*
	 * If the mask allows for more memory than we can address,
	 * and we actually have that much memory, then we must
	 * indicate that DMA to this device is not supported.
	 */
	if (sizeof(mask) != sizeof(dma_addr_t) &&
	    mask > (dma_addr_t)~0 &&
	    dma_to_pfn(dev, ~0) > arm_dma_pfn_limit)
		return 0;

	/*
	 * Translate the device's DMA mask to a PFN limit.  This
	 * PFN number includes the page which we can DMA to.
	 */
	limit = dma_to_pfn(dev, mask);

	if (limit < arm_dma_pfn_limit)
1054
		return 0;
1055

1056 1057 1058 1059
	return 1;
}
EXPORT_SYMBOL(dma_supported);

1060
int arm_dma_set_mask(struct device *dev, u64 dma_mask)
1061 1062 1063 1064 1065 1066 1067 1068 1069
{
	if (!dev->dma_mask || !dma_supported(dev, dma_mask))
		return -EIO;

	*dev->dma_mask = dma_mask;

	return 0;
}

1070 1071 1072 1073 1074 1075 1076 1077
#define PREALLOC_DMA_DEBUG_ENTRIES	4096

static int __init dma_debug_do_init(void)
{
	dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
	return 0;
}
fs_initcall(dma_debug_do_init);
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090

#ifdef CONFIG_ARM_DMA_USE_IOMMU

/* IOMMU */

static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
				      size_t size)
{
	unsigned int order = get_order(size);
	unsigned int align = 0;
	unsigned int count, start;
	unsigned long flags;

1091 1092 1093
	if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
		order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;

1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
	count = ((PAGE_ALIGN(size) >> PAGE_SHIFT) +
		 (1 << mapping->order) - 1) >> mapping->order;

	if (order > mapping->order)
		align = (1 << (order - mapping->order)) - 1;

	spin_lock_irqsave(&mapping->lock, flags);
	start = bitmap_find_next_zero_area(mapping->bitmap, mapping->bits, 0,
					   count, align);
	if (start > mapping->bits) {
		spin_unlock_irqrestore(&mapping->lock, flags);
		return DMA_ERROR_CODE;
	}

	bitmap_set(mapping->bitmap, start, count);
	spin_unlock_irqrestore(&mapping->lock, flags);

	return mapping->base + (start << (mapping->order + PAGE_SHIFT));
}

static inline void __free_iova(struct dma_iommu_mapping *mapping,
			       dma_addr_t addr, size_t size)
{
	unsigned int start = (addr - mapping->base) >>
			     (mapping->order + PAGE_SHIFT);
	unsigned int count = ((size >> PAGE_SHIFT) +
			      (1 << mapping->order) - 1) >> mapping->order;
	unsigned long flags;

	spin_lock_irqsave(&mapping->lock, flags);
	bitmap_clear(mapping->bitmap, start, count);
	spin_unlock_irqrestore(&mapping->lock, flags);
}

1128 1129
static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
					  gfp_t gfp, struct dma_attrs *attrs)
1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
{
	struct page **pages;
	int count = size >> PAGE_SHIFT;
	int array_size = count * sizeof(struct page *);
	int i = 0;

	if (array_size <= PAGE_SIZE)
		pages = kzalloc(array_size, gfp);
	else
		pages = vzalloc(array_size);
	if (!pages)
		return NULL;

1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
	if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs))
	{
		unsigned long order = get_order(size);
		struct page *page;

		page = dma_alloc_from_contiguous(dev, count, order);
		if (!page)
			goto error;

		__dma_clear_buffer(page, size);

		for (i = 0; i < count; i++)
			pages[i] = page + i;

		return pages;
	}

1160 1161 1162 1163 1164
	/*
	 * IOMMU can map any pages, so himem can also be used here
	 */
	gfp |= __GFP_NOWARN | __GFP_HIGHMEM;

1165
	while (count) {
1166
		int j, order = __fls(count);
1167

1168
		pages[i] = alloc_pages(gfp, order);
1169
		while (!pages[i] && order)
1170
			pages[i] = alloc_pages(gfp, --order);
1171 1172 1173
		if (!pages[i])
			goto error;

1174
		if (order) {
1175
			split_page(pages[i], order);
1176 1177 1178 1179
			j = 1 << order;
			while (--j)
				pages[i + j] = pages[i] + j;
		}
1180 1181 1182 1183 1184 1185 1186 1187

		__dma_clear_buffer(pages[i], PAGE_SIZE << order);
		i += 1 << order;
		count -= 1 << order;
	}

	return pages;
error:
1188
	while (i--)
1189 1190
		if (pages[i])
			__free_pages(pages[i], 0);
1191
	if (array_size <= PAGE_SIZE)
1192 1193 1194 1195 1196 1197
		kfree(pages);
	else
		vfree(pages);
	return NULL;
}

1198 1199
static int __iommu_free_buffer(struct device *dev, struct page **pages,
			       size_t size, struct dma_attrs *attrs)
1200 1201 1202 1203
{
	int count = size >> PAGE_SHIFT;
	int array_size = count * sizeof(struct page *);
	int i;
1204 1205 1206 1207 1208 1209 1210 1211 1212

	if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs)) {
		dma_release_from_contiguous(dev, pages[0], count);
	} else {
		for (i = 0; i < count; i++)
			if (pages[i])
				__free_pages(pages[i], 0);
	}

1213
	if (array_size <= PAGE_SIZE)
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
		kfree(pages);
	else
		vfree(pages);
	return 0;
}

/*
 * Create a CPU mapping for a specified pages
 */
static void *
1224 1225
__iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot,
		    const void *caller)
1226
{
1227 1228 1229
	unsigned int i, nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
	struct vm_struct *area;
	unsigned long p;
1230

1231 1232 1233
	area = get_vm_area_caller(size, VM_ARM_DMA_CONSISTENT | VM_USERMAP,
				  caller);
	if (!area)
1234 1235
		return NULL;

1236 1237 1238
	area->pages = pages;
	area->nr_pages = nr_pages;
	p = (unsigned long)area->addr;
1239

1240 1241 1242 1243 1244
	for (i = 0; i < nr_pages; i++) {
		phys_addr_t phys = __pfn_to_phys(page_to_pfn(pages[i]));
		if (ioremap_page_range(p, p + PAGE_SIZE, phys, prot))
			goto err;
		p += PAGE_SIZE;
1245
	}
1246 1247 1248 1249
	return area->addr;
err:
	unmap_kernel_range((unsigned long)area->addr, size);
	vunmap(area->addr);
1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
	return NULL;
}

/*
 * Create a mapping in device IO address space for specified pages
 */
static dma_addr_t
__iommu_create_mapping(struct device *dev, struct page **pages, size_t size)
{
	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
	dma_addr_t dma_addr, iova;
	int i, ret = DMA_ERROR_CODE;

	dma_addr = __alloc_iova(mapping, size);
	if (dma_addr == DMA_ERROR_CODE)
		return dma_addr;

	iova = dma_addr;
	for (i = 0; i < count; ) {
		unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
		phys_addr_t phys = page_to_phys(pages[i]);
		unsigned int len, j;

		for (j = i + 1; j < count; j++, next_pfn++)
			if (page_to_pfn(pages[j]) != next_pfn)
				break;

		len = (j - i) << PAGE_SHIFT;
1279 1280
		ret = iommu_map(mapping->domain, iova, phys, len,
				IOMMU_READ|IOMMU_WRITE);
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
		if (ret < 0)
			goto fail;
		iova += len;
		i = j;
	}
	return dma_addr;
fail:
	iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
	__free_iova(mapping, dma_addr, size);
	return DMA_ERROR_CODE;
}

static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
{
	struct dma_iommu_mapping *mapping = dev->archdata.mapping;

	/*
	 * add optional in-page offset from iova to size and align
	 * result to page size
	 */
	size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
	iova &= PAGE_MASK;

	iommu_unmap(mapping->domain, iova, size);
	__free_iova(mapping, iova, size);
	return 0;
}

1309 1310 1311 1312 1313 1314 1315 1316 1317
static struct page **__atomic_get_pages(void *addr)
{
	struct dma_pool *pool = &atomic_pool;
	struct page **pages = pool->pages;
	int offs = (addr - pool->vaddr) >> PAGE_SHIFT;

	return pages + offs;
}

1318
static struct page **__iommu_get_pages(void *cpu_addr, struct dma_attrs *attrs)
1319 1320 1321
{
	struct vm_struct *area;

1322 1323 1324
	if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
		return __atomic_get_pages(cpu_addr);

1325 1326 1327
	if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
		return cpu_addr;

1328 1329 1330 1331 1332 1333
	area = find_vm_area(cpu_addr);
	if (area && (area->flags & VM_ARM_DMA_CONSISTENT))
		return area->pages;
	return NULL;
}

1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354
static void *__iommu_alloc_atomic(struct device *dev, size_t size,
				  dma_addr_t *handle)
{
	struct page *page;
	void *addr;

	addr = __alloc_from_pool(size, &page);
	if (!addr)
		return NULL;

	*handle = __iommu_create_mapping(dev, &page, size);
	if (*handle == DMA_ERROR_CODE)
		goto err_mapping;

	return addr;

err_mapping:
	__free_from_pool(addr, size);
	return NULL;
}

1355
static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
1356 1357 1358
				dma_addr_t handle, size_t size)
{
	__iommu_remove_mapping(dev, handle, size);
1359
	__free_from_pool(cpu_addr, size);
1360 1361
}

1362 1363 1364 1365 1366 1367 1368 1369 1370 1371
static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
	    dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
{
	pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel);
	struct page **pages;
	void *addr = NULL;

	*handle = DMA_ERROR_CODE;
	size = PAGE_ALIGN(size);

1372 1373 1374
	if (gfp & GFP_ATOMIC)
		return __iommu_alloc_atomic(dev, size, handle);

1375 1376 1377 1378 1379 1380 1381 1382 1383
	/*
	 * Following is a work-around (a.k.a. hack) to prevent pages
	 * with __GFP_COMP being passed to split_page() which cannot
	 * handle them.  The real problem is that this flag probably
	 * should be 0 on ARM as it is not supported on this
	 * platform; see CONFIG_HUGETLBFS.
	 */
	gfp &= ~(__GFP_COMP);

1384
	pages = __iommu_alloc_buffer(dev, size, gfp, attrs);
1385 1386 1387 1388 1389 1390 1391
	if (!pages)
		return NULL;

	*handle = __iommu_create_mapping(dev, pages, size);
	if (*handle == DMA_ERROR_CODE)
		goto err_buffer;

1392 1393 1394
	if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
		return pages;

1395 1396
	addr = __iommu_alloc_remap(pages, size, gfp, prot,
				   __builtin_return_address(0));
1397 1398 1399 1400 1401 1402 1403 1404
	if (!addr)
		goto err_mapping;

	return addr;

err_mapping:
	__iommu_remove_mapping(dev, *handle, size);
err_buffer:
1405
	__iommu_free_buffer(dev, pages, size, attrs);
1406 1407 1408 1409 1410 1411 1412
	return NULL;
}

static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
		    void *cpu_addr, dma_addr_t dma_addr, size_t size,
		    struct dma_attrs *attrs)
{
1413 1414
	unsigned long uaddr = vma->vm_start;
	unsigned long usize = vma->vm_end - vma->vm_start;
1415
	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1416 1417 1418

	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);

1419 1420
	if (!pages)
		return -ENXIO;
1421

1422 1423 1424 1425 1426 1427 1428 1429 1430
	do {
		int ret = vm_insert_page(vma, uaddr, *pages++);
		if (ret) {
			pr_err("Remapping memory failed: %d\n", ret);
			return ret;
		}
		uaddr += PAGE_SIZE;
		usize -= PAGE_SIZE;
	} while (usize > 0);
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441

	return 0;
}

/*
 * free a page as defined by the above mapping.
 * Must not be called with IRQs disabled.
 */
void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
			  dma_addr_t handle, struct dma_attrs *attrs)
{
1442
	struct page **pages;
1443 1444
	size = PAGE_ALIGN(size);

1445 1446
	if (__in_atomic_pool(cpu_addr, size)) {
		__iommu_free_atomic(dev, cpu_addr, handle, size);
1447
		return;
1448
	}
1449

1450 1451 1452
	pages = __iommu_get_pages(cpu_addr, attrs);
	if (!pages) {
		WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
1453 1454 1455
		return;
	}

1456 1457 1458 1459
	if (!dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) {
		unmap_kernel_range((unsigned long)cpu_addr, size);
		vunmap(cpu_addr);
	}
1460 1461

	__iommu_remove_mapping(dev, handle, size);
1462
	__iommu_free_buffer(dev, pages, size, attrs);
1463 1464
}

1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476
static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
				 void *cpu_addr, dma_addr_t dma_addr,
				 size_t size, struct dma_attrs *attrs)
{
	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
	struct page **pages = __iommu_get_pages(cpu_addr, attrs);

	if (!pages)
		return -ENXIO;

	return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
					 GFP_KERNEL);
1477 1478
}

1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499
static int __dma_direction_to_prot(enum dma_data_direction dir)
{
	int prot;

	switch (dir) {
	case DMA_BIDIRECTIONAL:
		prot = IOMMU_READ | IOMMU_WRITE;
		break;
	case DMA_TO_DEVICE:
		prot = IOMMU_READ;
		break;
	case DMA_FROM_DEVICE:
		prot = IOMMU_WRITE;
		break;
	default:
		prot = 0;
	}

	return prot;
}

1500 1501 1502 1503 1504
/*
 * Map a part of the scatter-gather list into contiguous io address space
 */
static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
			  size_t size, dma_addr_t *handle,
R
Rob Herring 已提交
1505 1506
			  enum dma_data_direction dir, struct dma_attrs *attrs,
			  bool is_coherent)
1507 1508 1509 1510 1511 1512
{
	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
	dma_addr_t iova, iova_base;
	int ret = 0;
	unsigned int count;
	struct scatterlist *s;
1513
	int prot;
1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525

	size = PAGE_ALIGN(size);
	*handle = DMA_ERROR_CODE;

	iova_base = iova = __alloc_iova(mapping, size);
	if (iova == DMA_ERROR_CODE)
		return -ENOMEM;

	for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
		phys_addr_t phys = page_to_phys(sg_page(s));
		unsigned int len = PAGE_ALIGN(s->offset + s->length);

R
Rob Herring 已提交
1526 1527
		if (!is_coherent &&
			!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1528 1529
			__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);

1530 1531 1532
		prot = __dma_direction_to_prot(dir);

		ret = iommu_map(mapping->domain, iova, phys, len, prot);
1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546
		if (ret < 0)
			goto fail;
		count += len >> PAGE_SHIFT;
		iova += len;
	}
	*handle = iova_base;

	return 0;
fail:
	iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
	__free_iova(mapping, iova_base, size);
	return ret;
}

R
Rob Herring 已提交
1547 1548 1549
static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
		     enum dma_data_direction dir, struct dma_attrs *attrs,
		     bool is_coherent)
1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
{
	struct scatterlist *s = sg, *dma = sg, *start = sg;
	int i, count = 0;
	unsigned int offset = s->offset;
	unsigned int size = s->offset + s->length;
	unsigned int max = dma_get_max_seg_size(dev);

	for (i = 1; i < nents; i++) {
		s = sg_next(s);

		s->dma_address = DMA_ERROR_CODE;
		s->dma_length = 0;

		if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
			if (__map_sg_chunk(dev, start, size, &dma->dma_address,
R
Rob Herring 已提交
1565
			    dir, attrs, is_coherent) < 0)
1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
				goto bad_mapping;

			dma->dma_address += offset;
			dma->dma_length = size - offset;

			size = offset = s->offset;
			start = s;
			dma = sg_next(dma);
			count += 1;
		}
		size += s->length;
	}
R
Rob Herring 已提交
1578 1579
	if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs,
		is_coherent) < 0)
1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593
		goto bad_mapping;

	dma->dma_address += offset;
	dma->dma_length = size - offset;

	return count+1;

bad_mapping:
	for_each_sg(sg, s, count, i)
		__iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
	return 0;
}

/**
R
Rob Herring 已提交
1594
 * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1595 1596
 * @dev: valid struct device pointer
 * @sg: list of buffers
R
Rob Herring 已提交
1597 1598
 * @nents: number of buffers to map
 * @dir: DMA transfer direction
1599
 *
R
Rob Herring 已提交
1600 1601 1602 1603
 * Map a set of i/o coherent buffers described by scatterlist in streaming
 * mode for DMA. The scatter gather list elements are merged together (if
 * possible) and tagged with the appropriate dma address and length. They are
 * obtained via sg_dma_{address,length}.
1604
 */
R
Rob Herring 已提交
1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg,
		int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
{
	return __iommu_map_sg(dev, sg, nents, dir, attrs, true);
}

/**
 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
 * @dev: valid struct device pointer
 * @sg: list of buffers
 * @nents: number of buffers to map
 * @dir: DMA transfer direction
 *
 * Map a set of buffers described by scatterlist in streaming mode for DMA.
 * The scatter gather list elements are merged together (if possible) and
 * tagged with the appropriate dma address and length. They are obtained via
 * sg_dma_{address,length}.
 */
int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
		int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
{
	return __iommu_map_sg(dev, sg, nents, dir, attrs, false);
}

static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
		int nents, enum dma_data_direction dir, struct dma_attrs *attrs,
		bool is_coherent)
1632 1633 1634 1635 1636 1637 1638 1639
{
	struct scatterlist *s;
	int i;

	for_each_sg(sg, s, nents, i) {
		if (sg_dma_len(s))
			__iommu_remove_mapping(dev, sg_dma_address(s),
					       sg_dma_len(s));
R
Rob Herring 已提交
1640
		if (!is_coherent &&
1641
		    !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1642 1643 1644 1645 1646
			__dma_page_dev_to_cpu(sg_page(s), s->offset,
					      s->length, dir);
	}
}

R
Rob Herring 已提交
1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
/**
 * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
 * @dev: valid struct device pointer
 * @sg: list of buffers
 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 *
 * Unmap a set of streaming mode DMA translations.  Again, CPU access
 * rules concerning calls here are the same as for dma_unmap_single().
 */
void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
		int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
{
	__iommu_unmap_sg(dev, sg, nents, dir, attrs, true);
}

/**
 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
 * @dev: valid struct device pointer
 * @sg: list of buffers
 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 *
 * Unmap a set of streaming mode DMA translations.  Again, CPU access
 * rules concerning calls here are the same as for dma_unmap_single().
 */
void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
			enum dma_data_direction dir, struct dma_attrs *attrs)
{
	__iommu_unmap_sg(dev, sg, nents, dir, attrs, false);
}

1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692
/**
 * arm_iommu_sync_sg_for_cpu
 * @dev: valid struct device pointer
 * @sg: list of buffers
 * @nents: number of buffers to map (returned from dma_map_sg)
 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 */
void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
			int nents, enum dma_data_direction dir)
{
	struct scatterlist *s;
	int i;

	for_each_sg(sg, s, nents, i)
R
Rob Herring 已提交
1693
		__dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710

}

/**
 * arm_iommu_sync_sg_for_device
 * @dev: valid struct device pointer
 * @sg: list of buffers
 * @nents: number of buffers to map (returned from dma_map_sg)
 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 */
void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
			int nents, enum dma_data_direction dir)
{
	struct scatterlist *s;
	int i;

	for_each_sg(sg, s, nents, i)
R
Rob Herring 已提交
1711
		__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1712 1713 1714 1715
}


/**
R
Rob Herring 已提交
1716
 * arm_coherent_iommu_map_page
1717 1718 1719 1720 1721 1722
 * @dev: valid struct device pointer
 * @page: page that buffer resides in
 * @offset: offset into page for start of buffer
 * @size: size of buffer to map
 * @dir: DMA transfer direction
 *
R
Rob Herring 已提交
1723
 * Coherent IOMMU aware version of arm_dma_map_page()
1724
 */
R
Rob Herring 已提交
1725
static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page,
1726 1727 1728 1729 1730
	     unsigned long offset, size_t size, enum dma_data_direction dir,
	     struct dma_attrs *attrs)
{
	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
	dma_addr_t dma_addr;
1731
	int ret, prot, len = PAGE_ALIGN(size + offset);
1732 1733 1734 1735 1736

	dma_addr = __alloc_iova(mapping, len);
	if (dma_addr == DMA_ERROR_CODE)
		return dma_addr;

1737
	prot = __dma_direction_to_prot(dir);
1738 1739

	ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot);
1740 1741 1742 1743 1744 1745 1746 1747 1748
	if (ret < 0)
		goto fail;

	return dma_addr + offset;
fail:
	__free_iova(mapping, dma_addr, len);
	return DMA_ERROR_CODE;
}

R
Rob Herring 已提交
1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793
/**
 * arm_iommu_map_page
 * @dev: valid struct device pointer
 * @page: page that buffer resides in
 * @offset: offset into page for start of buffer
 * @size: size of buffer to map
 * @dir: DMA transfer direction
 *
 * IOMMU aware version of arm_dma_map_page()
 */
static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
	     unsigned long offset, size_t size, enum dma_data_direction dir,
	     struct dma_attrs *attrs)
{
	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
		__dma_page_cpu_to_dev(page, offset, size, dir);

	return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs);
}

/**
 * arm_coherent_iommu_unmap_page
 * @dev: valid struct device pointer
 * @handle: DMA address of buffer
 * @size: size of buffer (same as passed to dma_map_page)
 * @dir: DMA transfer direction (same as passed to dma_map_page)
 *
 * Coherent IOMMU aware version of arm_dma_unmap_page()
 */
static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle,
		size_t size, enum dma_data_direction dir,
		struct dma_attrs *attrs)
{
	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
	dma_addr_t iova = handle & PAGE_MASK;
	int offset = handle & ~PAGE_MASK;
	int len = PAGE_ALIGN(size + offset);

	if (!iova)
		return;

	iommu_unmap(mapping->domain, iova, len);
	__free_iova(mapping, iova, len);
}

1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815
/**
 * arm_iommu_unmap_page
 * @dev: valid struct device pointer
 * @handle: DMA address of buffer
 * @size: size of buffer (same as passed to dma_map_page)
 * @dir: DMA transfer direction (same as passed to dma_map_page)
 *
 * IOMMU aware version of arm_dma_unmap_page()
 */
static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
		size_t size, enum dma_data_direction dir,
		struct dma_attrs *attrs)
{
	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
	dma_addr_t iova = handle & PAGE_MASK;
	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
	int offset = handle & ~PAGE_MASK;
	int len = PAGE_ALIGN(size + offset);

	if (!iova)
		return;

R
Rob Herring 已提交
1816
	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833
		__dma_page_dev_to_cpu(page, offset, size, dir);

	iommu_unmap(mapping->domain, iova, len);
	__free_iova(mapping, iova, len);
}

static void arm_iommu_sync_single_for_cpu(struct device *dev,
		dma_addr_t handle, size_t size, enum dma_data_direction dir)
{
	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
	dma_addr_t iova = handle & PAGE_MASK;
	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
	unsigned int offset = handle & ~PAGE_MASK;

	if (!iova)
		return;

R
Rob Herring 已提交
1834
	__dma_page_dev_to_cpu(page, offset, size, dir);
1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854
}

static void arm_iommu_sync_single_for_device(struct device *dev,
		dma_addr_t handle, size_t size, enum dma_data_direction dir)
{
	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
	dma_addr_t iova = handle & PAGE_MASK;
	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
	unsigned int offset = handle & ~PAGE_MASK;

	if (!iova)
		return;

	__dma_page_cpu_to_dev(page, offset, size, dir);
}

struct dma_map_ops iommu_ops = {
	.alloc		= arm_iommu_alloc_attrs,
	.free		= arm_iommu_free_attrs,
	.mmap		= arm_iommu_mmap_attrs,
1855
	.get_sgtable	= arm_iommu_get_sgtable,
1856 1857 1858 1859 1860 1861 1862 1863 1864 1865

	.map_page		= arm_iommu_map_page,
	.unmap_page		= arm_iommu_unmap_page,
	.sync_single_for_cpu	= arm_iommu_sync_single_for_cpu,
	.sync_single_for_device	= arm_iommu_sync_single_for_device,

	.map_sg			= arm_iommu_map_sg,
	.unmap_sg		= arm_iommu_unmap_sg,
	.sync_sg_for_cpu	= arm_iommu_sync_sg_for_cpu,
	.sync_sg_for_device	= arm_iommu_sync_sg_for_device,
1866 1867

	.set_dma_mask		= arm_dma_set_mask,
1868 1869
};

R
Rob Herring 已提交
1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880
struct dma_map_ops iommu_coherent_ops = {
	.alloc		= arm_iommu_alloc_attrs,
	.free		= arm_iommu_free_attrs,
	.mmap		= arm_iommu_mmap_attrs,
	.get_sgtable	= arm_iommu_get_sgtable,

	.map_page	= arm_coherent_iommu_map_page,
	.unmap_page	= arm_coherent_iommu_unmap_page,

	.map_sg		= arm_coherent_iommu_map_sg,
	.unmap_sg	= arm_coherent_iommu_unmap_sg,
1881 1882

	.set_dma_mask	= arm_dma_set_mask,
R
Rob Herring 已提交
1883 1884
};

1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936
/**
 * arm_iommu_create_mapping
 * @bus: pointer to the bus holding the client device (for IOMMU calls)
 * @base: start address of the valid IO address space
 * @size: size of the valid IO address space
 * @order: accuracy of the IO addresses allocations
 *
 * Creates a mapping structure which holds information about used/unused
 * IO address ranges, which is required to perform memory allocation and
 * mapping with IOMMU aware functions.
 *
 * The client device need to be attached to the mapping with
 * arm_iommu_attach_device function.
 */
struct dma_iommu_mapping *
arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, size_t size,
			 int order)
{
	unsigned int count = size >> (PAGE_SHIFT + order);
	unsigned int bitmap_size = BITS_TO_LONGS(count) * sizeof(long);
	struct dma_iommu_mapping *mapping;
	int err = -ENOMEM;

	if (!count)
		return ERR_PTR(-EINVAL);

	mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
	if (!mapping)
		goto err;

	mapping->bitmap = kzalloc(bitmap_size, GFP_KERNEL);
	if (!mapping->bitmap)
		goto err2;

	mapping->base = base;
	mapping->bits = BITS_PER_BYTE * bitmap_size;
	mapping->order = order;
	spin_lock_init(&mapping->lock);

	mapping->domain = iommu_domain_alloc(bus);
	if (!mapping->domain)
		goto err3;

	kref_init(&mapping->kref);
	return mapping;
err3:
	kfree(mapping->bitmap);
err2:
	kfree(mapping);
err:
	return ERR_PTR(err);
}
1937
EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953

static void release_iommu_mapping(struct kref *kref)
{
	struct dma_iommu_mapping *mapping =
		container_of(kref, struct dma_iommu_mapping, kref);

	iommu_domain_free(mapping->domain);
	kfree(mapping->bitmap);
	kfree(mapping);
}

void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
{
	if (mapping)
		kref_put(&mapping->kref, release_iommu_mapping);
}
1954
EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979

/**
 * arm_iommu_attach_device
 * @dev: valid struct device pointer
 * @mapping: io address space mapping structure (returned from
 *	arm_iommu_create_mapping)
 *
 * Attaches specified io address space mapping to the provided device,
 * this replaces the dma operations (dma_map_ops pointer) with the
 * IOMMU aware version. More than one client might be attached to
 * the same io address space mapping.
 */
int arm_iommu_attach_device(struct device *dev,
			    struct dma_iommu_mapping *mapping)
{
	int err;

	err = iommu_attach_device(mapping->domain, dev);
	if (err)
		return err;

	kref_get(&mapping->kref);
	dev->archdata.mapping = mapping;
	set_dma_ops(dev, &iommu_ops);

1980
	pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
1981 1982
	return 0;
}
1983
EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
1984

1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
/**
 * arm_iommu_detach_device
 * @dev: valid struct device pointer
 *
 * Detaches the provided device from a previously attached map.
 * This voids the dma operations (dma_map_ops pointer)
 */
void arm_iommu_detach_device(struct device *dev)
{
	struct dma_iommu_mapping *mapping;

	mapping = to_dma_iommu_mapping(dev);
	if (!mapping) {
		dev_warn(dev, "Not attached\n");
		return;
	}

	iommu_detach_device(mapping->domain, dev);
	kref_put(&mapping->kref, release_iommu_mapping);
2004
	dev->archdata.mapping = NULL;
2005 2006 2007 2008
	set_dma_ops(dev, NULL);

	pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
}
2009
EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
2010

2011
#endif