dma-mapping.c 48.8 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 *  linux/arch/arm/mm/dma-mapping.c
L
Linus Torvalds 已提交
3 4 5 6 7 8 9 10 11 12 13
 *
 *  Copyright (C) 2000-2004 Russell King
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 *  DMA uncached mapping support.
 */
#include <linux/module.h>
#include <linux/mm.h>
14
#include <linux/gfp.h>
L
Linus Torvalds 已提交
15 16 17 18 19
#include <linux/errno.h>
#include <linux/list.h>
#include <linux/init.h>
#include <linux/device.h>
#include <linux/dma-mapping.h>
20
#include <linux/dma-contiguous.h>
21
#include <linux/highmem.h>
22
#include <linux/memblock.h>
23
#include <linux/slab.h>
24
#include <linux/iommu.h>
25
#include <linux/io.h>
26
#include <linux/vmalloc.h>
27
#include <linux/sizes.h>
L
Linus Torvalds 已提交
28

29
#include <asm/memory.h>
30
#include <asm/highmem.h>
L
Linus Torvalds 已提交
31 32
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
33
#include <asm/mach/arch.h>
34
#include <asm/dma-iommu.h>
35 36 37
#include <asm/mach/map.h>
#include <asm/system_info.h>
#include <asm/dma-contiguous.h>
38

39 40
#include "mm.h"

41 42 43 44 45 46 47 48 49 50 51 52
/*
 * The DMA API is built upon the notion of "buffer ownership".  A buffer
 * is either exclusively owned by the CPU (and therefore may be accessed
 * by it) or exclusively owned by the DMA device.  These helper functions
 * represent the transitions between these two ownership states.
 *
 * Note, however, that on later ARMs, this notion does not work due to
 * speculative prefetches.  We model our approach on the assumption that
 * the CPU does do speculative prefetches, which means we clean caches
 * before transfers and delay cache invalidation until transfer completion.
 *
 */
53
static void __dma_page_cpu_to_dev(struct page *, unsigned long,
54
		size_t, enum dma_data_direction);
55
static void __dma_page_dev_to_cpu(struct page *, unsigned long,
56 57
		size_t, enum dma_data_direction);

58 59 60 61 62 63 64 65 66 67 68 69 70 71
/**
 * arm_dma_map_page - map a portion of a page for streaming DMA
 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 * @page: page that buffer resides in
 * @offset: offset into page for start of buffer
 * @size: size of buffer to map
 * @dir: DMA transfer direction
 *
 * Ensure that any data held in the cache is appropriately discarded
 * or written back.
 *
 * The device owns this memory once this call has completed.  The CPU
 * can regain ownership by calling dma_unmap_page().
 */
72
static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
73 74 75
	     unsigned long offset, size_t size, enum dma_data_direction dir,
	     struct dma_attrs *attrs)
{
R
Rob Herring 已提交
76
	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
77 78
		__dma_page_cpu_to_dev(page, offset, size, dir);
	return pfn_to_dma(dev, page_to_pfn(page)) + offset;
79 80
}

R
Rob Herring 已提交
81 82 83 84 85 86 87
static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page,
	     unsigned long offset, size_t size, enum dma_data_direction dir,
	     struct dma_attrs *attrs)
{
	return pfn_to_dma(dev, page_to_pfn(page)) + offset;
}

88 89 90 91 92 93 94 95 96 97 98 99 100 101
/**
 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 * @handle: DMA address of buffer
 * @size: size of buffer (same as passed to dma_map_page)
 * @dir: DMA transfer direction (same as passed to dma_map_page)
 *
 * Unmap a page streaming mode DMA translation.  The handle and size
 * must match what was provided in the previous dma_map_page() call.
 * All other usages are undefined.
 *
 * After this call, reads by the CPU to the buffer are guaranteed to see
 * whatever the device wrote there.
 */
102
static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
103 104 105
		size_t size, enum dma_data_direction dir,
		struct dma_attrs *attrs)
{
R
Rob Herring 已提交
106
	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
107 108
		__dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
				      handle & ~PAGE_MASK, size, dir);
109 110
}

111
static void arm_dma_sync_single_for_cpu(struct device *dev,
112 113 114 115
		dma_addr_t handle, size_t size, enum dma_data_direction dir)
{
	unsigned int offset = handle & (PAGE_SIZE - 1);
	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
R
Rob Herring 已提交
116
	__dma_page_dev_to_cpu(page, offset, size, dir);
117 118
}

119
static void arm_dma_sync_single_for_device(struct device *dev,
120 121 122 123
		dma_addr_t handle, size_t size, enum dma_data_direction dir)
{
	unsigned int offset = handle & (PAGE_SIZE - 1);
	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
R
Rob Herring 已提交
124
	__dma_page_cpu_to_dev(page, offset, size, dir);
125 126 127
}

struct dma_map_ops arm_dma_ops = {
128 129 130
	.alloc			= arm_dma_alloc,
	.free			= arm_dma_free,
	.mmap			= arm_dma_mmap,
131
	.get_sgtable		= arm_dma_get_sgtable,
132 133 134 135 136 137 138 139 140 141 142 143
	.map_page		= arm_dma_map_page,
	.unmap_page		= arm_dma_unmap_page,
	.map_sg			= arm_dma_map_sg,
	.unmap_sg		= arm_dma_unmap_sg,
	.sync_single_for_cpu	= arm_dma_sync_single_for_cpu,
	.sync_single_for_device	= arm_dma_sync_single_for_device,
	.sync_sg_for_cpu	= arm_dma_sync_sg_for_cpu,
	.sync_sg_for_device	= arm_dma_sync_sg_for_device,
	.set_dma_mask		= arm_dma_set_mask,
};
EXPORT_SYMBOL(arm_dma_ops);

R
Rob Herring 已提交
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
	dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs);
static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
				  dma_addr_t handle, struct dma_attrs *attrs);

struct dma_map_ops arm_coherent_dma_ops = {
	.alloc			= arm_coherent_dma_alloc,
	.free			= arm_coherent_dma_free,
	.mmap			= arm_dma_mmap,
	.get_sgtable		= arm_dma_get_sgtable,
	.map_page		= arm_coherent_dma_map_page,
	.map_sg			= arm_dma_map_sg,
	.set_dma_mask		= arm_dma_set_mask,
};
EXPORT_SYMBOL(arm_coherent_dma_ops);

160 161
static u64 get_coherent_dma_mask(struct device *dev)
{
162
	u64 mask = (u64)arm_dma_limit;
163 164 165 166 167 168 169 170 171 172 173 174 175

	if (dev) {
		mask = dev->coherent_dma_mask;

		/*
		 * Sanity check the DMA mask - it must be non-zero, and
		 * must be able to be satisfied by a DMA allocation.
		 */
		if (mask == 0) {
			dev_warn(dev, "coherent DMA mask is unset\n");
			return 0;
		}

176
		if ((~mask) & (u64)arm_dma_limit) {
177 178
			dev_warn(dev, "coherent DMA mask %#llx is smaller "
				 "than system GFP_DMA mask %#llx\n",
179
				 mask, (u64)arm_dma_limit);
180 181 182
			return 0;
		}
	}
L
Linus Torvalds 已提交
183

184 185 186
	return mask;
}

187 188 189 190 191 192 193 194
static void __dma_clear_buffer(struct page *page, size_t size)
{
	void *ptr;
	/*
	 * Ensure that the allocated pages are zeroed, and that any data
	 * lurking in the kernel direct-mapped region is invalidated.
	 */
	ptr = page_address(page);
195 196 197 198 199
	if (ptr) {
		memset(ptr, 0, size);
		dmac_flush_range(ptr, ptr + size);
		outer_flush_range(__pa(ptr), __pa(ptr) + size);
	}
200 201
}

202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
/*
 * Allocate a DMA buffer for 'dev' of size 'size' using the
 * specified gfp mask.  Note that 'size' must be page aligned.
 */
static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
{
	unsigned long order = get_order(size);
	struct page *page, *p, *e;

	page = alloc_pages(gfp, order);
	if (!page)
		return NULL;

	/*
	 * Now split the huge page and free the excess pages
	 */
	split_page(page, order);
	for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
		__free_page(p);

222
	__dma_clear_buffer(page, size);
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239

	return page;
}

/*
 * Free a DMA buffer.  'size' must be page aligned.
 */
static void __dma_free_buffer(struct page *page, size_t size)
{
	struct page *e = page + (size >> PAGE_SHIFT);

	while (page < e) {
		__free_page(page);
		page++;
	}
}

240
#ifdef CONFIG_MMU
241 242 243
#ifdef CONFIG_HUGETLB_PAGE
#error ARM Coherent DMA allocator does not (yet) support huge TLB
#endif
244

245 246
static void *__alloc_from_contiguous(struct device *dev, size_t size,
				     pgprot_t prot, struct page **ret_page);
247

248 249 250
static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
				 pgprot_t prot, struct page **ret_page,
				 const void *caller);
251

252 253 254
static void *
__dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
	const void *caller)
255
{
256 257
	struct vm_struct *area;
	unsigned long addr;
258

259 260 261 262 263 264 265 266 267 268
	/*
	 * DMA allocation can be mapped to user space, so lets
	 * set VM_USERMAP flags too.
	 */
	area = get_vm_area_caller(size, VM_ARM_DMA_CONSISTENT | VM_USERMAP,
				  caller);
	if (!area)
		return NULL;
	addr = (unsigned long)area->addr;
	area->phys_addr = __pfn_to_phys(page_to_pfn(page));
269

270 271 272 273 274
	if (ioremap_page_range(addr, addr + size, area->phys_addr, prot)) {
		vunmap((void *)addr);
		return NULL;
	}
	return (void *)addr;
275
}
L
Linus Torvalds 已提交
276

277
static void __dma_free_remap(void *cpu_addr, size_t size)
278
{
279 280 281 282 283
	unsigned int flags = VM_ARM_DMA_CONSISTENT | VM_USERMAP;
	struct vm_struct *area = find_vm_area(cpu_addr);
	if (!area || (area->flags & flags) != flags) {
		WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
		return;
284
	}
285 286
	unmap_kernel_range((unsigned long)cpu_addr, size);
	vunmap(cpu_addr);
287 288
}

289 290
#define DEFAULT_DMA_COHERENT_POOL_SIZE	SZ_256K

291 292 293 294 295 296
struct dma_pool {
	size_t size;
	spinlock_t lock;
	unsigned long *bitmap;
	unsigned long nr_pages;
	void *vaddr;
297
	struct page **pages;
298 299
};

300
static struct dma_pool atomic_pool = {
301
	.size = DEFAULT_DMA_COHERENT_POOL_SIZE,
302
};
303 304 305

static int __init early_coherent_pool(char *p)
{
306
	atomic_pool.size = memparse(p, &p);
307 308 309 310
	return 0;
}
early_param("coherent_pool", early_coherent_pool);

311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
void __init init_dma_coherent_pool_size(unsigned long size)
{
	/*
	 * Catch any attempt to set the pool size too late.
	 */
	BUG_ON(atomic_pool.vaddr);

	/*
	 * Set architecture specific coherent pool size only if
	 * it has not been changed by kernel command line parameter.
	 */
	if (atomic_pool.size == DEFAULT_DMA_COHERENT_POOL_SIZE)
		atomic_pool.size = size;
}

326 327 328
/*
 * Initialise the coherent pool for atomic allocations.
 */
329
static int __init atomic_pool_init(void)
330
{
331
	struct dma_pool *pool = &atomic_pool;
332
	pgprot_t prot = pgprot_dmacoherent(pgprot_kernel);
333 334
	unsigned long nr_pages = pool->size >> PAGE_SHIFT;
	unsigned long *bitmap;
335
	struct page *page;
336
	struct page **pages;
337
	void *ptr;
338
	int bitmap_size = BITS_TO_LONGS(nr_pages) * sizeof(long);
339

340 341 342
	bitmap = kzalloc(bitmap_size, GFP_KERNEL);
	if (!bitmap)
		goto no_bitmap;
343

344 345 346 347
	pages = kzalloc(nr_pages * sizeof(struct page *), GFP_KERNEL);
	if (!pages)
		goto no_pages;

348 349 350 351 352
	if (IS_ENABLED(CONFIG_CMA))
		ptr = __alloc_from_contiguous(NULL, pool->size, prot, &page);
	else
		ptr = __alloc_remap_buffer(NULL, pool->size, GFP_KERNEL, prot,
					   &page, NULL);
353
	if (ptr) {
354 355 356 357 358
		int i;

		for (i = 0; i < nr_pages; i++)
			pages[i] = page + i;

359 360
		spin_lock_init(&pool->lock);
		pool->vaddr = ptr;
361
		pool->pages = pages;
362 363 364 365
		pool->bitmap = bitmap;
		pool->nr_pages = nr_pages;
		pr_info("DMA: preallocated %u KiB pool for atomic coherent allocations\n",
		       (unsigned)pool->size / 1024);
366 367
		return 0;
	}
368 369

	kfree(pages);
370
no_pages:
371 372 373 374
	kfree(bitmap);
no_bitmap:
	pr_err("DMA: failed to allocate %u KiB pool for atomic coherent allocation\n",
	       (unsigned)pool->size / 1024);
375 376 377 378 379
	return -ENOMEM;
}
/*
 * CMA is activated by core_initcall, so we must be called after it.
 */
380
postcore_initcall(atomic_pool_init);
381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409

struct dma_contig_early_reserve {
	phys_addr_t base;
	unsigned long size;
};

static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;

static int dma_mmu_remap_num __initdata;

void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
{
	dma_mmu_remap[dma_mmu_remap_num].base = base;
	dma_mmu_remap[dma_mmu_remap_num].size = size;
	dma_mmu_remap_num++;
}

void __init dma_contiguous_remap(void)
{
	int i;
	for (i = 0; i < dma_mmu_remap_num; i++) {
		phys_addr_t start = dma_mmu_remap[i].base;
		phys_addr_t end = start + dma_mmu_remap[i].size;
		struct map_desc map;
		unsigned long addr;

		if (end > arm_lowmem_limit)
			end = arm_lowmem_limit;
		if (start >= end)
410
			continue;
411 412 413 414 415 416 417 418 419 420

		map.pfn = __phys_to_pfn(start);
		map.virtual = __phys_to_virt(start);
		map.length = end - start;
		map.type = MT_MEMORY_DMA_READY;

		/*
		 * Clear previous low-memory mapping
		 */
		for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
421
		     addr += PMD_SIZE)
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
			pmd_clear(pmd_off_k(addr));

		iotable_init(&map, 1);
	}
}

static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr,
			    void *data)
{
	struct page *page = virt_to_page(addr);
	pgprot_t prot = *(pgprot_t *)data;

	set_pte_ext(pte, mk_pte(page, prot), 0);
	return 0;
}

static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
{
	unsigned long start = (unsigned long) page_address(page);
	unsigned end = start + size;

	apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
	dsb();
	flush_tlb_kernel_range(start, end);
}

static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
				 pgprot_t prot, struct page **ret_page,
				 const void *caller)
{
	struct page *page;
	void *ptr;
	page = __dma_alloc_buffer(dev, size, gfp);
	if (!page)
		return NULL;

	ptr = __dma_alloc_remap(page, size, gfp, prot, caller);
	if (!ptr) {
		__dma_free_buffer(page, size);
		return NULL;
	}

	*ret_page = page;
	return ptr;
}

468
static void *__alloc_from_pool(size_t size, struct page **ret_page)
469
{
470 471 472 473 474
	struct dma_pool *pool = &atomic_pool;
	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
	unsigned int pageno;
	unsigned long flags;
	void *ptr = NULL;
475
	unsigned long align_mask;
476

477 478
	if (!pool->vaddr) {
		WARN(1, "coherent pool not initialised!\n");
479 480 481 482 483 484 485 486
		return NULL;
	}

	/*
	 * Align the region allocation - allocations from pool are rather
	 * small, so align them to their order in pages, minimum is a page
	 * size. This helps reduce fragmentation of the DMA space.
	 */
487
	align_mask = (1 << get_order(size)) - 1;
488 489 490

	spin_lock_irqsave(&pool->lock, flags);
	pageno = bitmap_find_next_zero_area(pool->bitmap, pool->nr_pages,
491
					    0, count, align_mask);
492 493 494
	if (pageno < pool->nr_pages) {
		bitmap_set(pool->bitmap, pageno, count);
		ptr = pool->vaddr + PAGE_SIZE * pageno;
495
		*ret_page = pool->pages[pageno];
496 497 498 499
	} else {
		pr_err_once("ERROR: %u KiB atomic DMA coherent pool is too small!\n"
			    "Please increase it with coherent_pool= kernel parameter!\n",
			    (unsigned)pool->size / 1024);
500
	}
501 502 503
	spin_unlock_irqrestore(&pool->lock, flags);

	return ptr;
504 505
}

506 507 508 509 510 511 512
static bool __in_atomic_pool(void *start, size_t size)
{
	struct dma_pool *pool = &atomic_pool;
	void *end = start + size;
	void *pool_start = pool->vaddr;
	void *pool_end = pool->vaddr + pool->size;

513
	if (start < pool_start || start >= pool_end)
514 515 516 517 518 519 520 521 522 523 524
		return false;

	if (end <= pool_end)
		return true;

	WARN(1, "Wrong coherent size(%p-%p) from atomic pool(%p-%p)\n",
	     start, end - 1, pool_start, pool_end - 1);

	return false;
}

525
static int __free_from_pool(void *start, size_t size)
526
{
527 528 529
	struct dma_pool *pool = &atomic_pool;
	unsigned long pageno, count;
	unsigned long flags;
530

531
	if (!__in_atomic_pool(start, size))
532 533
		return 0;

534 535 536 537 538 539 540
	pageno = (start - pool->vaddr) >> PAGE_SHIFT;
	count = size >> PAGE_SHIFT;

	spin_lock_irqsave(&pool->lock, flags);
	bitmap_clear(pool->bitmap, pageno, count);
	spin_unlock_irqrestore(&pool->lock, flags);

541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
	return 1;
}

static void *__alloc_from_contiguous(struct device *dev, size_t size,
				     pgprot_t prot, struct page **ret_page)
{
	unsigned long order = get_order(size);
	size_t count = size >> PAGE_SHIFT;
	struct page *page;

	page = dma_alloc_from_contiguous(dev, count, order);
	if (!page)
		return NULL;

	__dma_clear_buffer(page, size);
	__dma_remap(page, size, prot);

	*ret_page = page;
	return page_address(page);
}

static void __free_from_contiguous(struct device *dev, struct page *page,
				   size_t size)
{
	__dma_remap(page, size, pgprot_kernel);
	dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
}

569 570 571 572 573 574 575 576
static inline pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot)
{
	prot = dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs) ?
			    pgprot_writecombine(prot) :
			    pgprot_dmacoherent(prot);
	return prot;
}

577 578
#define nommu() 0

579
#else	/* !CONFIG_MMU */
580

581 582
#define nommu() 1

583
#define __get_dma_pgprot(attrs, prot)	__pgprot(0)
584
#define __alloc_remap_buffer(dev, size, gfp, prot, ret, c)	NULL
585
#define __alloc_from_pool(size, ret_page)			NULL
586 587 588 589
#define __alloc_from_contiguous(dev, size, prot, ret)		NULL
#define __free_from_pool(cpu_addr, size)			0
#define __free_from_contiguous(dev, page, size)			do { } while (0)
#define __dma_free_remap(cpu_addr, size)			do { } while (0)
590 591 592

#endif	/* CONFIG_MMU */

593 594
static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
				   struct page **ret_page)
595
{
596 597 598 599 600 601 602 603 604 605 606 607
	struct page *page;
	page = __dma_alloc_buffer(dev, size, gfp);
	if (!page)
		return NULL;

	*ret_page = page;
	return page_address(page);
}



static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
R
Rob Herring 已提交
608
			 gfp_t gfp, pgprot_t prot, bool is_coherent, const void *caller)
609 610
{
	u64 mask = get_coherent_dma_mask(dev);
611
	struct page *page = NULL;
612
	void *addr;
613

614 615 616 617 618 619 620 621 622 623 624 625 626 627 628
#ifdef CONFIG_DMA_API_DEBUG
	u64 limit = (mask + 1) & ~mask;
	if (limit && size >= limit) {
		dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
			size, mask);
		return NULL;
	}
#endif

	if (!mask)
		return NULL;

	if (mask < 0xffffffffULL)
		gfp |= GFP_DMA;

629 630 631 632 633 634 635 636 637
	/*
	 * Following is a work-around (a.k.a. hack) to prevent pages
	 * with __GFP_COMP being passed to split_page() which cannot
	 * handle them.  The real problem is that this flag probably
	 * should be 0 on ARM as it is not supported on this
	 * platform; see CONFIG_HUGETLBFS.
	 */
	gfp &= ~(__GFP_COMP);

638
	*handle = DMA_ERROR_CODE;
639
	size = PAGE_ALIGN(size);
640

R
Rob Herring 已提交
641
	if (is_coherent || nommu())
642
		addr = __alloc_simple_buffer(dev, size, gfp, &page);
643
	else if (!(gfp & __GFP_WAIT))
644
		addr = __alloc_from_pool(size, &page);
645
	else if (!IS_ENABLED(CONFIG_CMA))
646
		addr = __alloc_remap_buffer(dev, size, gfp, prot, &page, caller);
647
	else
648
		addr = __alloc_from_contiguous(dev, size, prot, &page);
649

650
	if (addr)
651
		*handle = pfn_to_dma(dev, page_to_pfn(page));
652

653 654
	return addr;
}
L
Linus Torvalds 已提交
655 656 657 658 659

/*
 * Allocate DMA-coherent memory space and return both the kernel remapped
 * virtual and bus address for that space.
 */
660 661
void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
		    gfp_t gfp, struct dma_attrs *attrs)
L
Linus Torvalds 已提交
662
{
663
	pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel);
664 665 666 667 668
	void *memory;

	if (dma_alloc_from_coherent(dev, size, handle, &memory))
		return memory;

R
Rob Herring 已提交
669 670 671 672 673 674 675 676 677 678 679 680 681 682
	return __dma_alloc(dev, size, handle, gfp, prot, false,
			   __builtin_return_address(0));
}

static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
	dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
{
	pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel);
	void *memory;

	if (dma_alloc_from_coherent(dev, size, handle, &memory))
		return memory;

	return __dma_alloc(dev, size, handle, gfp, prot, true,
683
			   __builtin_return_address(0));
L
Linus Torvalds 已提交
684 685 686
}

/*
687
 * Create userspace mapping for the DMA-coherent memory.
L
Linus Torvalds 已提交
688
 */
689 690 691
int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
		 struct dma_attrs *attrs)
L
Linus Torvalds 已提交
692
{
693 694
	int ret = -ENXIO;
#ifdef CONFIG_MMU
695 696
	unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
697
	unsigned long pfn = dma_to_pfn(dev, dma_addr);
698 699
	unsigned long off = vma->vm_pgoff;

700 701
	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);

702 703 704
	if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
		return ret;

705 706 707 708 709 710
	if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
		ret = remap_pfn_range(vma, vma->vm_start,
				      pfn + off,
				      vma->vm_end - vma->vm_start,
				      vma->vm_page_prot);
	}
711
#endif	/* CONFIG_MMU */
L
Linus Torvalds 已提交
712 713 714 715 716

	return ret;
}

/*
717
 * Free a buffer as defined by the above mapping.
L
Linus Torvalds 已提交
718
 */
R
Rob Herring 已提交
719 720 721
static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
			   dma_addr_t handle, struct dma_attrs *attrs,
			   bool is_coherent)
L
Linus Torvalds 已提交
722
{
723
	struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
724

725 726 727
	if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
		return;

728 729
	size = PAGE_ALIGN(size);

R
Rob Herring 已提交
730
	if (is_coherent || nommu()) {
731
		__dma_free_buffer(page, size);
732 733
	} else if (__free_from_pool(cpu_addr, size)) {
		return;
734
	} else if (!IS_ENABLED(CONFIG_CMA)) {
735
		__dma_free_remap(cpu_addr, size);
736 737 738 739 740 741 742 743
		__dma_free_buffer(page, size);
	} else {
		/*
		 * Non-atomic allocations cannot be freed with IRQs disabled
		 */
		WARN_ON(irqs_disabled());
		__free_from_contiguous(dev, page, size);
	}
L
Linus Torvalds 已提交
744
}
745

R
Rob Herring 已提交
746 747 748 749 750 751 752 753 754 755 756 757
void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
		  dma_addr_t handle, struct dma_attrs *attrs)
{
	__arm_dma_free(dev, size, cpu_addr, handle, attrs, false);
}

static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
				  dma_addr_t handle, struct dma_attrs *attrs)
{
	__arm_dma_free(dev, size, cpu_addr, handle, attrs, true);
}

758 759 760 761 762 763 764 765 766 767 768 769 770 771 772
int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
		 void *cpu_addr, dma_addr_t handle, size_t size,
		 struct dma_attrs *attrs)
{
	struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
	int ret;

	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
	if (unlikely(ret))
		return ret;

	sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
	return 0;
}

773
static void dma_cache_maint_page(struct page *page, unsigned long offset,
774 775
	size_t size, enum dma_data_direction dir,
	void (*op)(const void *, size_t, int))
776
{
777 778 779 780 781 782
	unsigned long pfn;
	size_t left = size;

	pfn = page_to_pfn(page) + offset / PAGE_SIZE;
	offset %= PAGE_SIZE;

783 784 785 786 787 788 789 790
	/*
	 * A single sg entry may refer to multiple physically contiguous
	 * pages.  But we still need to process highmem pages individually.
	 * If highmem is not configured then the bulk of this loop gets
	 * optimized out.
	 */
	do {
		size_t len = left;
791 792
		void *vaddr;

793 794
		page = pfn_to_page(pfn);

795
		if (PageHighMem(page)) {
796
			if (len + offset > PAGE_SIZE)
797 798 799 800
				len = PAGE_SIZE - offset;
			vaddr = kmap_high_get(page);
			if (vaddr) {
				vaddr += offset;
801
				op(vaddr, len, dir);
802
				kunmap_high(page);
803
			} else if (cache_is_vipt()) {
804 805
				/* unmapped pages might still be cached */
				vaddr = kmap_atomic(page);
806
				op(vaddr + offset, len, dir);
807
				kunmap_atomic(vaddr);
808
			}
809 810
		} else {
			vaddr = page_address(page) + offset;
811
			op(vaddr, len, dir);
812 813
		}
		offset = 0;
814
		pfn++;
815 816 817
		left -= len;
	} while (left);
}
818

819 820 821 822 823 824 825
/*
 * Make an area consistent for devices.
 * Note: Drivers should NOT use this function directly, as it will break
 * platforms with CONFIG_DMABOUNCE.
 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
 */
static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
826 827
	size_t size, enum dma_data_direction dir)
{
828 829
	unsigned long paddr;

830
	dma_cache_maint_page(page, off, size, dir, dmac_map_area);
831 832

	paddr = page_to_phys(page) + off;
833 834 835 836 837 838
	if (dir == DMA_FROM_DEVICE) {
		outer_inv_range(paddr, paddr + size);
	} else {
		outer_clean_range(paddr, paddr + size);
	}
	/* FIXME: non-speculating: flush on bidirectional mappings? */
839 840
}

841
static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
842 843
	size_t size, enum dma_data_direction dir)
{
844 845 846 847 848 849 850
	unsigned long paddr = page_to_phys(page) + off;

	/* FIXME: non-speculating: not required */
	/* don't bother invalidating if DMA to device */
	if (dir != DMA_TO_DEVICE)
		outer_inv_range(paddr, paddr + size);

851
	dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
852 853 854 855 856 857

	/*
	 * Mark the D-cache clean for this page to avoid extra flushing.
	 */
	if (dir != DMA_TO_DEVICE && off == 0 && size >= PAGE_SIZE)
		set_bit(PG_dcache_clean, &page->flags);
858
}
859

860
/**
861
 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
862 863 864 865 866 867 868 869 870 871 872 873 874 875
 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 * @sg: list of buffers
 * @nents: number of buffers to map
 * @dir: DMA transfer direction
 *
 * Map a set of buffers described by scatterlist in streaming mode for DMA.
 * This is the scatter-gather version of the dma_map_single interface.
 * Here the scatter gather list elements are each tagged with the
 * appropriate dma address and length.  They are obtained via
 * sg_dma_{address,length}.
 *
 * Device ownership issues as mentioned for dma_map_single are the same
 * here.
 */
876 877
int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
		enum dma_data_direction dir, struct dma_attrs *attrs)
878
{
879
	struct dma_map_ops *ops = get_dma_ops(dev);
880
	struct scatterlist *s;
881
	int i, j;
882 883

	for_each_sg(sg, s, nents, i) {
884 885 886
#ifdef CONFIG_NEED_SG_DMA_LENGTH
		s->dma_length = s->length;
#endif
887 888
		s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
						s->length, dir, attrs);
889 890
		if (dma_mapping_error(dev, s->dma_address))
			goto bad_mapping;
891 892
	}
	return nents;
893 894 895

 bad_mapping:
	for_each_sg(sg, s, i, j)
896
		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
897
	return 0;
898 899 900
}

/**
901
 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
902 903
 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 * @sg: list of buffers
904
 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
905 906 907 908 909
 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 *
 * Unmap a set of streaming mode DMA translations.  Again, CPU access
 * rules concerning calls here are the same as for dma_unmap_single().
 */
910 911
void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
		enum dma_data_direction dir, struct dma_attrs *attrs)
912
{
913
	struct dma_map_ops *ops = get_dma_ops(dev);
914 915 916
	struct scatterlist *s;

	int i;
917

918
	for_each_sg(sg, s, nents, i)
919
		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
920 921 922
}

/**
923
 * arm_dma_sync_sg_for_cpu
924 925 926 927 928
 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 * @sg: list of buffers
 * @nents: number of buffers to map (returned from dma_map_sg)
 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 */
929
void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
930 931
			int nents, enum dma_data_direction dir)
{
932
	struct dma_map_ops *ops = get_dma_ops(dev);
933 934 935
	struct scatterlist *s;
	int i;

936 937 938
	for_each_sg(sg, s, nents, i)
		ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
					 dir);
939 940 941
}

/**
942
 * arm_dma_sync_sg_for_device
943 944 945 946 947
 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 * @sg: list of buffers
 * @nents: number of buffers to map (returned from dma_map_sg)
 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 */
948
void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
949 950
			int nents, enum dma_data_direction dir)
{
951
	struct dma_map_ops *ops = get_dma_ops(dev);
952 953 954
	struct scatterlist *s;
	int i;

955 956 957
	for_each_sg(sg, s, nents, i)
		ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
					    dir);
958
}
959

960 961 962 963 964 965 966 967 968 969 970 971 972 973
/*
 * Return whether the given device DMA address mask can be supported
 * properly.  For example, if your device can only drive the low 24-bits
 * during bus mastering, then you would pass 0x00ffffff as the mask
 * to this function.
 */
int dma_supported(struct device *dev, u64 mask)
{
	if (mask < (u64)arm_dma_limit)
		return 0;
	return 1;
}
EXPORT_SYMBOL(dma_supported);

974
int arm_dma_set_mask(struct device *dev, u64 dma_mask)
975 976 977 978 979 980 981 982 983
{
	if (!dev->dma_mask || !dma_supported(dev, dma_mask))
		return -EIO;

	*dev->dma_mask = dma_mask;

	return 0;
}

984 985 986 987 988 989 990 991
#define PREALLOC_DMA_DEBUG_ENTRIES	4096

static int __init dma_debug_do_init(void)
{
	dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
	return 0;
}
fs_initcall(dma_debug_do_init);
992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038

#ifdef CONFIG_ARM_DMA_USE_IOMMU

/* IOMMU */

static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
				      size_t size)
{
	unsigned int order = get_order(size);
	unsigned int align = 0;
	unsigned int count, start;
	unsigned long flags;

	count = ((PAGE_ALIGN(size) >> PAGE_SHIFT) +
		 (1 << mapping->order) - 1) >> mapping->order;

	if (order > mapping->order)
		align = (1 << (order - mapping->order)) - 1;

	spin_lock_irqsave(&mapping->lock, flags);
	start = bitmap_find_next_zero_area(mapping->bitmap, mapping->bits, 0,
					   count, align);
	if (start > mapping->bits) {
		spin_unlock_irqrestore(&mapping->lock, flags);
		return DMA_ERROR_CODE;
	}

	bitmap_set(mapping->bitmap, start, count);
	spin_unlock_irqrestore(&mapping->lock, flags);

	return mapping->base + (start << (mapping->order + PAGE_SHIFT));
}

static inline void __free_iova(struct dma_iommu_mapping *mapping,
			       dma_addr_t addr, size_t size)
{
	unsigned int start = (addr - mapping->base) >>
			     (mapping->order + PAGE_SHIFT);
	unsigned int count = ((size >> PAGE_SHIFT) +
			      (1 << mapping->order) - 1) >> mapping->order;
	unsigned long flags;

	spin_lock_irqsave(&mapping->lock, flags);
	bitmap_clear(mapping->bitmap, start, count);
	spin_unlock_irqrestore(&mapping->lock, flags);
}

1039 1040
static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
					  gfp_t gfp, struct dma_attrs *attrs)
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
{
	struct page **pages;
	int count = size >> PAGE_SHIFT;
	int array_size = count * sizeof(struct page *);
	int i = 0;

	if (array_size <= PAGE_SIZE)
		pages = kzalloc(array_size, gfp);
	else
		pages = vzalloc(array_size);
	if (!pages)
		return NULL;

1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
	if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs))
	{
		unsigned long order = get_order(size);
		struct page *page;

		page = dma_alloc_from_contiguous(dev, count, order);
		if (!page)
			goto error;

		__dma_clear_buffer(page, size);

		for (i = 0; i < count; i++)
			pages[i] = page + i;

		return pages;
	}

1071
	while (count) {
1072
		int j, order = __fls(count);
1073 1074 1075 1076 1077 1078 1079

		pages[i] = alloc_pages(gfp | __GFP_NOWARN, order);
		while (!pages[i] && order)
			pages[i] = alloc_pages(gfp | __GFP_NOWARN, --order);
		if (!pages[i])
			goto error;

1080
		if (order) {
1081
			split_page(pages[i], order);
1082 1083 1084 1085
			j = 1 << order;
			while (--j)
				pages[i + j] = pages[i] + j;
		}
1086 1087 1088 1089 1090 1091 1092 1093

		__dma_clear_buffer(pages[i], PAGE_SIZE << order);
		i += 1 << order;
		count -= 1 << order;
	}

	return pages;
error:
1094
	while (i--)
1095 1096
		if (pages[i])
			__free_pages(pages[i], 0);
1097
	if (array_size <= PAGE_SIZE)
1098 1099 1100 1101 1102 1103
		kfree(pages);
	else
		vfree(pages);
	return NULL;
}

1104 1105
static int __iommu_free_buffer(struct device *dev, struct page **pages,
			       size_t size, struct dma_attrs *attrs)
1106 1107 1108 1109
{
	int count = size >> PAGE_SHIFT;
	int array_size = count * sizeof(struct page *);
	int i;
1110 1111 1112 1113 1114 1115 1116 1117 1118

	if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs)) {
		dma_release_from_contiguous(dev, pages[0], count);
	} else {
		for (i = 0; i < count; i++)
			if (pages[i])
				__free_pages(pages[i], 0);
	}

1119
	if (array_size <= PAGE_SIZE)
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
		kfree(pages);
	else
		vfree(pages);
	return 0;
}

/*
 * Create a CPU mapping for a specified pages
 */
static void *
1130 1131
__iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot,
		    const void *caller)
1132
{
1133 1134 1135
	unsigned int i, nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
	struct vm_struct *area;
	unsigned long p;
1136

1137 1138 1139
	area = get_vm_area_caller(size, VM_ARM_DMA_CONSISTENT | VM_USERMAP,
				  caller);
	if (!area)
1140 1141
		return NULL;

1142 1143 1144
	area->pages = pages;
	area->nr_pages = nr_pages;
	p = (unsigned long)area->addr;
1145

1146 1147 1148 1149 1150
	for (i = 0; i < nr_pages; i++) {
		phys_addr_t phys = __pfn_to_phys(page_to_pfn(pages[i]));
		if (ioremap_page_range(p, p + PAGE_SIZE, phys, prot))
			goto err;
		p += PAGE_SIZE;
1151
	}
1152 1153 1154 1155
	return area->addr;
err:
	unmap_kernel_range((unsigned long)area->addr, size);
	vunmap(area->addr);
1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
	return NULL;
}

/*
 * Create a mapping in device IO address space for specified pages
 */
static dma_addr_t
__iommu_create_mapping(struct device *dev, struct page **pages, size_t size)
{
	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
	dma_addr_t dma_addr, iova;
	int i, ret = DMA_ERROR_CODE;

	dma_addr = __alloc_iova(mapping, size);
	if (dma_addr == DMA_ERROR_CODE)
		return dma_addr;

	iova = dma_addr;
	for (i = 0; i < count; ) {
		unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
		phys_addr_t phys = page_to_phys(pages[i]);
		unsigned int len, j;

		for (j = i + 1; j < count; j++, next_pfn++)
			if (page_to_pfn(pages[j]) != next_pfn)
				break;

		len = (j - i) << PAGE_SHIFT;
		ret = iommu_map(mapping->domain, iova, phys, len, 0);
		if (ret < 0)
			goto fail;
		iova += len;
		i = j;
	}
	return dma_addr;
fail:
	iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
	__free_iova(mapping, dma_addr, size);
	return DMA_ERROR_CODE;
}

static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
{
	struct dma_iommu_mapping *mapping = dev->archdata.mapping;

	/*
	 * add optional in-page offset from iova to size and align
	 * result to page size
	 */
	size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
	iova &= PAGE_MASK;

	iommu_unmap(mapping->domain, iova, size);
	__free_iova(mapping, iova, size);
	return 0;
}

1214 1215 1216 1217 1218 1219 1220 1221 1222
static struct page **__atomic_get_pages(void *addr)
{
	struct dma_pool *pool = &atomic_pool;
	struct page **pages = pool->pages;
	int offs = (addr - pool->vaddr) >> PAGE_SHIFT;

	return pages + offs;
}

1223
static struct page **__iommu_get_pages(void *cpu_addr, struct dma_attrs *attrs)
1224 1225 1226
{
	struct vm_struct *area;

1227 1228 1229
	if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
		return __atomic_get_pages(cpu_addr);

1230 1231 1232
	if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
		return cpu_addr;

1233 1234 1235 1236 1237 1238
	area = find_vm_area(cpu_addr);
	if (area && (area->flags & VM_ARM_DMA_CONSISTENT))
		return area->pages;
	return NULL;
}

1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266
static void *__iommu_alloc_atomic(struct device *dev, size_t size,
				  dma_addr_t *handle)
{
	struct page *page;
	void *addr;

	addr = __alloc_from_pool(size, &page);
	if (!addr)
		return NULL;

	*handle = __iommu_create_mapping(dev, &page, size);
	if (*handle == DMA_ERROR_CODE)
		goto err_mapping;

	return addr;

err_mapping:
	__free_from_pool(addr, size);
	return NULL;
}

static void __iommu_free_atomic(struct device *dev, struct page **pages,
				dma_addr_t handle, size_t size)
{
	__iommu_remove_mapping(dev, handle, size);
	__free_from_pool(page_address(pages[0]), size);
}

1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
	    dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
{
	pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel);
	struct page **pages;
	void *addr = NULL;

	*handle = DMA_ERROR_CODE;
	size = PAGE_ALIGN(size);

1277 1278 1279
	if (gfp & GFP_ATOMIC)
		return __iommu_alloc_atomic(dev, size, handle);

1280
	pages = __iommu_alloc_buffer(dev, size, gfp, attrs);
1281 1282 1283 1284 1285 1286 1287
	if (!pages)
		return NULL;

	*handle = __iommu_create_mapping(dev, pages, size);
	if (*handle == DMA_ERROR_CODE)
		goto err_buffer;

1288 1289 1290
	if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
		return pages;

1291 1292
	addr = __iommu_alloc_remap(pages, size, gfp, prot,
				   __builtin_return_address(0));
1293 1294 1295 1296 1297 1298 1299 1300
	if (!addr)
		goto err_mapping;

	return addr;

err_mapping:
	__iommu_remove_mapping(dev, *handle, size);
err_buffer:
1301
	__iommu_free_buffer(dev, pages, size, attrs);
1302 1303 1304 1305 1306 1307 1308
	return NULL;
}

static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
		    void *cpu_addr, dma_addr_t dma_addr, size_t size,
		    struct dma_attrs *attrs)
{
1309 1310
	unsigned long uaddr = vma->vm_start;
	unsigned long usize = vma->vm_end - vma->vm_start;
1311
	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1312 1313 1314

	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);

1315 1316
	if (!pages)
		return -ENXIO;
1317

1318 1319 1320 1321 1322 1323 1324 1325 1326
	do {
		int ret = vm_insert_page(vma, uaddr, *pages++);
		if (ret) {
			pr_err("Remapping memory failed: %d\n", ret);
			return ret;
		}
		uaddr += PAGE_SIZE;
		usize -= PAGE_SIZE;
	} while (usize > 0);
1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337

	return 0;
}

/*
 * free a page as defined by the above mapping.
 * Must not be called with IRQs disabled.
 */
void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
			  dma_addr_t handle, struct dma_attrs *attrs)
{
1338
	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1339 1340
	size = PAGE_ALIGN(size);

1341 1342 1343
	if (!pages) {
		WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
		return;
1344
	}
1345

1346 1347 1348 1349 1350
	if (__in_atomic_pool(cpu_addr, size)) {
		__iommu_free_atomic(dev, pages, handle, size);
		return;
	}

1351 1352 1353 1354
	if (!dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) {
		unmap_kernel_range((unsigned long)cpu_addr, size);
		vunmap(cpu_addr);
	}
1355 1356

	__iommu_remove_mapping(dev, handle, size);
1357
	__iommu_free_buffer(dev, pages, size, attrs);
1358 1359
}

1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371
static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
				 void *cpu_addr, dma_addr_t dma_addr,
				 size_t size, struct dma_attrs *attrs)
{
	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
	struct page **pages = __iommu_get_pages(cpu_addr, attrs);

	if (!pages)
		return -ENXIO;

	return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
					 GFP_KERNEL);
1372 1373 1374 1375 1376 1377 1378
}

/*
 * Map a part of the scatter-gather list into contiguous io address space
 */
static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
			  size_t size, dma_addr_t *handle,
R
Rob Herring 已提交
1379 1380
			  enum dma_data_direction dir, struct dma_attrs *attrs,
			  bool is_coherent)
1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
{
	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
	dma_addr_t iova, iova_base;
	int ret = 0;
	unsigned int count;
	struct scatterlist *s;

	size = PAGE_ALIGN(size);
	*handle = DMA_ERROR_CODE;

	iova_base = iova = __alloc_iova(mapping, size);
	if (iova == DMA_ERROR_CODE)
		return -ENOMEM;

	for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
		phys_addr_t phys = page_to_phys(sg_page(s));
		unsigned int len = PAGE_ALIGN(s->offset + s->length);

R
Rob Herring 已提交
1399 1400
		if (!is_coherent &&
			!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
			__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);

		ret = iommu_map(mapping->domain, iova, phys, len, 0);
		if (ret < 0)
			goto fail;
		count += len >> PAGE_SHIFT;
		iova += len;
	}
	*handle = iova_base;

	return 0;
fail:
	iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
	__free_iova(mapping, iova_base, size);
	return ret;
}

R
Rob Herring 已提交
1418 1419 1420
static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
		     enum dma_data_direction dir, struct dma_attrs *attrs,
		     bool is_coherent)
1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435
{
	struct scatterlist *s = sg, *dma = sg, *start = sg;
	int i, count = 0;
	unsigned int offset = s->offset;
	unsigned int size = s->offset + s->length;
	unsigned int max = dma_get_max_seg_size(dev);

	for (i = 1; i < nents; i++) {
		s = sg_next(s);

		s->dma_address = DMA_ERROR_CODE;
		s->dma_length = 0;

		if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
			if (__map_sg_chunk(dev, start, size, &dma->dma_address,
R
Rob Herring 已提交
1436
			    dir, attrs, is_coherent) < 0)
1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448
				goto bad_mapping;

			dma->dma_address += offset;
			dma->dma_length = size - offset;

			size = offset = s->offset;
			start = s;
			dma = sg_next(dma);
			count += 1;
		}
		size += s->length;
	}
R
Rob Herring 已提交
1449 1450
	if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs,
		is_coherent) < 0)
1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464
		goto bad_mapping;

	dma->dma_address += offset;
	dma->dma_length = size - offset;

	return count+1;

bad_mapping:
	for_each_sg(sg, s, count, i)
		__iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
	return 0;
}

/**
R
Rob Herring 已提交
1465
 * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1466 1467
 * @dev: valid struct device pointer
 * @sg: list of buffers
R
Rob Herring 已提交
1468 1469
 * @nents: number of buffers to map
 * @dir: DMA transfer direction
1470
 *
R
Rob Herring 已提交
1471 1472 1473 1474
 * Map a set of i/o coherent buffers described by scatterlist in streaming
 * mode for DMA. The scatter gather list elements are merged together (if
 * possible) and tagged with the appropriate dma address and length. They are
 * obtained via sg_dma_{address,length}.
1475
 */
R
Rob Herring 已提交
1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg,
		int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
{
	return __iommu_map_sg(dev, sg, nents, dir, attrs, true);
}

/**
 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
 * @dev: valid struct device pointer
 * @sg: list of buffers
 * @nents: number of buffers to map
 * @dir: DMA transfer direction
 *
 * Map a set of buffers described by scatterlist in streaming mode for DMA.
 * The scatter gather list elements are merged together (if possible) and
 * tagged with the appropriate dma address and length. They are obtained via
 * sg_dma_{address,length}.
 */
int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
		int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
{
	return __iommu_map_sg(dev, sg, nents, dir, attrs, false);
}

static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
		int nents, enum dma_data_direction dir, struct dma_attrs *attrs,
		bool is_coherent)
1503 1504 1505 1506 1507 1508 1509 1510
{
	struct scatterlist *s;
	int i;

	for_each_sg(sg, s, nents, i) {
		if (sg_dma_len(s))
			__iommu_remove_mapping(dev, sg_dma_address(s),
					       sg_dma_len(s));
R
Rob Herring 已提交
1511
		if (!is_coherent &&
1512
		    !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1513 1514 1515 1516 1517
			__dma_page_dev_to_cpu(sg_page(s), s->offset,
					      s->length, dir);
	}
}

R
Rob Herring 已提交
1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549
/**
 * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
 * @dev: valid struct device pointer
 * @sg: list of buffers
 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 *
 * Unmap a set of streaming mode DMA translations.  Again, CPU access
 * rules concerning calls here are the same as for dma_unmap_single().
 */
void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
		int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
{
	__iommu_unmap_sg(dev, sg, nents, dir, attrs, true);
}

/**
 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
 * @dev: valid struct device pointer
 * @sg: list of buffers
 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 *
 * Unmap a set of streaming mode DMA translations.  Again, CPU access
 * rules concerning calls here are the same as for dma_unmap_single().
 */
void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
			enum dma_data_direction dir, struct dma_attrs *attrs)
{
	__iommu_unmap_sg(dev, sg, nents, dir, attrs, false);
}

1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563
/**
 * arm_iommu_sync_sg_for_cpu
 * @dev: valid struct device pointer
 * @sg: list of buffers
 * @nents: number of buffers to map (returned from dma_map_sg)
 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 */
void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
			int nents, enum dma_data_direction dir)
{
	struct scatterlist *s;
	int i;

	for_each_sg(sg, s, nents, i)
R
Rob Herring 已提交
1564
		__dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581

}

/**
 * arm_iommu_sync_sg_for_device
 * @dev: valid struct device pointer
 * @sg: list of buffers
 * @nents: number of buffers to map (returned from dma_map_sg)
 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 */
void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
			int nents, enum dma_data_direction dir)
{
	struct scatterlist *s;
	int i;

	for_each_sg(sg, s, nents, i)
R
Rob Herring 已提交
1582
		__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1583 1584 1585 1586
}


/**
R
Rob Herring 已提交
1587
 * arm_coherent_iommu_map_page
1588 1589 1590 1591 1592 1593
 * @dev: valid struct device pointer
 * @page: page that buffer resides in
 * @offset: offset into page for start of buffer
 * @size: size of buffer to map
 * @dir: DMA transfer direction
 *
R
Rob Herring 已提交
1594
 * Coherent IOMMU aware version of arm_dma_map_page()
1595
 */
R
Rob Herring 已提交
1596
static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page,
1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617
	     unsigned long offset, size_t size, enum dma_data_direction dir,
	     struct dma_attrs *attrs)
{
	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
	dma_addr_t dma_addr;
	int ret, len = PAGE_ALIGN(size + offset);

	dma_addr = __alloc_iova(mapping, len);
	if (dma_addr == DMA_ERROR_CODE)
		return dma_addr;

	ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, 0);
	if (ret < 0)
		goto fail;

	return dma_addr + offset;
fail:
	__free_iova(mapping, dma_addr, len);
	return DMA_ERROR_CODE;
}

R
Rob Herring 已提交
1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662
/**
 * arm_iommu_map_page
 * @dev: valid struct device pointer
 * @page: page that buffer resides in
 * @offset: offset into page for start of buffer
 * @size: size of buffer to map
 * @dir: DMA transfer direction
 *
 * IOMMU aware version of arm_dma_map_page()
 */
static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
	     unsigned long offset, size_t size, enum dma_data_direction dir,
	     struct dma_attrs *attrs)
{
	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
		__dma_page_cpu_to_dev(page, offset, size, dir);

	return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs);
}

/**
 * arm_coherent_iommu_unmap_page
 * @dev: valid struct device pointer
 * @handle: DMA address of buffer
 * @size: size of buffer (same as passed to dma_map_page)
 * @dir: DMA transfer direction (same as passed to dma_map_page)
 *
 * Coherent IOMMU aware version of arm_dma_unmap_page()
 */
static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle,
		size_t size, enum dma_data_direction dir,
		struct dma_attrs *attrs)
{
	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
	dma_addr_t iova = handle & PAGE_MASK;
	int offset = handle & ~PAGE_MASK;
	int len = PAGE_ALIGN(size + offset);

	if (!iova)
		return;

	iommu_unmap(mapping->domain, iova, len);
	__free_iova(mapping, iova, len);
}

1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684
/**
 * arm_iommu_unmap_page
 * @dev: valid struct device pointer
 * @handle: DMA address of buffer
 * @size: size of buffer (same as passed to dma_map_page)
 * @dir: DMA transfer direction (same as passed to dma_map_page)
 *
 * IOMMU aware version of arm_dma_unmap_page()
 */
static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
		size_t size, enum dma_data_direction dir,
		struct dma_attrs *attrs)
{
	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
	dma_addr_t iova = handle & PAGE_MASK;
	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
	int offset = handle & ~PAGE_MASK;
	int len = PAGE_ALIGN(size + offset);

	if (!iova)
		return;

R
Rob Herring 已提交
1685
	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702
		__dma_page_dev_to_cpu(page, offset, size, dir);

	iommu_unmap(mapping->domain, iova, len);
	__free_iova(mapping, iova, len);
}

static void arm_iommu_sync_single_for_cpu(struct device *dev,
		dma_addr_t handle, size_t size, enum dma_data_direction dir)
{
	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
	dma_addr_t iova = handle & PAGE_MASK;
	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
	unsigned int offset = handle & ~PAGE_MASK;

	if (!iova)
		return;

R
Rob Herring 已提交
1703
	__dma_page_dev_to_cpu(page, offset, size, dir);
1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723
}

static void arm_iommu_sync_single_for_device(struct device *dev,
		dma_addr_t handle, size_t size, enum dma_data_direction dir)
{
	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
	dma_addr_t iova = handle & PAGE_MASK;
	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
	unsigned int offset = handle & ~PAGE_MASK;

	if (!iova)
		return;

	__dma_page_cpu_to_dev(page, offset, size, dir);
}

struct dma_map_ops iommu_ops = {
	.alloc		= arm_iommu_alloc_attrs,
	.free		= arm_iommu_free_attrs,
	.mmap		= arm_iommu_mmap_attrs,
1724
	.get_sgtable	= arm_iommu_get_sgtable,
1725 1726 1727 1728 1729 1730 1731 1732 1733 1734

	.map_page		= arm_iommu_map_page,
	.unmap_page		= arm_iommu_unmap_page,
	.sync_single_for_cpu	= arm_iommu_sync_single_for_cpu,
	.sync_single_for_device	= arm_iommu_sync_single_for_device,

	.map_sg			= arm_iommu_map_sg,
	.unmap_sg		= arm_iommu_unmap_sg,
	.sync_sg_for_cpu	= arm_iommu_sync_sg_for_cpu,
	.sync_sg_for_device	= arm_iommu_sync_sg_for_device,
1735 1736

	.set_dma_mask		= arm_dma_set_mask,
1737 1738
};

R
Rob Herring 已提交
1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749
struct dma_map_ops iommu_coherent_ops = {
	.alloc		= arm_iommu_alloc_attrs,
	.free		= arm_iommu_free_attrs,
	.mmap		= arm_iommu_mmap_attrs,
	.get_sgtable	= arm_iommu_get_sgtable,

	.map_page	= arm_coherent_iommu_map_page,
	.unmap_page	= arm_coherent_iommu_unmap_page,

	.map_sg		= arm_coherent_iommu_map_sg,
	.unmap_sg	= arm_coherent_iommu_unmap_sg,
1750 1751

	.set_dma_mask	= arm_dma_set_mask,
R
Rob Herring 已提交
1752 1753
};

1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846
/**
 * arm_iommu_create_mapping
 * @bus: pointer to the bus holding the client device (for IOMMU calls)
 * @base: start address of the valid IO address space
 * @size: size of the valid IO address space
 * @order: accuracy of the IO addresses allocations
 *
 * Creates a mapping structure which holds information about used/unused
 * IO address ranges, which is required to perform memory allocation and
 * mapping with IOMMU aware functions.
 *
 * The client device need to be attached to the mapping with
 * arm_iommu_attach_device function.
 */
struct dma_iommu_mapping *
arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, size_t size,
			 int order)
{
	unsigned int count = size >> (PAGE_SHIFT + order);
	unsigned int bitmap_size = BITS_TO_LONGS(count) * sizeof(long);
	struct dma_iommu_mapping *mapping;
	int err = -ENOMEM;

	if (!count)
		return ERR_PTR(-EINVAL);

	mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
	if (!mapping)
		goto err;

	mapping->bitmap = kzalloc(bitmap_size, GFP_KERNEL);
	if (!mapping->bitmap)
		goto err2;

	mapping->base = base;
	mapping->bits = BITS_PER_BYTE * bitmap_size;
	mapping->order = order;
	spin_lock_init(&mapping->lock);

	mapping->domain = iommu_domain_alloc(bus);
	if (!mapping->domain)
		goto err3;

	kref_init(&mapping->kref);
	return mapping;
err3:
	kfree(mapping->bitmap);
err2:
	kfree(mapping);
err:
	return ERR_PTR(err);
}

static void release_iommu_mapping(struct kref *kref)
{
	struct dma_iommu_mapping *mapping =
		container_of(kref, struct dma_iommu_mapping, kref);

	iommu_domain_free(mapping->domain);
	kfree(mapping->bitmap);
	kfree(mapping);
}

void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
{
	if (mapping)
		kref_put(&mapping->kref, release_iommu_mapping);
}

/**
 * arm_iommu_attach_device
 * @dev: valid struct device pointer
 * @mapping: io address space mapping structure (returned from
 *	arm_iommu_create_mapping)
 *
 * Attaches specified io address space mapping to the provided device,
 * this replaces the dma operations (dma_map_ops pointer) with the
 * IOMMU aware version. More than one client might be attached to
 * the same io address space mapping.
 */
int arm_iommu_attach_device(struct device *dev,
			    struct dma_iommu_mapping *mapping)
{
	int err;

	err = iommu_attach_device(mapping->domain, dev);
	if (err)
		return err;

	kref_get(&mapping->kref);
	dev->archdata.mapping = mapping;
	set_dma_ops(dev, &iommu_ops);

1847
	pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
1848 1849 1850 1851
	return 0;
}

#endif