rcutree_plugin.h 74.8 KB
Newer Older
1 2 3
/*
 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
 * Internal non-public definitions that provide either classic
P
Paul E. McKenney 已提交
4
 * or preemptible semantics.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *
 * Copyright Red Hat, 2009
 * Copyright IBM Corporation, 2009
 *
 * Author: Ingo Molnar <mingo@elte.hu>
 *	   Paul E. McKenney <paulmck@linux.vnet.ibm.com>
 */

27
#include <linux/delay.h>
P
Paul E. McKenney 已提交
28
#include <linux/gfp.h>
29
#include <linux/oom.h>
30
#include <linux/smpboot.h>
31

32 33 34 35 36 37 38 39
#define RCU_KTHREAD_PRIO 1

#ifdef CONFIG_RCU_BOOST
#define RCU_BOOST_PRIO CONFIG_RCU_BOOST_PRIO
#else
#define RCU_BOOST_PRIO RCU_KTHREAD_PRIO
#endif

P
Paul E. McKenney 已提交
40 41 42
#ifdef CONFIG_RCU_NOCB_CPU
static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
static bool have_rcu_nocb_mask;	    /* Was rcu_nocb_mask allocated? */
43
static bool __read_mostly rcu_nocb_poll;    /* Offload kthread are to poll. */
P
Paul E. McKenney 已提交
44 45 46
static char __initdata nocb_buf[NR_CPUS * 5];
#endif /* #ifdef CONFIG_RCU_NOCB_CPU */

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
/*
 * Check the RCU kernel configuration parameters and print informative
 * messages about anything out of the ordinary.  If you like #ifdef, you
 * will love this function.
 */
static void __init rcu_bootup_announce_oddness(void)
{
#ifdef CONFIG_RCU_TRACE
	printk(KERN_INFO "\tRCU debugfs-based tracing is enabled.\n");
#endif
#if (defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 64) || (!defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 32)
	printk(KERN_INFO "\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
	       CONFIG_RCU_FANOUT);
#endif
#ifdef CONFIG_RCU_FANOUT_EXACT
	printk(KERN_INFO "\tHierarchical RCU autobalancing is disabled.\n");
#endif
#ifdef CONFIG_RCU_FAST_NO_HZ
	printk(KERN_INFO
	       "\tRCU dyntick-idle grace-period acceleration is enabled.\n");
#endif
#ifdef CONFIG_PROVE_RCU
	printk(KERN_INFO "\tRCU lockdep checking is enabled.\n");
#endif
#ifdef CONFIG_RCU_TORTURE_TEST_RUNNABLE
	printk(KERN_INFO "\tRCU torture testing starts during boot.\n");
#endif
74
#if defined(CONFIG_TREE_PREEMPT_RCU) && !defined(CONFIG_RCU_CPU_STALL_VERBOSE)
75 76 77 78
	printk(KERN_INFO "\tDump stacks of tasks blocking RCU-preempt GP.\n");
#endif
#if defined(CONFIG_RCU_CPU_STALL_INFO)
	printk(KERN_INFO "\tAdditional per-CPU info printed with stalls.\n");
79 80
#endif
#if NUM_RCU_LVL_4 != 0
81
	printk(KERN_INFO "\tFour-level hierarchy is enabled.\n");
82
#endif
83 84
	if (rcu_fanout_leaf != CONFIG_RCU_FANOUT_LEAF)
		printk(KERN_INFO "\tExperimental boot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
85 86
	if (nr_cpu_ids != NR_CPUS)
		printk(KERN_INFO "\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids);
P
Paul E. McKenney 已提交
87
#ifdef CONFIG_RCU_NOCB_CPU
88 89 90 91 92 93 94 95 96 97 98 99 100 101
#ifndef CONFIG_RCU_NOCB_CPU_NONE
	if (!have_rcu_nocb_mask) {
		alloc_bootmem_cpumask_var(&rcu_nocb_mask);
		have_rcu_nocb_mask = true;
	}
#ifdef CONFIG_RCU_NOCB_CPU_ZERO
	pr_info("\tExperimental no-CBs CPU 0\n");
	cpumask_set_cpu(0, rcu_nocb_mask);
#endif /* #ifdef CONFIG_RCU_NOCB_CPU_ZERO */
#ifdef CONFIG_RCU_NOCB_CPU_ALL
	pr_info("\tExperimental no-CBs for all CPUs\n");
	cpumask_setall(rcu_nocb_mask);
#endif /* #ifdef CONFIG_RCU_NOCB_CPU_ALL */
#endif /* #ifndef CONFIG_RCU_NOCB_CPU_NONE */
P
Paul E. McKenney 已提交
102 103 104 105 106 107 108
	if (have_rcu_nocb_mask) {
		cpulist_scnprintf(nocb_buf, sizeof(nocb_buf), rcu_nocb_mask);
		pr_info("\tExperimental no-CBs CPUs: %s.\n", nocb_buf);
		if (rcu_nocb_poll)
			pr_info("\tExperimental polled no-CBs CPUs.\n");
	}
#endif /* #ifdef CONFIG_RCU_NOCB_CPU */
109 110
}

111 112
#ifdef CONFIG_TREE_PREEMPT_RCU

113 114
struct rcu_state rcu_preempt_state =
	RCU_STATE_INITIALIZER(rcu_preempt, call_rcu);
115
DEFINE_PER_CPU(struct rcu_data, rcu_preempt_data);
116
static struct rcu_state *rcu_state = &rcu_preempt_state;
117

118 119
static int rcu_preempted_readers_exp(struct rcu_node *rnp);

120 121 122
/*
 * Tell them what RCU they are running.
 */
123
static void __init rcu_bootup_announce(void)
124
{
P
Paul E. McKenney 已提交
125
	printk(KERN_INFO "Preemptible hierarchical RCU implementation.\n");
126
	rcu_bootup_announce_oddness();
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
}

/*
 * Return the number of RCU-preempt batches processed thus far
 * for debug and statistics.
 */
long rcu_batches_completed_preempt(void)
{
	return rcu_preempt_state.completed;
}
EXPORT_SYMBOL_GPL(rcu_batches_completed_preempt);

/*
 * Return the number of RCU batches processed thus far for debug & stats.
 */
long rcu_batches_completed(void)
{
	return rcu_batches_completed_preempt();
}
EXPORT_SYMBOL_GPL(rcu_batches_completed);

148 149 150 151 152
/*
 * Force a quiescent state for preemptible RCU.
 */
void rcu_force_quiescent_state(void)
{
153
	force_quiescent_state(&rcu_preempt_state);
154 155 156
}
EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);

157
/*
P
Paul E. McKenney 已提交
158
 * Record a preemptible-RCU quiescent state for the specified CPU.  Note
159 160 161
 * that this just means that the task currently running on the CPU is
 * not in a quiescent state.  There might be any number of tasks blocked
 * while in an RCU read-side critical section.
162 163 164 165
 *
 * Unlike the other rcu_*_qs() functions, callers to this function
 * must disable irqs in order to protect the assignment to
 * ->rcu_read_unlock_special.
166
 */
167
static void rcu_preempt_qs(int cpu)
168 169
{
	struct rcu_data *rdp = &per_cpu(rcu_preempt_data, cpu);
170

171
	if (rdp->passed_quiesce == 0)
172
		trace_rcu_grace_period("rcu_preempt", rdp->gpnum, "cpuqs");
173
	rdp->passed_quiesce = 1;
174
	current->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS;
175 176 177
}

/*
178 179 180
 * We have entered the scheduler, and the current task might soon be
 * context-switched away from.  If this task is in an RCU read-side
 * critical section, we will no longer be able to rely on the CPU to
181 182 183 184 185 186
 * record that fact, so we enqueue the task on the blkd_tasks list.
 * The task will dequeue itself when it exits the outermost enclosing
 * RCU read-side critical section.  Therefore, the current grace period
 * cannot be permitted to complete until the blkd_tasks list entries
 * predating the current grace period drain, in other words, until
 * rnp->gp_tasks becomes NULL.
187 188
 *
 * Caller must disable preemption.
189
 */
190
static void rcu_preempt_note_context_switch(int cpu)
191 192
{
	struct task_struct *t = current;
193
	unsigned long flags;
194 195 196
	struct rcu_data *rdp;
	struct rcu_node *rnp;

197
	if (t->rcu_read_lock_nesting > 0 &&
198 199 200
	    (t->rcu_read_unlock_special & RCU_READ_UNLOCK_BLOCKED) == 0) {

		/* Possibly blocking in an RCU read-side critical section. */
201
		rdp = per_cpu_ptr(rcu_preempt_state.rda, cpu);
202
		rnp = rdp->mynode;
P
Paul E. McKenney 已提交
203
		raw_spin_lock_irqsave(&rnp->lock, flags);
204
		t->rcu_read_unlock_special |= RCU_READ_UNLOCK_BLOCKED;
205
		t->rcu_blocked_node = rnp;
206 207 208 209 210 211 212 213 214

		/*
		 * If this CPU has already checked in, then this task
		 * will hold up the next grace period rather than the
		 * current grace period.  Queue the task accordingly.
		 * If the task is queued for the current grace period
		 * (i.e., this CPU has not yet passed through a quiescent
		 * state for the current grace period), then as long
		 * as that task remains queued, the current grace period
215 216 217 218 219 220
		 * cannot end.  Note that there is some uncertainty as
		 * to exactly when the current grace period started.
		 * We take a conservative approach, which can result
		 * in unnecessarily waiting on tasks that started very
		 * slightly after the current grace period began.  C'est
		 * la vie!!!
221 222 223
		 *
		 * But first, note that the current CPU must still be
		 * on line!
224
		 */
225
		WARN_ON_ONCE((rdp->grpmask & rnp->qsmaskinit) == 0);
226
		WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
227 228 229
		if ((rnp->qsmask & rdp->grpmask) && rnp->gp_tasks != NULL) {
			list_add(&t->rcu_node_entry, rnp->gp_tasks->prev);
			rnp->gp_tasks = &t->rcu_node_entry;
230 231 232 233
#ifdef CONFIG_RCU_BOOST
			if (rnp->boost_tasks != NULL)
				rnp->boost_tasks = rnp->gp_tasks;
#endif /* #ifdef CONFIG_RCU_BOOST */
234 235 236 237 238
		} else {
			list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
			if (rnp->qsmask & rdp->grpmask)
				rnp->gp_tasks = &t->rcu_node_entry;
		}
239 240 241 242 243
		trace_rcu_preempt_task(rdp->rsp->name,
				       t->pid,
				       (rnp->qsmask & rdp->grpmask)
				       ? rnp->gpnum
				       : rnp->gpnum + 1);
P
Paul E. McKenney 已提交
244
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
245 246 247 248 249 250 251 252
	} else if (t->rcu_read_lock_nesting < 0 &&
		   t->rcu_read_unlock_special) {

		/*
		 * Complete exit from RCU read-side critical section on
		 * behalf of preempted instance of __rcu_read_unlock().
		 */
		rcu_read_unlock_special(t);
253 254 255 256 257 258 259 260 261 262 263
	}

	/*
	 * Either we were not in an RCU read-side critical section to
	 * begin with, or we have now recorded that critical section
	 * globally.  Either way, we can now note a quiescent state
	 * for this CPU.  Again, if we were in an RCU read-side critical
	 * section, and if that critical section was blocking the current
	 * grace period, then the fact that the task has been enqueued
	 * means that we continue to block the current grace period.
	 */
264
	local_irq_save(flags);
265
	rcu_preempt_qs(cpu);
266
	local_irq_restore(flags);
267 268
}

269 270 271 272 273
/*
 * Check for preempted RCU readers blocking the current grace period
 * for the specified rcu_node structure.  If the caller needs a reliable
 * answer, it must hold the rcu_node's ->lock.
 */
274
static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
275
{
276
	return rnp->gp_tasks != NULL;
277 278
}

279 280 281 282 283 284 285
/*
 * Record a quiescent state for all tasks that were previously queued
 * on the specified rcu_node structure and that were blocking the current
 * RCU grace period.  The caller must hold the specified rnp->lock with
 * irqs disabled, and this lock is released upon return, but irqs remain
 * disabled.
 */
P
Paul E. McKenney 已提交
286
static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
287 288 289 290 291
	__releases(rnp->lock)
{
	unsigned long mask;
	struct rcu_node *rnp_p;

292
	if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
P
Paul E. McKenney 已提交
293
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
294 295 296 297 298 299 300 301 302 303
		return;  /* Still need more quiescent states! */
	}

	rnp_p = rnp->parent;
	if (rnp_p == NULL) {
		/*
		 * Either there is only one rcu_node in the tree,
		 * or tasks were kicked up to root rcu_node due to
		 * CPUs going offline.
		 */
P
Paul E. McKenney 已提交
304
		rcu_report_qs_rsp(&rcu_preempt_state, flags);
305 306 307 308 309
		return;
	}

	/* Report up the rest of the hierarchy. */
	mask = rnp->grpmask;
P
Paul E. McKenney 已提交
310 311
	raw_spin_unlock(&rnp->lock);	/* irqs remain disabled. */
	raw_spin_lock(&rnp_p->lock);	/* irqs already disabled. */
P
Paul E. McKenney 已提交
312
	rcu_report_qs_rnp(mask, &rcu_preempt_state, rnp_p, flags);
313 314
}

315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
/*
 * Advance a ->blkd_tasks-list pointer to the next entry, instead
 * returning NULL if at the end of the list.
 */
static struct list_head *rcu_next_node_entry(struct task_struct *t,
					     struct rcu_node *rnp)
{
	struct list_head *np;

	np = t->rcu_node_entry.next;
	if (np == &rnp->blkd_tasks)
		np = NULL;
	return np;
}

330 331 332 333 334
/*
 * Handle special cases during rcu_read_unlock(), such as needing to
 * notify RCU core processing or task having blocked during the RCU
 * read-side critical section.
 */
335
void rcu_read_unlock_special(struct task_struct *t)
336 337
{
	int empty;
338
	int empty_exp;
339
	int empty_exp_now;
340
	unsigned long flags;
341
	struct list_head *np;
342 343 344
#ifdef CONFIG_RCU_BOOST
	struct rt_mutex *rbmp = NULL;
#endif /* #ifdef CONFIG_RCU_BOOST */
345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
	struct rcu_node *rnp;
	int special;

	/* NMI handlers cannot block and cannot safely manipulate state. */
	if (in_nmi())
		return;

	local_irq_save(flags);

	/*
	 * If RCU core is waiting for this CPU to exit critical section,
	 * let it know that we have done so.
	 */
	special = t->rcu_read_unlock_special;
	if (special & RCU_READ_UNLOCK_NEED_QS) {
360
		rcu_preempt_qs(smp_processor_id());
361 362 363
	}

	/* Hardware IRQ handlers cannot block. */
364
	if (in_irq() || in_serving_softirq()) {
365 366 367 368 369 370 371 372
		local_irq_restore(flags);
		return;
	}

	/* Clean up if blocked during RCU read-side critical section. */
	if (special & RCU_READ_UNLOCK_BLOCKED) {
		t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_BLOCKED;

373 374 375 376 377 378
		/*
		 * Remove this task from the list it blocked on.  The
		 * task can migrate while we acquire the lock, but at
		 * most one time.  So at most two passes through loop.
		 */
		for (;;) {
379
			rnp = t->rcu_blocked_node;
P
Paul E. McKenney 已提交
380
			raw_spin_lock(&rnp->lock);  /* irqs already disabled. */
381
			if (rnp == t->rcu_blocked_node)
382
				break;
P
Paul E. McKenney 已提交
383
			raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
384
		}
385
		empty = !rcu_preempt_blocked_readers_cgp(rnp);
386 387
		empty_exp = !rcu_preempted_readers_exp(rnp);
		smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
388
		np = rcu_next_node_entry(t, rnp);
389
		list_del_init(&t->rcu_node_entry);
390
		t->rcu_blocked_node = NULL;
391 392
		trace_rcu_unlock_preempted_task("rcu_preempt",
						rnp->gpnum, t->pid);
393 394 395 396
		if (&t->rcu_node_entry == rnp->gp_tasks)
			rnp->gp_tasks = np;
		if (&t->rcu_node_entry == rnp->exp_tasks)
			rnp->exp_tasks = np;
397 398 399
#ifdef CONFIG_RCU_BOOST
		if (&t->rcu_node_entry == rnp->boost_tasks)
			rnp->boost_tasks = np;
400 401 402 403
		/* Snapshot/clear ->rcu_boost_mutex with rcu_node lock held. */
		if (t->rcu_boost_mutex) {
			rbmp = t->rcu_boost_mutex;
			t->rcu_boost_mutex = NULL;
404
		}
405
#endif /* #ifdef CONFIG_RCU_BOOST */
406 407 408 409

		/*
		 * If this was the last task on the current list, and if
		 * we aren't waiting on any CPUs, report the quiescent state.
410 411
		 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
		 * so we must take a snapshot of the expedited state.
412
		 */
413
		empty_exp_now = !rcu_preempted_readers_exp(rnp);
414 415 416 417 418 419 420 421
		if (!empty && !rcu_preempt_blocked_readers_cgp(rnp)) {
			trace_rcu_quiescent_state_report("preempt_rcu",
							 rnp->gpnum,
							 0, rnp->qsmask,
							 rnp->level,
							 rnp->grplo,
							 rnp->grphi,
							 !!rnp->gp_tasks);
P
Paul E. McKenney 已提交
422
			rcu_report_unblock_qs_rnp(rnp, flags);
423
		} else {
424
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
425
		}
426

427 428
#ifdef CONFIG_RCU_BOOST
		/* Unboost if we were boosted. */
429 430
		if (rbmp)
			rt_mutex_unlock(rbmp);
431 432
#endif /* #ifdef CONFIG_RCU_BOOST */

433 434 435 436
		/*
		 * If this was the last task on the expedited lists,
		 * then we need to report up the rcu_node hierarchy.
		 */
437
		if (!empty_exp && empty_exp_now)
438
			rcu_report_exp_rnp(&rcu_preempt_state, rnp, true);
439 440
	} else {
		local_irq_restore(flags);
441 442 443
	}
}

444 445 446 447 448 449 450 451 452 453 454
#ifdef CONFIG_RCU_CPU_STALL_VERBOSE

/*
 * Dump detailed information for all tasks blocking the current RCU
 * grace period on the specified rcu_node structure.
 */
static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
{
	unsigned long flags;
	struct task_struct *t;

455
	raw_spin_lock_irqsave(&rnp->lock, flags);
456 457 458 459
	if (!rcu_preempt_blocked_readers_cgp(rnp)) {
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
		return;
	}
460 461 462 463 464
	t = list_entry(rnp->gp_tasks,
		       struct task_struct, rcu_node_entry);
	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
		sched_show_task(t);
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
}

/*
 * Dump detailed information for all tasks blocking the current RCU
 * grace period.
 */
static void rcu_print_detail_task_stall(struct rcu_state *rsp)
{
	struct rcu_node *rnp = rcu_get_root(rsp);

	rcu_print_detail_task_stall_rnp(rnp);
	rcu_for_each_leaf_node(rsp, rnp)
		rcu_print_detail_task_stall_rnp(rnp);
}

#else /* #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */

static void rcu_print_detail_task_stall(struct rcu_state *rsp)
{
}

#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */

488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
#ifdef CONFIG_RCU_CPU_STALL_INFO

static void rcu_print_task_stall_begin(struct rcu_node *rnp)
{
	printk(KERN_ERR "\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
	       rnp->level, rnp->grplo, rnp->grphi);
}

static void rcu_print_task_stall_end(void)
{
	printk(KERN_CONT "\n");
}

#else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */

static void rcu_print_task_stall_begin(struct rcu_node *rnp)
{
}

static void rcu_print_task_stall_end(void)
{
}

#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */

513 514 515 516
/*
 * Scan the current list of tasks blocked within RCU read-side critical
 * sections, printing out the tid of each.
 */
517
static int rcu_print_task_stall(struct rcu_node *rnp)
518 519
{
	struct task_struct *t;
520
	int ndetected = 0;
521

522
	if (!rcu_preempt_blocked_readers_cgp(rnp))
523
		return 0;
524
	rcu_print_task_stall_begin(rnp);
525 526
	t = list_entry(rnp->gp_tasks,
		       struct task_struct, rcu_node_entry);
527
	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
528
		printk(KERN_CONT " P%d", t->pid);
529 530
		ndetected++;
	}
531
	rcu_print_task_stall_end();
532
	return ndetected;
533 534
}

535 536 537 538 539 540
/*
 * Check that the list of blocked tasks for the newly completed grace
 * period is in fact empty.  It is a serious bug to complete a grace
 * period that still has RCU readers blocked!  This function must be
 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
 * must be held by the caller.
541 542 543
 *
 * Also, if there are blocked tasks on the list, they automatically
 * block the newly created grace period, so set up ->gp_tasks accordingly.
544 545 546
 */
static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
{
547
	WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
548 549
	if (!list_empty(&rnp->blkd_tasks))
		rnp->gp_tasks = rnp->blkd_tasks.next;
550
	WARN_ON_ONCE(rnp->qsmask);
551 552
}

553 554
#ifdef CONFIG_HOTPLUG_CPU

555 556 557 558 559 560
/*
 * Handle tasklist migration for case in which all CPUs covered by the
 * specified rcu_node have gone offline.  Move them up to the root
 * rcu_node.  The reason for not just moving them to the immediate
 * parent is to remove the need for rcu_read_unlock_special() to
 * make more than two attempts to acquire the target rcu_node's lock.
561 562
 * Returns true if there were tasks blocking the current RCU grace
 * period.
563
 *
564 565 566
 * Returns 1 if there was previously a task blocking the current grace
 * period on the specified rcu_node structure.
 *
567 568
 * The caller must hold rnp->lock with irqs disabled.
 */
569 570 571
static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
				     struct rcu_node *rnp,
				     struct rcu_data *rdp)
572 573 574
{
	struct list_head *lp;
	struct list_head *lp_root;
575
	int retval = 0;
576
	struct rcu_node *rnp_root = rcu_get_root(rsp);
577
	struct task_struct *t;
578

579 580
	if (rnp == rnp_root) {
		WARN_ONCE(1, "Last CPU thought to be offlined?");
581
		return 0;  /* Shouldn't happen: at least one CPU online. */
582
	}
583 584 585

	/* If we are on an internal node, complain bitterly. */
	WARN_ON_ONCE(rnp != rdp->mynode);
586 587

	/*
588 589 590 591 592 593 594
	 * Move tasks up to root rcu_node.  Don't try to get fancy for
	 * this corner-case operation -- just put this node's tasks
	 * at the head of the root node's list, and update the root node's
	 * ->gp_tasks and ->exp_tasks pointers to those of this node's,
	 * if non-NULL.  This might result in waiting for more tasks than
	 * absolutely necessary, but this is a good performance/complexity
	 * tradeoff.
595
	 */
596
	if (rcu_preempt_blocked_readers_cgp(rnp) && rnp->qsmask == 0)
597 598 599
		retval |= RCU_OFL_TASKS_NORM_GP;
	if (rcu_preempted_readers_exp(rnp))
		retval |= RCU_OFL_TASKS_EXP_GP;
600 601 602 603 604 605 606 607 608 609 610 611
	lp = &rnp->blkd_tasks;
	lp_root = &rnp_root->blkd_tasks;
	while (!list_empty(lp)) {
		t = list_entry(lp->next, typeof(*t), rcu_node_entry);
		raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
		list_del(&t->rcu_node_entry);
		t->rcu_blocked_node = rnp_root;
		list_add(&t->rcu_node_entry, lp_root);
		if (&t->rcu_node_entry == rnp->gp_tasks)
			rnp_root->gp_tasks = rnp->gp_tasks;
		if (&t->rcu_node_entry == rnp->exp_tasks)
			rnp_root->exp_tasks = rnp->exp_tasks;
612 613 614 615
#ifdef CONFIG_RCU_BOOST
		if (&t->rcu_node_entry == rnp->boost_tasks)
			rnp_root->boost_tasks = rnp->boost_tasks;
#endif /* #ifdef CONFIG_RCU_BOOST */
616
		raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
617
	}
618

619 620
	rnp->gp_tasks = NULL;
	rnp->exp_tasks = NULL;
621
#ifdef CONFIG_RCU_BOOST
622
	rnp->boost_tasks = NULL;
623 624 625 626 627
	/*
	 * In case root is being boosted and leaf was not.  Make sure
	 * that we boost the tasks blocking the current grace period
	 * in this case.
	 */
628 629
	raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
	if (rnp_root->boost_tasks != NULL &&
630 631
	    rnp_root->boost_tasks != rnp_root->gp_tasks &&
	    rnp_root->boost_tasks != rnp_root->exp_tasks)
632 633 634 635
		rnp_root->boost_tasks = rnp_root->gp_tasks;
	raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
#endif /* #ifdef CONFIG_RCU_BOOST */

636
	return retval;
637 638
}

639 640
#endif /* #ifdef CONFIG_HOTPLUG_CPU */

641 642 643 644 645 646 647 648 649 650 651 652
/*
 * Check for a quiescent state from the current CPU.  When a task blocks,
 * the task is recorded in the corresponding CPU's rcu_node structure,
 * which is checked elsewhere.
 *
 * Caller must disable hard irqs.
 */
static void rcu_preempt_check_callbacks(int cpu)
{
	struct task_struct *t = current;

	if (t->rcu_read_lock_nesting == 0) {
653
		rcu_preempt_qs(cpu);
654 655
		return;
	}
656 657
	if (t->rcu_read_lock_nesting > 0 &&
	    per_cpu(rcu_preempt_data, cpu).qs_pending)
658
		t->rcu_read_unlock_special |= RCU_READ_UNLOCK_NEED_QS;
659 660
}

661 662
#ifdef CONFIG_RCU_BOOST

663 664 665 666 667
static void rcu_preempt_do_callbacks(void)
{
	rcu_do_batch(&rcu_preempt_state, &__get_cpu_var(rcu_preempt_data));
}

668 669
#endif /* #ifdef CONFIG_RCU_BOOST */

670
/*
P
Paul E. McKenney 已提交
671
 * Queue a preemptible-RCU callback for invocation after a grace period.
672 673 674
 */
void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
{
P
Paul E. McKenney 已提交
675
	__call_rcu(head, func, &rcu_preempt_state, -1, 0);
676 677 678
}
EXPORT_SYMBOL_GPL(call_rcu);

679 680 681 682 683 684 685 686 687 688
/*
 * Queue an RCU callback for lazy invocation after a grace period.
 * This will likely be later named something like "call_rcu_lazy()",
 * but this change will require some way of tagging the lazy RCU
 * callbacks in the list of pending callbacks.  Until then, this
 * function may only be called from __kfree_rcu().
 */
void kfree_call_rcu(struct rcu_head *head,
		    void (*func)(struct rcu_head *rcu))
{
P
Paul E. McKenney 已提交
689
	__call_rcu(head, func, &rcu_preempt_state, -1, 1);
690 691 692
}
EXPORT_SYMBOL_GPL(kfree_call_rcu);

693 694 695 696 697
/**
 * synchronize_rcu - wait until a grace period has elapsed.
 *
 * Control will return to the caller some time after a full grace
 * period has elapsed, in other words after all currently executing RCU
698 699 700 701 702
 * read-side critical sections have completed.  Note, however, that
 * upon return from synchronize_rcu(), the caller might well be executing
 * concurrently with new RCU read-side critical sections that began while
 * synchronize_rcu() was waiting.  RCU read-side critical sections are
 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
703 704 705
 *
 * See the description of synchronize_sched() for more detailed information
 * on memory ordering guarantees.
706 707 708
 */
void synchronize_rcu(void)
{
709 710 711 712
	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
			   !lock_is_held(&rcu_lock_map) &&
			   !lock_is_held(&rcu_sched_lock_map),
			   "Illegal synchronize_rcu() in RCU read-side critical section");
713 714
	if (!rcu_scheduler_active)
		return;
715 716 717 718
	if (rcu_expedited)
		synchronize_rcu_expedited();
	else
		wait_rcu_gp(call_rcu);
719 720 721
}
EXPORT_SYMBOL_GPL(synchronize_rcu);

722
static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq);
723
static unsigned long sync_rcu_preempt_exp_count;
724 725 726 727 728 729 730 731 732 733
static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex);

/*
 * Return non-zero if there are any tasks in RCU read-side critical
 * sections blocking the current preemptible-RCU expedited grace period.
 * If there is no preemptible-RCU expedited grace period currently in
 * progress, returns zero unconditionally.
 */
static int rcu_preempted_readers_exp(struct rcu_node *rnp)
{
734
	return rnp->exp_tasks != NULL;
735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759
}

/*
 * return non-zero if there is no RCU expedited grace period in progress
 * for the specified rcu_node structure, in other words, if all CPUs and
 * tasks covered by the specified rcu_node structure have done their bit
 * for the current expedited grace period.  Works only for preemptible
 * RCU -- other RCU implementation use other means.
 *
 * Caller must hold sync_rcu_preempt_exp_mutex.
 */
static int sync_rcu_preempt_exp_done(struct rcu_node *rnp)
{
	return !rcu_preempted_readers_exp(rnp) &&
	       ACCESS_ONCE(rnp->expmask) == 0;
}

/*
 * Report the exit from RCU read-side critical section for the last task
 * that queued itself during or before the current expedited preemptible-RCU
 * grace period.  This event is reported either to the rcu_node structure on
 * which the task was queued or to one of that rcu_node structure's ancestors,
 * recursively up the tree.  (Calm down, calm down, we do the recursion
 * iteratively!)
 *
760 761 762
 * Most callers will set the "wake" flag, but the task initiating the
 * expedited grace period need not wake itself.
 *
763 764
 * Caller must hold sync_rcu_preempt_exp_mutex.
 */
765 766
static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
			       bool wake)
767 768 769 770
{
	unsigned long flags;
	unsigned long mask;

P
Paul E. McKenney 已提交
771
	raw_spin_lock_irqsave(&rnp->lock, flags);
772
	for (;;) {
773 774
		if (!sync_rcu_preempt_exp_done(rnp)) {
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
775
			break;
776
		}
777
		if (rnp->parent == NULL) {
778
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
779 780
			if (wake)
				wake_up(&sync_rcu_preempt_exp_wq);
781 782 783
			break;
		}
		mask = rnp->grpmask;
P
Paul E. McKenney 已提交
784
		raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
785
		rnp = rnp->parent;
P
Paul E. McKenney 已提交
786
		raw_spin_lock(&rnp->lock); /* irqs already disabled */
787 788 789 790 791 792 793 794 795
		rnp->expmask &= ~mask;
	}
}

/*
 * Snapshot the tasks blocking the newly started preemptible-RCU expedited
 * grace period for the specified rcu_node structure.  If there are no such
 * tasks, report it up the rcu_node hierarchy.
 *
796 797
 * Caller must hold sync_rcu_preempt_exp_mutex and must exclude
 * CPU hotplug operations.
798 799 800 801
 */
static void
sync_rcu_preempt_exp_init(struct rcu_state *rsp, struct rcu_node *rnp)
{
802
	unsigned long flags;
803
	int must_wait = 0;
804

805
	raw_spin_lock_irqsave(&rnp->lock, flags);
806
	if (list_empty(&rnp->blkd_tasks)) {
807
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
808
	} else {
809
		rnp->exp_tasks = rnp->blkd_tasks.next;
810
		rcu_initiate_boost(rnp, flags);  /* releases rnp->lock */
811 812
		must_wait = 1;
	}
813
	if (!must_wait)
814
		rcu_report_exp_rnp(rsp, rnp, false); /* Don't wake self. */
815 816
}

817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832
/**
 * synchronize_rcu_expedited - Brute-force RCU grace period
 *
 * Wait for an RCU-preempt grace period, but expedite it.  The basic
 * idea is to invoke synchronize_sched_expedited() to push all the tasks to
 * the ->blkd_tasks lists and wait for this list to drain.  This consumes
 * significant time on all CPUs and is unfriendly to real-time workloads,
 * so is thus not recommended for any sort of common-case code.
 * In fact, if you are using synchronize_rcu_expedited() in a loop,
 * please restructure your code to batch your updates, and then Use a
 * single synchronize_rcu() instead.
 *
 * Note that it is illegal to call this function while holding any lock
 * that is acquired by a CPU-hotplug notifier.  And yes, it is also illegal
 * to call this function from a CPU-hotplug notifier.  Failing to observe
 * these restriction will result in deadlock.
833 834 835
 */
void synchronize_rcu_expedited(void)
{
836 837 838
	unsigned long flags;
	struct rcu_node *rnp;
	struct rcu_state *rsp = &rcu_preempt_state;
839
	unsigned long snap;
840 841 842 843 844 845
	int trycount = 0;

	smp_mb(); /* Caller's modifications seen first by other CPUs. */
	snap = ACCESS_ONCE(sync_rcu_preempt_exp_count) + 1;
	smp_mb(); /* Above access cannot bleed into critical section. */

846 847 848 849 850 851 852 853 854 855
	/*
	 * Block CPU-hotplug operations.  This means that any CPU-hotplug
	 * operation that finds an rcu_node structure with tasks in the
	 * process of being boosted will know that all tasks blocking
	 * this expedited grace period will already be in the process of
	 * being boosted.  This simplifies the process of moving tasks
	 * from leaf to root rcu_node structures.
	 */
	get_online_cpus();

856 857 858 859 860 861
	/*
	 * Acquire lock, falling back to synchronize_rcu() if too many
	 * lock-acquisition failures.  Of course, if someone does the
	 * expedited grace period for us, just leave.
	 */
	while (!mutex_trylock(&sync_rcu_preempt_exp_mutex)) {
862 863 864 865 866
		if (ULONG_CMP_LT(snap,
		    ACCESS_ONCE(sync_rcu_preempt_exp_count))) {
			put_online_cpus();
			goto mb_ret; /* Others did our work for us. */
		}
867
		if (trycount++ < 10) {
868
			udelay(trycount * num_online_cpus());
869
		} else {
870
			put_online_cpus();
871
			wait_rcu_gp(call_rcu);
872 873 874
			return;
		}
	}
875 876
	if (ULONG_CMP_LT(snap, ACCESS_ONCE(sync_rcu_preempt_exp_count))) {
		put_online_cpus();
877
		goto unlock_mb_ret; /* Others did our work for us. */
878
	}
879

880
	/* force all RCU readers onto ->blkd_tasks lists. */
881 882 883 884
	synchronize_sched_expedited();

	/* Initialize ->expmask for all non-leaf rcu_node structures. */
	rcu_for_each_nonleaf_node_breadth_first(rsp, rnp) {
885
		raw_spin_lock_irqsave(&rnp->lock, flags);
886
		rnp->expmask = rnp->qsmaskinit;
887
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
888 889
	}

890
	/* Snapshot current state of ->blkd_tasks lists. */
891 892 893 894 895
	rcu_for_each_leaf_node(rsp, rnp)
		sync_rcu_preempt_exp_init(rsp, rnp);
	if (NUM_RCU_NODES > 1)
		sync_rcu_preempt_exp_init(rsp, rcu_get_root(rsp));

896
	put_online_cpus();
897

898
	/* Wait for snapshotted ->blkd_tasks lists to drain. */
899 900 901 902 903 904 905 906 907 908 909
	rnp = rcu_get_root(rsp);
	wait_event(sync_rcu_preempt_exp_wq,
		   sync_rcu_preempt_exp_done(rnp));

	/* Clean up and exit. */
	smp_mb(); /* ensure expedited GP seen before counter increment. */
	ACCESS_ONCE(sync_rcu_preempt_exp_count)++;
unlock_mb_ret:
	mutex_unlock(&sync_rcu_preempt_exp_mutex);
mb_ret:
	smp_mb(); /* ensure subsequent action seen after grace period. */
910 911 912
}
EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);

913 914
/**
 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
915 916 917 918 919
 *
 * Note that this primitive does not necessarily wait for an RCU grace period
 * to complete.  For example, if there are no RCU callbacks queued anywhere
 * in the system, then rcu_barrier() is within its rights to return
 * immediately, without waiting for anything, much less an RCU grace period.
920 921 922
 */
void rcu_barrier(void)
{
923
	_rcu_barrier(&rcu_preempt_state);
924 925 926
}
EXPORT_SYMBOL_GPL(rcu_barrier);

927
/*
P
Paul E. McKenney 已提交
928
 * Initialize preemptible RCU's state structures.
929 930 931
 */
static void __init __rcu_init_preempt(void)
{
932
	rcu_init_one(&rcu_preempt_state, &rcu_preempt_data);
933 934
}

935 936
#else /* #ifdef CONFIG_TREE_PREEMPT_RCU */

937 938
static struct rcu_state *rcu_state = &rcu_sched_state;

939 940 941
/*
 * Tell them what RCU they are running.
 */
942
static void __init rcu_bootup_announce(void)
943 944
{
	printk(KERN_INFO "Hierarchical RCU implementation.\n");
945
	rcu_bootup_announce_oddness();
946 947 948 949 950 951 952 953 954 955 956
}

/*
 * Return the number of RCU batches processed thus far for debug & stats.
 */
long rcu_batches_completed(void)
{
	return rcu_batches_completed_sched();
}
EXPORT_SYMBOL_GPL(rcu_batches_completed);

957 958 959 960 961 962 963 964 965 966
/*
 * Force a quiescent state for RCU, which, because there is no preemptible
 * RCU, becomes the same as rcu-sched.
 */
void rcu_force_quiescent_state(void)
{
	rcu_sched_force_quiescent_state();
}
EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);

967 968 969 970 971 972 973 974
/*
 * Because preemptible RCU does not exist, we never have to check for
 * CPUs being in quiescent states.
 */
static void rcu_preempt_note_context_switch(int cpu)
{
}

975
/*
P
Paul E. McKenney 已提交
976
 * Because preemptible RCU does not exist, there are never any preempted
977 978
 * RCU readers.
 */
979
static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
980 981 982 983
{
	return 0;
}

984 985 986
#ifdef CONFIG_HOTPLUG_CPU

/* Because preemptible RCU does not exist, no quieting of tasks. */
P
Paul E. McKenney 已提交
987
static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
988
{
P
Paul E. McKenney 已提交
989
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
990 991 992 993
}

#endif /* #ifdef CONFIG_HOTPLUG_CPU */

994
/*
P
Paul E. McKenney 已提交
995
 * Because preemptible RCU does not exist, we never have to check for
996 997 998 999 1000 1001
 * tasks blocked within RCU read-side critical sections.
 */
static void rcu_print_detail_task_stall(struct rcu_state *rsp)
{
}

1002
/*
P
Paul E. McKenney 已提交
1003
 * Because preemptible RCU does not exist, we never have to check for
1004 1005
 * tasks blocked within RCU read-side critical sections.
 */
1006
static int rcu_print_task_stall(struct rcu_node *rnp)
1007
{
1008
	return 0;
1009 1010
}

1011
/*
P
Paul E. McKenney 已提交
1012
 * Because there is no preemptible RCU, there can be no readers blocked,
1013 1014
 * so there is no need to check for blocked tasks.  So check only for
 * bogus qsmask values.
1015 1016 1017
 */
static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
{
1018
	WARN_ON_ONCE(rnp->qsmask);
1019 1020
}

1021 1022
#ifdef CONFIG_HOTPLUG_CPU

1023
/*
P
Paul E. McKenney 已提交
1024
 * Because preemptible RCU does not exist, it never needs to migrate
1025 1026 1027
 * tasks that were blocked within RCU read-side critical sections, and
 * such non-existent tasks cannot possibly have been blocking the current
 * grace period.
1028
 */
1029 1030 1031
static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
				     struct rcu_node *rnp,
				     struct rcu_data *rdp)
1032
{
1033
	return 0;
1034 1035
}

1036 1037
#endif /* #ifdef CONFIG_HOTPLUG_CPU */

1038
/*
P
Paul E. McKenney 已提交
1039
 * Because preemptible RCU does not exist, it never has any callbacks
1040 1041
 * to check.
 */
1042
static void rcu_preempt_check_callbacks(int cpu)
1043 1044 1045
{
}

1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
/*
 * Queue an RCU callback for lazy invocation after a grace period.
 * This will likely be later named something like "call_rcu_lazy()",
 * but this change will require some way of tagging the lazy RCU
 * callbacks in the list of pending callbacks.  Until then, this
 * function may only be called from __kfree_rcu().
 *
 * Because there is no preemptible RCU, we use RCU-sched instead.
 */
void kfree_call_rcu(struct rcu_head *head,
		    void (*func)(struct rcu_head *rcu))
{
P
Paul E. McKenney 已提交
1058
	__call_rcu(head, func, &rcu_sched_state, -1, 1);
1059 1060 1061
}
EXPORT_SYMBOL_GPL(kfree_call_rcu);

1062 1063
/*
 * Wait for an rcu-preempt grace period, but make it happen quickly.
P
Paul E. McKenney 已提交
1064
 * But because preemptible RCU does not exist, map to rcu-sched.
1065 1066 1067 1068 1069 1070 1071
 */
void synchronize_rcu_expedited(void)
{
	synchronize_sched_expedited();
}
EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);

1072 1073 1074
#ifdef CONFIG_HOTPLUG_CPU

/*
P
Paul E. McKenney 已提交
1075
 * Because preemptible RCU does not exist, there is never any need to
1076 1077 1078
 * report on tasks preempted in RCU read-side critical sections during
 * expedited RCU grace periods.
 */
1079 1080
static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
			       bool wake)
1081 1082 1083 1084 1085
{
}

#endif /* #ifdef CONFIG_HOTPLUG_CPU */

1086
/*
P
Paul E. McKenney 已提交
1087
 * Because preemptible RCU does not exist, rcu_barrier() is just
1088 1089 1090 1091 1092 1093 1094 1095
 * another name for rcu_barrier_sched().
 */
void rcu_barrier(void)
{
	rcu_barrier_sched();
}
EXPORT_SYMBOL_GPL(rcu_barrier);

1096
/*
P
Paul E. McKenney 已提交
1097
 * Because preemptible RCU does not exist, it need not be initialized.
1098 1099 1100 1101 1102
 */
static void __init __rcu_init_preempt(void)
{
}

1103
#endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */
1104

1105 1106 1107 1108
#ifdef CONFIG_RCU_BOOST

#include "rtmutex_common.h"

1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
#ifdef CONFIG_RCU_TRACE

static void rcu_initiate_boost_trace(struct rcu_node *rnp)
{
	if (list_empty(&rnp->blkd_tasks))
		rnp->n_balk_blkd_tasks++;
	else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL)
		rnp->n_balk_exp_gp_tasks++;
	else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL)
		rnp->n_balk_boost_tasks++;
	else if (rnp->gp_tasks != NULL && rnp->qsmask != 0)
		rnp->n_balk_notblocked++;
	else if (rnp->gp_tasks != NULL &&
1122
		 ULONG_CMP_LT(jiffies, rnp->boost_time))
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
		rnp->n_balk_notyet++;
	else
		rnp->n_balk_nos++;
}

#else /* #ifdef CONFIG_RCU_TRACE */

static void rcu_initiate_boost_trace(struct rcu_node *rnp)
{
}

#endif /* #else #ifdef CONFIG_RCU_TRACE */

T
Thomas Gleixner 已提交
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
static void rcu_wake_cond(struct task_struct *t, int status)
{
	/*
	 * If the thread is yielding, only wake it when this
	 * is invoked from idle
	 */
	if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
		wake_up_process(t);
}

1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
/*
 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
 * or ->boost_tasks, advancing the pointer to the next task in the
 * ->blkd_tasks list.
 *
 * Note that irqs must be enabled: boosting the task can block.
 * Returns 1 if there are more tasks needing to be boosted.
 */
static int rcu_boost(struct rcu_node *rnp)
{
	unsigned long flags;
	struct rt_mutex mtx;
	struct task_struct *t;
	struct list_head *tb;

	if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL)
		return 0;  /* Nothing left to boost. */

	raw_spin_lock_irqsave(&rnp->lock, flags);

	/*
	 * Recheck under the lock: all tasks in need of boosting
	 * might exit their RCU read-side critical sections on their own.
	 */
	if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
		return 0;
	}

	/*
	 * Preferentially boost tasks blocking expedited grace periods.
	 * This cannot starve the normal grace periods because a second
	 * expedited grace period must boost all blocked tasks, including
	 * those blocking the pre-existing normal grace period.
	 */
1181
	if (rnp->exp_tasks != NULL) {
1182
		tb = rnp->exp_tasks;
1183 1184
		rnp->n_exp_boosts++;
	} else {
1185
		tb = rnp->boost_tasks;
1186 1187 1188
		rnp->n_normal_boosts++;
	}
	rnp->n_tasks_boosted++;
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212

	/*
	 * We boost task t by manufacturing an rt_mutex that appears to
	 * be held by task t.  We leave a pointer to that rt_mutex where
	 * task t can find it, and task t will release the mutex when it
	 * exits its outermost RCU read-side critical section.  Then
	 * simply acquiring this artificial rt_mutex will boost task
	 * t's priority.  (Thanks to tglx for suggesting this approach!)
	 *
	 * Note that task t must acquire rnp->lock to remove itself from
	 * the ->blkd_tasks list, which it will do from exit() if from
	 * nowhere else.  We therefore are guaranteed that task t will
	 * stay around at least until we drop rnp->lock.  Note that
	 * rnp->lock also resolves races between our priority boosting
	 * and task t's exiting its outermost RCU read-side critical
	 * section.
	 */
	t = container_of(tb, struct task_struct, rcu_node_entry);
	rt_mutex_init_proxy_locked(&mtx, t);
	t->rcu_boost_mutex = &mtx;
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
	rt_mutex_lock(&mtx);  /* Side effect: boosts task t's priority. */
	rt_mutex_unlock(&mtx);  /* Keep lockdep happy. */

1213 1214
	return ACCESS_ONCE(rnp->exp_tasks) != NULL ||
	       ACCESS_ONCE(rnp->boost_tasks) != NULL;
1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
}

/*
 * Priority-boosting kthread.  One per leaf rcu_node and one for the
 * root rcu_node.
 */
static int rcu_boost_kthread(void *arg)
{
	struct rcu_node *rnp = (struct rcu_node *)arg;
	int spincnt = 0;
	int more2boost;

1227
	trace_rcu_utilization("Start boost kthread@init");
1228
	for (;;) {
1229
		rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
1230
		trace_rcu_utilization("End boost kthread@rcu_wait");
1231
		rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
1232
		trace_rcu_utilization("Start boost kthread@rcu_wait");
1233
		rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
1234 1235 1236 1237 1238 1239
		more2boost = rcu_boost(rnp);
		if (more2boost)
			spincnt++;
		else
			spincnt = 0;
		if (spincnt > 10) {
T
Thomas Gleixner 已提交
1240
			rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
1241
			trace_rcu_utilization("End boost kthread@rcu_yield");
T
Thomas Gleixner 已提交
1242
			schedule_timeout_interruptible(2);
1243
			trace_rcu_utilization("Start boost kthread@rcu_yield");
1244 1245 1246
			spincnt = 0;
		}
	}
1247
	/* NOTREACHED */
1248
	trace_rcu_utilization("End boost kthread@notreached");
1249 1250 1251 1252 1253 1254 1255 1256 1257
	return 0;
}

/*
 * Check to see if it is time to start boosting RCU readers that are
 * blocking the current grace period, and, if so, tell the per-rcu_node
 * kthread to start boosting them.  If there is an expedited grace
 * period in progress, it is always time to boost.
 *
1258 1259 1260
 * The caller must hold rnp->lock, which this function releases.
 * The ->boost_kthread_task is immortal, so we don't need to worry
 * about it going away.
1261
 */
1262
static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1263 1264 1265
{
	struct task_struct *t;

1266 1267
	if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
		rnp->n_balk_exp_gp_tasks++;
1268
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1269
		return;
1270
	}
1271 1272 1273 1274 1275 1276 1277
	if (rnp->exp_tasks != NULL ||
	    (rnp->gp_tasks != NULL &&
	     rnp->boost_tasks == NULL &&
	     rnp->qsmask == 0 &&
	     ULONG_CMP_GE(jiffies, rnp->boost_time))) {
		if (rnp->exp_tasks == NULL)
			rnp->boost_tasks = rnp->gp_tasks;
1278
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1279
		t = rnp->boost_kthread_task;
T
Thomas Gleixner 已提交
1280 1281
		if (t)
			rcu_wake_cond(t, rnp->boost_kthread_status);
1282
	} else {
1283
		rcu_initiate_boost_trace(rnp);
1284 1285
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
	}
1286 1287
}

1288 1289 1290 1291 1292 1293 1294 1295 1296
/*
 * Wake up the per-CPU kthread to invoke RCU callbacks.
 */
static void invoke_rcu_callbacks_kthread(void)
{
	unsigned long flags;

	local_irq_save(flags);
	__this_cpu_write(rcu_cpu_has_work, 1);
1297
	if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
T
Thomas Gleixner 已提交
1298 1299 1300 1301
	    current != __this_cpu_read(rcu_cpu_kthread_task)) {
		rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task),
			      __this_cpu_read(rcu_cpu_kthread_status));
	}
1302 1303 1304
	local_irq_restore(flags);
}

1305 1306 1307 1308 1309 1310 1311 1312 1313
/*
 * Is the current CPU running the RCU-callbacks kthread?
 * Caller must have preemption disabled.
 */
static bool rcu_is_callbacks_kthread(void)
{
	return __get_cpu_var(rcu_cpu_kthread_task) == current;
}

1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
#define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)

/*
 * Do priority-boost accounting for the start of a new grace period.
 */
static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
{
	rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
}

/*
 * Create an RCU-boost kthread for the specified node if one does not
 * already exist.  We only create this kthread for preemptible RCU.
 * Returns zero if all is well, a negated errno otherwise.
 */
static int __cpuinit rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
T
Thomas Gleixner 已提交
1330
						 struct rcu_node *rnp)
1331
{
T
Thomas Gleixner 已提交
1332
	int rnp_index = rnp - &rsp->node[0];
1333 1334 1335 1336 1337 1338
	unsigned long flags;
	struct sched_param sp;
	struct task_struct *t;

	if (&rcu_preempt_state != rsp)
		return 0;
T
Thomas Gleixner 已提交
1339 1340 1341 1342

	if (!rcu_scheduler_fully_active || rnp->qsmaskinit == 0)
		return 0;

1343
	rsp->boost = 1;
1344 1345 1346
	if (rnp->boost_kthread_task != NULL)
		return 0;
	t = kthread_create(rcu_boost_kthread, (void *)rnp,
1347
			   "rcub/%d", rnp_index);
1348 1349 1350 1351 1352
	if (IS_ERR(t))
		return PTR_ERR(t);
	raw_spin_lock_irqsave(&rnp->lock, flags);
	rnp->boost_kthread_task = t;
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1353
	sp.sched_priority = RCU_BOOST_PRIO;
1354
	sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1355
	wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1356 1357 1358
	return 0;
}

1359 1360 1361 1362 1363 1364 1365
static void rcu_kthread_do_work(void)
{
	rcu_do_batch(&rcu_sched_state, &__get_cpu_var(rcu_sched_data));
	rcu_do_batch(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
	rcu_preempt_do_callbacks();
}

1366
static void rcu_cpu_kthread_setup(unsigned int cpu)
1367 1368 1369
{
	struct sched_param sp;

1370 1371
	sp.sched_priority = RCU_KTHREAD_PRIO;
	sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1372 1373
}

1374
static void rcu_cpu_kthread_park(unsigned int cpu)
1375
{
1376
	per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
1377 1378
}

1379
static int rcu_cpu_kthread_should_run(unsigned int cpu)
1380
{
1381
	return __get_cpu_var(rcu_cpu_has_work);
1382 1383 1384 1385
}

/*
 * Per-CPU kernel thread that invokes RCU callbacks.  This replaces the
1386 1387
 * RCU softirq used in flavors and configurations of RCU that do not
 * support RCU priority boosting.
1388
 */
1389
static void rcu_cpu_kthread(unsigned int cpu)
1390
{
1391 1392 1393
	unsigned int *statusp = &__get_cpu_var(rcu_cpu_kthread_status);
	char work, *workp = &__get_cpu_var(rcu_cpu_has_work);
	int spincnt;
1394

1395
	for (spincnt = 0; spincnt < 10; spincnt++) {
1396
		trace_rcu_utilization("Start CPU kthread@rcu_wait");
1397 1398
		local_bh_disable();
		*statusp = RCU_KTHREAD_RUNNING;
1399 1400
		this_cpu_inc(rcu_cpu_kthread_loops);
		local_irq_disable();
1401 1402
		work = *workp;
		*workp = 0;
1403
		local_irq_enable();
1404 1405 1406
		if (work)
			rcu_kthread_do_work();
		local_bh_enable();
1407 1408 1409 1410
		if (*workp == 0) {
			trace_rcu_utilization("End CPU kthread@rcu_wait");
			*statusp = RCU_KTHREAD_WAITING;
			return;
1411 1412
		}
	}
1413 1414 1415 1416 1417
	*statusp = RCU_KTHREAD_YIELDING;
	trace_rcu_utilization("Start CPU kthread@rcu_yield");
	schedule_timeout_interruptible(2);
	trace_rcu_utilization("End CPU kthread@rcu_yield");
	*statusp = RCU_KTHREAD_WAITING;
1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428
}

/*
 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
 * served by the rcu_node in question.  The CPU hotplug lock is still
 * held, so the value of rnp->qsmaskinit will be stable.
 *
 * We don't include outgoingcpu in the affinity set, use -1 if there is
 * no outgoing CPU.  If there are no CPUs left in the affinity set,
 * this function allows the kthread to execute on any CPU.
 */
T
Thomas Gleixner 已提交
1429
static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1430
{
T
Thomas Gleixner 已提交
1431 1432
	struct task_struct *t = rnp->boost_kthread_task;
	unsigned long mask = rnp->qsmaskinit;
1433 1434 1435
	cpumask_var_t cm;
	int cpu;

T
Thomas Gleixner 已提交
1436
	if (!t)
1437
		return;
T
Thomas Gleixner 已提交
1438
	if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1439 1440 1441 1442 1443 1444 1445 1446 1447 1448
		return;
	for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
		if ((mask & 0x1) && cpu != outgoingcpu)
			cpumask_set_cpu(cpu, cm);
	if (cpumask_weight(cm) == 0) {
		cpumask_setall(cm);
		for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++)
			cpumask_clear_cpu(cpu, cm);
		WARN_ON_ONCE(cpumask_weight(cm) == 0);
	}
T
Thomas Gleixner 已提交
1449
	set_cpus_allowed_ptr(t, cm);
1450 1451 1452
	free_cpumask_var(cm);
}

1453 1454 1455 1456 1457 1458 1459 1460
static struct smp_hotplug_thread rcu_cpu_thread_spec = {
	.store			= &rcu_cpu_kthread_task,
	.thread_should_run	= rcu_cpu_kthread_should_run,
	.thread_fn		= rcu_cpu_kthread,
	.thread_comm		= "rcuc/%u",
	.setup			= rcu_cpu_kthread_setup,
	.park			= rcu_cpu_kthread_park,
};
1461 1462 1463 1464 1465 1466 1467

/*
 * Spawn all kthreads -- called as soon as the scheduler is running.
 */
static int __init rcu_spawn_kthreads(void)
{
	struct rcu_node *rnp;
T
Thomas Gleixner 已提交
1468
	int cpu;
1469

1470
	rcu_scheduler_fully_active = 1;
1471
	for_each_possible_cpu(cpu)
1472
		per_cpu(rcu_cpu_has_work, cpu) = 0;
1473
	BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec));
1474
	rnp = rcu_get_root(rcu_state);
T
Thomas Gleixner 已提交
1475
	(void)rcu_spawn_one_boost_kthread(rcu_state, rnp);
1476 1477
	if (NUM_RCU_NODES > 1) {
		rcu_for_each_leaf_node(rcu_state, rnp)
T
Thomas Gleixner 已提交
1478
			(void)rcu_spawn_one_boost_kthread(rcu_state, rnp);
1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489
	}
	return 0;
}
early_initcall(rcu_spawn_kthreads);

static void __cpuinit rcu_prepare_kthreads(int cpu)
{
	struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
	struct rcu_node *rnp = rdp->mynode;

	/* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1490
	if (rcu_scheduler_fully_active)
T
Thomas Gleixner 已提交
1491
		(void)rcu_spawn_one_boost_kthread(rcu_state, rnp);
1492 1493
}

1494 1495
#else /* #ifdef CONFIG_RCU_BOOST */

1496
static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1497
{
1498
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1499 1500
}

1501
static void invoke_rcu_callbacks_kthread(void)
1502
{
1503
	WARN_ON_ONCE(1);
1504 1505
}

1506 1507 1508 1509 1510
static bool rcu_is_callbacks_kthread(void)
{
	return false;
}

1511 1512 1513 1514
static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
{
}

T
Thomas Gleixner 已提交
1515
static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1516 1517 1518
{
}

1519 1520 1521 1522 1523 1524 1525
static int __init rcu_scheduler_really_started(void)
{
	rcu_scheduler_fully_active = 1;
	return 0;
}
early_initcall(rcu_scheduler_really_started);

1526 1527 1528 1529
static void __cpuinit rcu_prepare_kthreads(int cpu)
{
}

1530 1531
#endif /* #else #ifdef CONFIG_RCU_BOOST */

1532 1533 1534 1535 1536 1537 1538 1539
#if !defined(CONFIG_RCU_FAST_NO_HZ)

/*
 * Check to see if any future RCU-related work will need to be done
 * by the current CPU, even if none need be done immediately, returning
 * 1 if so.  This function is part of the RCU implementation; it is -not-
 * an exported member of the RCU API.
 *
1540 1541
 * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
 * any flavor of RCU.
1542
 */
1543
int rcu_needs_cpu(int cpu, unsigned long *delta_jiffies)
1544
{
1545
	*delta_jiffies = ULONG_MAX;
1546 1547 1548
	return rcu_cpu_has_callbacks(cpu);
}

1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563
/*
 * Because we do not have RCU_FAST_NO_HZ, don't bother initializing for it.
 */
static void rcu_prepare_for_idle_init(int cpu)
{
}

/*
 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
 * after it.
 */
static void rcu_cleanup_after_idle(int cpu)
{
}

1564
/*
1565
 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1566 1567 1568 1569 1570 1571
 * is nothing.
 */
static void rcu_prepare_for_idle(int cpu)
{
}

1572 1573 1574 1575 1576 1577 1578 1579
/*
 * Don't bother keeping a running count of the number of RCU callbacks
 * posted because CONFIG_RCU_FAST_NO_HZ=n.
 */
static void rcu_idle_count_callbacks_posted(void)
{
}

1580 1581
#else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */

1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606
/*
 * This code is invoked when a CPU goes idle, at which point we want
 * to have the CPU do everything required for RCU so that it can enter
 * the energy-efficient dyntick-idle mode.  This is handled by a
 * state machine implemented by rcu_prepare_for_idle() below.
 *
 * The following three proprocessor symbols control this state machine:
 *
 * RCU_IDLE_FLUSHES gives the maximum number of times that we will attempt
 *	to satisfy RCU.  Beyond this point, it is better to incur a periodic
 *	scheduling-clock interrupt than to loop through the state machine
 *	at full power.
 * RCU_IDLE_OPT_FLUSHES gives the number of RCU_IDLE_FLUSHES that are
 *	optional if RCU does not need anything immediately from this
 *	CPU, even if this CPU still has RCU callbacks queued.  The first
 *	times through the state machine are mandatory: we need to give
 *	the state machine a chance to communicate a quiescent state
 *	to the RCU core.
 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
 *	to sleep in dyntick-idle mode with RCU callbacks pending.  This
 *	is sized to be roughly one RCU grace period.  Those energy-efficiency
 *	benchmarkers who might otherwise be tempted to set this to a large
 *	number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
 *	system.  And if you are -that- concerned about energy efficiency,
 *	just power the system down and be done with it!
1607 1608 1609
 * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
 *	permitted to sleep in dyntick-idle mode with only lazy RCU
 *	callbacks pending.  Setting this too high can OOM your system.
1610 1611 1612 1613 1614 1615 1616
 *
 * The values below work well in practice.  If future workloads require
 * adjustment, they can be converted into kernel config parameters, though
 * making the state machine smarter might be a better option.
 */
#define RCU_IDLE_FLUSHES 5		/* Number of dyntick-idle tries. */
#define RCU_IDLE_OPT_FLUSHES 3		/* Optional dyntick-idle tries. */
1617
#define RCU_IDLE_GP_DELAY 4		/* Roughly one grace period. */
1618
#define RCU_IDLE_LAZY_GP_DELAY (6 * HZ)	/* Roughly six seconds. */
1619

1620 1621
extern int tick_nohz_enabled;

1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
/*
 * Does the specified flavor of RCU have non-lazy callbacks pending on
 * the specified CPU?  Both RCU flavor and CPU are specified by the
 * rcu_data structure.
 */
static bool __rcu_cpu_has_nonlazy_callbacks(struct rcu_data *rdp)
{
	return rdp->qlen != rdp->qlen_lazy;
}

#ifdef CONFIG_TREE_PREEMPT_RCU

/*
 * Are there non-lazy RCU-preempt callbacks?  (There cannot be if there
 * is no RCU-preempt in the kernel.)
 */
static bool rcu_preempt_cpu_has_nonlazy_callbacks(int cpu)
{
	struct rcu_data *rdp = &per_cpu(rcu_preempt_data, cpu);

	return __rcu_cpu_has_nonlazy_callbacks(rdp);
}

#else /* #ifdef CONFIG_TREE_PREEMPT_RCU */

static bool rcu_preempt_cpu_has_nonlazy_callbacks(int cpu)
{
	return 0;
}

#endif /* else #ifdef CONFIG_TREE_PREEMPT_RCU */

/*
 * Does any flavor of RCU have non-lazy callbacks on the specified CPU?
 */
static bool rcu_cpu_has_nonlazy_callbacks(int cpu)
{
	return __rcu_cpu_has_nonlazy_callbacks(&per_cpu(rcu_sched_data, cpu)) ||
	       __rcu_cpu_has_nonlazy_callbacks(&per_cpu(rcu_bh_data, cpu)) ||
	       rcu_preempt_cpu_has_nonlazy_callbacks(cpu);
}

1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697
/*
 * Allow the CPU to enter dyntick-idle mode if either: (1) There are no
 * callbacks on this CPU, (2) this CPU has not yet attempted to enter
 * dyntick-idle mode, or (3) this CPU is in the process of attempting to
 * enter dyntick-idle mode.  Otherwise, if we have recently tried and failed
 * to enter dyntick-idle mode, we refuse to try to enter it.  After all,
 * it is better to incur scheduling-clock interrupts than to spin
 * continuously for the same time duration!
 *
 * The delta_jiffies argument is used to store the time when RCU is
 * going to need the CPU again if it still has callbacks.  The reason
 * for this is that rcu_prepare_for_idle() might need to post a timer,
 * but if so, it will do so after tick_nohz_stop_sched_tick() has set
 * the wakeup time for this CPU.  This means that RCU's timer can be
 * delayed until the wakeup time, which defeats the purpose of posting
 * a timer.
 */
int rcu_needs_cpu(int cpu, unsigned long *delta_jiffies)
{
	struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);

	/* Flag a new idle sojourn to the idle-entry state machine. */
	rdtp->idle_first_pass = 1;
	/* If no callbacks, RCU doesn't need the CPU. */
	if (!rcu_cpu_has_callbacks(cpu)) {
		*delta_jiffies = ULONG_MAX;
		return 0;
	}
	if (rdtp->dyntick_holdoff == jiffies) {
		/* RCU recently tried and failed, so don't try again. */
		*delta_jiffies = 1;
		return 1;
	}
	/* Set up for the possibility that RCU will post a timer. */
1698 1699 1700 1701 1702 1703 1704
	if (rcu_cpu_has_nonlazy_callbacks(cpu)) {
		*delta_jiffies = round_up(RCU_IDLE_GP_DELAY + jiffies,
					  RCU_IDLE_GP_DELAY) - jiffies;
	} else {
		*delta_jiffies = jiffies + RCU_IDLE_LAZY_GP_DELAY;
		*delta_jiffies = round_jiffies(*delta_jiffies) - jiffies;
	}
1705 1706 1707
	return 0;
}

1708 1709 1710 1711 1712 1713 1714 1715 1716
/*
 * Handler for smp_call_function_single().  The only point of this
 * handler is to wake the CPU up, so the handler does only tracing.
 */
void rcu_idle_demigrate(void *unused)
{
	trace_rcu_prep_idle("Demigrate");
}

1717 1718 1719 1720 1721 1722
/*
 * Timer handler used to force CPU to start pushing its remaining RCU
 * callbacks in the case where it entered dyntick-idle mode with callbacks
 * pending.  The hander doesn't really need to do anything because the
 * real work is done upon re-entry to idle, or by the next scheduling-clock
 * interrupt should idle not be re-entered.
1723 1724 1725 1726
 *
 * One special case: the timer gets migrated without awakening the CPU
 * on which the timer was scheduled on.  In this case, we must wake up
 * that CPU.  We do so with smp_call_function_single().
1727
 */
1728
static void rcu_idle_gp_timer_func(unsigned long cpu_in)
1729
{
1730 1731
	int cpu = (int)cpu_in;

1732
	trace_rcu_prep_idle("Timer");
1733 1734 1735 1736
	if (cpu != smp_processor_id())
		smp_call_function_single(cpu, rcu_idle_demigrate, NULL, 0);
	else
		WARN_ON_ONCE(1); /* Getting here can hang the system... */
1737 1738 1739 1740 1741 1742 1743
}

/*
 * Initialize the timer used to pull CPUs out of dyntick-idle mode.
 */
static void rcu_prepare_for_idle_init(int cpu)
{
1744 1745 1746 1747 1748 1749
	struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);

	rdtp->dyntick_holdoff = jiffies - 1;
	setup_timer(&rdtp->idle_gp_timer, rcu_idle_gp_timer_func, cpu);
	rdtp->idle_gp_timer_expires = jiffies - 1;
	rdtp->idle_first_pass = 1;
1750 1751 1752 1753
}

/*
 * Clean up for exit from idle.  Because we are exiting from idle, there
1754
 * is no longer any point to ->idle_gp_timer, so cancel it.  This will
1755 1756 1757 1758
 * do nothing if this timer is not active, so just cancel it unconditionally.
 */
static void rcu_cleanup_after_idle(int cpu)
{
1759 1760 1761
	struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);

	del_timer(&rdtp->idle_gp_timer);
1762
	trace_rcu_prep_idle("Cleanup after idle");
1763
	rdtp->tick_nohz_enabled_snap = ACCESS_ONCE(tick_nohz_enabled);
1764 1765
}

1766 1767 1768 1769
/*
 * Check to see if any RCU-related work can be done by the current CPU,
 * and if so, schedule a softirq to get it done.  This function is part
 * of the RCU implementation; it is -not- an exported member of the RCU API.
1770
 *
1771 1772 1773 1774 1775 1776
 * The idea is for the current CPU to clear out all work required by the
 * RCU core for the current grace period, so that this CPU can be permitted
 * to enter dyntick-idle mode.  In some cases, it will need to be awakened
 * at the end of the grace period by whatever CPU ends the grace period.
 * This allows CPUs to go dyntick-idle more quickly, and to reduce the
 * number of wakeups by a modest integer factor.
1777 1778 1779
 *
 * Because it is not legal to invoke rcu_process_callbacks() with irqs
 * disabled, we do one pass of force_quiescent_state(), then do a
1780
 * invoke_rcu_core() to cause rcu_process_callbacks() to be invoked
1781
 * later.  The ->dyntick_drain field controls the sequencing.
1782 1783
 *
 * The caller must have disabled interrupts.
1784
 */
1785
static void rcu_prepare_for_idle(int cpu)
1786
{
1787
	struct timer_list *tp;
1788
	struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800
	int tne;

	/* Handle nohz enablement switches conservatively. */
	tne = ACCESS_ONCE(tick_nohz_enabled);
	if (tne != rdtp->tick_nohz_enabled_snap) {
		if (rcu_cpu_has_callbacks(cpu))
			invoke_rcu_core(); /* force nohz to see update. */
		rdtp->tick_nohz_enabled_snap = tne;
		return;
	}
	if (!tne)
		return;
1801

1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821
	/* Adaptive-tick mode, where usermode execution is idle to RCU. */
	if (!is_idle_task(current)) {
		rdtp->dyntick_holdoff = jiffies - 1;
		if (rcu_cpu_has_nonlazy_callbacks(cpu)) {
			trace_rcu_prep_idle("User dyntick with callbacks");
			rdtp->idle_gp_timer_expires =
				round_up(jiffies + RCU_IDLE_GP_DELAY,
					 RCU_IDLE_GP_DELAY);
		} else if (rcu_cpu_has_callbacks(cpu)) {
			rdtp->idle_gp_timer_expires =
				round_jiffies(jiffies + RCU_IDLE_LAZY_GP_DELAY);
			trace_rcu_prep_idle("User dyntick with lazy callbacks");
		} else {
			return;
		}
		tp = &rdtp->idle_gp_timer;
		mod_timer_pinned(tp, rdtp->idle_gp_timer_expires);
		return;
	}

1822 1823 1824 1825 1826
	/*
	 * If this is an idle re-entry, for example, due to use of
	 * RCU_NONIDLE() or the new idle-loop tracing API within the idle
	 * loop, then don't take any state-machine actions, unless the
	 * momentary exit from idle queued additional non-lazy callbacks.
1827
	 * Instead, repost the ->idle_gp_timer if this CPU has callbacks
1828 1829
	 * pending.
	 */
1830 1831
	if (!rdtp->idle_first_pass &&
	    (rdtp->nonlazy_posted == rdtp->nonlazy_posted_snap)) {
1832
		if (rcu_cpu_has_callbacks(cpu)) {
1833 1834
			tp = &rdtp->idle_gp_timer;
			mod_timer_pinned(tp, rdtp->idle_gp_timer_expires);
1835
		}
1836 1837
		return;
	}
1838 1839
	rdtp->idle_first_pass = 0;
	rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted - 1;
1840

1841
	/*
1842 1843
	 * If there are no callbacks on this CPU, enter dyntick-idle mode.
	 * Also reset state to avoid prejudicing later attempts.
1844
	 */
1845
	if (!rcu_cpu_has_callbacks(cpu)) {
1846 1847
		rdtp->dyntick_holdoff = jiffies - 1;
		rdtp->dyntick_drain = 0;
1848
		trace_rcu_prep_idle("No callbacks");
1849
		return;
1850
	}
1851 1852 1853 1854 1855

	/*
	 * If in holdoff mode, just return.  We will presumably have
	 * refrained from disabling the scheduling-clock tick.
	 */
1856
	if (rdtp->dyntick_holdoff == jiffies) {
1857
		trace_rcu_prep_idle("In holdoff");
1858
		return;
1859
	}
1860

1861 1862
	/* Check and update the ->dyntick_drain sequencing. */
	if (rdtp->dyntick_drain <= 0) {
1863
		/* First time through, initialize the counter. */
1864 1865
		rdtp->dyntick_drain = RCU_IDLE_FLUSHES;
	} else if (rdtp->dyntick_drain <= RCU_IDLE_OPT_FLUSHES &&
1866 1867
		   !rcu_pending(cpu) &&
		   !local_softirq_pending()) {
1868
		/* Can we go dyntick-idle despite still having callbacks? */
1869 1870
		rdtp->dyntick_drain = 0;
		rdtp->dyntick_holdoff = jiffies;
1871 1872
		if (rcu_cpu_has_nonlazy_callbacks(cpu)) {
			trace_rcu_prep_idle("Dyntick with callbacks");
1873
			rdtp->idle_gp_timer_expires =
1874 1875
				round_up(jiffies + RCU_IDLE_GP_DELAY,
					 RCU_IDLE_GP_DELAY);
1876
		} else {
1877
			rdtp->idle_gp_timer_expires =
1878
				round_jiffies(jiffies + RCU_IDLE_LAZY_GP_DELAY);
1879 1880
			trace_rcu_prep_idle("Dyntick with lazy callbacks");
		}
1881 1882 1883
		tp = &rdtp->idle_gp_timer;
		mod_timer_pinned(tp, rdtp->idle_gp_timer_expires);
		rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1884
		return; /* Nothing more to do immediately. */
1885
	} else if (--(rdtp->dyntick_drain) <= 0) {
1886
		/* We have hit the limit, so time to give up. */
1887
		rdtp->dyntick_holdoff = jiffies;
1888
		trace_rcu_prep_idle("Begin holdoff");
1889 1890
		invoke_rcu_core();  /* Force the CPU out of dyntick-idle. */
		return;
1891 1892
	}

1893 1894 1895 1896 1897 1898 1899
	/*
	 * Do one step of pushing the remaining RCU callbacks through
	 * the RCU core state machine.
	 */
#ifdef CONFIG_TREE_PREEMPT_RCU
	if (per_cpu(rcu_preempt_data, cpu).nxtlist) {
		rcu_preempt_qs(cpu);
1900
		force_quiescent_state(&rcu_preempt_state);
1901 1902
	}
#endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1903 1904
	if (per_cpu(rcu_sched_data, cpu).nxtlist) {
		rcu_sched_qs(cpu);
1905
		force_quiescent_state(&rcu_sched_state);
1906 1907 1908
	}
	if (per_cpu(rcu_bh_data, cpu).nxtlist) {
		rcu_bh_qs(cpu);
1909
		force_quiescent_state(&rcu_bh_state);
1910 1911
	}

1912 1913 1914 1915
	/*
	 * If RCU callbacks are still pending, RCU still needs this CPU.
	 * So try forcing the callbacks through the grace period.
	 */
1916
	if (rcu_cpu_has_callbacks(cpu)) {
1917
		trace_rcu_prep_idle("More callbacks");
1918
		invoke_rcu_core();
1919
	} else {
1920
		trace_rcu_prep_idle("Callbacks drained");
1921
	}
1922 1923
}

1924
/*
1925 1926 1927 1928 1929 1930
 * Keep a running count of the number of non-lazy callbacks posted
 * on this CPU.  This running counter (which is never decremented) allows
 * rcu_prepare_for_idle() to detect when something out of the idle loop
 * posts a callback, even if an equal number of callbacks are invoked.
 * Of course, callbacks should only be posted from within a trace event
 * designed to be called from idle or from within RCU_NONIDLE().
1931 1932 1933
 */
static void rcu_idle_count_callbacks_posted(void)
{
1934
	__this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
1935 1936
}

1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
/*
 * Data for flushing lazy RCU callbacks at OOM time.
 */
static atomic_t oom_callback_count;
static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq);

/*
 * RCU OOM callback -- decrement the outstanding count and deliver the
 * wake-up if we are the last one.
 */
static void rcu_oom_callback(struct rcu_head *rhp)
{
	if (atomic_dec_and_test(&oom_callback_count))
		wake_up(&oom_callback_wq);
}

/*
 * Post an rcu_oom_notify callback on the current CPU if it has at
 * least one lazy callback.  This will unnecessarily post callbacks
 * to CPUs that already have a non-lazy callback at the end of their
 * callback list, but this is an infrequent operation, so accept some
 * extra overhead to keep things simple.
 */
static void rcu_oom_notify_cpu(void *unused)
{
	struct rcu_state *rsp;
	struct rcu_data *rdp;

	for_each_rcu_flavor(rsp) {
		rdp = __this_cpu_ptr(rsp->rda);
		if (rdp->qlen_lazy != 0) {
			atomic_inc(&oom_callback_count);
			rsp->call(&rdp->oom_head, rcu_oom_callback);
		}
	}
}

/*
 * If low on memory, ensure that each CPU has a non-lazy callback.
 * This will wake up CPUs that have only lazy callbacks, in turn
 * ensuring that they free up the corresponding memory in a timely manner.
 * Because an uncertain amount of memory will be freed in some uncertain
 * timeframe, we do not claim to have freed anything.
 */
static int rcu_oom_notify(struct notifier_block *self,
			  unsigned long notused, void *nfreed)
{
	int cpu;

	/* Wait for callbacks from earlier instance to complete. */
	wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0);

	/*
	 * Prevent premature wakeup: ensure that all increments happen
	 * before there is a chance of the counter reaching zero.
	 */
	atomic_set(&oom_callback_count, 1);

	get_online_cpus();
	for_each_online_cpu(cpu) {
		smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1);
		cond_resched();
	}
	put_online_cpus();

	/* Unconditionally decrement: no need to wake ourselves up. */
	atomic_dec(&oom_callback_count);

	return NOTIFY_OK;
}

static struct notifier_block rcu_oom_nb = {
	.notifier_call = rcu_oom_notify
};

static int __init rcu_register_oom_notifier(void)
{
	register_oom_notifier(&rcu_oom_nb);
	return 0;
}
early_initcall(rcu_register_oom_notifier);

2019
#endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
2020 2021 2022 2023 2024 2025 2026

#ifdef CONFIG_RCU_CPU_STALL_INFO

#ifdef CONFIG_RCU_FAST_NO_HZ

static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
{
2027 2028
	struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
	struct timer_list *tltp = &rdtp->idle_gp_timer;
2029
	char c;
2030

2031 2032 2033 2034 2035 2036 2037
	c = rdtp->dyntick_holdoff == jiffies ? 'H' : '.';
	if (timer_pending(tltp))
		sprintf(cp, "drain=%d %c timer=%lu",
			rdtp->dyntick_drain, c, tltp->expires - jiffies);
	else
		sprintf(cp, "drain=%d %c timer not pending",
			rdtp->dyntick_drain, c);
2038 2039 2040 2041 2042 2043
}

#else /* #ifdef CONFIG_RCU_FAST_NO_HZ */

static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
{
2044
	*cp = '\0';
2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104
}

#endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */

/* Initiate the stall-info list. */
static void print_cpu_stall_info_begin(void)
{
	printk(KERN_CONT "\n");
}

/*
 * Print out diagnostic information for the specified stalled CPU.
 *
 * If the specified CPU is aware of the current RCU grace period
 * (flavor specified by rsp), then print the number of scheduling
 * clock interrupts the CPU has taken during the time that it has
 * been aware.  Otherwise, print the number of RCU grace periods
 * that this CPU is ignorant of, for example, "1" if the CPU was
 * aware of the previous grace period.
 *
 * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
 */
static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
{
	char fast_no_hz[72];
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
	struct rcu_dynticks *rdtp = rdp->dynticks;
	char *ticks_title;
	unsigned long ticks_value;

	if (rsp->gpnum == rdp->gpnum) {
		ticks_title = "ticks this GP";
		ticks_value = rdp->ticks_this_gp;
	} else {
		ticks_title = "GPs behind";
		ticks_value = rsp->gpnum - rdp->gpnum;
	}
	print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
	printk(KERN_ERR "\t%d: (%lu %s) idle=%03x/%llx/%d %s\n",
	       cpu, ticks_value, ticks_title,
	       atomic_read(&rdtp->dynticks) & 0xfff,
	       rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
	       fast_no_hz);
}

/* Terminate the stall-info list. */
static void print_cpu_stall_info_end(void)
{
	printk(KERN_ERR "\t");
}

/* Zero ->ticks_this_gp for all flavors of RCU. */
static void zero_cpu_stall_ticks(struct rcu_data *rdp)
{
	rdp->ticks_this_gp = 0;
}

/* Increment ->ticks_this_gp for all flavors of RCU. */
static void increment_cpu_stall_ticks(void)
{
2105 2106 2107 2108
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
		__this_cpu_ptr(rsp->rda)->ticks_this_gp++;
2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136
}

#else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */

static void print_cpu_stall_info_begin(void)
{
	printk(KERN_CONT " {");
}

static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
{
	printk(KERN_CONT " %d", cpu);
}

static void print_cpu_stall_info_end(void)
{
	printk(KERN_CONT "} ");
}

static void zero_cpu_stall_ticks(struct rcu_data *rdp)
{
}

static void increment_cpu_stall_ticks(void)
{
}

#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
P
Paul E. McKenney 已提交
2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170

#ifdef CONFIG_RCU_NOCB_CPU

/*
 * Offload callback processing from the boot-time-specified set of CPUs
 * specified by rcu_nocb_mask.  For each CPU in the set, there is a
 * kthread created that pulls the callbacks from the corresponding CPU,
 * waits for a grace period to elapse, and invokes the callbacks.
 * The no-CBs CPUs do a wake_up() on their kthread when they insert
 * a callback into any empty list, unless the rcu_nocb_poll boot parameter
 * has been specified, in which case each kthread actively polls its
 * CPU.  (Which isn't so great for energy efficiency, but which does
 * reduce RCU's overhead on that CPU.)
 *
 * This is intended to be used in conjunction with Frederic Weisbecker's
 * adaptive-idle work, which would seriously reduce OS jitter on CPUs
 * running CPU-bound user-mode computations.
 *
 * Offloading of callback processing could also in theory be used as
 * an energy-efficiency measure because CPUs with no RCU callbacks
 * queued are more aggressive about entering dyntick-idle mode.
 */


/* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
static int __init rcu_nocb_setup(char *str)
{
	alloc_bootmem_cpumask_var(&rcu_nocb_mask);
	have_rcu_nocb_mask = true;
	cpulist_parse(str, rcu_nocb_mask);
	return 1;
}
__setup("rcu_nocbs=", rcu_nocb_setup);

2171 2172 2173 2174 2175 2176 2177
static int __init parse_rcu_nocb_poll(char *arg)
{
	rcu_nocb_poll = 1;
	return 0;
}
early_param("rcu_nocb_poll", parse_rcu_nocb_poll);

2178
/*
2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213
 * Do any no-CBs CPUs need another grace period?
 *
 * Interrupts must be disabled.  If the caller does not hold the root
 * rnp_node structure's ->lock, the results are advisory only.
 */
static int rcu_nocb_needs_gp(struct rcu_state *rsp)
{
	struct rcu_node *rnp = rcu_get_root(rsp);

	return rnp->n_nocb_gp_requests[(ACCESS_ONCE(rnp->completed) + 1) & 0x1];
}

/*
 * Clean up this rcu_node structure's no-CBs state at the end of
 * a grace period, and also return whether any no-CBs CPU associated
 * with this rcu_node structure needs another grace period.
 */
static int rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
{
	int c = rnp->completed;
	int needmore;

	wake_up_all(&rnp->nocb_gp_wq[c & 0x1]);
	rnp->n_nocb_gp_requests[c & 0x1] = 0;
	needmore = rnp->n_nocb_gp_requests[(c + 1) & 0x1];
	return needmore;
}

/*
 * Set the root rcu_node structure's ->n_nocb_gp_requests field
 * based on the sum of those of all rcu_node structures.  This does
 * double-count the root rcu_node structure's requests, but this
 * is necessary to handle the possibility of a rcu_nocb_kthread()
 * having awakened during the time that the rcu_node structures
 * were being updated for the end of the previous grace period.
2214
 */
2215 2216 2217 2218 2219 2220
static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
{
	rnp->n_nocb_gp_requests[(rnp->completed + 1) & 0x1] += nrq;
}

static void rcu_init_one_nocb(struct rcu_node *rnp)
2221
{
2222 2223
	init_waitqueue_head(&rnp->nocb_gp_wq[0]);
	init_waitqueue_head(&rnp->nocb_gp_wq[1]);
2224 2225
}

P
Paul E. McKenney 已提交
2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325
/* Is the specified CPU a no-CPUs CPU? */
static bool is_nocb_cpu(int cpu)
{
	if (have_rcu_nocb_mask)
		return cpumask_test_cpu(cpu, rcu_nocb_mask);
	return false;
}

/*
 * Enqueue the specified string of rcu_head structures onto the specified
 * CPU's no-CBs lists.  The CPU is specified by rdp, the head of the
 * string by rhp, and the tail of the string by rhtp.  The non-lazy/lazy
 * counts are supplied by rhcount and rhcount_lazy.
 *
 * If warranted, also wake up the kthread servicing this CPUs queues.
 */
static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
				    struct rcu_head *rhp,
				    struct rcu_head **rhtp,
				    int rhcount, int rhcount_lazy)
{
	int len;
	struct rcu_head **old_rhpp;
	struct task_struct *t;

	/* Enqueue the callback on the nocb list and update counts. */
	old_rhpp = xchg(&rdp->nocb_tail, rhtp);
	ACCESS_ONCE(*old_rhpp) = rhp;
	atomic_long_add(rhcount, &rdp->nocb_q_count);
	atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);

	/* If we are not being polled and there is a kthread, awaken it ... */
	t = ACCESS_ONCE(rdp->nocb_kthread);
	if (rcu_nocb_poll | !t)
		return;
	len = atomic_long_read(&rdp->nocb_q_count);
	if (old_rhpp == &rdp->nocb_head) {
		wake_up(&rdp->nocb_wq); /* ... only if queue was empty ... */
		rdp->qlen_last_fqs_check = 0;
	} else if (len > rdp->qlen_last_fqs_check + qhimark) {
		wake_up_process(t); /* ... or if many callbacks queued. */
		rdp->qlen_last_fqs_check = LONG_MAX / 2;
	}
	return;
}

/*
 * This is a helper for __call_rcu(), which invokes this when the normal
 * callback queue is inoperable.  If this is not a no-CBs CPU, this
 * function returns failure back to __call_rcu(), which can complain
 * appropriately.
 *
 * Otherwise, this function queues the callback where the corresponding
 * "rcuo" kthread can find it.
 */
static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
			    bool lazy)
{

	if (!is_nocb_cpu(rdp->cpu))
		return 0;
	__call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy);
	return 1;
}

/*
 * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
 * not a no-CBs CPU.
 */
static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
						     struct rcu_data *rdp)
{
	long ql = rsp->qlen;
	long qll = rsp->qlen_lazy;

	/* If this is not a no-CBs CPU, tell the caller to do it the old way. */
	if (!is_nocb_cpu(smp_processor_id()))
		return 0;
	rsp->qlen = 0;
	rsp->qlen_lazy = 0;

	/* First, enqueue the donelist, if any.  This preserves CB ordering. */
	if (rsp->orphan_donelist != NULL) {
		__call_rcu_nocb_enqueue(rdp, rsp->orphan_donelist,
					rsp->orphan_donetail, ql, qll);
		ql = qll = 0;
		rsp->orphan_donelist = NULL;
		rsp->orphan_donetail = &rsp->orphan_donelist;
	}
	if (rsp->orphan_nxtlist != NULL) {
		__call_rcu_nocb_enqueue(rdp, rsp->orphan_nxtlist,
					rsp->orphan_nxttail, ql, qll);
		ql = qll = 0;
		rsp->orphan_nxtlist = NULL;
		rsp->orphan_nxttail = &rsp->orphan_nxtlist;
	}
	return 1;
}

/*
2326 2327
 * If necessary, kick off a new grace period, and either way wait
 * for a subsequent grace period to complete.
P
Paul E. McKenney 已提交
2328
 */
2329
static void rcu_nocb_wait_gp(struct rcu_data *rdp)
P
Paul E. McKenney 已提交
2330
{
2331
	unsigned long c;
2332
	bool d;
2333
	unsigned long flags;
2334
	unsigned long flags1;
2335
	struct rcu_node *rnp = rdp->mynode;
2336
	struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
2337 2338 2339

	raw_spin_lock_irqsave(&rnp->lock, flags);
	c = rnp->completed + 2;
2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386

	/* Count our request for a grace period. */
	rnp->n_nocb_gp_requests[c & 0x1]++;

	if (rnp->gpnum != rnp->completed) {

		/*
		 * This rcu_node structure believes that a grace period
		 * is in progress, so we are done.  When this grace
		 * period ends, our request will be acted upon.
		 */
		raw_spin_unlock_irqrestore(&rnp->lock, flags);

	} else {

		/*
		 * Might not be a grace period, check root rcu_node
		 * structure to see if we must start one.
		 */
		if (rnp != rnp_root)
			raw_spin_lock(&rnp_root->lock); /* irqs disabled. */
		if (rnp_root->gpnum != rnp_root->completed) {
			raw_spin_unlock(&rnp_root->lock); /* irqs disabled. */
		} else {

			/*
			 * No grace period, so we need to start one.
			 * The good news is that we can wait for exactly
			 * one grace period instead of part of the current
			 * grace period and all of the next grace period.
			 * Adjust counters accordingly and start the
			 * needed grace period.
			 */
			rnp->n_nocb_gp_requests[c & 0x1]--;
			c = rnp_root->completed + 1;
			rnp->n_nocb_gp_requests[c & 0x1]++;
			rnp_root->n_nocb_gp_requests[c & 0x1]++;
			local_save_flags(flags1);
			rcu_start_gp(rdp->rsp, flags1); /* Rlses ->lock. */
		}

		/* Clean up locking and irq state. */
		if (rnp != rnp_root)
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
		else
			local_irq_restore(flags);
	}
P
Paul E. McKenney 已提交
2387 2388

	/*
2389 2390
	 * Wait for the grace period.  Do so interruptibly to avoid messing
	 * up the load average.
P
Paul E. McKenney 已提交
2391
	 */
2392
	for (;;) {
2393 2394 2395 2396
		wait_event_interruptible(
			rnp->nocb_gp_wq[c & 0x1],
			(d = ULONG_CMP_GE(ACCESS_ONCE(rnp->completed), c)));
		if (likely(d))
2397
			break;
2398
		flush_signals(current);
2399 2400
	}
	smp_mb(); /* Ensure that CB invocation happens after GP end. */
P
Paul E. McKenney 已提交
2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418
}

/*
 * Per-rcu_data kthread, but only for no-CBs CPUs.  Each kthread invokes
 * callbacks queued by the corresponding no-CBs CPU.
 */
static int rcu_nocb_kthread(void *arg)
{
	int c, cl;
	struct rcu_head *list;
	struct rcu_head *next;
	struct rcu_head **tail;
	struct rcu_data *rdp = arg;

	/* Each pass through this loop invokes one batch of callbacks */
	for (;;) {
		/* If not polling, wait for next batch of callbacks. */
		if (!rcu_nocb_poll)
2419
			wait_event_interruptible(rdp->nocb_wq, rdp->nocb_head);
P
Paul E. McKenney 已提交
2420 2421 2422
		list = ACCESS_ONCE(rdp->nocb_head);
		if (!list) {
			schedule_timeout_interruptible(1);
2423
			flush_signals(current);
P
Paul E. McKenney 已提交
2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436
			continue;
		}

		/*
		 * Extract queued callbacks, update counts, and wait
		 * for a grace period to elapse.
		 */
		ACCESS_ONCE(rdp->nocb_head) = NULL;
		tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
		c = atomic_long_xchg(&rdp->nocb_q_count, 0);
		cl = atomic_long_xchg(&rdp->nocb_q_count_lazy, 0);
		ACCESS_ONCE(rdp->nocb_p_count) += c;
		ACCESS_ONCE(rdp->nocb_p_count_lazy) += cl;
2437
		rcu_nocb_wait_gp(rdp);
P
Paul E. McKenney 已提交
2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459

		/* Each pass through the following loop invokes a callback. */
		trace_rcu_batch_start(rdp->rsp->name, cl, c, -1);
		c = cl = 0;
		while (list) {
			next = list->next;
			/* Wait for enqueuing to complete, if needed. */
			while (next == NULL && &list->next != tail) {
				schedule_timeout_interruptible(1);
				next = list->next;
			}
			debug_rcu_head_unqueue(list);
			local_bh_disable();
			if (__rcu_reclaim(rdp->rsp->name, list))
				cl++;
			c++;
			local_bh_enable();
			list = next;
		}
		trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1);
		ACCESS_ONCE(rdp->nocb_p_count) -= c;
		ACCESS_ONCE(rdp->nocb_p_count_lazy) -= cl;
2460
		rdp->n_nocbs_invoked += c;
P
Paul E. McKenney 已提交
2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489
	}
	return 0;
}

/* Initialize per-rcu_data variables for no-CBs CPUs. */
static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
{
	rdp->nocb_tail = &rdp->nocb_head;
	init_waitqueue_head(&rdp->nocb_wq);
}

/* Create a kthread for each RCU flavor for each no-CBs CPU. */
static void __init rcu_spawn_nocb_kthreads(struct rcu_state *rsp)
{
	int cpu;
	struct rcu_data *rdp;
	struct task_struct *t;

	if (rcu_nocb_mask == NULL)
		return;
	for_each_cpu(cpu, rcu_nocb_mask) {
		rdp = per_cpu_ptr(rsp->rda, cpu);
		t = kthread_run(rcu_nocb_kthread, rdp, "rcuo%d", cpu);
		BUG_ON(IS_ERR(t));
		ACCESS_ONCE(rdp->nocb_kthread) = t;
	}
}

/* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
2490
static bool init_nocb_callback_list(struct rcu_data *rdp)
P
Paul E. McKenney 已提交
2491 2492 2493
{
	if (rcu_nocb_mask == NULL ||
	    !cpumask_test_cpu(rdp->cpu, rcu_nocb_mask))
2494
		return false;
P
Paul E. McKenney 已提交
2495
	rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2496
	return true;
P
Paul E. McKenney 已提交
2497 2498
}

2499 2500
#else /* #ifdef CONFIG_RCU_NOCB_CPU */

2501 2502 2503 2504 2505 2506
static int rcu_nocb_needs_gp(struct rcu_state *rsp)
{
	return 0;
}

static int rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
P
Paul E. McKenney 已提交
2507
{
2508
	return 0;
P
Paul E. McKenney 已提交
2509 2510
}

2511 2512 2513 2514 2515 2516 2517 2518
static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
{
}

static void rcu_init_one_nocb(struct rcu_node *rnp)
{
}

P
Paul E. McKenney 已提交
2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543
static bool is_nocb_cpu(int cpu)
{
	return false;
}

static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
			    bool lazy)
{
	return 0;
}

static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
						     struct rcu_data *rdp)
{
	return 0;
}

static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
{
}

static void __init rcu_spawn_nocb_kthreads(struct rcu_state *rsp)
{
}

2544
static bool init_nocb_callback_list(struct rcu_data *rdp)
P
Paul E. McKenney 已提交
2545
{
2546
	return false;
P
Paul E. McKenney 已提交
2547 2548 2549
}

#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */