rcutree_plugin.h 18.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
/*
 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
 * Internal non-public definitions that provide either classic
 * or preemptable semantics.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *
 * Copyright Red Hat, 2009
 * Copyright IBM Corporation, 2009
 *
 * Author: Ingo Molnar <mingo@elte.hu>
 *	   Paul E. McKenney <paulmck@linux.vnet.ibm.com>
 */


#ifdef CONFIG_TREE_PREEMPT_RCU

struct rcu_state rcu_preempt_state = RCU_STATE_INITIALIZER(rcu_preempt_state);
DEFINE_PER_CPU(struct rcu_data, rcu_preempt_data);

/*
 * Tell them what RCU they are running.
 */
36
static void __init rcu_bootup_announce(void)
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
{
	printk(KERN_INFO
	       "Experimental preemptable hierarchical RCU implementation.\n");
}

/*
 * Return the number of RCU-preempt batches processed thus far
 * for debug and statistics.
 */
long rcu_batches_completed_preempt(void)
{
	return rcu_preempt_state.completed;
}
EXPORT_SYMBOL_GPL(rcu_batches_completed_preempt);

/*
 * Return the number of RCU batches processed thus far for debug & stats.
 */
long rcu_batches_completed(void)
{
	return rcu_batches_completed_preempt();
}
EXPORT_SYMBOL_GPL(rcu_batches_completed);

/*
 * Record a preemptable-RCU quiescent state for the specified CPU.  Note
 * that this just means that the task currently running on the CPU is
 * not in a quiescent state.  There might be any number of tasks blocked
 * while in an RCU read-side critical section.
 */
67
static void rcu_preempt_qs(int cpu)
68 69
{
	struct rcu_data *rdp = &per_cpu(rcu_preempt_data, cpu);
70
	rdp->passed_quiesc_completed = rdp->gpnum - 1;
71 72
	barrier();
	rdp->passed_quiesc = 1;
73 74 75
}

/*
76 77 78 79 80 81 82 83 84 85 86
 * We have entered the scheduler, and the current task might soon be
 * context-switched away from.  If this task is in an RCU read-side
 * critical section, we will no longer be able to rely on the CPU to
 * record that fact, so we enqueue the task on the appropriate entry
 * of the blocked_tasks[] array.  The task will dequeue itself when
 * it exits the outermost enclosing RCU read-side critical section.
 * Therefore, the current grace period cannot be permitted to complete
 * until the blocked_tasks[] entry indexed by the low-order bit of
 * rnp->gpnum empties.
 *
 * Caller must disable preemption.
87
 */
88
static void rcu_preempt_note_context_switch(int cpu)
89 90
{
	struct task_struct *t = current;
91
	unsigned long flags;
92 93 94 95 96 97 98 99 100 101
	int phase;
	struct rcu_data *rdp;
	struct rcu_node *rnp;

	if (t->rcu_read_lock_nesting &&
	    (t->rcu_read_unlock_special & RCU_READ_UNLOCK_BLOCKED) == 0) {

		/* Possibly blocking in an RCU read-side critical section. */
		rdp = rcu_preempt_state.rda[cpu];
		rnp = rdp->mynode;
102
		spin_lock_irqsave(&rnp->lock, flags);
103
		t->rcu_read_unlock_special |= RCU_READ_UNLOCK_BLOCKED;
104
		t->rcu_blocked_node = rnp;
105 106 107 108 109 110 111 112 113 114

		/*
		 * If this CPU has already checked in, then this task
		 * will hold up the next grace period rather than the
		 * current grace period.  Queue the task accordingly.
		 * If the task is queued for the current grace period
		 * (i.e., this CPU has not yet passed through a quiescent
		 * state for the current grace period), then as long
		 * as that task remains queued, the current grace period
		 * cannot end.
115 116 117
		 *
		 * But first, note that the current CPU must still be
		 * on line!
118
		 */
119
		WARN_ON_ONCE((rdp->grpmask & rnp->qsmaskinit) == 0);
120 121
		WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
		phase = (rnp->gpnum + !(rnp->qsmask & rdp->grpmask)) & 0x1;
122
		list_add(&t->rcu_node_entry, &rnp->blocked_tasks[phase]);
123
		spin_unlock_irqrestore(&rnp->lock, flags);
124 125 126 127 128 129 130 131 132 133 134
	}

	/*
	 * Either we were not in an RCU read-side critical section to
	 * begin with, or we have now recorded that critical section
	 * globally.  Either way, we can now note a quiescent state
	 * for this CPU.  Again, if we were in an RCU read-side critical
	 * section, and if that critical section was blocking the current
	 * grace period, then the fact that the task has been enqueued
	 * means that we continue to block the current grace period.
	 */
135
	rcu_preempt_qs(cpu);
136
	local_irq_save(flags);
137
	t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS;
138
	local_irq_restore(flags);
139 140 141 142 143 144 145 146 147 148 149 150 151 152
}

/*
 * Tree-preemptable RCU implementation for rcu_read_lock().
 * Just increment ->rcu_read_lock_nesting, shared state will be updated
 * if we block.
 */
void __rcu_read_lock(void)
{
	ACCESS_ONCE(current->rcu_read_lock_nesting)++;
	barrier();  /* needed if we ever invoke rcu_read_lock in rcutree.c */
}
EXPORT_SYMBOL_GPL(__rcu_read_lock);

153 154 155 156 157 158 159 160 161 162
/*
 * Check for preempted RCU readers blocking the current grace period
 * for the specified rcu_node structure.  If the caller needs a reliable
 * answer, it must hold the rcu_node's ->lock.
 */
static int rcu_preempted_readers(struct rcu_node *rnp)
{
	return !list_empty(&rnp->blocked_tasks[rnp->gpnum & 0x1]);
}

163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
/*
 * Record a quiescent state for all tasks that were previously queued
 * on the specified rcu_node structure and that were blocking the current
 * RCU grace period.  The caller must hold the specified rnp->lock with
 * irqs disabled, and this lock is released upon return, but irqs remain
 * disabled.
 */
static void task_quiet(struct rcu_node *rnp, unsigned long flags)
	__releases(rnp->lock)
{
	unsigned long mask;
	struct rcu_node *rnp_p;

	if (rnp->qsmask != 0 || rcu_preempted_readers(rnp)) {
		spin_unlock_irqrestore(&rnp->lock, flags);
		return;  /* Still need more quiescent states! */
	}

	rnp_p = rnp->parent;
	if (rnp_p == NULL) {
		/*
		 * Either there is only one rcu_node in the tree,
		 * or tasks were kicked up to root rcu_node due to
		 * CPUs going offline.
		 */
		cpu_quiet_msk_finish(&rcu_preempt_state, flags);
		return;
	}

	/* Report up the rest of the hierarchy. */
	mask = rnp->grpmask;
	spin_unlock(&rnp->lock);	/* irqs remain disabled. */
	spin_lock(&rnp_p->lock);	/* irqs already disabled. */
	cpu_quiet_msk(mask, &rcu_preempt_state, rnp_p, flags);
}

/*
 * Handle special cases during rcu_read_unlock(), such as needing to
 * notify RCU core processing or task having blocked during the RCU
 * read-side critical section.
 */
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
static void rcu_read_unlock_special(struct task_struct *t)
{
	int empty;
	unsigned long flags;
	struct rcu_node *rnp;
	int special;

	/* NMI handlers cannot block and cannot safely manipulate state. */
	if (in_nmi())
		return;

	local_irq_save(flags);

	/*
	 * If RCU core is waiting for this CPU to exit critical section,
	 * let it know that we have done so.
	 */
	special = t->rcu_read_unlock_special;
	if (special & RCU_READ_UNLOCK_NEED_QS) {
		t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS;
224
		rcu_preempt_qs(smp_processor_id());
225 226 227 228 229 230 231 232 233 234 235 236
	}

	/* Hardware IRQ handlers cannot block. */
	if (in_irq()) {
		local_irq_restore(flags);
		return;
	}

	/* Clean up if blocked during RCU read-side critical section. */
	if (special & RCU_READ_UNLOCK_BLOCKED) {
		t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_BLOCKED;

237 238 239 240 241 242
		/*
		 * Remove this task from the list it blocked on.  The
		 * task can migrate while we acquire the lock, but at
		 * most one time.  So at most two passes through loop.
		 */
		for (;;) {
243
			rnp = t->rcu_blocked_node;
244
			spin_lock(&rnp->lock);  /* irqs already disabled. */
245
			if (rnp == t->rcu_blocked_node)
246
				break;
247
			spin_unlock(&rnp->lock);  /* irqs remain disabled. */
248
		}
249
		empty = !rcu_preempted_readers(rnp);
250
		list_del_init(&t->rcu_node_entry);
251
		t->rcu_blocked_node = NULL;
252 253 254 255

		/*
		 * If this was the last task on the current list, and if
		 * we aren't waiting on any CPUs, report the quiescent state.
256
		 * Note that task_quiet() releases rnp->lock.
257
		 */
258
		if (empty)
259
			spin_unlock_irqrestore(&rnp->lock, flags);
260 261 262 263
		else
			task_quiet(rnp, flags);
	} else {
		local_irq_restore(flags);
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
	}
}

/*
 * Tree-preemptable RCU implementation for rcu_read_unlock().
 * Decrement ->rcu_read_lock_nesting.  If the result is zero (outermost
 * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
 * invoke rcu_read_unlock_special() to clean up after a context switch
 * in an RCU read-side critical section and other special cases.
 */
void __rcu_read_unlock(void)
{
	struct task_struct *t = current;

	barrier();  /* needed if we ever invoke rcu_read_unlock in rcutree.c */
	if (--ACCESS_ONCE(t->rcu_read_lock_nesting) == 0 &&
	    unlikely(ACCESS_ONCE(t->rcu_read_unlock_special)))
		rcu_read_unlock_special(t);
}
EXPORT_SYMBOL_GPL(__rcu_read_unlock);

#ifdef CONFIG_RCU_CPU_STALL_DETECTOR

/*
 * Scan the current list of tasks blocked within RCU read-side critical
 * sections, printing out the tid of each.
 */
static void rcu_print_task_stall(struct rcu_node *rnp)
{
	unsigned long flags;
	struct list_head *lp;
295
	int phase;
296 297
	struct task_struct *t;

298
	if (rcu_preempted_readers(rnp)) {
299
		spin_lock_irqsave(&rnp->lock, flags);
300
		phase = rnp->gpnum & 0x1;
301 302 303 304 305 306 307 308 309
		lp = &rnp->blocked_tasks[phase];
		list_for_each_entry(t, lp, rcu_node_entry)
			printk(" P%d", t->pid);
		spin_unlock_irqrestore(&rnp->lock, flags);
	}
}

#endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */

310 311 312 313 314 315 316 317 318
/*
 * Check that the list of blocked tasks for the newly completed grace
 * period is in fact empty.  It is a serious bug to complete a grace
 * period that still has RCU readers blocked!  This function must be
 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
 * must be held by the caller.
 */
static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
{
319
	WARN_ON_ONCE(rcu_preempted_readers(rnp));
320
	WARN_ON_ONCE(rnp->qsmask);
321 322
}

323 324
#ifdef CONFIG_HOTPLUG_CPU

325 326 327 328 329 330
/*
 * Handle tasklist migration for case in which all CPUs covered by the
 * specified rcu_node have gone offline.  Move them up to the root
 * rcu_node.  The reason for not just moving them to the immediate
 * parent is to remove the need for rcu_read_unlock_special() to
 * make more than two attempts to acquire the target rcu_node's lock.
331 332
 * Returns true if there were tasks blocking the current RCU grace
 * period.
333
 *
334 335 336
 * Returns 1 if there was previously a task blocking the current grace
 * period on the specified rcu_node structure.
 *
337 338
 * The caller must hold rnp->lock with irqs disabled.
 */
339 340 341
static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
				     struct rcu_node *rnp,
				     struct rcu_data *rdp)
342 343 344 345
{
	int i;
	struct list_head *lp;
	struct list_head *lp_root;
346
	int retval;
347 348 349
	struct rcu_node *rnp_root = rcu_get_root(rsp);
	struct task_struct *tp;

350 351
	if (rnp == rnp_root) {
		WARN_ONCE(1, "Last CPU thought to be offlined?");
352
		return 0;  /* Shouldn't happen: at least one CPU online. */
353
	}
354 355 356
	WARN_ON_ONCE(rnp != rdp->mynode &&
		     (!list_empty(&rnp->blocked_tasks[0]) ||
		      !list_empty(&rnp->blocked_tasks[1])));
357 358 359 360 361 362 363

	/*
	 * Move tasks up to root rcu_node.  Rely on the fact that the
	 * root rcu_node can be at most one ahead of the rest of the
	 * rcu_nodes in terms of gp_num value.  This fact allows us to
	 * move the blocked_tasks[] array directly, element by element.
	 */
364
	retval = rcu_preempted_readers(rnp);
365 366 367 368 369 370 371 372 373 374 375 376
	for (i = 0; i < 2; i++) {
		lp = &rnp->blocked_tasks[i];
		lp_root = &rnp_root->blocked_tasks[i];
		while (!list_empty(lp)) {
			tp = list_entry(lp->next, typeof(*tp), rcu_node_entry);
			spin_lock(&rnp_root->lock); /* irqs already disabled */
			list_del(&tp->rcu_node_entry);
			tp->rcu_blocked_node = rnp_root;
			list_add(&tp->rcu_node_entry, lp_root);
			spin_unlock(&rnp_root->lock); /* irqs remain disabled */
		}
	}
377
	return retval;
378 379
}

380 381 382 383 384 385 386 387 388 389
/*
 * Do CPU-offline processing for preemptable RCU.
 */
static void rcu_preempt_offline_cpu(int cpu)
{
	__rcu_offline_cpu(cpu, &rcu_preempt_state);
}

#endif /* #ifdef CONFIG_HOTPLUG_CPU */

390 391 392 393 394 395 396 397 398 399 400 401
/*
 * Check for a quiescent state from the current CPU.  When a task blocks,
 * the task is recorded in the corresponding CPU's rcu_node structure,
 * which is checked elsewhere.
 *
 * Caller must disable hard irqs.
 */
static void rcu_preempt_check_callbacks(int cpu)
{
	struct task_struct *t = current;

	if (t->rcu_read_lock_nesting == 0) {
402 403
		t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS;
		rcu_preempt_qs(cpu);
404 405
		return;
	}
406
	if (per_cpu(rcu_preempt_data, cpu).qs_pending)
407
		t->rcu_read_unlock_special |= RCU_READ_UNLOCK_NEED_QS;
408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
}

/*
 * Process callbacks for preemptable RCU.
 */
static void rcu_preempt_process_callbacks(void)
{
	__rcu_process_callbacks(&rcu_preempt_state,
				&__get_cpu_var(rcu_preempt_data));
}

/*
 * Queue a preemptable-RCU callback for invocation after a grace period.
 */
void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
{
	__call_rcu(head, func, &rcu_preempt_state);
}
EXPORT_SYMBOL_GPL(call_rcu);

428 429 430 431 432 433 434 435 436 437 438
/*
 * Wait for an rcu-preempt grace period.  We are supposed to expedite the
 * grace period, but this is the crude slow compatability hack, so just
 * invoke synchronize_rcu().
 */
void synchronize_rcu_expedited(void)
{
	synchronize_rcu();
}
EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);

439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
/*
 * Check to see if there is any immediate preemptable-RCU-related work
 * to be done.
 */
static int rcu_preempt_pending(int cpu)
{
	return __rcu_pending(&rcu_preempt_state,
			     &per_cpu(rcu_preempt_data, cpu));
}

/*
 * Does preemptable RCU need the CPU to stay out of dynticks mode?
 */
static int rcu_preempt_needs_cpu(int cpu)
{
	return !!per_cpu(rcu_preempt_data, cpu).nxtlist;
}

457 458 459 460 461 462 463 464 465
/**
 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
 */
void rcu_barrier(void)
{
	_rcu_barrier(&rcu_preempt_state, call_rcu);
}
EXPORT_SYMBOL_GPL(rcu_barrier);

466 467 468 469 470 471 472 473
/*
 * Initialize preemptable RCU's per-CPU data.
 */
static void __cpuinit rcu_preempt_init_percpu_data(int cpu)
{
	rcu_init_percpu_data(cpu, &rcu_preempt_state, 1);
}

474 475 476 477 478 479 480 481
/*
 * Move preemptable RCU's callbacks to ->orphan_cbs_list.
 */
static void rcu_preempt_send_cbs_to_orphanage(void)
{
	rcu_send_cbs_to_orphanage(&rcu_preempt_state);
}

482 483 484 485 486 487 488 489
/*
 * Initialize preemptable RCU's state structures.
 */
static void __init __rcu_init_preempt(void)
{
	RCU_INIT_FLAVOR(&rcu_preempt_state, rcu_preempt_data);
}

490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
/*
 * Check for a task exiting while in a preemptable-RCU read-side
 * critical section, clean up if so.  No need to issue warnings,
 * as debug_check_no_locks_held() already does this if lockdep
 * is enabled.
 */
void exit_rcu(void)
{
	struct task_struct *t = current;

	if (t->rcu_read_lock_nesting == 0)
		return;
	t->rcu_read_lock_nesting = 1;
	rcu_read_unlock();
}

#else /* #ifdef CONFIG_TREE_PREEMPT_RCU */

/*
 * Tell them what RCU they are running.
 */
511
static void __init rcu_bootup_announce(void)
512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
{
	printk(KERN_INFO "Hierarchical RCU implementation.\n");
}

/*
 * Return the number of RCU batches processed thus far for debug & stats.
 */
long rcu_batches_completed(void)
{
	return rcu_batches_completed_sched();
}
EXPORT_SYMBOL_GPL(rcu_batches_completed);

/*
 * Because preemptable RCU does not exist, we never have to check for
 * CPUs being in quiescent states.
 */
529
static void rcu_preempt_note_context_switch(int cpu)
530 531 532
{
}

533 534 535 536 537 538 539 540 541
/*
 * Because preemptable RCU does not exist, there are never any preempted
 * RCU readers.
 */
static int rcu_preempted_readers(struct rcu_node *rnp)
{
	return 0;
}

542 543 544 545 546 547 548 549 550 551
#ifdef CONFIG_HOTPLUG_CPU

/* Because preemptible RCU does not exist, no quieting of tasks. */
static void task_quiet(struct rcu_node *rnp, unsigned long flags)
{
	spin_unlock_irqrestore(&rnp->lock, flags);
}

#endif /* #ifdef CONFIG_HOTPLUG_CPU */

552 553 554 555 556 557 558 559 560 561 562 563
#ifdef CONFIG_RCU_CPU_STALL_DETECTOR

/*
 * Because preemptable RCU does not exist, we never have to check for
 * tasks blocked within RCU read-side critical sections.
 */
static void rcu_print_task_stall(struct rcu_node *rnp)
{
}

#endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */

564 565
/*
 * Because there is no preemptable RCU, there can be no readers blocked,
566 567
 * so there is no need to check for blocked tasks.  So check only for
 * bogus qsmask values.
568 569 570
 */
static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
{
571
	WARN_ON_ONCE(rnp->qsmask);
572 573
}

574 575
#ifdef CONFIG_HOTPLUG_CPU

576 577
/*
 * Because preemptable RCU does not exist, it never needs to migrate
578 579 580
 * tasks that were blocked within RCU read-side critical sections, and
 * such non-existent tasks cannot possibly have been blocking the current
 * grace period.
581
 */
582 583 584
static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
				     struct rcu_node *rnp,
				     struct rcu_data *rdp)
585
{
586
	return 0;
587 588
}

589 590 591 592 593 594 595 596 597 598
/*
 * Because preemptable RCU does not exist, it never needs CPU-offline
 * processing.
 */
static void rcu_preempt_offline_cpu(int cpu)
{
}

#endif /* #ifdef CONFIG_HOTPLUG_CPU */

599 600 601 602
/*
 * Because preemptable RCU does not exist, it never has any callbacks
 * to check.
 */
603
static void rcu_preempt_check_callbacks(int cpu)
604 605 606 607 608 609 610
{
}

/*
 * Because preemptable RCU does not exist, it never has any callbacks
 * to process.
 */
611
static void rcu_preempt_process_callbacks(void)
612 613 614 615 616 617 618 619 620 621 622 623
{
}

/*
 * In classic RCU, call_rcu() is just call_rcu_sched().
 */
void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
{
	call_rcu_sched(head, func);
}
EXPORT_SYMBOL_GPL(call_rcu);

624 625 626 627 628 629 630 631 632 633
/*
 * Wait for an rcu-preempt grace period, but make it happen quickly.
 * But because preemptable RCU does not exist, map to rcu-sched.
 */
void synchronize_rcu_expedited(void)
{
	synchronize_sched_expedited();
}
EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);

634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649
/*
 * Because preemptable RCU does not exist, it never has any work to do.
 */
static int rcu_preempt_pending(int cpu)
{
	return 0;
}

/*
 * Because preemptable RCU does not exist, it never needs any CPU.
 */
static int rcu_preempt_needs_cpu(int cpu)
{
	return 0;
}

650 651 652 653 654 655 656 657 658 659
/*
 * Because preemptable RCU does not exist, rcu_barrier() is just
 * another name for rcu_barrier_sched().
 */
void rcu_barrier(void)
{
	rcu_barrier_sched();
}
EXPORT_SYMBOL_GPL(rcu_barrier);

660 661 662 663 664 665 666 667
/*
 * Because preemptable RCU does not exist, there is no per-CPU
 * data to initialize.
 */
static void __cpuinit rcu_preempt_init_percpu_data(int cpu)
{
}

668 669 670 671 672 673 674
/*
 * Because there is no preemptable RCU, there are no callbacks to move.
 */
static void rcu_preempt_send_cbs_to_orphanage(void)
{
}

675 676 677 678 679 680 681
/*
 * Because preemptable RCU does not exist, it need not be initialized.
 */
static void __init __rcu_init_preempt(void)
{
}

682
#endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */