rcutree_plugin.h 66.2 KB
Newer Older
1 2 3
/*
 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
 * Internal non-public definitions that provide either classic
P
Paul E. McKenney 已提交
4
 * or preemptible semantics.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *
 * Copyright Red Hat, 2009
 * Copyright IBM Corporation, 2009
 *
 * Author: Ingo Molnar <mingo@elte.hu>
 *	   Paul E. McKenney <paulmck@linux.vnet.ibm.com>
 */

27
#include <linux/delay.h>
28

29 30 31 32 33 34 35 36
#define RCU_KTHREAD_PRIO 1

#ifdef CONFIG_RCU_BOOST
#define RCU_BOOST_PRIO CONFIG_RCU_BOOST_PRIO
#else
#define RCU_BOOST_PRIO RCU_KTHREAD_PRIO
#endif

37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
/*
 * Check the RCU kernel configuration parameters and print informative
 * messages about anything out of the ordinary.  If you like #ifdef, you
 * will love this function.
 */
static void __init rcu_bootup_announce_oddness(void)
{
#ifdef CONFIG_RCU_TRACE
	printk(KERN_INFO "\tRCU debugfs-based tracing is enabled.\n");
#endif
#if (defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 64) || (!defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 32)
	printk(KERN_INFO "\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
	       CONFIG_RCU_FANOUT);
#endif
#ifdef CONFIG_RCU_FANOUT_EXACT
	printk(KERN_INFO "\tHierarchical RCU autobalancing is disabled.\n");
#endif
#ifdef CONFIG_RCU_FAST_NO_HZ
	printk(KERN_INFO
	       "\tRCU dyntick-idle grace-period acceleration is enabled.\n");
#endif
#ifdef CONFIG_PROVE_RCU
	printk(KERN_INFO "\tRCU lockdep checking is enabled.\n");
#endif
#ifdef CONFIG_RCU_TORTURE_TEST_RUNNABLE
	printk(KERN_INFO "\tRCU torture testing starts during boot.\n");
#endif
64
#if defined(CONFIG_TREE_PREEMPT_RCU) && !defined(CONFIG_RCU_CPU_STALL_VERBOSE)
65 66 67 68
	printk(KERN_INFO "\tDump stacks of tasks blocking RCU-preempt GP.\n");
#endif
#if defined(CONFIG_RCU_CPU_STALL_INFO)
	printk(KERN_INFO "\tAdditional per-CPU info printed with stalls.\n");
69 70
#endif
#if NUM_RCU_LVL_4 != 0
71
	printk(KERN_INFO "\tFour-level hierarchy is enabled.\n");
72
#endif
73 74
	if (rcu_fanout_leaf != CONFIG_RCU_FANOUT_LEAF)
		printk(KERN_INFO "\tExperimental boot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
75 76
	if (nr_cpu_ids != NR_CPUS)
		printk(KERN_INFO "\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids);
77 78
}

79 80
#ifdef CONFIG_TREE_PREEMPT_RCU

81 82
struct rcu_state rcu_preempt_state =
	RCU_STATE_INITIALIZER(rcu_preempt, call_rcu);
83
DEFINE_PER_CPU(struct rcu_data, rcu_preempt_data);
84
static struct rcu_state *rcu_state = &rcu_preempt_state;
85

86 87
static int rcu_preempted_readers_exp(struct rcu_node *rnp);

88 89 90
/*
 * Tell them what RCU they are running.
 */
91
static void __init rcu_bootup_announce(void)
92
{
P
Paul E. McKenney 已提交
93
	printk(KERN_INFO "Preemptible hierarchical RCU implementation.\n");
94
	rcu_bootup_announce_oddness();
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
}

/*
 * Return the number of RCU-preempt batches processed thus far
 * for debug and statistics.
 */
long rcu_batches_completed_preempt(void)
{
	return rcu_preempt_state.completed;
}
EXPORT_SYMBOL_GPL(rcu_batches_completed_preempt);

/*
 * Return the number of RCU batches processed thus far for debug & stats.
 */
long rcu_batches_completed(void)
{
	return rcu_batches_completed_preempt();
}
EXPORT_SYMBOL_GPL(rcu_batches_completed);

116 117 118 119 120 121 122 123 124
/*
 * Force a quiescent state for preemptible RCU.
 */
void rcu_force_quiescent_state(void)
{
	force_quiescent_state(&rcu_preempt_state, 0);
}
EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);

125
/*
P
Paul E. McKenney 已提交
126
 * Record a preemptible-RCU quiescent state for the specified CPU.  Note
127 128 129
 * that this just means that the task currently running on the CPU is
 * not in a quiescent state.  There might be any number of tasks blocked
 * while in an RCU read-side critical section.
130 131 132 133
 *
 * Unlike the other rcu_*_qs() functions, callers to this function
 * must disable irqs in order to protect the assignment to
 * ->rcu_read_unlock_special.
134
 */
135
static void rcu_preempt_qs(int cpu)
136 137
{
	struct rcu_data *rdp = &per_cpu(rcu_preempt_data, cpu);
138

139
	rdp->passed_quiesce_gpnum = rdp->gpnum;
140
	barrier();
141
	if (rdp->passed_quiesce == 0)
142
		trace_rcu_grace_period("rcu_preempt", rdp->gpnum, "cpuqs");
143
	rdp->passed_quiesce = 1;
144
	current->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS;
145 146 147
}

/*
148 149 150
 * We have entered the scheduler, and the current task might soon be
 * context-switched away from.  If this task is in an RCU read-side
 * critical section, we will no longer be able to rely on the CPU to
151 152 153 154 155 156
 * record that fact, so we enqueue the task on the blkd_tasks list.
 * The task will dequeue itself when it exits the outermost enclosing
 * RCU read-side critical section.  Therefore, the current grace period
 * cannot be permitted to complete until the blkd_tasks list entries
 * predating the current grace period drain, in other words, until
 * rnp->gp_tasks becomes NULL.
157 158
 *
 * Caller must disable preemption.
159
 */
160
static void rcu_preempt_note_context_switch(int cpu)
161 162
{
	struct task_struct *t = current;
163
	unsigned long flags;
164 165 166
	struct rcu_data *rdp;
	struct rcu_node *rnp;

167
	if (t->rcu_read_lock_nesting > 0 &&
168 169 170
	    (t->rcu_read_unlock_special & RCU_READ_UNLOCK_BLOCKED) == 0) {

		/* Possibly blocking in an RCU read-side critical section. */
171
		rdp = per_cpu_ptr(rcu_preempt_state.rda, cpu);
172
		rnp = rdp->mynode;
P
Paul E. McKenney 已提交
173
		raw_spin_lock_irqsave(&rnp->lock, flags);
174
		t->rcu_read_unlock_special |= RCU_READ_UNLOCK_BLOCKED;
175
		t->rcu_blocked_node = rnp;
176 177 178 179 180 181 182 183 184

		/*
		 * If this CPU has already checked in, then this task
		 * will hold up the next grace period rather than the
		 * current grace period.  Queue the task accordingly.
		 * If the task is queued for the current grace period
		 * (i.e., this CPU has not yet passed through a quiescent
		 * state for the current grace period), then as long
		 * as that task remains queued, the current grace period
185 186 187 188 189 190
		 * cannot end.  Note that there is some uncertainty as
		 * to exactly when the current grace period started.
		 * We take a conservative approach, which can result
		 * in unnecessarily waiting on tasks that started very
		 * slightly after the current grace period began.  C'est
		 * la vie!!!
191 192 193
		 *
		 * But first, note that the current CPU must still be
		 * on line!
194
		 */
195
		WARN_ON_ONCE((rdp->grpmask & rnp->qsmaskinit) == 0);
196
		WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
197 198 199
		if ((rnp->qsmask & rdp->grpmask) && rnp->gp_tasks != NULL) {
			list_add(&t->rcu_node_entry, rnp->gp_tasks->prev);
			rnp->gp_tasks = &t->rcu_node_entry;
200 201 202 203
#ifdef CONFIG_RCU_BOOST
			if (rnp->boost_tasks != NULL)
				rnp->boost_tasks = rnp->gp_tasks;
#endif /* #ifdef CONFIG_RCU_BOOST */
204 205 206 207 208
		} else {
			list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
			if (rnp->qsmask & rdp->grpmask)
				rnp->gp_tasks = &t->rcu_node_entry;
		}
209 210 211 212 213
		trace_rcu_preempt_task(rdp->rsp->name,
				       t->pid,
				       (rnp->qsmask & rdp->grpmask)
				       ? rnp->gpnum
				       : rnp->gpnum + 1);
P
Paul E. McKenney 已提交
214
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
215 216 217 218 219 220 221 222
	} else if (t->rcu_read_lock_nesting < 0 &&
		   t->rcu_read_unlock_special) {

		/*
		 * Complete exit from RCU read-side critical section on
		 * behalf of preempted instance of __rcu_read_unlock().
		 */
		rcu_read_unlock_special(t);
223 224 225 226 227 228 229 230 231 232 233
	}

	/*
	 * Either we were not in an RCU read-side critical section to
	 * begin with, or we have now recorded that critical section
	 * globally.  Either way, we can now note a quiescent state
	 * for this CPU.  Again, if we were in an RCU read-side critical
	 * section, and if that critical section was blocking the current
	 * grace period, then the fact that the task has been enqueued
	 * means that we continue to block the current grace period.
	 */
234
	local_irq_save(flags);
235
	rcu_preempt_qs(cpu);
236
	local_irq_restore(flags);
237 238
}

239 240 241 242 243
/*
 * Check for preempted RCU readers blocking the current grace period
 * for the specified rcu_node structure.  If the caller needs a reliable
 * answer, it must hold the rcu_node's ->lock.
 */
244
static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
245
{
246
	return rnp->gp_tasks != NULL;
247 248
}

249 250 251 252 253 254 255
/*
 * Record a quiescent state for all tasks that were previously queued
 * on the specified rcu_node structure and that were blocking the current
 * RCU grace period.  The caller must hold the specified rnp->lock with
 * irqs disabled, and this lock is released upon return, but irqs remain
 * disabled.
 */
P
Paul E. McKenney 已提交
256
static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
257 258 259 260 261
	__releases(rnp->lock)
{
	unsigned long mask;
	struct rcu_node *rnp_p;

262
	if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
P
Paul E. McKenney 已提交
263
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
264 265 266 267 268 269 270 271 272 273
		return;  /* Still need more quiescent states! */
	}

	rnp_p = rnp->parent;
	if (rnp_p == NULL) {
		/*
		 * Either there is only one rcu_node in the tree,
		 * or tasks were kicked up to root rcu_node due to
		 * CPUs going offline.
		 */
P
Paul E. McKenney 已提交
274
		rcu_report_qs_rsp(&rcu_preempt_state, flags);
275 276 277 278 279
		return;
	}

	/* Report up the rest of the hierarchy. */
	mask = rnp->grpmask;
P
Paul E. McKenney 已提交
280 281
	raw_spin_unlock(&rnp->lock);	/* irqs remain disabled. */
	raw_spin_lock(&rnp_p->lock);	/* irqs already disabled. */
P
Paul E. McKenney 已提交
282
	rcu_report_qs_rnp(mask, &rcu_preempt_state, rnp_p, flags);
283 284
}

285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
/*
 * Advance a ->blkd_tasks-list pointer to the next entry, instead
 * returning NULL if at the end of the list.
 */
static struct list_head *rcu_next_node_entry(struct task_struct *t,
					     struct rcu_node *rnp)
{
	struct list_head *np;

	np = t->rcu_node_entry.next;
	if (np == &rnp->blkd_tasks)
		np = NULL;
	return np;
}

300 301 302 303 304
/*
 * Handle special cases during rcu_read_unlock(), such as needing to
 * notify RCU core processing or task having blocked during the RCU
 * read-side critical section.
 */
305
void rcu_read_unlock_special(struct task_struct *t)
306 307
{
	int empty;
308
	int empty_exp;
309
	int empty_exp_now;
310
	unsigned long flags;
311
	struct list_head *np;
312 313 314
#ifdef CONFIG_RCU_BOOST
	struct rt_mutex *rbmp = NULL;
#endif /* #ifdef CONFIG_RCU_BOOST */
315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
	struct rcu_node *rnp;
	int special;

	/* NMI handlers cannot block and cannot safely manipulate state. */
	if (in_nmi())
		return;

	local_irq_save(flags);

	/*
	 * If RCU core is waiting for this CPU to exit critical section,
	 * let it know that we have done so.
	 */
	special = t->rcu_read_unlock_special;
	if (special & RCU_READ_UNLOCK_NEED_QS) {
330
		rcu_preempt_qs(smp_processor_id());
331 332 333
	}

	/* Hardware IRQ handlers cannot block. */
334
	if (in_irq() || in_serving_softirq()) {
335 336 337 338 339 340 341 342
		local_irq_restore(flags);
		return;
	}

	/* Clean up if blocked during RCU read-side critical section. */
	if (special & RCU_READ_UNLOCK_BLOCKED) {
		t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_BLOCKED;

343 344 345 346 347 348
		/*
		 * Remove this task from the list it blocked on.  The
		 * task can migrate while we acquire the lock, but at
		 * most one time.  So at most two passes through loop.
		 */
		for (;;) {
349
			rnp = t->rcu_blocked_node;
P
Paul E. McKenney 已提交
350
			raw_spin_lock(&rnp->lock);  /* irqs already disabled. */
351
			if (rnp == t->rcu_blocked_node)
352
				break;
P
Paul E. McKenney 已提交
353
			raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
354
		}
355
		empty = !rcu_preempt_blocked_readers_cgp(rnp);
356 357
		empty_exp = !rcu_preempted_readers_exp(rnp);
		smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
358
		np = rcu_next_node_entry(t, rnp);
359
		list_del_init(&t->rcu_node_entry);
360
		t->rcu_blocked_node = NULL;
361 362
		trace_rcu_unlock_preempted_task("rcu_preempt",
						rnp->gpnum, t->pid);
363 364 365 366
		if (&t->rcu_node_entry == rnp->gp_tasks)
			rnp->gp_tasks = np;
		if (&t->rcu_node_entry == rnp->exp_tasks)
			rnp->exp_tasks = np;
367 368 369
#ifdef CONFIG_RCU_BOOST
		if (&t->rcu_node_entry == rnp->boost_tasks)
			rnp->boost_tasks = np;
370 371 372 373
		/* Snapshot/clear ->rcu_boost_mutex with rcu_node lock held. */
		if (t->rcu_boost_mutex) {
			rbmp = t->rcu_boost_mutex;
			t->rcu_boost_mutex = NULL;
374
		}
375
#endif /* #ifdef CONFIG_RCU_BOOST */
376 377 378 379

		/*
		 * If this was the last task on the current list, and if
		 * we aren't waiting on any CPUs, report the quiescent state.
380 381
		 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
		 * so we must take a snapshot of the expedited state.
382
		 */
383
		empty_exp_now = !rcu_preempted_readers_exp(rnp);
384 385 386 387 388 389 390 391
		if (!empty && !rcu_preempt_blocked_readers_cgp(rnp)) {
			trace_rcu_quiescent_state_report("preempt_rcu",
							 rnp->gpnum,
							 0, rnp->qsmask,
							 rnp->level,
							 rnp->grplo,
							 rnp->grphi,
							 !!rnp->gp_tasks);
P
Paul E. McKenney 已提交
392
			rcu_report_unblock_qs_rnp(rnp, flags);
393
		} else {
394
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
395
		}
396

397 398
#ifdef CONFIG_RCU_BOOST
		/* Unboost if we were boosted. */
399 400
		if (rbmp)
			rt_mutex_unlock(rbmp);
401 402
#endif /* #ifdef CONFIG_RCU_BOOST */

403 404 405 406
		/*
		 * If this was the last task on the expedited lists,
		 * then we need to report up the rcu_node hierarchy.
		 */
407
		if (!empty_exp && empty_exp_now)
408
			rcu_report_exp_rnp(&rcu_preempt_state, rnp, true);
409 410
	} else {
		local_irq_restore(flags);
411 412 413
	}
}

414 415 416 417 418 419 420 421 422 423 424
#ifdef CONFIG_RCU_CPU_STALL_VERBOSE

/*
 * Dump detailed information for all tasks blocking the current RCU
 * grace period on the specified rcu_node structure.
 */
static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
{
	unsigned long flags;
	struct task_struct *t;

425
	raw_spin_lock_irqsave(&rnp->lock, flags);
426 427 428 429
	if (!rcu_preempt_blocked_readers_cgp(rnp)) {
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
		return;
	}
430 431 432 433 434
	t = list_entry(rnp->gp_tasks,
		       struct task_struct, rcu_node_entry);
	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
		sched_show_task(t);
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
}

/*
 * Dump detailed information for all tasks blocking the current RCU
 * grace period.
 */
static void rcu_print_detail_task_stall(struct rcu_state *rsp)
{
	struct rcu_node *rnp = rcu_get_root(rsp);

	rcu_print_detail_task_stall_rnp(rnp);
	rcu_for_each_leaf_node(rsp, rnp)
		rcu_print_detail_task_stall_rnp(rnp);
}

#else /* #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */

static void rcu_print_detail_task_stall(struct rcu_state *rsp)
{
}

#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */

458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
#ifdef CONFIG_RCU_CPU_STALL_INFO

static void rcu_print_task_stall_begin(struct rcu_node *rnp)
{
	printk(KERN_ERR "\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
	       rnp->level, rnp->grplo, rnp->grphi);
}

static void rcu_print_task_stall_end(void)
{
	printk(KERN_CONT "\n");
}

#else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */

static void rcu_print_task_stall_begin(struct rcu_node *rnp)
{
}

static void rcu_print_task_stall_end(void)
{
}

#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */

483 484 485 486
/*
 * Scan the current list of tasks blocked within RCU read-side critical
 * sections, printing out the tid of each.
 */
487
static int rcu_print_task_stall(struct rcu_node *rnp)
488 489
{
	struct task_struct *t;
490
	int ndetected = 0;
491

492
	if (!rcu_preempt_blocked_readers_cgp(rnp))
493
		return 0;
494
	rcu_print_task_stall_begin(rnp);
495 496
	t = list_entry(rnp->gp_tasks,
		       struct task_struct, rcu_node_entry);
497
	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
498
		printk(KERN_CONT " P%d", t->pid);
499 500
		ndetected++;
	}
501
	rcu_print_task_stall_end();
502
	return ndetected;
503 504
}

505 506 507 508 509 510
/*
 * Check that the list of blocked tasks for the newly completed grace
 * period is in fact empty.  It is a serious bug to complete a grace
 * period that still has RCU readers blocked!  This function must be
 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
 * must be held by the caller.
511 512 513
 *
 * Also, if there are blocked tasks on the list, they automatically
 * block the newly created grace period, so set up ->gp_tasks accordingly.
514 515 516
 */
static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
{
517
	WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
518 519
	if (!list_empty(&rnp->blkd_tasks))
		rnp->gp_tasks = rnp->blkd_tasks.next;
520
	WARN_ON_ONCE(rnp->qsmask);
521 522
}

523 524
#ifdef CONFIG_HOTPLUG_CPU

525 526 527 528 529 530
/*
 * Handle tasklist migration for case in which all CPUs covered by the
 * specified rcu_node have gone offline.  Move them up to the root
 * rcu_node.  The reason for not just moving them to the immediate
 * parent is to remove the need for rcu_read_unlock_special() to
 * make more than two attempts to acquire the target rcu_node's lock.
531 532
 * Returns true if there were tasks blocking the current RCU grace
 * period.
533
 *
534 535 536
 * Returns 1 if there was previously a task blocking the current grace
 * period on the specified rcu_node structure.
 *
537 538
 * The caller must hold rnp->lock with irqs disabled.
 */
539 540 541
static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
				     struct rcu_node *rnp,
				     struct rcu_data *rdp)
542 543 544
{
	struct list_head *lp;
	struct list_head *lp_root;
545
	int retval = 0;
546
	struct rcu_node *rnp_root = rcu_get_root(rsp);
547
	struct task_struct *t;
548

549 550
	if (rnp == rnp_root) {
		WARN_ONCE(1, "Last CPU thought to be offlined?");
551
		return 0;  /* Shouldn't happen: at least one CPU online. */
552
	}
553 554 555

	/* If we are on an internal node, complain bitterly. */
	WARN_ON_ONCE(rnp != rdp->mynode);
556 557

	/*
558 559 560 561 562 563 564
	 * Move tasks up to root rcu_node.  Don't try to get fancy for
	 * this corner-case operation -- just put this node's tasks
	 * at the head of the root node's list, and update the root node's
	 * ->gp_tasks and ->exp_tasks pointers to those of this node's,
	 * if non-NULL.  This might result in waiting for more tasks than
	 * absolutely necessary, but this is a good performance/complexity
	 * tradeoff.
565
	 */
566
	if (rcu_preempt_blocked_readers_cgp(rnp) && rnp->qsmask == 0)
567 568 569
		retval |= RCU_OFL_TASKS_NORM_GP;
	if (rcu_preempted_readers_exp(rnp))
		retval |= RCU_OFL_TASKS_EXP_GP;
570 571 572 573 574 575 576 577 578 579 580 581
	lp = &rnp->blkd_tasks;
	lp_root = &rnp_root->blkd_tasks;
	while (!list_empty(lp)) {
		t = list_entry(lp->next, typeof(*t), rcu_node_entry);
		raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
		list_del(&t->rcu_node_entry);
		t->rcu_blocked_node = rnp_root;
		list_add(&t->rcu_node_entry, lp_root);
		if (&t->rcu_node_entry == rnp->gp_tasks)
			rnp_root->gp_tasks = rnp->gp_tasks;
		if (&t->rcu_node_entry == rnp->exp_tasks)
			rnp_root->exp_tasks = rnp->exp_tasks;
582 583 584 585
#ifdef CONFIG_RCU_BOOST
		if (&t->rcu_node_entry == rnp->boost_tasks)
			rnp_root->boost_tasks = rnp->boost_tasks;
#endif /* #ifdef CONFIG_RCU_BOOST */
586
		raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
587
	}
588

589 590
	rnp->gp_tasks = NULL;
	rnp->exp_tasks = NULL;
591
#ifdef CONFIG_RCU_BOOST
592
	rnp->boost_tasks = NULL;
593 594 595 596 597
	/*
	 * In case root is being boosted and leaf was not.  Make sure
	 * that we boost the tasks blocking the current grace period
	 * in this case.
	 */
598 599
	raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
	if (rnp_root->boost_tasks != NULL &&
600 601
	    rnp_root->boost_tasks != rnp_root->gp_tasks &&
	    rnp_root->boost_tasks != rnp_root->exp_tasks)
602 603 604 605
		rnp_root->boost_tasks = rnp_root->gp_tasks;
	raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
#endif /* #ifdef CONFIG_RCU_BOOST */

606
	return retval;
607 608
}

609 610
#endif /* #ifdef CONFIG_HOTPLUG_CPU */

611 612 613 614 615 616 617 618 619 620 621 622
/*
 * Check for a quiescent state from the current CPU.  When a task blocks,
 * the task is recorded in the corresponding CPU's rcu_node structure,
 * which is checked elsewhere.
 *
 * Caller must disable hard irqs.
 */
static void rcu_preempt_check_callbacks(int cpu)
{
	struct task_struct *t = current;

	if (t->rcu_read_lock_nesting == 0) {
623
		rcu_preempt_qs(cpu);
624 625
		return;
	}
626 627
	if (t->rcu_read_lock_nesting > 0 &&
	    per_cpu(rcu_preempt_data, cpu).qs_pending)
628
		t->rcu_read_unlock_special |= RCU_READ_UNLOCK_NEED_QS;
629 630
}

631 632
#ifdef CONFIG_RCU_BOOST

633 634 635 636 637
static void rcu_preempt_do_callbacks(void)
{
	rcu_do_batch(&rcu_preempt_state, &__get_cpu_var(rcu_preempt_data));
}

638 639
#endif /* #ifdef CONFIG_RCU_BOOST */

640
/*
P
Paul E. McKenney 已提交
641
 * Queue a preemptible-RCU callback for invocation after a grace period.
642 643 644
 */
void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
{
645
	__call_rcu(head, func, &rcu_preempt_state, 0);
646 647 648
}
EXPORT_SYMBOL_GPL(call_rcu);

649 650 651 652 653 654 655 656 657 658 659 660 661 662
/*
 * Queue an RCU callback for lazy invocation after a grace period.
 * This will likely be later named something like "call_rcu_lazy()",
 * but this change will require some way of tagging the lazy RCU
 * callbacks in the list of pending callbacks.  Until then, this
 * function may only be called from __kfree_rcu().
 */
void kfree_call_rcu(struct rcu_head *head,
		    void (*func)(struct rcu_head *rcu))
{
	__call_rcu(head, func, &rcu_preempt_state, 1);
}
EXPORT_SYMBOL_GPL(kfree_call_rcu);

663 664 665 666 667
/**
 * synchronize_rcu - wait until a grace period has elapsed.
 *
 * Control will return to the caller some time after a full grace
 * period has elapsed, in other words after all currently executing RCU
668 669 670 671 672
 * read-side critical sections have completed.  Note, however, that
 * upon return from synchronize_rcu(), the caller might well be executing
 * concurrently with new RCU read-side critical sections that began while
 * synchronize_rcu() was waiting.  RCU read-side critical sections are
 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
673 674 675
 */
void synchronize_rcu(void)
{
676 677 678 679
	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
			   !lock_is_held(&rcu_lock_map) &&
			   !lock_is_held(&rcu_sched_lock_map),
			   "Illegal synchronize_rcu() in RCU read-side critical section");
680 681
	if (!rcu_scheduler_active)
		return;
682
	wait_rcu_gp(call_rcu);
683 684 685
}
EXPORT_SYMBOL_GPL(synchronize_rcu);

686 687 688 689 690 691 692 693 694 695 696 697
static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq);
static long sync_rcu_preempt_exp_count;
static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex);

/*
 * Return non-zero if there are any tasks in RCU read-side critical
 * sections blocking the current preemptible-RCU expedited grace period.
 * If there is no preemptible-RCU expedited grace period currently in
 * progress, returns zero unconditionally.
 */
static int rcu_preempted_readers_exp(struct rcu_node *rnp)
{
698
	return rnp->exp_tasks != NULL;
699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723
}

/*
 * return non-zero if there is no RCU expedited grace period in progress
 * for the specified rcu_node structure, in other words, if all CPUs and
 * tasks covered by the specified rcu_node structure have done their bit
 * for the current expedited grace period.  Works only for preemptible
 * RCU -- other RCU implementation use other means.
 *
 * Caller must hold sync_rcu_preempt_exp_mutex.
 */
static int sync_rcu_preempt_exp_done(struct rcu_node *rnp)
{
	return !rcu_preempted_readers_exp(rnp) &&
	       ACCESS_ONCE(rnp->expmask) == 0;
}

/*
 * Report the exit from RCU read-side critical section for the last task
 * that queued itself during or before the current expedited preemptible-RCU
 * grace period.  This event is reported either to the rcu_node structure on
 * which the task was queued or to one of that rcu_node structure's ancestors,
 * recursively up the tree.  (Calm down, calm down, we do the recursion
 * iteratively!)
 *
724 725 726
 * Most callers will set the "wake" flag, but the task initiating the
 * expedited grace period need not wake itself.
 *
727 728
 * Caller must hold sync_rcu_preempt_exp_mutex.
 */
729 730
static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
			       bool wake)
731 732 733 734
{
	unsigned long flags;
	unsigned long mask;

P
Paul E. McKenney 已提交
735
	raw_spin_lock_irqsave(&rnp->lock, flags);
736
	for (;;) {
737 738
		if (!sync_rcu_preempt_exp_done(rnp)) {
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
739
			break;
740
		}
741
		if (rnp->parent == NULL) {
742
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
743 744
			if (wake)
				wake_up(&sync_rcu_preempt_exp_wq);
745 746 747
			break;
		}
		mask = rnp->grpmask;
P
Paul E. McKenney 已提交
748
		raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
749
		rnp = rnp->parent;
P
Paul E. McKenney 已提交
750
		raw_spin_lock(&rnp->lock); /* irqs already disabled */
751 752 753 754 755 756 757 758 759 760 761 762 763 764
		rnp->expmask &= ~mask;
	}
}

/*
 * Snapshot the tasks blocking the newly started preemptible-RCU expedited
 * grace period for the specified rcu_node structure.  If there are no such
 * tasks, report it up the rcu_node hierarchy.
 *
 * Caller must hold sync_rcu_preempt_exp_mutex and rsp->onofflock.
 */
static void
sync_rcu_preempt_exp_init(struct rcu_state *rsp, struct rcu_node *rnp)
{
765
	unsigned long flags;
766
	int must_wait = 0;
767

768
	raw_spin_lock_irqsave(&rnp->lock, flags);
769
	if (list_empty(&rnp->blkd_tasks)) {
770
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
771
	} else {
772
		rnp->exp_tasks = rnp->blkd_tasks.next;
773
		rcu_initiate_boost(rnp, flags);  /* releases rnp->lock */
774 775
		must_wait = 1;
	}
776
	if (!must_wait)
777
		rcu_report_exp_rnp(rsp, rnp, false); /* Don't wake self. */
778 779
}

780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795
/**
 * synchronize_rcu_expedited - Brute-force RCU grace period
 *
 * Wait for an RCU-preempt grace period, but expedite it.  The basic
 * idea is to invoke synchronize_sched_expedited() to push all the tasks to
 * the ->blkd_tasks lists and wait for this list to drain.  This consumes
 * significant time on all CPUs and is unfriendly to real-time workloads,
 * so is thus not recommended for any sort of common-case code.
 * In fact, if you are using synchronize_rcu_expedited() in a loop,
 * please restructure your code to batch your updates, and then Use a
 * single synchronize_rcu() instead.
 *
 * Note that it is illegal to call this function while holding any lock
 * that is acquired by a CPU-hotplug notifier.  And yes, it is also illegal
 * to call this function from a CPU-hotplug notifier.  Failing to observe
 * these restriction will result in deadlock.
796 797 798
 */
void synchronize_rcu_expedited(void)
{
799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814
	unsigned long flags;
	struct rcu_node *rnp;
	struct rcu_state *rsp = &rcu_preempt_state;
	long snap;
	int trycount = 0;

	smp_mb(); /* Caller's modifications seen first by other CPUs. */
	snap = ACCESS_ONCE(sync_rcu_preempt_exp_count) + 1;
	smp_mb(); /* Above access cannot bleed into critical section. */

	/*
	 * Acquire lock, falling back to synchronize_rcu() if too many
	 * lock-acquisition failures.  Of course, if someone does the
	 * expedited grace period for us, just leave.
	 */
	while (!mutex_trylock(&sync_rcu_preempt_exp_mutex)) {
815
		if (trycount++ < 10) {
816
			udelay(trycount * num_online_cpus());
817
		} else {
818 819 820 821 822 823 824 825 826
			synchronize_rcu();
			return;
		}
		if ((ACCESS_ONCE(sync_rcu_preempt_exp_count) - snap) > 0)
			goto mb_ret; /* Others did our work for us. */
	}
	if ((ACCESS_ONCE(sync_rcu_preempt_exp_count) - snap) > 0)
		goto unlock_mb_ret; /* Others did our work for us. */

827
	/* force all RCU readers onto ->blkd_tasks lists. */
828 829
	synchronize_sched_expedited();

P
Paul E. McKenney 已提交
830
	raw_spin_lock_irqsave(&rsp->onofflock, flags);
831 832 833

	/* Initialize ->expmask for all non-leaf rcu_node structures. */
	rcu_for_each_nonleaf_node_breadth_first(rsp, rnp) {
P
Paul E. McKenney 已提交
834
		raw_spin_lock(&rnp->lock); /* irqs already disabled. */
835
		rnp->expmask = rnp->qsmaskinit;
P
Paul E. McKenney 已提交
836
		raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
837 838
	}

839
	/* Snapshot current state of ->blkd_tasks lists. */
840 841 842 843 844
	rcu_for_each_leaf_node(rsp, rnp)
		sync_rcu_preempt_exp_init(rsp, rnp);
	if (NUM_RCU_NODES > 1)
		sync_rcu_preempt_exp_init(rsp, rcu_get_root(rsp));

P
Paul E. McKenney 已提交
845
	raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
846

847
	/* Wait for snapshotted ->blkd_tasks lists to drain. */
848 849 850 851 852 853 854 855 856 857 858
	rnp = rcu_get_root(rsp);
	wait_event(sync_rcu_preempt_exp_wq,
		   sync_rcu_preempt_exp_done(rnp));

	/* Clean up and exit. */
	smp_mb(); /* ensure expedited GP seen before counter increment. */
	ACCESS_ONCE(sync_rcu_preempt_exp_count)++;
unlock_mb_ret:
	mutex_unlock(&sync_rcu_preempt_exp_mutex);
mb_ret:
	smp_mb(); /* ensure subsequent action seen after grace period. */
859 860 861
}
EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);

862 863 864 865 866
/**
 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
 */
void rcu_barrier(void)
{
867
	_rcu_barrier(&rcu_preempt_state);
868 869 870
}
EXPORT_SYMBOL_GPL(rcu_barrier);

871
/*
P
Paul E. McKenney 已提交
872
 * Initialize preemptible RCU's state structures.
873 874 875
 */
static void __init __rcu_init_preempt(void)
{
876
	rcu_init_one(&rcu_preempt_state, &rcu_preempt_data);
877 878
}

879 880
#else /* #ifdef CONFIG_TREE_PREEMPT_RCU */

881 882
static struct rcu_state *rcu_state = &rcu_sched_state;

883 884 885
/*
 * Tell them what RCU they are running.
 */
886
static void __init rcu_bootup_announce(void)
887 888
{
	printk(KERN_INFO "Hierarchical RCU implementation.\n");
889
	rcu_bootup_announce_oddness();
890 891 892 893 894 895 896 897 898 899 900
}

/*
 * Return the number of RCU batches processed thus far for debug & stats.
 */
long rcu_batches_completed(void)
{
	return rcu_batches_completed_sched();
}
EXPORT_SYMBOL_GPL(rcu_batches_completed);

901 902 903 904 905 906 907 908 909 910
/*
 * Force a quiescent state for RCU, which, because there is no preemptible
 * RCU, becomes the same as rcu-sched.
 */
void rcu_force_quiescent_state(void)
{
	rcu_sched_force_quiescent_state();
}
EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);

911 912 913 914 915 916 917 918
/*
 * Because preemptible RCU does not exist, we never have to check for
 * CPUs being in quiescent states.
 */
static void rcu_preempt_note_context_switch(int cpu)
{
}

919
/*
P
Paul E. McKenney 已提交
920
 * Because preemptible RCU does not exist, there are never any preempted
921 922
 * RCU readers.
 */
923
static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
924 925 926 927
{
	return 0;
}

928 929 930
#ifdef CONFIG_HOTPLUG_CPU

/* Because preemptible RCU does not exist, no quieting of tasks. */
P
Paul E. McKenney 已提交
931
static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
932
{
P
Paul E. McKenney 已提交
933
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
934 935 936 937
}

#endif /* #ifdef CONFIG_HOTPLUG_CPU */

938
/*
P
Paul E. McKenney 已提交
939
 * Because preemptible RCU does not exist, we never have to check for
940 941 942 943 944 945
 * tasks blocked within RCU read-side critical sections.
 */
static void rcu_print_detail_task_stall(struct rcu_state *rsp)
{
}

946
/*
P
Paul E. McKenney 已提交
947
 * Because preemptible RCU does not exist, we never have to check for
948 949
 * tasks blocked within RCU read-side critical sections.
 */
950
static int rcu_print_task_stall(struct rcu_node *rnp)
951
{
952
	return 0;
953 954
}

955
/*
P
Paul E. McKenney 已提交
956
 * Because there is no preemptible RCU, there can be no readers blocked,
957 958
 * so there is no need to check for blocked tasks.  So check only for
 * bogus qsmask values.
959 960 961
 */
static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
{
962
	WARN_ON_ONCE(rnp->qsmask);
963 964
}

965 966
#ifdef CONFIG_HOTPLUG_CPU

967
/*
P
Paul E. McKenney 已提交
968
 * Because preemptible RCU does not exist, it never needs to migrate
969 970 971
 * tasks that were blocked within RCU read-side critical sections, and
 * such non-existent tasks cannot possibly have been blocking the current
 * grace period.
972
 */
973 974 975
static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
				     struct rcu_node *rnp,
				     struct rcu_data *rdp)
976
{
977
	return 0;
978 979
}

980 981
#endif /* #ifdef CONFIG_HOTPLUG_CPU */

982
/*
P
Paul E. McKenney 已提交
983
 * Because preemptible RCU does not exist, it never has any callbacks
984 985
 * to check.
 */
986
static void rcu_preempt_check_callbacks(int cpu)
987 988 989
{
}

990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
/*
 * Queue an RCU callback for lazy invocation after a grace period.
 * This will likely be later named something like "call_rcu_lazy()",
 * but this change will require some way of tagging the lazy RCU
 * callbacks in the list of pending callbacks.  Until then, this
 * function may only be called from __kfree_rcu().
 *
 * Because there is no preemptible RCU, we use RCU-sched instead.
 */
void kfree_call_rcu(struct rcu_head *head,
		    void (*func)(struct rcu_head *rcu))
{
	__call_rcu(head, func, &rcu_sched_state, 1);
}
EXPORT_SYMBOL_GPL(kfree_call_rcu);

1006 1007
/*
 * Wait for an rcu-preempt grace period, but make it happen quickly.
P
Paul E. McKenney 已提交
1008
 * But because preemptible RCU does not exist, map to rcu-sched.
1009 1010 1011 1012 1013 1014 1015
 */
void synchronize_rcu_expedited(void)
{
	synchronize_sched_expedited();
}
EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);

1016 1017 1018
#ifdef CONFIG_HOTPLUG_CPU

/*
P
Paul E. McKenney 已提交
1019
 * Because preemptible RCU does not exist, there is never any need to
1020 1021 1022
 * report on tasks preempted in RCU read-side critical sections during
 * expedited RCU grace periods.
 */
1023 1024
static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
			       bool wake)
1025 1026 1027 1028 1029
{
}

#endif /* #ifdef CONFIG_HOTPLUG_CPU */

1030
/*
P
Paul E. McKenney 已提交
1031
 * Because preemptible RCU does not exist, rcu_barrier() is just
1032 1033 1034 1035 1036 1037 1038 1039
 * another name for rcu_barrier_sched().
 */
void rcu_barrier(void)
{
	rcu_barrier_sched();
}
EXPORT_SYMBOL_GPL(rcu_barrier);

1040
/*
P
Paul E. McKenney 已提交
1041
 * Because preemptible RCU does not exist, it need not be initialized.
1042 1043 1044 1045 1046
 */
static void __init __rcu_init_preempt(void)
{
}

1047
#endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */
1048

1049 1050 1051 1052
#ifdef CONFIG_RCU_BOOST

#include "rtmutex_common.h"

1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
#ifdef CONFIG_RCU_TRACE

static void rcu_initiate_boost_trace(struct rcu_node *rnp)
{
	if (list_empty(&rnp->blkd_tasks))
		rnp->n_balk_blkd_tasks++;
	else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL)
		rnp->n_balk_exp_gp_tasks++;
	else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL)
		rnp->n_balk_boost_tasks++;
	else if (rnp->gp_tasks != NULL && rnp->qsmask != 0)
		rnp->n_balk_notblocked++;
	else if (rnp->gp_tasks != NULL &&
1066
		 ULONG_CMP_LT(jiffies, rnp->boost_time))
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
		rnp->n_balk_notyet++;
	else
		rnp->n_balk_nos++;
}

#else /* #ifdef CONFIG_RCU_TRACE */

static void rcu_initiate_boost_trace(struct rcu_node *rnp)
{
}

#endif /* #else #ifdef CONFIG_RCU_TRACE */

1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
/*
 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
 * or ->boost_tasks, advancing the pointer to the next task in the
 * ->blkd_tasks list.
 *
 * Note that irqs must be enabled: boosting the task can block.
 * Returns 1 if there are more tasks needing to be boosted.
 */
static int rcu_boost(struct rcu_node *rnp)
{
	unsigned long flags;
	struct rt_mutex mtx;
	struct task_struct *t;
	struct list_head *tb;

	if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL)
		return 0;  /* Nothing left to boost. */

	raw_spin_lock_irqsave(&rnp->lock, flags);

	/*
	 * Recheck under the lock: all tasks in need of boosting
	 * might exit their RCU read-side critical sections on their own.
	 */
	if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
		return 0;
	}

	/*
	 * Preferentially boost tasks blocking expedited grace periods.
	 * This cannot starve the normal grace periods because a second
	 * expedited grace period must boost all blocked tasks, including
	 * those blocking the pre-existing normal grace period.
	 */
1115
	if (rnp->exp_tasks != NULL) {
1116
		tb = rnp->exp_tasks;
1117 1118
		rnp->n_exp_boosts++;
	} else {
1119
		tb = rnp->boost_tasks;
1120 1121 1122
		rnp->n_normal_boosts++;
	}
	rnp->n_tasks_boosted++;
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146

	/*
	 * We boost task t by manufacturing an rt_mutex that appears to
	 * be held by task t.  We leave a pointer to that rt_mutex where
	 * task t can find it, and task t will release the mutex when it
	 * exits its outermost RCU read-side critical section.  Then
	 * simply acquiring this artificial rt_mutex will boost task
	 * t's priority.  (Thanks to tglx for suggesting this approach!)
	 *
	 * Note that task t must acquire rnp->lock to remove itself from
	 * the ->blkd_tasks list, which it will do from exit() if from
	 * nowhere else.  We therefore are guaranteed that task t will
	 * stay around at least until we drop rnp->lock.  Note that
	 * rnp->lock also resolves races between our priority boosting
	 * and task t's exiting its outermost RCU read-side critical
	 * section.
	 */
	t = container_of(tb, struct task_struct, rcu_node_entry);
	rt_mutex_init_proxy_locked(&mtx, t);
	t->rcu_boost_mutex = &mtx;
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
	rt_mutex_lock(&mtx);  /* Side effect: boosts task t's priority. */
	rt_mutex_unlock(&mtx);  /* Keep lockdep happy. */

1147 1148
	return ACCESS_ONCE(rnp->exp_tasks) != NULL ||
	       ACCESS_ONCE(rnp->boost_tasks) != NULL;
1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
}

/*
 * Timer handler to initiate waking up of boost kthreads that
 * have yielded the CPU due to excessive numbers of tasks to
 * boost.  We wake up the per-rcu_node kthread, which in turn
 * will wake up the booster kthread.
 */
static void rcu_boost_kthread_timer(unsigned long arg)
{
1159
	invoke_rcu_node_kthread((struct rcu_node *)arg);
1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
}

/*
 * Priority-boosting kthread.  One per leaf rcu_node and one for the
 * root rcu_node.
 */
static int rcu_boost_kthread(void *arg)
{
	struct rcu_node *rnp = (struct rcu_node *)arg;
	int spincnt = 0;
	int more2boost;

1172
	trace_rcu_utilization("Start boost kthread@init");
1173
	for (;;) {
1174
		rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
1175
		trace_rcu_utilization("End boost kthread@rcu_wait");
1176
		rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
1177
		trace_rcu_utilization("Start boost kthread@rcu_wait");
1178
		rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
1179 1180 1181 1182 1183 1184
		more2boost = rcu_boost(rnp);
		if (more2boost)
			spincnt++;
		else
			spincnt = 0;
		if (spincnt > 10) {
1185
			trace_rcu_utilization("End boost kthread@rcu_yield");
1186
			rcu_yield(rcu_boost_kthread_timer, (unsigned long)rnp);
1187
			trace_rcu_utilization("Start boost kthread@rcu_yield");
1188 1189 1190
			spincnt = 0;
		}
	}
1191
	/* NOTREACHED */
1192
	trace_rcu_utilization("End boost kthread@notreached");
1193 1194 1195 1196 1197 1198 1199 1200 1201
	return 0;
}

/*
 * Check to see if it is time to start boosting RCU readers that are
 * blocking the current grace period, and, if so, tell the per-rcu_node
 * kthread to start boosting them.  If there is an expedited grace
 * period in progress, it is always time to boost.
 *
1202 1203 1204
 * The caller must hold rnp->lock, which this function releases.
 * The ->boost_kthread_task is immortal, so we don't need to worry
 * about it going away.
1205
 */
1206
static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1207 1208 1209
{
	struct task_struct *t;

1210 1211
	if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
		rnp->n_balk_exp_gp_tasks++;
1212
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1213
		return;
1214
	}
1215 1216 1217 1218 1219 1220 1221
	if (rnp->exp_tasks != NULL ||
	    (rnp->gp_tasks != NULL &&
	     rnp->boost_tasks == NULL &&
	     rnp->qsmask == 0 &&
	     ULONG_CMP_GE(jiffies, rnp->boost_time))) {
		if (rnp->exp_tasks == NULL)
			rnp->boost_tasks = rnp->gp_tasks;
1222
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1223 1224 1225
		t = rnp->boost_kthread_task;
		if (t != NULL)
			wake_up_process(t);
1226
	} else {
1227
		rcu_initiate_boost_trace(rnp);
1228 1229
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
	}
1230 1231
}

1232 1233 1234 1235 1236 1237 1238 1239 1240
/*
 * Wake up the per-CPU kthread to invoke RCU callbacks.
 */
static void invoke_rcu_callbacks_kthread(void)
{
	unsigned long flags;

	local_irq_save(flags);
	__this_cpu_write(rcu_cpu_has_work, 1);
1241 1242 1243
	if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
	    current != __this_cpu_read(rcu_cpu_kthread_task))
		wake_up_process(__this_cpu_read(rcu_cpu_kthread_task));
1244 1245 1246
	local_irq_restore(flags);
}

1247 1248 1249 1250 1251 1252 1253 1254 1255
/*
 * Is the current CPU running the RCU-callbacks kthread?
 * Caller must have preemption disabled.
 */
static bool rcu_is_callbacks_kthread(void)
{
	return __get_cpu_var(rcu_cpu_kthread_task) == current;
}

1256 1257 1258 1259 1260
/*
 * Set the affinity of the boost kthread.  The CPU-hotplug locks are
 * held, so no one should be messing with the existence of the boost
 * kthread.
 */
1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp,
					  cpumask_var_t cm)
{
	struct task_struct *t;

	t = rnp->boost_kthread_task;
	if (t != NULL)
		set_cpus_allowed_ptr(rnp->boost_kthread_task, cm);
}

#define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)

/*
 * Do priority-boost accounting for the start of a new grace period.
 */
static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
{
	rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
}

/*
 * Create an RCU-boost kthread for the specified node if one does not
 * already exist.  We only create this kthread for preemptible RCU.
 * Returns zero if all is well, a negated errno otherwise.
 */
static int __cpuinit rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
						 struct rcu_node *rnp,
						 int rnp_index)
{
	unsigned long flags;
	struct sched_param sp;
	struct task_struct *t;

	if (&rcu_preempt_state != rsp)
		return 0;
1296
	rsp->boost = 1;
1297 1298 1299
	if (rnp->boost_kthread_task != NULL)
		return 0;
	t = kthread_create(rcu_boost_kthread, (void *)rnp,
1300
			   "rcub/%d", rnp_index);
1301 1302 1303 1304 1305
	if (IS_ERR(t))
		return PTR_ERR(t);
	raw_spin_lock_irqsave(&rnp->lock, flags);
	rnp->boost_kthread_task = t;
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1306
	sp.sched_priority = RCU_BOOST_PRIO;
1307
	sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1308
	wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1309 1310 1311
	return 0;
}

1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
#ifdef CONFIG_HOTPLUG_CPU

/*
 * Stop the RCU's per-CPU kthread when its CPU goes offline,.
 */
static void rcu_stop_cpu_kthread(int cpu)
{
	struct task_struct *t;

	/* Stop the CPU's kthread. */
	t = per_cpu(rcu_cpu_kthread_task, cpu);
	if (t != NULL) {
		per_cpu(rcu_cpu_kthread_task, cpu) = NULL;
		kthread_stop(t);
	}
}

#endif /* #ifdef CONFIG_HOTPLUG_CPU */

static void rcu_kthread_do_work(void)
{
	rcu_do_batch(&rcu_sched_state, &__get_cpu_var(rcu_sched_data));
	rcu_do_batch(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
	rcu_preempt_do_callbacks();
}

/*
 * Wake up the specified per-rcu_node-structure kthread.
 * Because the per-rcu_node kthreads are immortal, we don't need
 * to do anything to keep them alive.
 */
static void invoke_rcu_node_kthread(struct rcu_node *rnp)
{
	struct task_struct *t;

	t = rnp->node_kthread_task;
	if (t != NULL)
		wake_up_process(t);
}

/*
 * Set the specified CPU's kthread to run RT or not, as specified by
 * the to_rt argument.  The CPU-hotplug locks are held, so the task
 * is not going away.
 */
static void rcu_cpu_kthread_setrt(int cpu, int to_rt)
{
	int policy;
	struct sched_param sp;
	struct task_struct *t;

	t = per_cpu(rcu_cpu_kthread_task, cpu);
	if (t == NULL)
		return;
	if (to_rt) {
		policy = SCHED_FIFO;
		sp.sched_priority = RCU_KTHREAD_PRIO;
	} else {
		policy = SCHED_NORMAL;
		sp.sched_priority = 0;
	}
	sched_setscheduler_nocheck(t, policy, &sp);
}

/*
 * Timer handler to initiate the waking up of per-CPU kthreads that
 * have yielded the CPU due to excess numbers of RCU callbacks.
 * We wake up the per-rcu_node kthread, which in turn will wake up
 * the booster kthread.
 */
static void rcu_cpu_kthread_timer(unsigned long arg)
{
	struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, arg);
	struct rcu_node *rnp = rdp->mynode;

	atomic_or(rdp->grpmask, &rnp->wakemask);
	invoke_rcu_node_kthread(rnp);
}

/*
 * Drop to non-real-time priority and yield, but only after posting a
 * timer that will cause us to regain our real-time priority if we
 * remain preempted.  Either way, we restore our real-time priority
 * before returning.
 */
static void rcu_yield(void (*f)(unsigned long), unsigned long arg)
{
	struct sched_param sp;
	struct timer_list yield_timer;
1401
	int prio = current->rt_priority;
1402 1403 1404 1405 1406 1407 1408

	setup_timer_on_stack(&yield_timer, f, arg);
	mod_timer(&yield_timer, jiffies + 2);
	sp.sched_priority = 0;
	sched_setscheduler_nocheck(current, SCHED_NORMAL, &sp);
	set_user_nice(current, 19);
	schedule();
1409 1410
	set_user_nice(current, 0);
	sp.sched_priority = prio;
1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447
	sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
	del_timer(&yield_timer);
}

/*
 * Handle cases where the rcu_cpu_kthread() ends up on the wrong CPU.
 * This can happen while the corresponding CPU is either coming online
 * or going offline.  We cannot wait until the CPU is fully online
 * before starting the kthread, because the various notifier functions
 * can wait for RCU grace periods.  So we park rcu_cpu_kthread() until
 * the corresponding CPU is online.
 *
 * Return 1 if the kthread needs to stop, 0 otherwise.
 *
 * Caller must disable bh.  This function can momentarily enable it.
 */
static int rcu_cpu_kthread_should_stop(int cpu)
{
	while (cpu_is_offline(cpu) ||
	       !cpumask_equal(&current->cpus_allowed, cpumask_of(cpu)) ||
	       smp_processor_id() != cpu) {
		if (kthread_should_stop())
			return 1;
		per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
		per_cpu(rcu_cpu_kthread_cpu, cpu) = raw_smp_processor_id();
		local_bh_enable();
		schedule_timeout_uninterruptible(1);
		if (!cpumask_equal(&current->cpus_allowed, cpumask_of(cpu)))
			set_cpus_allowed_ptr(current, cpumask_of(cpu));
		local_bh_disable();
	}
	per_cpu(rcu_cpu_kthread_cpu, cpu) = cpu;
	return 0;
}

/*
 * Per-CPU kernel thread that invokes RCU callbacks.  This replaces the
1448 1449
 * RCU softirq used in flavors and configurations of RCU that do not
 * support RCU priority boosting.
1450 1451 1452 1453 1454 1455 1456 1457 1458 1459
 */
static int rcu_cpu_kthread(void *arg)
{
	int cpu = (int)(long)arg;
	unsigned long flags;
	int spincnt = 0;
	unsigned int *statusp = &per_cpu(rcu_cpu_kthread_status, cpu);
	char work;
	char *workp = &per_cpu(rcu_cpu_has_work, cpu);

1460
	trace_rcu_utilization("Start CPU kthread@init");
1461 1462
	for (;;) {
		*statusp = RCU_KTHREAD_WAITING;
1463
		trace_rcu_utilization("End CPU kthread@rcu_wait");
1464
		rcu_wait(*workp != 0 || kthread_should_stop());
1465
		trace_rcu_utilization("Start CPU kthread@rcu_wait");
1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
		local_bh_disable();
		if (rcu_cpu_kthread_should_stop(cpu)) {
			local_bh_enable();
			break;
		}
		*statusp = RCU_KTHREAD_RUNNING;
		per_cpu(rcu_cpu_kthread_loops, cpu)++;
		local_irq_save(flags);
		work = *workp;
		*workp = 0;
		local_irq_restore(flags);
		if (work)
			rcu_kthread_do_work();
		local_bh_enable();
		if (*workp != 0)
			spincnt++;
		else
			spincnt = 0;
		if (spincnt > 10) {
			*statusp = RCU_KTHREAD_YIELDING;
1486
			trace_rcu_utilization("End CPU kthread@rcu_yield");
1487
			rcu_yield(rcu_cpu_kthread_timer, (unsigned long)cpu);
1488
			trace_rcu_utilization("Start CPU kthread@rcu_yield");
1489 1490 1491 1492
			spincnt = 0;
		}
	}
	*statusp = RCU_KTHREAD_STOPPED;
1493
	trace_rcu_utilization("End CPU kthread@term");
1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
	return 0;
}

/*
 * Spawn a per-CPU kthread, setting up affinity and priority.
 * Because the CPU hotplug lock is held, no other CPU will be attempting
 * to manipulate rcu_cpu_kthread_task.  There might be another CPU
 * attempting to access it during boot, but the locking in kthread_bind()
 * will enforce sufficient ordering.
 *
 * Please note that we cannot simply refuse to wake up the per-CPU
 * kthread because kthreads are created in TASK_UNINTERRUPTIBLE state,
 * which can result in softlockup complaints if the task ends up being
 * idle for more than a couple of minutes.
 *
 * However, please note also that we cannot bind the per-CPU kthread to its
 * CPU until that CPU is fully online.  We also cannot wait until the
 * CPU is fully online before we create its per-CPU kthread, as this would
 * deadlock the system when CPU notifiers tried waiting for grace
 * periods.  So we bind the per-CPU kthread to its CPU only if the CPU
 * is online.  If its CPU is not yet fully online, then the code in
 * rcu_cpu_kthread() will wait until it is fully online, and then do
 * the binding.
 */
static int __cpuinit rcu_spawn_one_cpu_kthread(int cpu)
{
	struct sched_param sp;
	struct task_struct *t;

1523
	if (!rcu_scheduler_fully_active ||
1524 1525
	    per_cpu(rcu_cpu_kthread_task, cpu) != NULL)
		return 0;
E
Eric Dumazet 已提交
1526 1527 1528
	t = kthread_create_on_node(rcu_cpu_kthread,
				   (void *)(long)cpu,
				   cpu_to_node(cpu),
1529
				   "rcuc/%d", cpu);
1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632
	if (IS_ERR(t))
		return PTR_ERR(t);
	if (cpu_online(cpu))
		kthread_bind(t, cpu);
	per_cpu(rcu_cpu_kthread_cpu, cpu) = cpu;
	WARN_ON_ONCE(per_cpu(rcu_cpu_kthread_task, cpu) != NULL);
	sp.sched_priority = RCU_KTHREAD_PRIO;
	sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
	per_cpu(rcu_cpu_kthread_task, cpu) = t;
	wake_up_process(t); /* Get to TASK_INTERRUPTIBLE quickly. */
	return 0;
}

/*
 * Per-rcu_node kthread, which is in charge of waking up the per-CPU
 * kthreads when needed.  We ignore requests to wake up kthreads
 * for offline CPUs, which is OK because force_quiescent_state()
 * takes care of this case.
 */
static int rcu_node_kthread(void *arg)
{
	int cpu;
	unsigned long flags;
	unsigned long mask;
	struct rcu_node *rnp = (struct rcu_node *)arg;
	struct sched_param sp;
	struct task_struct *t;

	for (;;) {
		rnp->node_kthread_status = RCU_KTHREAD_WAITING;
		rcu_wait(atomic_read(&rnp->wakemask) != 0);
		rnp->node_kthread_status = RCU_KTHREAD_RUNNING;
		raw_spin_lock_irqsave(&rnp->lock, flags);
		mask = atomic_xchg(&rnp->wakemask, 0);
		rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
		for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1) {
			if ((mask & 0x1) == 0)
				continue;
			preempt_disable();
			t = per_cpu(rcu_cpu_kthread_task, cpu);
			if (!cpu_online(cpu) || t == NULL) {
				preempt_enable();
				continue;
			}
			per_cpu(rcu_cpu_has_work, cpu) = 1;
			sp.sched_priority = RCU_KTHREAD_PRIO;
			sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
			preempt_enable();
		}
	}
	/* NOTREACHED */
	rnp->node_kthread_status = RCU_KTHREAD_STOPPED;
	return 0;
}

/*
 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
 * served by the rcu_node in question.  The CPU hotplug lock is still
 * held, so the value of rnp->qsmaskinit will be stable.
 *
 * We don't include outgoingcpu in the affinity set, use -1 if there is
 * no outgoing CPU.  If there are no CPUs left in the affinity set,
 * this function allows the kthread to execute on any CPU.
 */
static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
{
	cpumask_var_t cm;
	int cpu;
	unsigned long mask = rnp->qsmaskinit;

	if (rnp->node_kthread_task == NULL)
		return;
	if (!alloc_cpumask_var(&cm, GFP_KERNEL))
		return;
	cpumask_clear(cm);
	for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
		if ((mask & 0x1) && cpu != outgoingcpu)
			cpumask_set_cpu(cpu, cm);
	if (cpumask_weight(cm) == 0) {
		cpumask_setall(cm);
		for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++)
			cpumask_clear_cpu(cpu, cm);
		WARN_ON_ONCE(cpumask_weight(cm) == 0);
	}
	set_cpus_allowed_ptr(rnp->node_kthread_task, cm);
	rcu_boost_kthread_setaffinity(rnp, cm);
	free_cpumask_var(cm);
}

/*
 * Spawn a per-rcu_node kthread, setting priority and affinity.
 * Called during boot before online/offline can happen, or, if
 * during runtime, with the main CPU-hotplug locks held.  So only
 * one of these can be executing at a time.
 */
static int __cpuinit rcu_spawn_one_node_kthread(struct rcu_state *rsp,
						struct rcu_node *rnp)
{
	unsigned long flags;
	int rnp_index = rnp - &rsp->node[0];
	struct sched_param sp;
	struct task_struct *t;

1633
	if (!rcu_scheduler_fully_active ||
1634 1635 1636 1637
	    rnp->qsmaskinit == 0)
		return 0;
	if (rnp->node_kthread_task == NULL) {
		t = kthread_create(rcu_node_kthread, (void *)rnp,
1638
				   "rcun/%d", rnp_index);
1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658
		if (IS_ERR(t))
			return PTR_ERR(t);
		raw_spin_lock_irqsave(&rnp->lock, flags);
		rnp->node_kthread_task = t;
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
		sp.sched_priority = 99;
		sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
		wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
	}
	return rcu_spawn_one_boost_kthread(rsp, rnp, rnp_index);
}

/*
 * Spawn all kthreads -- called as soon as the scheduler is running.
 */
static int __init rcu_spawn_kthreads(void)
{
	int cpu;
	struct rcu_node *rnp;

1659
	rcu_scheduler_fully_active = 1;
1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680
	for_each_possible_cpu(cpu) {
		per_cpu(rcu_cpu_has_work, cpu) = 0;
		if (cpu_online(cpu))
			(void)rcu_spawn_one_cpu_kthread(cpu);
	}
	rnp = rcu_get_root(rcu_state);
	(void)rcu_spawn_one_node_kthread(rcu_state, rnp);
	if (NUM_RCU_NODES > 1) {
		rcu_for_each_leaf_node(rcu_state, rnp)
			(void)rcu_spawn_one_node_kthread(rcu_state, rnp);
	}
	return 0;
}
early_initcall(rcu_spawn_kthreads);

static void __cpuinit rcu_prepare_kthreads(int cpu)
{
	struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
	struct rcu_node *rnp = rdp->mynode;

	/* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1681
	if (rcu_scheduler_fully_active) {
1682 1683 1684 1685 1686 1687
		(void)rcu_spawn_one_cpu_kthread(cpu);
		if (rnp->node_kthread_task == NULL)
			(void)rcu_spawn_one_node_kthread(rcu_state, rnp);
	}
}

1688 1689
#else /* #ifdef CONFIG_RCU_BOOST */

1690
static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1691
{
1692
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1693 1694
}

1695
static void invoke_rcu_callbacks_kthread(void)
1696
{
1697
	WARN_ON_ONCE(1);
1698 1699
}

1700 1701 1702 1703 1704
static bool rcu_is_callbacks_kthread(void)
{
	return false;
}

1705 1706 1707 1708
static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
{
}

1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724
#ifdef CONFIG_HOTPLUG_CPU

static void rcu_stop_cpu_kthread(int cpu)
{
}

#endif /* #ifdef CONFIG_HOTPLUG_CPU */

static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
{
}

static void rcu_cpu_kthread_setrt(int cpu, int to_rt)
{
}

1725 1726 1727 1728 1729 1730 1731
static int __init rcu_scheduler_really_started(void)
{
	rcu_scheduler_fully_active = 1;
	return 0;
}
early_initcall(rcu_scheduler_really_started);

1732 1733 1734 1735
static void __cpuinit rcu_prepare_kthreads(int cpu)
{
}

1736 1737
#endif /* #else #ifdef CONFIG_RCU_BOOST */

1738 1739 1740 1741 1742 1743 1744 1745
#if !defined(CONFIG_RCU_FAST_NO_HZ)

/*
 * Check to see if any future RCU-related work will need to be done
 * by the current CPU, even if none need be done immediately, returning
 * 1 if so.  This function is part of the RCU implementation; it is -not-
 * an exported member of the RCU API.
 *
1746 1747
 * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
 * any flavor of RCU.
1748
 */
1749
int rcu_needs_cpu(int cpu, unsigned long *delta_jiffies)
1750
{
1751
	*delta_jiffies = ULONG_MAX;
1752 1753 1754
	return rcu_cpu_has_callbacks(cpu);
}

1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769
/*
 * Because we do not have RCU_FAST_NO_HZ, don't bother initializing for it.
 */
static void rcu_prepare_for_idle_init(int cpu)
{
}

/*
 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
 * after it.
 */
static void rcu_cleanup_after_idle(int cpu)
{
}

1770
/*
1771
 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1772 1773 1774 1775 1776 1777
 * is nothing.
 */
static void rcu_prepare_for_idle(int cpu)
{
}

1778 1779 1780 1781 1782 1783 1784 1785
/*
 * Don't bother keeping a running count of the number of RCU callbacks
 * posted because CONFIG_RCU_FAST_NO_HZ=n.
 */
static void rcu_idle_count_callbacks_posted(void)
{
}

1786 1787
#else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */

1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812
/*
 * This code is invoked when a CPU goes idle, at which point we want
 * to have the CPU do everything required for RCU so that it can enter
 * the energy-efficient dyntick-idle mode.  This is handled by a
 * state machine implemented by rcu_prepare_for_idle() below.
 *
 * The following three proprocessor symbols control this state machine:
 *
 * RCU_IDLE_FLUSHES gives the maximum number of times that we will attempt
 *	to satisfy RCU.  Beyond this point, it is better to incur a periodic
 *	scheduling-clock interrupt than to loop through the state machine
 *	at full power.
 * RCU_IDLE_OPT_FLUSHES gives the number of RCU_IDLE_FLUSHES that are
 *	optional if RCU does not need anything immediately from this
 *	CPU, even if this CPU still has RCU callbacks queued.  The first
 *	times through the state machine are mandatory: we need to give
 *	the state machine a chance to communicate a quiescent state
 *	to the RCU core.
 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
 *	to sleep in dyntick-idle mode with RCU callbacks pending.  This
 *	is sized to be roughly one RCU grace period.  Those energy-efficiency
 *	benchmarkers who might otherwise be tempted to set this to a large
 *	number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
 *	system.  And if you are -that- concerned about energy efficiency,
 *	just power the system down and be done with it!
1813 1814 1815
 * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
 *	permitted to sleep in dyntick-idle mode with only lazy RCU
 *	callbacks pending.  Setting this too high can OOM your system.
1816 1817 1818 1819 1820 1821 1822
 *
 * The values below work well in practice.  If future workloads require
 * adjustment, they can be converted into kernel config parameters, though
 * making the state machine smarter might be a better option.
 */
#define RCU_IDLE_FLUSHES 5		/* Number of dyntick-idle tries. */
#define RCU_IDLE_OPT_FLUSHES 3		/* Optional dyntick-idle tries. */
1823
#define RCU_IDLE_GP_DELAY 4		/* Roughly one grace period. */
1824
#define RCU_IDLE_LAZY_GP_DELAY (6 * HZ)	/* Roughly six seconds. */
1825

1826 1827
extern int tick_nohz_enabled;

1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869
/*
 * Does the specified flavor of RCU have non-lazy callbacks pending on
 * the specified CPU?  Both RCU flavor and CPU are specified by the
 * rcu_data structure.
 */
static bool __rcu_cpu_has_nonlazy_callbacks(struct rcu_data *rdp)
{
	return rdp->qlen != rdp->qlen_lazy;
}

#ifdef CONFIG_TREE_PREEMPT_RCU

/*
 * Are there non-lazy RCU-preempt callbacks?  (There cannot be if there
 * is no RCU-preempt in the kernel.)
 */
static bool rcu_preempt_cpu_has_nonlazy_callbacks(int cpu)
{
	struct rcu_data *rdp = &per_cpu(rcu_preempt_data, cpu);

	return __rcu_cpu_has_nonlazy_callbacks(rdp);
}

#else /* #ifdef CONFIG_TREE_PREEMPT_RCU */

static bool rcu_preempt_cpu_has_nonlazy_callbacks(int cpu)
{
	return 0;
}

#endif /* else #ifdef CONFIG_TREE_PREEMPT_RCU */

/*
 * Does any flavor of RCU have non-lazy callbacks on the specified CPU?
 */
static bool rcu_cpu_has_nonlazy_callbacks(int cpu)
{
	return __rcu_cpu_has_nonlazy_callbacks(&per_cpu(rcu_sched_data, cpu)) ||
	       __rcu_cpu_has_nonlazy_callbacks(&per_cpu(rcu_bh_data, cpu)) ||
	       rcu_preempt_cpu_has_nonlazy_callbacks(cpu);
}

1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
/*
 * Allow the CPU to enter dyntick-idle mode if either: (1) There are no
 * callbacks on this CPU, (2) this CPU has not yet attempted to enter
 * dyntick-idle mode, or (3) this CPU is in the process of attempting to
 * enter dyntick-idle mode.  Otherwise, if we have recently tried and failed
 * to enter dyntick-idle mode, we refuse to try to enter it.  After all,
 * it is better to incur scheduling-clock interrupts than to spin
 * continuously for the same time duration!
 *
 * The delta_jiffies argument is used to store the time when RCU is
 * going to need the CPU again if it still has callbacks.  The reason
 * for this is that rcu_prepare_for_idle() might need to post a timer,
 * but if so, it will do so after tick_nohz_stop_sched_tick() has set
 * the wakeup time for this CPU.  This means that RCU's timer can be
 * delayed until the wakeup time, which defeats the purpose of posting
 * a timer.
 */
int rcu_needs_cpu(int cpu, unsigned long *delta_jiffies)
{
	struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);

	/* Flag a new idle sojourn to the idle-entry state machine. */
	rdtp->idle_first_pass = 1;
	/* If no callbacks, RCU doesn't need the CPU. */
	if (!rcu_cpu_has_callbacks(cpu)) {
		*delta_jiffies = ULONG_MAX;
		return 0;
	}
	if (rdtp->dyntick_holdoff == jiffies) {
		/* RCU recently tried and failed, so don't try again. */
		*delta_jiffies = 1;
		return 1;
	}
	/* Set up for the possibility that RCU will post a timer. */
1904 1905 1906 1907 1908 1909 1910
	if (rcu_cpu_has_nonlazy_callbacks(cpu)) {
		*delta_jiffies = round_up(RCU_IDLE_GP_DELAY + jiffies,
					  RCU_IDLE_GP_DELAY) - jiffies;
	} else {
		*delta_jiffies = jiffies + RCU_IDLE_LAZY_GP_DELAY;
		*delta_jiffies = round_jiffies(*delta_jiffies) - jiffies;
	}
1911 1912 1913
	return 0;
}

1914 1915 1916 1917 1918 1919 1920 1921 1922
/*
 * Handler for smp_call_function_single().  The only point of this
 * handler is to wake the CPU up, so the handler does only tracing.
 */
void rcu_idle_demigrate(void *unused)
{
	trace_rcu_prep_idle("Demigrate");
}

1923 1924 1925 1926 1927 1928
/*
 * Timer handler used to force CPU to start pushing its remaining RCU
 * callbacks in the case where it entered dyntick-idle mode with callbacks
 * pending.  The hander doesn't really need to do anything because the
 * real work is done upon re-entry to idle, or by the next scheduling-clock
 * interrupt should idle not be re-entered.
1929 1930 1931 1932
 *
 * One special case: the timer gets migrated without awakening the CPU
 * on which the timer was scheduled on.  In this case, we must wake up
 * that CPU.  We do so with smp_call_function_single().
1933
 */
1934
static void rcu_idle_gp_timer_func(unsigned long cpu_in)
1935
{
1936 1937
	int cpu = (int)cpu_in;

1938
	trace_rcu_prep_idle("Timer");
1939 1940 1941 1942
	if (cpu != smp_processor_id())
		smp_call_function_single(cpu, rcu_idle_demigrate, NULL, 0);
	else
		WARN_ON_ONCE(1); /* Getting here can hang the system... */
1943 1944 1945 1946 1947 1948 1949
}

/*
 * Initialize the timer used to pull CPUs out of dyntick-idle mode.
 */
static void rcu_prepare_for_idle_init(int cpu)
{
1950 1951 1952 1953 1954 1955
	struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);

	rdtp->dyntick_holdoff = jiffies - 1;
	setup_timer(&rdtp->idle_gp_timer, rcu_idle_gp_timer_func, cpu);
	rdtp->idle_gp_timer_expires = jiffies - 1;
	rdtp->idle_first_pass = 1;
1956 1957 1958 1959
}

/*
 * Clean up for exit from idle.  Because we are exiting from idle, there
1960
 * is no longer any point to ->idle_gp_timer, so cancel it.  This will
1961 1962 1963 1964
 * do nothing if this timer is not active, so just cancel it unconditionally.
 */
static void rcu_cleanup_after_idle(int cpu)
{
1965 1966 1967
	struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);

	del_timer(&rdtp->idle_gp_timer);
1968
	trace_rcu_prep_idle("Cleanup after idle");
1969
	rdtp->tick_nohz_enabled_snap = ACCESS_ONCE(tick_nohz_enabled);
1970 1971
}

1972 1973 1974 1975
/*
 * Check to see if any RCU-related work can be done by the current CPU,
 * and if so, schedule a softirq to get it done.  This function is part
 * of the RCU implementation; it is -not- an exported member of the RCU API.
1976
 *
1977 1978 1979 1980 1981 1982
 * The idea is for the current CPU to clear out all work required by the
 * RCU core for the current grace period, so that this CPU can be permitted
 * to enter dyntick-idle mode.  In some cases, it will need to be awakened
 * at the end of the grace period by whatever CPU ends the grace period.
 * This allows CPUs to go dyntick-idle more quickly, and to reduce the
 * number of wakeups by a modest integer factor.
1983 1984 1985
 *
 * Because it is not legal to invoke rcu_process_callbacks() with irqs
 * disabled, we do one pass of force_quiescent_state(), then do a
1986
 * invoke_rcu_core() to cause rcu_process_callbacks() to be invoked
1987
 * later.  The ->dyntick_drain field controls the sequencing.
1988 1989
 *
 * The caller must have disabled interrupts.
1990
 */
1991
static void rcu_prepare_for_idle(int cpu)
1992
{
1993
	struct timer_list *tp;
1994
	struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006
	int tne;

	/* Handle nohz enablement switches conservatively. */
	tne = ACCESS_ONCE(tick_nohz_enabled);
	if (tne != rdtp->tick_nohz_enabled_snap) {
		if (rcu_cpu_has_callbacks(cpu))
			invoke_rcu_core(); /* force nohz to see update. */
		rdtp->tick_nohz_enabled_snap = tne;
		return;
	}
	if (!tne)
		return;
2007

2008 2009 2010 2011 2012
	/*
	 * If this is an idle re-entry, for example, due to use of
	 * RCU_NONIDLE() or the new idle-loop tracing API within the idle
	 * loop, then don't take any state-machine actions, unless the
	 * momentary exit from idle queued additional non-lazy callbacks.
2013
	 * Instead, repost the ->idle_gp_timer if this CPU has callbacks
2014 2015
	 * pending.
	 */
2016 2017
	if (!rdtp->idle_first_pass &&
	    (rdtp->nonlazy_posted == rdtp->nonlazy_posted_snap)) {
2018
		if (rcu_cpu_has_callbacks(cpu)) {
2019 2020
			tp = &rdtp->idle_gp_timer;
			mod_timer_pinned(tp, rdtp->idle_gp_timer_expires);
2021
		}
2022 2023
		return;
	}
2024 2025
	rdtp->idle_first_pass = 0;
	rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted - 1;
2026

2027
	/*
2028 2029
	 * If there are no callbacks on this CPU, enter dyntick-idle mode.
	 * Also reset state to avoid prejudicing later attempts.
2030
	 */
2031
	if (!rcu_cpu_has_callbacks(cpu)) {
2032 2033
		rdtp->dyntick_holdoff = jiffies - 1;
		rdtp->dyntick_drain = 0;
2034
		trace_rcu_prep_idle("No callbacks");
2035
		return;
2036
	}
2037 2038 2039 2040 2041

	/*
	 * If in holdoff mode, just return.  We will presumably have
	 * refrained from disabling the scheduling-clock tick.
	 */
2042
	if (rdtp->dyntick_holdoff == jiffies) {
2043
		trace_rcu_prep_idle("In holdoff");
2044
		return;
2045
	}
2046

2047 2048
	/* Check and update the ->dyntick_drain sequencing. */
	if (rdtp->dyntick_drain <= 0) {
2049
		/* First time through, initialize the counter. */
2050 2051
		rdtp->dyntick_drain = RCU_IDLE_FLUSHES;
	} else if (rdtp->dyntick_drain <= RCU_IDLE_OPT_FLUSHES &&
2052 2053
		   !rcu_pending(cpu) &&
		   !local_softirq_pending()) {
2054
		/* Can we go dyntick-idle despite still having callbacks? */
2055 2056
		rdtp->dyntick_drain = 0;
		rdtp->dyntick_holdoff = jiffies;
2057 2058
		if (rcu_cpu_has_nonlazy_callbacks(cpu)) {
			trace_rcu_prep_idle("Dyntick with callbacks");
2059
			rdtp->idle_gp_timer_expires =
2060 2061
				round_up(jiffies + RCU_IDLE_GP_DELAY,
					 RCU_IDLE_GP_DELAY);
2062
		} else {
2063
			rdtp->idle_gp_timer_expires =
2064
				round_jiffies(jiffies + RCU_IDLE_LAZY_GP_DELAY);
2065 2066
			trace_rcu_prep_idle("Dyntick with lazy callbacks");
		}
2067 2068 2069
		tp = &rdtp->idle_gp_timer;
		mod_timer_pinned(tp, rdtp->idle_gp_timer_expires);
		rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
2070
		return; /* Nothing more to do immediately. */
2071
	} else if (--(rdtp->dyntick_drain) <= 0) {
2072
		/* We have hit the limit, so time to give up. */
2073
		rdtp->dyntick_holdoff = jiffies;
2074
		trace_rcu_prep_idle("Begin holdoff");
2075 2076
		invoke_rcu_core();  /* Force the CPU out of dyntick-idle. */
		return;
2077 2078
	}

2079 2080 2081 2082 2083 2084 2085 2086 2087 2088
	/*
	 * Do one step of pushing the remaining RCU callbacks through
	 * the RCU core state machine.
	 */
#ifdef CONFIG_TREE_PREEMPT_RCU
	if (per_cpu(rcu_preempt_data, cpu).nxtlist) {
		rcu_preempt_qs(cpu);
		force_quiescent_state(&rcu_preempt_state, 0);
	}
#endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
2089 2090 2091 2092 2093 2094 2095
	if (per_cpu(rcu_sched_data, cpu).nxtlist) {
		rcu_sched_qs(cpu);
		force_quiescent_state(&rcu_sched_state, 0);
	}
	if (per_cpu(rcu_bh_data, cpu).nxtlist) {
		rcu_bh_qs(cpu);
		force_quiescent_state(&rcu_bh_state, 0);
2096 2097
	}

2098 2099 2100 2101
	/*
	 * If RCU callbacks are still pending, RCU still needs this CPU.
	 * So try forcing the callbacks through the grace period.
	 */
2102
	if (rcu_cpu_has_callbacks(cpu)) {
2103
		trace_rcu_prep_idle("More callbacks");
2104
		invoke_rcu_core();
2105
	} else {
2106
		trace_rcu_prep_idle("Callbacks drained");
2107
	}
2108 2109
}

2110
/*
2111 2112 2113 2114 2115 2116
 * Keep a running count of the number of non-lazy callbacks posted
 * on this CPU.  This running counter (which is never decremented) allows
 * rcu_prepare_for_idle() to detect when something out of the idle loop
 * posts a callback, even if an equal number of callbacks are invoked.
 * Of course, callbacks should only be posted from within a trace event
 * designed to be called from idle or from within RCU_NONIDLE().
2117 2118 2119
 */
static void rcu_idle_count_callbacks_posted(void)
{
2120
	__this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
2121 2122
}

2123
#endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
2124 2125 2126 2127 2128 2129 2130

#ifdef CONFIG_RCU_CPU_STALL_INFO

#ifdef CONFIG_RCU_FAST_NO_HZ

static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
{
2131 2132
	struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
	struct timer_list *tltp = &rdtp->idle_gp_timer;
2133

2134
	sprintf(cp, "drain=%d %c timer=%lu",
2135 2136
		rdtp->dyntick_drain,
		rdtp->dyntick_holdoff == jiffies ? 'H' : '.',
2137
		timer_pending(tltp) ? tltp->expires - jiffies : -1);
2138 2139 2140 2141 2142 2143
}

#else /* #ifdef CONFIG_RCU_FAST_NO_HZ */

static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
{
2144
	*cp = '\0';
2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204
}

#endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */

/* Initiate the stall-info list. */
static void print_cpu_stall_info_begin(void)
{
	printk(KERN_CONT "\n");
}

/*
 * Print out diagnostic information for the specified stalled CPU.
 *
 * If the specified CPU is aware of the current RCU grace period
 * (flavor specified by rsp), then print the number of scheduling
 * clock interrupts the CPU has taken during the time that it has
 * been aware.  Otherwise, print the number of RCU grace periods
 * that this CPU is ignorant of, for example, "1" if the CPU was
 * aware of the previous grace period.
 *
 * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
 */
static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
{
	char fast_no_hz[72];
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
	struct rcu_dynticks *rdtp = rdp->dynticks;
	char *ticks_title;
	unsigned long ticks_value;

	if (rsp->gpnum == rdp->gpnum) {
		ticks_title = "ticks this GP";
		ticks_value = rdp->ticks_this_gp;
	} else {
		ticks_title = "GPs behind";
		ticks_value = rsp->gpnum - rdp->gpnum;
	}
	print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
	printk(KERN_ERR "\t%d: (%lu %s) idle=%03x/%llx/%d %s\n",
	       cpu, ticks_value, ticks_title,
	       atomic_read(&rdtp->dynticks) & 0xfff,
	       rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
	       fast_no_hz);
}

/* Terminate the stall-info list. */
static void print_cpu_stall_info_end(void)
{
	printk(KERN_ERR "\t");
}

/* Zero ->ticks_this_gp for all flavors of RCU. */
static void zero_cpu_stall_ticks(struct rcu_data *rdp)
{
	rdp->ticks_this_gp = 0;
}

/* Increment ->ticks_this_gp for all flavors of RCU. */
static void increment_cpu_stall_ticks(void)
{
2205 2206 2207 2208
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
		__this_cpu_ptr(rsp->rda)->ticks_this_gp++;
2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236
}

#else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */

static void print_cpu_stall_info_begin(void)
{
	printk(KERN_CONT " {");
}

static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
{
	printk(KERN_CONT " %d", cpu);
}

static void print_cpu_stall_info_end(void)
{
	printk(KERN_CONT "} ");
}

static void zero_cpu_stall_ticks(struct rcu_data *rdp)
{
}

static void increment_cpu_stall_ticks(void)
{
}

#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */