rcutree_plugin.h 37.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/*
 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
 * Internal non-public definitions that provide either classic
 * or preemptable semantics.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *
 * Copyright Red Hat, 2009
 * Copyright IBM Corporation, 2009
 *
 * Author: Ingo Molnar <mingo@elte.hu>
 *	   Paul E. McKenney <paulmck@linux.vnet.ibm.com>
 */

27
#include <linux/delay.h>
28
#include <linux/stop_machine.h>
29

30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
/*
 * Check the RCU kernel configuration parameters and print informative
 * messages about anything out of the ordinary.  If you like #ifdef, you
 * will love this function.
 */
static void __init rcu_bootup_announce_oddness(void)
{
#ifdef CONFIG_RCU_TRACE
	printk(KERN_INFO "\tRCU debugfs-based tracing is enabled.\n");
#endif
#if (defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 64) || (!defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 32)
	printk(KERN_INFO "\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
	       CONFIG_RCU_FANOUT);
#endif
#ifdef CONFIG_RCU_FANOUT_EXACT
	printk(KERN_INFO "\tHierarchical RCU autobalancing is disabled.\n");
#endif
#ifdef CONFIG_RCU_FAST_NO_HZ
	printk(KERN_INFO
	       "\tRCU dyntick-idle grace-period acceleration is enabled.\n");
#endif
#ifdef CONFIG_PROVE_RCU
	printk(KERN_INFO "\tRCU lockdep checking is enabled.\n");
#endif
#ifdef CONFIG_RCU_TORTURE_TEST_RUNNABLE
	printk(KERN_INFO "\tRCU torture testing starts during boot.\n");
#endif
57
#if defined(CONFIG_TREE_PREEMPT_RCU) && !defined(CONFIG_RCU_CPU_STALL_VERBOSE)
58 59 60 61 62 63 64
	printk(KERN_INFO "\tVerbose stalled-CPUs detection is disabled.\n");
#endif
#if NUM_RCU_LVL_4 != 0
	printk(KERN_INFO "\tExperimental four-level hierarchy is enabled.\n");
#endif
}

65 66 67 68 69
#ifdef CONFIG_TREE_PREEMPT_RCU

struct rcu_state rcu_preempt_state = RCU_STATE_INITIALIZER(rcu_preempt_state);
DEFINE_PER_CPU(struct rcu_data, rcu_preempt_data);

70 71
static int rcu_preempted_readers_exp(struct rcu_node *rnp);

72 73 74
/*
 * Tell them what RCU they are running.
 */
75
static void __init rcu_bootup_announce(void)
76
{
77 78
	printk(KERN_INFO "Preemptable hierarchical RCU implementation.\n");
	rcu_bootup_announce_oddness();
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
}

/*
 * Return the number of RCU-preempt batches processed thus far
 * for debug and statistics.
 */
long rcu_batches_completed_preempt(void)
{
	return rcu_preempt_state.completed;
}
EXPORT_SYMBOL_GPL(rcu_batches_completed_preempt);

/*
 * Return the number of RCU batches processed thus far for debug & stats.
 */
long rcu_batches_completed(void)
{
	return rcu_batches_completed_preempt();
}
EXPORT_SYMBOL_GPL(rcu_batches_completed);

100 101 102 103 104 105 106 107 108
/*
 * Force a quiescent state for preemptible RCU.
 */
void rcu_force_quiescent_state(void)
{
	force_quiescent_state(&rcu_preempt_state, 0);
}
EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);

109 110 111 112 113
/*
 * Record a preemptable-RCU quiescent state for the specified CPU.  Note
 * that this just means that the task currently running on the CPU is
 * not in a quiescent state.  There might be any number of tasks blocked
 * while in an RCU read-side critical section.
114 115 116 117
 *
 * Unlike the other rcu_*_qs() functions, callers to this function
 * must disable irqs in order to protect the assignment to
 * ->rcu_read_unlock_special.
118
 */
119
static void rcu_preempt_qs(int cpu)
120 121
{
	struct rcu_data *rdp = &per_cpu(rcu_preempt_data, cpu);
122

123
	rdp->passed_quiesc_completed = rdp->gpnum - 1;
124 125
	barrier();
	rdp->passed_quiesc = 1;
126
	current->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS;
127 128 129
}

/*
130 131 132
 * We have entered the scheduler, and the current task might soon be
 * context-switched away from.  If this task is in an RCU read-side
 * critical section, we will no longer be able to rely on the CPU to
133 134 135 136 137 138
 * record that fact, so we enqueue the task on the blkd_tasks list.
 * The task will dequeue itself when it exits the outermost enclosing
 * RCU read-side critical section.  Therefore, the current grace period
 * cannot be permitted to complete until the blkd_tasks list entries
 * predating the current grace period drain, in other words, until
 * rnp->gp_tasks becomes NULL.
139 140
 *
 * Caller must disable preemption.
141
 */
142
static void rcu_preempt_note_context_switch(int cpu)
143 144
{
	struct task_struct *t = current;
145
	unsigned long flags;
146 147 148 149 150 151 152
	struct rcu_data *rdp;
	struct rcu_node *rnp;

	if (t->rcu_read_lock_nesting &&
	    (t->rcu_read_unlock_special & RCU_READ_UNLOCK_BLOCKED) == 0) {

		/* Possibly blocking in an RCU read-side critical section. */
153
		rdp = per_cpu_ptr(rcu_preempt_state.rda, cpu);
154
		rnp = rdp->mynode;
P
Paul E. McKenney 已提交
155
		raw_spin_lock_irqsave(&rnp->lock, flags);
156
		t->rcu_read_unlock_special |= RCU_READ_UNLOCK_BLOCKED;
157
		t->rcu_blocked_node = rnp;
158 159 160 161 162 163 164 165 166

		/*
		 * If this CPU has already checked in, then this task
		 * will hold up the next grace period rather than the
		 * current grace period.  Queue the task accordingly.
		 * If the task is queued for the current grace period
		 * (i.e., this CPU has not yet passed through a quiescent
		 * state for the current grace period), then as long
		 * as that task remains queued, the current grace period
167 168 169 170 171 172
		 * cannot end.  Note that there is some uncertainty as
		 * to exactly when the current grace period started.
		 * We take a conservative approach, which can result
		 * in unnecessarily waiting on tasks that started very
		 * slightly after the current grace period began.  C'est
		 * la vie!!!
173 174 175
		 *
		 * But first, note that the current CPU must still be
		 * on line!
176
		 */
177
		WARN_ON_ONCE((rdp->grpmask & rnp->qsmaskinit) == 0);
178
		WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
179 180 181 182 183 184 185 186
		if ((rnp->qsmask & rdp->grpmask) && rnp->gp_tasks != NULL) {
			list_add(&t->rcu_node_entry, rnp->gp_tasks->prev);
			rnp->gp_tasks = &t->rcu_node_entry;
		} else {
			list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
			if (rnp->qsmask & rdp->grpmask)
				rnp->gp_tasks = &t->rcu_node_entry;
		}
P
Paul E. McKenney 已提交
187
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
188 189 190 191 192 193 194 195 196 197 198
	}

	/*
	 * Either we were not in an RCU read-side critical section to
	 * begin with, or we have now recorded that critical section
	 * globally.  Either way, we can now note a quiescent state
	 * for this CPU.  Again, if we were in an RCU read-side critical
	 * section, and if that critical section was blocking the current
	 * grace period, then the fact that the task has been enqueued
	 * means that we continue to block the current grace period.
	 */
199
	local_irq_save(flags);
200
	rcu_preempt_qs(cpu);
201
	local_irq_restore(flags);
202 203 204 205 206 207 208 209 210
}

/*
 * Tree-preemptable RCU implementation for rcu_read_lock().
 * Just increment ->rcu_read_lock_nesting, shared state will be updated
 * if we block.
 */
void __rcu_read_lock(void)
{
211
	current->rcu_read_lock_nesting++;
212 213 214 215
	barrier();  /* needed if we ever invoke rcu_read_lock in rcutree.c */
}
EXPORT_SYMBOL_GPL(__rcu_read_lock);

216 217 218 219 220 221 222
/*
 * Check for preempted RCU readers blocking the current grace period
 * for the specified rcu_node structure.  If the caller needs a reliable
 * answer, it must hold the rcu_node's ->lock.
 */
static int rcu_preempted_readers(struct rcu_node *rnp)
{
223
	return rnp->gp_tasks != NULL;
224 225
}

226 227 228 229 230 231 232
/*
 * Record a quiescent state for all tasks that were previously queued
 * on the specified rcu_node structure and that were blocking the current
 * RCU grace period.  The caller must hold the specified rnp->lock with
 * irqs disabled, and this lock is released upon return, but irqs remain
 * disabled.
 */
P
Paul E. McKenney 已提交
233
static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
234 235 236 237 238 239
	__releases(rnp->lock)
{
	unsigned long mask;
	struct rcu_node *rnp_p;

	if (rnp->qsmask != 0 || rcu_preempted_readers(rnp)) {
P
Paul E. McKenney 已提交
240
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
241 242 243 244 245 246 247 248 249 250
		return;  /* Still need more quiescent states! */
	}

	rnp_p = rnp->parent;
	if (rnp_p == NULL) {
		/*
		 * Either there is only one rcu_node in the tree,
		 * or tasks were kicked up to root rcu_node due to
		 * CPUs going offline.
		 */
P
Paul E. McKenney 已提交
251
		rcu_report_qs_rsp(&rcu_preempt_state, flags);
252 253 254 255 256
		return;
	}

	/* Report up the rest of the hierarchy. */
	mask = rnp->grpmask;
P
Paul E. McKenney 已提交
257 258
	raw_spin_unlock(&rnp->lock);	/* irqs remain disabled. */
	raw_spin_lock(&rnp_p->lock);	/* irqs already disabled. */
P
Paul E. McKenney 已提交
259
	rcu_report_qs_rnp(mask, &rcu_preempt_state, rnp_p, flags);
260 261
}

262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
/*
 * Advance a ->blkd_tasks-list pointer to the next entry, instead
 * returning NULL if at the end of the list.
 */
static struct list_head *rcu_next_node_entry(struct task_struct *t,
					     struct rcu_node *rnp)
{
	struct list_head *np;

	np = t->rcu_node_entry.next;
	if (np == &rnp->blkd_tasks)
		np = NULL;
	return np;
}

277 278 279 280 281
/*
 * Handle special cases during rcu_read_unlock(), such as needing to
 * notify RCU core processing or task having blocked during the RCU
 * read-side critical section.
 */
282 283 284
static void rcu_read_unlock_special(struct task_struct *t)
{
	int empty;
285
	int empty_exp;
286
	unsigned long flags;
287
	struct list_head *np;
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
	struct rcu_node *rnp;
	int special;

	/* NMI handlers cannot block and cannot safely manipulate state. */
	if (in_nmi())
		return;

	local_irq_save(flags);

	/*
	 * If RCU core is waiting for this CPU to exit critical section,
	 * let it know that we have done so.
	 */
	special = t->rcu_read_unlock_special;
	if (special & RCU_READ_UNLOCK_NEED_QS) {
303
		rcu_preempt_qs(smp_processor_id());
304 305 306 307 308 309 310 311 312 313 314 315
	}

	/* Hardware IRQ handlers cannot block. */
	if (in_irq()) {
		local_irq_restore(flags);
		return;
	}

	/* Clean up if blocked during RCU read-side critical section. */
	if (special & RCU_READ_UNLOCK_BLOCKED) {
		t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_BLOCKED;

316 317 318 319 320 321
		/*
		 * Remove this task from the list it blocked on.  The
		 * task can migrate while we acquire the lock, but at
		 * most one time.  So at most two passes through loop.
		 */
		for (;;) {
322
			rnp = t->rcu_blocked_node;
P
Paul E. McKenney 已提交
323
			raw_spin_lock(&rnp->lock);  /* irqs already disabled. */
324
			if (rnp == t->rcu_blocked_node)
325
				break;
P
Paul E. McKenney 已提交
326
			raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
327
		}
328
		empty = !rcu_preempted_readers(rnp);
329 330
		empty_exp = !rcu_preempted_readers_exp(rnp);
		smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
331
		np = rcu_next_node_entry(t, rnp);
332
		list_del_init(&t->rcu_node_entry);
333 334 335 336
		if (&t->rcu_node_entry == rnp->gp_tasks)
			rnp->gp_tasks = np;
		if (&t->rcu_node_entry == rnp->exp_tasks)
			rnp->exp_tasks = np;
337
		t->rcu_blocked_node = NULL;
338 339 340 341

		/*
		 * If this was the last task on the current list, and if
		 * we aren't waiting on any CPUs, report the quiescent state.
P
Paul E. McKenney 已提交
342
		 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock.
343
		 */
344
		if (empty)
P
Paul E. McKenney 已提交
345
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
346
		else
P
Paul E. McKenney 已提交
347
			rcu_report_unblock_qs_rnp(rnp, flags);
348 349 350 351 352 353 354

		/*
		 * If this was the last task on the expedited lists,
		 * then we need to report up the rcu_node hierarchy.
		 */
		if (!empty_exp && !rcu_preempted_readers_exp(rnp))
			rcu_report_exp_rnp(&rcu_preempt_state, rnp);
355 356
	} else {
		local_irq_restore(flags);
357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
	}
}

/*
 * Tree-preemptable RCU implementation for rcu_read_unlock().
 * Decrement ->rcu_read_lock_nesting.  If the result is zero (outermost
 * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
 * invoke rcu_read_unlock_special() to clean up after a context switch
 * in an RCU read-side critical section and other special cases.
 */
void __rcu_read_unlock(void)
{
	struct task_struct *t = current;

	barrier();  /* needed if we ever invoke rcu_read_unlock in rcutree.c */
372 373 374
	--t->rcu_read_lock_nesting;
	barrier();  /* decrement before load of ->rcu_read_unlock_special */
	if (t->rcu_read_lock_nesting == 0 &&
375 376
	    unlikely(ACCESS_ONCE(t->rcu_read_unlock_special)))
		rcu_read_unlock_special(t);
377 378 379
#ifdef CONFIG_PROVE_LOCKING
	WARN_ON_ONCE(ACCESS_ONCE(t->rcu_read_lock_nesting) < 0);
#endif /* #ifdef CONFIG_PROVE_LOCKING */
380 381 382
}
EXPORT_SYMBOL_GPL(__rcu_read_unlock);

383 384 385 386 387 388 389 390 391 392 393
#ifdef CONFIG_RCU_CPU_STALL_VERBOSE

/*
 * Dump detailed information for all tasks blocking the current RCU
 * grace period on the specified rcu_node structure.
 */
static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
{
	unsigned long flags;
	struct task_struct *t;

394 395 396 397 398 399 400 401
	if (!rcu_preempted_readers(rnp))
		return;
	raw_spin_lock_irqsave(&rnp->lock, flags);
	t = list_entry(rnp->gp_tasks,
		       struct task_struct, rcu_node_entry);
	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
		sched_show_task(t);
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
}

/*
 * Dump detailed information for all tasks blocking the current RCU
 * grace period.
 */
static void rcu_print_detail_task_stall(struct rcu_state *rsp)
{
	struct rcu_node *rnp = rcu_get_root(rsp);

	rcu_print_detail_task_stall_rnp(rnp);
	rcu_for_each_leaf_node(rsp, rnp)
		rcu_print_detail_task_stall_rnp(rnp);
}

#else /* #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */

static void rcu_print_detail_task_stall(struct rcu_state *rsp)
{
}

#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */

425 426 427 428 429 430 431 432
/*
 * Scan the current list of tasks blocked within RCU read-side critical
 * sections, printing out the tid of each.
 */
static void rcu_print_task_stall(struct rcu_node *rnp)
{
	struct task_struct *t;

433 434 435 436 437 438
	if (!rcu_preempted_readers(rnp))
		return;
	t = list_entry(rnp->gp_tasks,
		       struct task_struct, rcu_node_entry);
	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
		printk(" P%d", t->pid);
439 440
}

441 442 443 444 445 446 447 448 449 450
/*
 * Suppress preemptible RCU's CPU stall warnings by pushing the
 * time of the next stall-warning message comfortably far into the
 * future.
 */
static void rcu_preempt_stall_reset(void)
{
	rcu_preempt_state.jiffies_stall = jiffies + ULONG_MAX / 2;
}

451 452 453 454 455 456
/*
 * Check that the list of blocked tasks for the newly completed grace
 * period is in fact empty.  It is a serious bug to complete a grace
 * period that still has RCU readers blocked!  This function must be
 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
 * must be held by the caller.
457 458 459
 *
 * Also, if there are blocked tasks on the list, they automatically
 * block the newly created grace period, so set up ->gp_tasks accordingly.
460 461 462
 */
static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
{
463
	WARN_ON_ONCE(rcu_preempted_readers(rnp));
464 465
	if (!list_empty(&rnp->blkd_tasks))
		rnp->gp_tasks = rnp->blkd_tasks.next;
466
	WARN_ON_ONCE(rnp->qsmask);
467 468
}

469 470
#ifdef CONFIG_HOTPLUG_CPU

471 472 473 474 475 476
/*
 * Handle tasklist migration for case in which all CPUs covered by the
 * specified rcu_node have gone offline.  Move them up to the root
 * rcu_node.  The reason for not just moving them to the immediate
 * parent is to remove the need for rcu_read_unlock_special() to
 * make more than two attempts to acquire the target rcu_node's lock.
477 478
 * Returns true if there were tasks blocking the current RCU grace
 * period.
479
 *
480 481 482
 * Returns 1 if there was previously a task blocking the current grace
 * period on the specified rcu_node structure.
 *
483 484
 * The caller must hold rnp->lock with irqs disabled.
 */
485 486 487
static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
				     struct rcu_node *rnp,
				     struct rcu_data *rdp)
488 489 490
{
	struct list_head *lp;
	struct list_head *lp_root;
491
	int retval = 0;
492
	struct rcu_node *rnp_root = rcu_get_root(rsp);
493
	struct task_struct *t;
494

495 496
	if (rnp == rnp_root) {
		WARN_ONCE(1, "Last CPU thought to be offlined?");
497
		return 0;  /* Shouldn't happen: at least one CPU online. */
498
	}
499 500 501

	/* If we are on an internal node, complain bitterly. */
	WARN_ON_ONCE(rnp != rdp->mynode);
502 503

	/*
504 505 506 507 508 509 510
	 * Move tasks up to root rcu_node.  Don't try to get fancy for
	 * this corner-case operation -- just put this node's tasks
	 * at the head of the root node's list, and update the root node's
	 * ->gp_tasks and ->exp_tasks pointers to those of this node's,
	 * if non-NULL.  This might result in waiting for more tasks than
	 * absolutely necessary, but this is a good performance/complexity
	 * tradeoff.
511
	 */
512 513 514 515
	if (rcu_preempted_readers(rnp))
		retval |= RCU_OFL_TASKS_NORM_GP;
	if (rcu_preempted_readers_exp(rnp))
		retval |= RCU_OFL_TASKS_EXP_GP;
516 517 518 519 520 521 522 523 524 525 526 527 528
	lp = &rnp->blkd_tasks;
	lp_root = &rnp_root->blkd_tasks;
	while (!list_empty(lp)) {
		t = list_entry(lp->next, typeof(*t), rcu_node_entry);
		raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
		list_del(&t->rcu_node_entry);
		t->rcu_blocked_node = rnp_root;
		list_add(&t->rcu_node_entry, lp_root);
		if (&t->rcu_node_entry == rnp->gp_tasks)
			rnp_root->gp_tasks = rnp->gp_tasks;
		if (&t->rcu_node_entry == rnp->exp_tasks)
			rnp_root->exp_tasks = rnp->exp_tasks;
		raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
529
	}
530 531
	rnp->gp_tasks = NULL;
	rnp->exp_tasks = NULL;
532
	return retval;
533 534
}

535 536 537 538 539 540 541 542 543 544
/*
 * Do CPU-offline processing for preemptable RCU.
 */
static void rcu_preempt_offline_cpu(int cpu)
{
	__rcu_offline_cpu(cpu, &rcu_preempt_state);
}

#endif /* #ifdef CONFIG_HOTPLUG_CPU */

545 546 547 548 549 550 551 552 553 554 555 556
/*
 * Check for a quiescent state from the current CPU.  When a task blocks,
 * the task is recorded in the corresponding CPU's rcu_node structure,
 * which is checked elsewhere.
 *
 * Caller must disable hard irqs.
 */
static void rcu_preempt_check_callbacks(int cpu)
{
	struct task_struct *t = current;

	if (t->rcu_read_lock_nesting == 0) {
557
		rcu_preempt_qs(cpu);
558 559
		return;
	}
560
	if (per_cpu(rcu_preempt_data, cpu).qs_pending)
561
		t->rcu_read_unlock_special |= RCU_READ_UNLOCK_NEED_QS;
562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
}

/*
 * Process callbacks for preemptable RCU.
 */
static void rcu_preempt_process_callbacks(void)
{
	__rcu_process_callbacks(&rcu_preempt_state,
				&__get_cpu_var(rcu_preempt_data));
}

/*
 * Queue a preemptable-RCU callback for invocation after a grace period.
 */
void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
{
	__call_rcu(head, func, &rcu_preempt_state);
}
EXPORT_SYMBOL_GPL(call_rcu);

582 583 584 585 586
/**
 * synchronize_rcu - wait until a grace period has elapsed.
 *
 * Control will return to the caller some time after a full grace
 * period has elapsed, in other words after all currently executing RCU
587 588 589 590 591
 * read-side critical sections have completed.  Note, however, that
 * upon return from synchronize_rcu(), the caller might well be executing
 * concurrently with new RCU read-side critical sections that began while
 * synchronize_rcu() was waiting.  RCU read-side critical sections are
 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
592 593 594 595 596 597 598 599
 */
void synchronize_rcu(void)
{
	struct rcu_synchronize rcu;

	if (!rcu_scheduler_active)
		return;

600
	init_rcu_head_on_stack(&rcu.head);
601 602 603 604 605
	init_completion(&rcu.completion);
	/* Will wake me after RCU finished. */
	call_rcu(&rcu.head, wakeme_after_rcu);
	/* Wait for it. */
	wait_for_completion(&rcu.completion);
606
	destroy_rcu_head_on_stack(&rcu.head);
607 608 609
}
EXPORT_SYMBOL_GPL(synchronize_rcu);

610 611 612 613 614 615 616 617 618 619 620 621
static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq);
static long sync_rcu_preempt_exp_count;
static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex);

/*
 * Return non-zero if there are any tasks in RCU read-side critical
 * sections blocking the current preemptible-RCU expedited grace period.
 * If there is no preemptible-RCU expedited grace period currently in
 * progress, returns zero unconditionally.
 */
static int rcu_preempted_readers_exp(struct rcu_node *rnp)
{
622
	return rnp->exp_tasks != NULL;
623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
}

/*
 * return non-zero if there is no RCU expedited grace period in progress
 * for the specified rcu_node structure, in other words, if all CPUs and
 * tasks covered by the specified rcu_node structure have done their bit
 * for the current expedited grace period.  Works only for preemptible
 * RCU -- other RCU implementation use other means.
 *
 * Caller must hold sync_rcu_preempt_exp_mutex.
 */
static int sync_rcu_preempt_exp_done(struct rcu_node *rnp)
{
	return !rcu_preempted_readers_exp(rnp) &&
	       ACCESS_ONCE(rnp->expmask) == 0;
}

/*
 * Report the exit from RCU read-side critical section for the last task
 * that queued itself during or before the current expedited preemptible-RCU
 * grace period.  This event is reported either to the rcu_node structure on
 * which the task was queued or to one of that rcu_node structure's ancestors,
 * recursively up the tree.  (Calm down, calm down, we do the recursion
 * iteratively!)
 *
 * Caller must hold sync_rcu_preempt_exp_mutex.
 */
static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp)
{
	unsigned long flags;
	unsigned long mask;

P
Paul E. McKenney 已提交
655
	raw_spin_lock_irqsave(&rnp->lock, flags);
656 657 658 659 660 661 662 663
	for (;;) {
		if (!sync_rcu_preempt_exp_done(rnp))
			break;
		if (rnp->parent == NULL) {
			wake_up(&sync_rcu_preempt_exp_wq);
			break;
		}
		mask = rnp->grpmask;
P
Paul E. McKenney 已提交
664
		raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
665
		rnp = rnp->parent;
P
Paul E. McKenney 已提交
666
		raw_spin_lock(&rnp->lock); /* irqs already disabled */
667 668
		rnp->expmask &= ~mask;
	}
P
Paul E. McKenney 已提交
669
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
670 671 672 673 674 675 676 677 678 679 680 681
}

/*
 * Snapshot the tasks blocking the newly started preemptible-RCU expedited
 * grace period for the specified rcu_node structure.  If there are no such
 * tasks, report it up the rcu_node hierarchy.
 *
 * Caller must hold sync_rcu_preempt_exp_mutex and rsp->onofflock.
 */
static void
sync_rcu_preempt_exp_init(struct rcu_state *rsp, struct rcu_node *rnp)
{
682
	int must_wait = 0;
683

P
Paul E. McKenney 已提交
684
	raw_spin_lock(&rnp->lock); /* irqs already disabled */
685 686 687 688
	if (!list_empty(&rnp->blkd_tasks)) {
		rnp->exp_tasks = rnp->blkd_tasks.next;
		must_wait = 1;
	}
P
Paul E. McKenney 已提交
689
	raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
690 691 692 693
	if (!must_wait)
		rcu_report_exp_rnp(rsp, rnp);
}

694
/*
695 696
 * Wait for an rcu-preempt grace period, but expedite it.  The basic idea
 * is to invoke synchronize_sched_expedited() to push all the tasks to
697
 * the ->blkd_tasks lists and wait for this list to drain.
698 699 700
 */
void synchronize_rcu_expedited(void)
{
701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
	unsigned long flags;
	struct rcu_node *rnp;
	struct rcu_state *rsp = &rcu_preempt_state;
	long snap;
	int trycount = 0;

	smp_mb(); /* Caller's modifications seen first by other CPUs. */
	snap = ACCESS_ONCE(sync_rcu_preempt_exp_count) + 1;
	smp_mb(); /* Above access cannot bleed into critical section. */

	/*
	 * Acquire lock, falling back to synchronize_rcu() if too many
	 * lock-acquisition failures.  Of course, if someone does the
	 * expedited grace period for us, just leave.
	 */
	while (!mutex_trylock(&sync_rcu_preempt_exp_mutex)) {
		if (trycount++ < 10)
			udelay(trycount * num_online_cpus());
		else {
			synchronize_rcu();
			return;
		}
		if ((ACCESS_ONCE(sync_rcu_preempt_exp_count) - snap) > 0)
			goto mb_ret; /* Others did our work for us. */
	}
	if ((ACCESS_ONCE(sync_rcu_preempt_exp_count) - snap) > 0)
		goto unlock_mb_ret; /* Others did our work for us. */

729
	/* force all RCU readers onto ->blkd_tasks lists. */
730 731
	synchronize_sched_expedited();

P
Paul E. McKenney 已提交
732
	raw_spin_lock_irqsave(&rsp->onofflock, flags);
733 734 735

	/* Initialize ->expmask for all non-leaf rcu_node structures. */
	rcu_for_each_nonleaf_node_breadth_first(rsp, rnp) {
P
Paul E. McKenney 已提交
736
		raw_spin_lock(&rnp->lock); /* irqs already disabled. */
737
		rnp->expmask = rnp->qsmaskinit;
P
Paul E. McKenney 已提交
738
		raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
739 740
	}

741
	/* Snapshot current state of ->blkd_tasks lists. */
742 743 744 745 746
	rcu_for_each_leaf_node(rsp, rnp)
		sync_rcu_preempt_exp_init(rsp, rnp);
	if (NUM_RCU_NODES > 1)
		sync_rcu_preempt_exp_init(rsp, rcu_get_root(rsp));

P
Paul E. McKenney 已提交
747
	raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
748

749
	/* Wait for snapshotted ->blkd_tasks lists to drain. */
750 751 752 753 754 755 756 757 758 759 760
	rnp = rcu_get_root(rsp);
	wait_event(sync_rcu_preempt_exp_wq,
		   sync_rcu_preempt_exp_done(rnp));

	/* Clean up and exit. */
	smp_mb(); /* ensure expedited GP seen before counter increment. */
	ACCESS_ONCE(sync_rcu_preempt_exp_count)++;
unlock_mb_ret:
	mutex_unlock(&sync_rcu_preempt_exp_mutex);
mb_ret:
	smp_mb(); /* ensure subsequent action seen after grace period. */
761 762 763
}
EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);

764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781
/*
 * Check to see if there is any immediate preemptable-RCU-related work
 * to be done.
 */
static int rcu_preempt_pending(int cpu)
{
	return __rcu_pending(&rcu_preempt_state,
			     &per_cpu(rcu_preempt_data, cpu));
}

/*
 * Does preemptable RCU need the CPU to stay out of dynticks mode?
 */
static int rcu_preempt_needs_cpu(int cpu)
{
	return !!per_cpu(rcu_preempt_data, cpu).nxtlist;
}

782 783 784 785 786 787 788 789 790
/**
 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
 */
void rcu_barrier(void)
{
	_rcu_barrier(&rcu_preempt_state, call_rcu);
}
EXPORT_SYMBOL_GPL(rcu_barrier);

791 792 793 794 795 796 797 798
/*
 * Initialize preemptable RCU's per-CPU data.
 */
static void __cpuinit rcu_preempt_init_percpu_data(int cpu)
{
	rcu_init_percpu_data(cpu, &rcu_preempt_state, 1);
}

799
/*
800
 * Move preemptable RCU's callbacks from dying CPU to other online CPU.
801
 */
802
static void rcu_preempt_send_cbs_to_online(void)
803
{
804
	rcu_send_cbs_to_online(&rcu_preempt_state);
805 806
}

807 808 809 810 811
/*
 * Initialize preemptable RCU's state structures.
 */
static void __init __rcu_init_preempt(void)
{
812
	rcu_init_one(&rcu_preempt_state, &rcu_preempt_data);
813 814
}

815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835
/*
 * Check for a task exiting while in a preemptable-RCU read-side
 * critical section, clean up if so.  No need to issue warnings,
 * as debug_check_no_locks_held() already does this if lockdep
 * is enabled.
 */
void exit_rcu(void)
{
	struct task_struct *t = current;

	if (t->rcu_read_lock_nesting == 0)
		return;
	t->rcu_read_lock_nesting = 1;
	rcu_read_unlock();
}

#else /* #ifdef CONFIG_TREE_PREEMPT_RCU */

/*
 * Tell them what RCU they are running.
 */
836
static void __init rcu_bootup_announce(void)
837 838
{
	printk(KERN_INFO "Hierarchical RCU implementation.\n");
839
	rcu_bootup_announce_oddness();
840 841 842 843 844 845 846 847 848 849 850
}

/*
 * Return the number of RCU batches processed thus far for debug & stats.
 */
long rcu_batches_completed(void)
{
	return rcu_batches_completed_sched();
}
EXPORT_SYMBOL_GPL(rcu_batches_completed);

851 852 853 854 855 856 857 858 859 860
/*
 * Force a quiescent state for RCU, which, because there is no preemptible
 * RCU, becomes the same as rcu-sched.
 */
void rcu_force_quiescent_state(void)
{
	rcu_sched_force_quiescent_state();
}
EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);

861 862 863 864
/*
 * Because preemptable RCU does not exist, we never have to check for
 * CPUs being in quiescent states.
 */
865
static void rcu_preempt_note_context_switch(int cpu)
866 867 868
{
}

869 870 871 872 873 874 875 876 877
/*
 * Because preemptable RCU does not exist, there are never any preempted
 * RCU readers.
 */
static int rcu_preempted_readers(struct rcu_node *rnp)
{
	return 0;
}

878 879 880
#ifdef CONFIG_HOTPLUG_CPU

/* Because preemptible RCU does not exist, no quieting of tasks. */
P
Paul E. McKenney 已提交
881
static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
882
{
P
Paul E. McKenney 已提交
883
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
884 885 886 887
}

#endif /* #ifdef CONFIG_HOTPLUG_CPU */

888 889 890 891 892 893 894 895
/*
 * Because preemptable RCU does not exist, we never have to check for
 * tasks blocked within RCU read-side critical sections.
 */
static void rcu_print_detail_task_stall(struct rcu_state *rsp)
{
}

896 897 898 899 900 901 902 903
/*
 * Because preemptable RCU does not exist, we never have to check for
 * tasks blocked within RCU read-side critical sections.
 */
static void rcu_print_task_stall(struct rcu_node *rnp)
{
}

904 905 906 907 908 909 910 911
/*
 * Because preemptible RCU does not exist, there is no need to suppress
 * its CPU stall warnings.
 */
static void rcu_preempt_stall_reset(void)
{
}

912 913
/*
 * Because there is no preemptable RCU, there can be no readers blocked,
914 915
 * so there is no need to check for blocked tasks.  So check only for
 * bogus qsmask values.
916 917 918
 */
static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
{
919
	WARN_ON_ONCE(rnp->qsmask);
920 921
}

922 923
#ifdef CONFIG_HOTPLUG_CPU

924 925
/*
 * Because preemptable RCU does not exist, it never needs to migrate
926 927 928
 * tasks that were blocked within RCU read-side critical sections, and
 * such non-existent tasks cannot possibly have been blocking the current
 * grace period.
929
 */
930 931 932
static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
				     struct rcu_node *rnp,
				     struct rcu_data *rdp)
933
{
934
	return 0;
935 936
}

937 938 939 940 941 942 943 944 945 946
/*
 * Because preemptable RCU does not exist, it never needs CPU-offline
 * processing.
 */
static void rcu_preempt_offline_cpu(int cpu)
{
}

#endif /* #ifdef CONFIG_HOTPLUG_CPU */

947 948 949 950
/*
 * Because preemptable RCU does not exist, it never has any callbacks
 * to check.
 */
951
static void rcu_preempt_check_callbacks(int cpu)
952 953 954 955 956 957 958
{
}

/*
 * Because preemptable RCU does not exist, it never has any callbacks
 * to process.
 */
959
static void rcu_preempt_process_callbacks(void)
960 961 962
{
}

963 964 965 966 967 968 969 970 971 972
/*
 * Wait for an rcu-preempt grace period, but make it happen quickly.
 * But because preemptable RCU does not exist, map to rcu-sched.
 */
void synchronize_rcu_expedited(void)
{
	synchronize_sched_expedited();
}
EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);

973 974 975 976 977 978 979 980 981 982 983 984 985 986
#ifdef CONFIG_HOTPLUG_CPU

/*
 * Because preemptable RCU does not exist, there is never any need to
 * report on tasks preempted in RCU read-side critical sections during
 * expedited RCU grace periods.
 */
static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp)
{
	return;
}

#endif /* #ifdef CONFIG_HOTPLUG_CPU */

987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002
/*
 * Because preemptable RCU does not exist, it never has any work to do.
 */
static int rcu_preempt_pending(int cpu)
{
	return 0;
}

/*
 * Because preemptable RCU does not exist, it never needs any CPU.
 */
static int rcu_preempt_needs_cpu(int cpu)
{
	return 0;
}

1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
/*
 * Because preemptable RCU does not exist, rcu_barrier() is just
 * another name for rcu_barrier_sched().
 */
void rcu_barrier(void)
{
	rcu_barrier_sched();
}
EXPORT_SYMBOL_GPL(rcu_barrier);

1013 1014 1015 1016 1017 1018 1019 1020
/*
 * Because preemptable RCU does not exist, there is no per-CPU
 * data to initialize.
 */
static void __cpuinit rcu_preempt_init_percpu_data(int cpu)
{
}

1021 1022 1023
/*
 * Because there is no preemptable RCU, there are no callbacks to move.
 */
1024
static void rcu_preempt_send_cbs_to_online(void)
1025 1026 1027
{
}

1028 1029 1030 1031 1032 1033 1034
/*
 * Because preemptable RCU does not exist, it need not be initialized.
 */
static void __init __rcu_init_preempt(void)
{
}

1035
#endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */
1036

1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
#ifndef CONFIG_SMP

void synchronize_sched_expedited(void)
{
	cond_resched();
}
EXPORT_SYMBOL_GPL(synchronize_sched_expedited);

#else /* #ifndef CONFIG_SMP */

1047 1048
static atomic_t sync_sched_expedited_started = ATOMIC_INIT(0);
static atomic_t sync_sched_expedited_done = ATOMIC_INIT(0);
1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075

static int synchronize_sched_expedited_cpu_stop(void *data)
{
	/*
	 * There must be a full memory barrier on each affected CPU
	 * between the time that try_stop_cpus() is called and the
	 * time that it returns.
	 *
	 * In the current initial implementation of cpu_stop, the
	 * above condition is already met when the control reaches
	 * this point and the following smp_mb() is not strictly
	 * necessary.  Do smp_mb() anyway for documentation and
	 * robustness against future implementation changes.
	 */
	smp_mb(); /* See above comment block. */
	return 0;
}

/*
 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
 * approach to force grace period to end quickly.  This consumes
 * significant time on all CPUs, and is thus not recommended for
 * any sort of common-case code.
 *
 * Note that it is illegal to call this function while holding any
 * lock that is acquired by a CPU-hotplug notifier.  Failing to
 * observe this restriction will result in deadlock.
1076
 *
1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
 * This implementation can be thought of as an application of ticket
 * locking to RCU, with sync_sched_expedited_started and
 * sync_sched_expedited_done taking on the roles of the halves
 * of the ticket-lock word.  Each task atomically increments
 * sync_sched_expedited_started upon entry, snapshotting the old value,
 * then attempts to stop all the CPUs.  If this succeeds, then each
 * CPU will have executed a context switch, resulting in an RCU-sched
 * grace period.  We are then done, so we use atomic_cmpxchg() to
 * update sync_sched_expedited_done to match our snapshot -- but
 * only if someone else has not already advanced past our snapshot.
 *
 * On the other hand, if try_stop_cpus() fails, we check the value
 * of sync_sched_expedited_done.  If it has advanced past our
 * initial snapshot, then someone else must have forced a grace period
 * some time after we took our snapshot.  In this case, our work is
 * done for us, and we can simply return.  Otherwise, we try again,
 * but keep our initial snapshot for purposes of checking for someone
 * doing our work for us.
 *
 * If we fail too many times in a row, we fall back to synchronize_sched().
1097 1098 1099
 */
void synchronize_sched_expedited(void)
{
1100
	int firstsnap, s, snap, trycount = 0;
1101

1102 1103
	/* Note that atomic_inc_return() implies full memory barrier. */
	firstsnap = snap = atomic_inc_return(&sync_sched_expedited_started);
1104
	get_online_cpus();
1105 1106 1107 1108 1109

	/*
	 * Each pass through the following loop attempts to force a
	 * context switch on each CPU.
	 */
1110 1111 1112 1113
	while (try_stop_cpus(cpu_online_mask,
			     synchronize_sched_expedited_cpu_stop,
			     NULL) == -EAGAIN) {
		put_online_cpus();
1114 1115

		/* No joy, try again later.  Or just synchronize_sched(). */
1116 1117 1118 1119 1120 1121
		if (trycount++ < 10)
			udelay(trycount * num_online_cpus());
		else {
			synchronize_sched();
			return;
		}
1122 1123 1124 1125

		/* Check to see if someone else did our work for us. */
		s = atomic_read(&sync_sched_expedited_done);
		if (UINT_CMP_GE((unsigned)s, (unsigned)firstsnap)) {
1126 1127 1128
			smp_mb(); /* ensure test happens before caller kfree */
			return;
		}
1129 1130 1131 1132 1133 1134 1135 1136 1137

		/*
		 * Refetching sync_sched_expedited_started allows later
		 * callers to piggyback on our grace period.  We subtract
		 * 1 to get the same token that the last incrementer got.
		 * We retry after they started, so our grace period works
		 * for them, and they started after our first try, so their
		 * grace period works for us.
		 */
1138
		get_online_cpus();
1139 1140
		snap = atomic_read(&sync_sched_expedited_started) - 1;
		smp_mb(); /* ensure read is before try_stop_cpus(). */
1141
	}
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156

	/*
	 * Everyone up to our most recent fetch is covered by our grace
	 * period.  Update the counter, but only if our work is still
	 * relevant -- which it won't be if someone who started later
	 * than we did beat us to the punch.
	 */
	do {
		s = atomic_read(&sync_sched_expedited_done);
		if (UINT_CMP_GE((unsigned)s, (unsigned)snap)) {
			smp_mb(); /* ensure test happens before caller kfree */
			break;
		}
	} while (atomic_cmpxchg(&sync_sched_expedited_done, s, snap) != s);

1157 1158 1159 1160 1161 1162
	put_online_cpus();
}
EXPORT_SYMBOL_GPL(synchronize_sched_expedited);

#endif /* #else #ifndef CONFIG_SMP */

1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
#if !defined(CONFIG_RCU_FAST_NO_HZ)

/*
 * Check to see if any future RCU-related work will need to be done
 * by the current CPU, even if none need be done immediately, returning
 * 1 if so.  This function is part of the RCU implementation; it is -not-
 * an exported member of the RCU API.
 *
 * Because we have preemptible RCU, just check whether this CPU needs
 * any flavor of RCU.  Do not chew up lots of CPU cycles with preemption
 * disabled in a most-likely vain attempt to cause RCU not to need this CPU.
 */
int rcu_needs_cpu(int cpu)
{
	return rcu_needs_cpu_quick_check(cpu);
}

1180 1181 1182 1183 1184 1185 1186 1187 1188
/*
 * Check to see if we need to continue a callback-flush operations to
 * allow the last CPU to enter dyntick-idle mode.  But fast dyntick-idle
 * entry is not configured, so we never do need to.
 */
static void rcu_needs_cpu_flush(void)
{
}

1189 1190 1191
#else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */

#define RCU_NEEDS_CPU_FLUSHES 5
1192
static DEFINE_PER_CPU(int, rcu_dyntick_drain);
1193
static DEFINE_PER_CPU(unsigned long, rcu_dyntick_holdoff);
1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205

/*
 * Check to see if any future RCU-related work will need to be done
 * by the current CPU, even if none need be done immediately, returning
 * 1 if so.  This function is part of the RCU implementation; it is -not-
 * an exported member of the RCU API.
 *
 * Because we are not supporting preemptible RCU, attempt to accelerate
 * any current grace periods so that RCU no longer needs this CPU, but
 * only if all other CPUs are already in dynticks-idle mode.  This will
 * allow the CPU cores to be powered down immediately, as opposed to after
 * waiting many milliseconds for grace periods to elapse.
1206 1207 1208
 *
 * Because it is not legal to invoke rcu_process_callbacks() with irqs
 * disabled, we do one pass of force_quiescent_state(), then do a
1209
 * invoke_rcu_kthread() to cause rcu_process_callbacks() to be invoked later.
1210
 * The per-cpu rcu_dyntick_drain variable controls the sequencing.
1211 1212 1213
 */
int rcu_needs_cpu(int cpu)
{
1214
	int c = 0;
1215
	int snap;
1216 1217
	int thatcpu;

1218 1219 1220 1221
	/* Check for being in the holdoff period. */
	if (per_cpu(rcu_dyntick_holdoff, cpu) == jiffies)
		return rcu_needs_cpu_quick_check(cpu);

1222
	/* Don't bother unless we are the last non-dyntick-idle CPU. */
1223 1224 1225
	for_each_online_cpu(thatcpu) {
		if (thatcpu == cpu)
			continue;
1226 1227
		snap = atomic_add_return(0, &per_cpu(rcu_dynticks,
						     thatcpu).dynticks);
1228
		smp_mb(); /* Order sampling of snap with end of grace period. */
1229
		if ((snap & 0x1) != 0) {
1230
			per_cpu(rcu_dyntick_drain, cpu) = 0;
1231
			per_cpu(rcu_dyntick_holdoff, cpu) = jiffies - 1;
1232 1233
			return rcu_needs_cpu_quick_check(cpu);
		}
1234
	}
1235 1236 1237 1238 1239 1240 1241

	/* Check and update the rcu_dyntick_drain sequencing. */
	if (per_cpu(rcu_dyntick_drain, cpu) <= 0) {
		/* First time through, initialize the counter. */
		per_cpu(rcu_dyntick_drain, cpu) = RCU_NEEDS_CPU_FLUSHES;
	} else if (--per_cpu(rcu_dyntick_drain, cpu) <= 0) {
		/* We have hit the limit, so time to give up. */
1242
		per_cpu(rcu_dyntick_holdoff, cpu) = jiffies;
1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
		return rcu_needs_cpu_quick_check(cpu);
	}

	/* Do one step pushing remaining RCU callbacks through. */
	if (per_cpu(rcu_sched_data, cpu).nxtlist) {
		rcu_sched_qs(cpu);
		force_quiescent_state(&rcu_sched_state, 0);
		c = c || per_cpu(rcu_sched_data, cpu).nxtlist;
	}
	if (per_cpu(rcu_bh_data, cpu).nxtlist) {
		rcu_bh_qs(cpu);
		force_quiescent_state(&rcu_bh_state, 0);
		c = c || per_cpu(rcu_bh_data, cpu).nxtlist;
1256 1257 1258
	}

	/* If RCU callbacks are still pending, RCU still needs this CPU. */
1259
	if (c)
1260
		invoke_rcu_kthread();
1261 1262 1263
	return c;
}

1264 1265 1266 1267 1268 1269 1270
/*
 * Check to see if we need to continue a callback-flush operations to
 * allow the last CPU to enter dyntick-idle mode.
 */
static void rcu_needs_cpu_flush(void)
{
	int cpu = smp_processor_id();
1271
	unsigned long flags;
1272 1273 1274

	if (per_cpu(rcu_dyntick_drain, cpu) <= 0)
		return;
1275
	local_irq_save(flags);
1276
	(void)rcu_needs_cpu(cpu);
1277
	local_irq_restore(flags);
1278 1279
}

1280
#endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */