igb_main.c 158.5 KB
Newer Older
1 2 3
/*******************************************************************************

  Intel(R) Gigabit Ethernet Linux driver
4
  Copyright(c) 2007-2009 Intel Corporation.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

  This program is free software; you can redistribute it and/or modify it
  under the terms and conditions of the GNU General Public License,
  version 2, as published by the Free Software Foundation.

  This program is distributed in the hope it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  more details.

  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc.,
  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.

  The full GNU General Public License is included in this distribution in
  the file called "COPYING".

  Contact Information:
  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497

*******************************************************************************/

#include <linux/module.h>
#include <linux/types.h>
#include <linux/init.h>
#include <linux/vmalloc.h>
#include <linux/pagemap.h>
#include <linux/netdevice.h>
#include <linux/ipv6.h>
#include <net/checksum.h>
#include <net/ip6_checksum.h>
37
#include <linux/net_tstamp.h>
38 39 40 41
#include <linux/mii.h>
#include <linux/ethtool.h>
#include <linux/if_vlan.h>
#include <linux/pci.h>
42
#include <linux/pci-aspm.h>
43 44 45
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/if_ether.h>
46
#include <linux/aer.h>
47
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
48 49
#include <linux/dca.h>
#endif
50 51
#include "igb.h"

52
#define DRV_VERSION "1.3.16-k2"
53 54 55 56
char igb_driver_name[] = "igb";
char igb_driver_version[] = DRV_VERSION;
static const char igb_driver_string[] =
				"Intel(R) Gigabit Ethernet Network Driver";
57
static const char igb_copyright[] = "Copyright (c) 2007-2009 Intel Corporation.";
58 59 60 61 62 63

static const struct e1000_info *igb_info_tbl[] = {
	[board_82575] = &e1000_82575_info,
};

static struct pci_device_id igb_pci_tbl[] = {
A
Alexander Duyck 已提交
64
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
65
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
66
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
A
Alexander Duyck 已提交
67 68
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
69
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
70
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
71 72 73 74 75 76 77 78 79 80 81 82 83 84
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
	/* required last entry */
	{0, }
};

MODULE_DEVICE_TABLE(pci, igb_pci_tbl);

void igb_reset(struct igb_adapter *);
static int igb_setup_all_tx_resources(struct igb_adapter *);
static int igb_setup_all_rx_resources(struct igb_adapter *);
static void igb_free_all_tx_resources(struct igb_adapter *);
static void igb_free_all_rx_resources(struct igb_adapter *);
85
static void igb_setup_mrqc(struct igb_adapter *);
86 87 88 89 90 91 92 93 94 95
void igb_update_stats(struct igb_adapter *);
static int igb_probe(struct pci_dev *, const struct pci_device_id *);
static void __devexit igb_remove(struct pci_dev *pdev);
static int igb_sw_init(struct igb_adapter *);
static int igb_open(struct net_device *);
static int igb_close(struct net_device *);
static void igb_configure_tx(struct igb_adapter *);
static void igb_configure_rx(struct igb_adapter *);
static void igb_clean_all_tx_rings(struct igb_adapter *);
static void igb_clean_all_rx_rings(struct igb_adapter *);
96 97
static void igb_clean_tx_ring(struct igb_ring *);
static void igb_clean_rx_ring(struct igb_ring *);
98
static void igb_set_rx_mode(struct net_device *);
99 100 101
static void igb_update_phy_info(unsigned long);
static void igb_watchdog(unsigned long);
static void igb_watchdog_task(struct work_struct *);
102 103 104 105
static netdev_tx_t igb_xmit_frame_ring_adv(struct sk_buff *,
					   struct igb_ring *);
static netdev_tx_t igb_xmit_frame_adv(struct sk_buff *skb,
				      struct net_device *);
106 107 108
static struct net_device_stats *igb_get_stats(struct net_device *);
static int igb_change_mtu(struct net_device *, int);
static int igb_set_mac(struct net_device *, void *);
109
static void igb_set_uta(struct igb_adapter *adapter);
110 111 112
static irqreturn_t igb_intr(int irq, void *);
static irqreturn_t igb_intr_msi(int irq, void *);
static irqreturn_t igb_msix_other(int irq, void *);
113
static irqreturn_t igb_msix_ring(int irq, void *);
114
#ifdef CONFIG_IGB_DCA
115
static void igb_update_dca(struct igb_q_vector *);
J
Jeb Cramer 已提交
116
static void igb_setup_dca(struct igb_adapter *);
117
#endif /* CONFIG_IGB_DCA */
118
static bool igb_clean_tx_irq(struct igb_q_vector *);
119
static int igb_poll(struct napi_struct *, int);
120
static bool igb_clean_rx_irq_adv(struct igb_q_vector *, int *, int);
121 122 123 124 125 126 127
static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
static void igb_tx_timeout(struct net_device *);
static void igb_reset_task(struct work_struct *);
static void igb_vlan_rx_register(struct net_device *, struct vlan_group *);
static void igb_vlan_rx_add_vid(struct net_device *, u16);
static void igb_vlan_rx_kill_vid(struct net_device *, u16);
static void igb_restore_vlan(struct igb_adapter *);
128
static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
129 130 131 132 133 134
static void igb_ping_all_vfs(struct igb_adapter *);
static void igb_msg_task(struct igb_adapter *);
static int igb_rcv_msg_from_vf(struct igb_adapter *, u32);
static void igb_vmm_control(struct igb_adapter *);
static int igb_set_vf_mac(struct igb_adapter *adapter, int, unsigned char *);
static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
135

E
Eric Dumazet 已提交
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
static inline void igb_set_vmolr(struct e1000_hw *hw, int vfn)
{
	u32 reg_data;

	reg_data = rd32(E1000_VMOLR(vfn));
	reg_data |= E1000_VMOLR_BAM |	 /* Accept broadcast */
	            E1000_VMOLR_ROMPE |  /* Accept packets matched in MTA */
	            E1000_VMOLR_AUPE |   /* Accept untagged packets */
	            E1000_VMOLR_STRVLAN; /* Strip vlan tags */
	wr32(E1000_VMOLR(vfn), reg_data);
}

static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
                                 int vfn)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vmolr;

154 155 156 157 158 159
	/* if it isn't the PF check to see if VFs are enabled and
	 * increase the size to support vlan tags */
	if (vfn < adapter->vfs_allocated_count &&
	    adapter->vf_data[vfn].vlans_enabled)
		size += VLAN_TAG_SIZE;

E
Eric Dumazet 已提交
160 161 162 163 164 165 166 167
	vmolr = rd32(E1000_VMOLR(vfn));
	vmolr &= ~E1000_VMOLR_RLPML_MASK;
	vmolr |= size | E1000_VMOLR_LPE;
	wr32(E1000_VMOLR(vfn), vmolr);

	return 0;
}

168
#ifdef CONFIG_PM
169
static int igb_suspend(struct pci_dev *, pm_message_t);
170 171 172
static int igb_resume(struct pci_dev *);
#endif
static void igb_shutdown(struct pci_dev *);
173
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
174 175 176 177 178 179 180
static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
static struct notifier_block dca_notifier = {
	.notifier_call	= igb_notify_dca,
	.next		= NULL,
	.priority	= 0
};
#endif
181 182 183 184
#ifdef CONFIG_NET_POLL_CONTROLLER
/* for netdump / net console */
static void igb_netpoll(struct net_device *);
#endif
185
#ifdef CONFIG_PCI_IOV
186 187 188 189 190 191
static unsigned int max_vfs = 0;
module_param(max_vfs, uint, 0);
MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
                 "per physical function");
#endif /* CONFIG_PCI_IOV */

192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
		     pci_channel_state_t);
static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
static void igb_io_resume(struct pci_dev *);

static struct pci_error_handlers igb_err_handler = {
	.error_detected = igb_io_error_detected,
	.slot_reset = igb_io_slot_reset,
	.resume = igb_io_resume,
};


static struct pci_driver igb_driver = {
	.name     = igb_driver_name,
	.id_table = igb_pci_tbl,
	.probe    = igb_probe,
	.remove   = __devexit_p(igb_remove),
#ifdef CONFIG_PM
	/* Power Managment Hooks */
	.suspend  = igb_suspend,
	.resume   = igb_resume,
#endif
	.shutdown = igb_shutdown,
	.err_handler = &igb_err_handler
};

218 219
static int global_quad_port_a; /* global quad port a indication */

220 221 222 223 224
MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_VERSION);

P
Patrick Ohly 已提交
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
/**
 * Scale the NIC clock cycle by a large factor so that
 * relatively small clock corrections can be added or
 * substracted at each clock tick. The drawbacks of a
 * large factor are a) that the clock register overflows
 * more quickly (not such a big deal) and b) that the
 * increment per tick has to fit into 24 bits.
 *
 * Note that
 *   TIMINCA = IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS *
 *             IGB_TSYNC_SCALE
 *   TIMINCA += TIMINCA * adjustment [ppm] / 1e9
 *
 * The base scale factor is intentionally a power of two
 * so that the division in %struct timecounter can be done with
 * a shift.
 */
#define IGB_TSYNC_SHIFT (19)
#define IGB_TSYNC_SCALE (1<<IGB_TSYNC_SHIFT)

/**
 * The duration of one clock cycle of the NIC.
 *
 * @todo This hard-coded value is part of the specification and might change
 * in future hardware revisions. Add revision check.
 */
#define IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS 16

#if (IGB_TSYNC_SCALE * IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS) >= (1<<24)
# error IGB_TSYNC_SCALE and/or IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS are too large to fit into TIMINCA
#endif

/**
 * igb_read_clock - read raw cycle counter (to be used by time counter)
 */
static cycle_t igb_read_clock(const struct cyclecounter *tc)
{
	struct igb_adapter *adapter =
		container_of(tc, struct igb_adapter, cycles);
	struct e1000_hw *hw = &adapter->hw;
	u64 stamp;

	stamp =  rd32(E1000_SYSTIML);
	stamp |= (u64)rd32(E1000_SYSTIMH) << 32ULL;

	return stamp;
}

273 274 275 276 277 278 279 280 281 282
#ifdef DEBUG
/**
 * igb_get_hw_dev_name - return device name string
 * used by hardware layer to print debugging information
 **/
char *igb_get_hw_dev_name(struct e1000_hw *hw)
{
	struct igb_adapter *adapter = hw->back;
	return adapter->netdev->name;
}
P
Patrick Ohly 已提交
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298

/**
 * igb_get_time_str - format current NIC and system time as string
 */
static char *igb_get_time_str(struct igb_adapter *adapter,
			      char buffer[160])
{
	cycle_t hw = adapter->cycles.read(&adapter->cycles);
	struct timespec nic = ns_to_timespec(timecounter_read(&adapter->clock));
	struct timespec sys;
	struct timespec delta;
	getnstimeofday(&sys);

	delta = timespec_sub(nic, sys);

	sprintf(buffer,
299 300
		"HW %llu, NIC %ld.%09lus, SYS %ld.%09lus, NIC-SYS %lds + %09luns",
		hw,
P
Patrick Ohly 已提交
301 302 303 304 305 306
		(long)nic.tv_sec, nic.tv_nsec,
		(long)sys.tv_sec, sys.tv_nsec,
		(long)delta.tv_sec, delta.tv_nsec);

	return buffer;
}
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
#endif

/**
 * igb_init_module - Driver Registration Routine
 *
 * igb_init_module is the first routine called when the driver is
 * loaded. All it does is register with the PCI subsystem.
 **/
static int __init igb_init_module(void)
{
	int ret;
	printk(KERN_INFO "%s - version %s\n",
	       igb_driver_string, igb_driver_version);

	printk(KERN_INFO "%s\n", igb_copyright);

323 324
	global_quad_port_a = 0;

325
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
326 327
	dca_register_notify(&dca_notifier);
#endif
328 329

	ret = pci_register_driver(&igb_driver);
330 331 332 333 334 335 336 337 338 339 340 341 342
	return ret;
}

module_init(igb_init_module);

/**
 * igb_exit_module - Driver Exit Cleanup Routine
 *
 * igb_exit_module is called just before the driver is removed
 * from memory.
 **/
static void __exit igb_exit_module(void)
{
343
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
344 345
	dca_unregister_notify(&dca_notifier);
#endif
346 347 348 349 350
	pci_unregister_driver(&igb_driver);
}

module_exit(igb_exit_module);

351 352 353 354 355 356 357 358 359 360 361
#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
/**
 * igb_cache_ring_register - Descriptor ring to register mapping
 * @adapter: board private structure to initialize
 *
 * Once we know the feature-set enabled for the device, we'll cache
 * the register offset the descriptor ring is assigned to.
 **/
static void igb_cache_ring_register(struct igb_adapter *adapter)
{
	int i;
362
	u32 rbase_offset = adapter->vfs_allocated_count;
363 364 365 366 367 368 369 370 371

	switch (adapter->hw.mac.type) {
	case e1000_82576:
		/* The queues are allocated for virtualization such that VF 0
		 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
		 * In order to avoid collision we start at the first free queue
		 * and continue consuming queues in the same sequence
		 */
		for (i = 0; i < adapter->num_rx_queues; i++)
372 373
			adapter->rx_ring[i].reg_idx = rbase_offset +
			                              Q_IDX_82576(i);
374
		for (i = 0; i < adapter->num_tx_queues; i++)
375 376
			adapter->tx_ring[i].reg_idx = rbase_offset +
			                              Q_IDX_82576(i);
377 378 379 380 381 382 383 384 385 386 387
		break;
	case e1000_82575:
	default:
		for (i = 0; i < adapter->num_rx_queues; i++)
			adapter->rx_ring[i].reg_idx = i;
		for (i = 0; i < adapter->num_tx_queues; i++)
			adapter->tx_ring[i].reg_idx = i;
		break;
	}
}

388 389 390 391 392 393 394 395 396 397 398 399
static void igb_free_queues(struct igb_adapter *adapter)
{
	kfree(adapter->tx_ring);
	kfree(adapter->rx_ring);

	adapter->tx_ring = NULL;
	adapter->rx_ring = NULL;

	adapter->num_rx_queues = 0;
	adapter->num_tx_queues = 0;
}

400 401 402 403 404 405 406 407 408 409 410 411 412 413
/**
 * igb_alloc_queues - Allocate memory for all rings
 * @adapter: board private structure to initialize
 *
 * We allocate one ring per queue at run-time since we don't know the
 * number of queues at compile-time.
 **/
static int igb_alloc_queues(struct igb_adapter *adapter)
{
	int i;

	adapter->tx_ring = kcalloc(adapter->num_tx_queues,
				   sizeof(struct igb_ring), GFP_KERNEL);
	if (!adapter->tx_ring)
414
		goto err;
415 416 417

	adapter->rx_ring = kcalloc(adapter->num_rx_queues,
				   sizeof(struct igb_ring), GFP_KERNEL);
418 419
	if (!adapter->rx_ring)
		goto err;
420

421 422
	for (i = 0; i < adapter->num_tx_queues; i++) {
		struct igb_ring *ring = &(adapter->tx_ring[i]);
423
		ring->count = adapter->tx_ring_count;
424
		ring->queue_index = i;
425
		ring->pdev = adapter->pdev;
426
		ring->netdev = adapter->netdev;
427 428 429
		/* For 82575, context index must be unique per ring. */
		if (adapter->hw.mac.type == e1000_82575)
			ring->flags = IGB_RING_FLAG_TX_CTX_IDX;
430
	}
431

432 433
	for (i = 0; i < adapter->num_rx_queues; i++) {
		struct igb_ring *ring = &(adapter->rx_ring[i]);
434
		ring->count = adapter->rx_ring_count;
P
PJ Waskiewicz 已提交
435
		ring->queue_index = i;
436
		ring->pdev = adapter->pdev;
437
		ring->netdev = adapter->netdev;
438
		ring->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
439 440 441 442
		ring->flags = IGB_RING_FLAG_RX_CSUM; /* enable rx checksum */
		/* set flag indicating ring supports SCTP checksum offload */
		if (adapter->hw.mac.type >= e1000_82576)
			ring->flags |= IGB_RING_FLAG_RX_SCTP_CSUM;
443
	}
444 445

	igb_cache_ring_register(adapter);
446

447
	return 0;
A
Alexander Duyck 已提交
448

449 450
err:
	igb_free_queues(adapter);
451

452
	return -ENOMEM;
A
Alexander Duyck 已提交
453 454
}

455
#define IGB_N0_QUEUE -1
456
static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
457 458
{
	u32 msixbm = 0;
459
	struct igb_adapter *adapter = q_vector->adapter;
460
	struct e1000_hw *hw = &adapter->hw;
A
Alexander Duyck 已提交
461
	u32 ivar, index;
462 463 464 465 466 467 468
	int rx_queue = IGB_N0_QUEUE;
	int tx_queue = IGB_N0_QUEUE;

	if (q_vector->rx_ring)
		rx_queue = q_vector->rx_ring->reg_idx;
	if (q_vector->tx_ring)
		tx_queue = q_vector->tx_ring->reg_idx;
A
Alexander Duyck 已提交
469 470 471

	switch (hw->mac.type) {
	case e1000_82575:
472 473 474 475
		/* The 82575 assigns vectors using a bitmask, which matches the
		   bitmask for the EICR/EIMS/EIMC registers.  To assign one
		   or more queues to a vector, we write the appropriate bits
		   into the MSIXBM register for that vector. */
476
		if (rx_queue > IGB_N0_QUEUE)
477
			msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
478
		if (tx_queue > IGB_N0_QUEUE)
479 480
			msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
		array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
481
		q_vector->eims_value = msixbm;
A
Alexander Duyck 已提交
482 483
		break;
	case e1000_82576:
484
		/* 82576 uses a table-based method for assigning vectors.
A
Alexander Duyck 已提交
485 486 487 488
		   Each queue has a single entry in the table to which we write
		   a vector number along with a "valid" bit.  Sadly, the layout
		   of the table is somewhat counterintuitive. */
		if (rx_queue > IGB_N0_QUEUE) {
489
			index = (rx_queue & 0x7);
A
Alexander Duyck 已提交
490
			ivar = array_rd32(E1000_IVAR0, index);
491
			if (rx_queue < 8) {
492 493 494
				/* vector goes into low byte of register */
				ivar = ivar & 0xFFFFFF00;
				ivar |= msix_vector | E1000_IVAR_VALID;
495 496 497 498
			} else {
				/* vector goes into third byte of register */
				ivar = ivar & 0xFF00FFFF;
				ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
A
Alexander Duyck 已提交
499 500 501 502
			}
			array_wr32(E1000_IVAR0, index, ivar);
		}
		if (tx_queue > IGB_N0_QUEUE) {
503
			index = (tx_queue & 0x7);
A
Alexander Duyck 已提交
504
			ivar = array_rd32(E1000_IVAR0, index);
505
			if (tx_queue < 8) {
506 507 508
				/* vector goes into second byte of register */
				ivar = ivar & 0xFFFF00FF;
				ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
509 510 511 512
			} else {
				/* vector goes into high byte of register */
				ivar = ivar & 0x00FFFFFF;
				ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
A
Alexander Duyck 已提交
513 514 515
			}
			array_wr32(E1000_IVAR0, index, ivar);
		}
516
		q_vector->eims_value = 1 << msix_vector;
A
Alexander Duyck 已提交
517 518 519 520 521
		break;
	default:
		BUG();
		break;
	}
522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
}

/**
 * igb_configure_msix - Configure MSI-X hardware
 *
 * igb_configure_msix sets up the hardware to properly
 * generate MSI-X interrupts.
 **/
static void igb_configure_msix(struct igb_adapter *adapter)
{
	u32 tmp;
	int i, vector = 0;
	struct e1000_hw *hw = &adapter->hw;

	adapter->eims_enable_mask = 0;

	/* set vector for other causes, i.e. link changes */
A
Alexander Duyck 已提交
539 540
	switch (hw->mac.type) {
	case e1000_82575:
541 542 543 544 545 546 547 548 549
		tmp = rd32(E1000_CTRL_EXT);
		/* enable MSI-X PBA support*/
		tmp |= E1000_CTRL_EXT_PBA_CLR;

		/* Auto-Mask interrupts upon ICR read. */
		tmp |= E1000_CTRL_EXT_EIAME;
		tmp |= E1000_CTRL_EXT_IRCA;

		wr32(E1000_CTRL_EXT, tmp);
550 551 552 553

		/* enable msix_other interrupt */
		array_wr32(E1000_MSIXBM(0), vector++,
		                      E1000_EIMS_OTHER);
P
PJ Waskiewicz 已提交
554
		adapter->eims_other = E1000_EIMS_OTHER;
555

A
Alexander Duyck 已提交
556 557 558
		break;

	case e1000_82576:
559 560 561 562 563 564 565 566
		/* Turn on MSI-X capability first, or our settings
		 * won't stick.  And it will take days to debug. */
		wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
		                E1000_GPIE_PBA | E1000_GPIE_EIAME |
		                E1000_GPIE_NSICR);

		/* enable msix_other interrupt */
		adapter->eims_other = 1 << vector;
A
Alexander Duyck 已提交
567 568
		tmp = (vector++ | E1000_IVAR_VALID) << 8;

569
		wr32(E1000_IVAR_MISC, tmp);
A
Alexander Duyck 已提交
570 571 572 573 574
		break;
	default:
		/* do nothing, since nothing else supports MSI-X */
		break;
	} /* switch (hw->mac.type) */
575 576 577 578 579 580 581 582 583

	adapter->eims_enable_mask |= adapter->eims_other;

	for (i = 0; i < adapter->num_q_vectors; i++) {
		struct igb_q_vector *q_vector = adapter->q_vector[i];
		igb_assign_vector(q_vector, vector++);
		adapter->eims_enable_mask |= q_vector->eims_value;
	}

584 585 586 587 588 589 590 591 592 593 594 595
	wrfl();
}

/**
 * igb_request_msix - Initialize MSI-X interrupts
 *
 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
 * kernel.
 **/
static int igb_request_msix(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
596
	struct e1000_hw *hw = &adapter->hw;
597 598
	int i, err = 0, vector = 0;

599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
	err = request_irq(adapter->msix_entries[vector].vector,
	                  &igb_msix_other, 0, netdev->name, adapter);
	if (err)
		goto out;
	vector++;

	for (i = 0; i < adapter->num_q_vectors; i++) {
		struct igb_q_vector *q_vector = adapter->q_vector[i];

		q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);

		if (q_vector->rx_ring && q_vector->tx_ring)
			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
			        q_vector->rx_ring->queue_index);
		else if (q_vector->tx_ring)
			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
			        q_vector->tx_ring->queue_index);
		else if (q_vector->rx_ring)
			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
			        q_vector->rx_ring->queue_index);
619
		else
620 621
			sprintf(q_vector->name, "%s-unused", netdev->name);

622
		err = request_irq(adapter->msix_entries[vector].vector,
623 624
		                  &igb_msix_ring, 0, q_vector->name,
		                  q_vector);
625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
		if (err)
			goto out;
		vector++;
	}

	igb_configure_msix(adapter);
	return 0;
out:
	return err;
}

static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
{
	if (adapter->msix_entries) {
		pci_disable_msix(adapter->pdev);
		kfree(adapter->msix_entries);
		adapter->msix_entries = NULL;
642
	} else if (adapter->flags & IGB_FLAG_HAS_MSI) {
643
		pci_disable_msi(adapter->pdev);
644
	}
645 646
}

647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679
/**
 * igb_free_q_vectors - Free memory allocated for interrupt vectors
 * @adapter: board private structure to initialize
 *
 * This function frees the memory allocated to the q_vectors.  In addition if
 * NAPI is enabled it will delete any references to the NAPI struct prior
 * to freeing the q_vector.
 **/
static void igb_free_q_vectors(struct igb_adapter *adapter)
{
	int v_idx;

	for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
		struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
		adapter->q_vector[v_idx] = NULL;
		netif_napi_del(&q_vector->napi);
		kfree(q_vector);
	}
	adapter->num_q_vectors = 0;
}

/**
 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
 *
 * This function resets the device so that it has 0 rx queues, tx queues, and
 * MSI-X interrupts allocated.
 */
static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
{
	igb_free_queues(adapter);
	igb_free_q_vectors(adapter);
	igb_reset_interrupt_capability(adapter);
}
680 681 682 683 684 685 686 687 688 689 690 691

/**
 * igb_set_interrupt_capability - set MSI or MSI-X if supported
 *
 * Attempt to configure interrupts using the best available
 * capabilities of the hardware and kernel.
 **/
static void igb_set_interrupt_capability(struct igb_adapter *adapter)
{
	int err;
	int numvecs, i;

692 693 694 695
	/* Number of supported queues. */
	adapter->num_rx_queues = min_t(u32, IGB_MAX_RX_QUEUES, num_online_cpus());
	adapter->num_tx_queues = min_t(u32, IGB_MAX_TX_QUEUES, num_online_cpus());

696 697 698 699 700 701 702 703 704 705 706
	/* start with one vector for every rx queue */
	numvecs = adapter->num_rx_queues;

	/* if tx handler is seperate add 1 for every tx queue */
	numvecs += adapter->num_tx_queues;

	/* store the number of vectors reserved for queues */
	adapter->num_q_vectors = numvecs;

	/* add 1 vector for link status interrupts */
	numvecs++;
707 708 709 710 711 712 713 714 715 716 717 718
	adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
					GFP_KERNEL);
	if (!adapter->msix_entries)
		goto msi_only;

	for (i = 0; i < numvecs; i++)
		adapter->msix_entries[i].entry = i;

	err = pci_enable_msix(adapter->pdev,
			      adapter->msix_entries,
			      numvecs);
	if (err == 0)
719
		goto out;
720 721 722 723 724

	igb_reset_interrupt_capability(adapter);

	/* If we can't do MSI-X, try MSI */
msi_only:
725 726 727 728 729 730 731 732 733 734 735 736 737 738 739
#ifdef CONFIG_PCI_IOV
	/* disable SR-IOV for non MSI-X configurations */
	if (adapter->vf_data) {
		struct e1000_hw *hw = &adapter->hw;
		/* disable iov and allow time for transactions to clear */
		pci_disable_sriov(adapter->pdev);
		msleep(500);

		kfree(adapter->vf_data);
		adapter->vf_data = NULL;
		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
		msleep(100);
		dev_info(&adapter->pdev->dev, "IOV Disabled\n");
	}
#endif
740
	adapter->num_rx_queues = 1;
741
	adapter->num_tx_queues = 1;
742
	adapter->num_q_vectors = 1;
743
	if (!pci_enable_msi(adapter->pdev))
744
		adapter->flags |= IGB_FLAG_HAS_MSI;
745
out:
746
	/* Notify the stack of the (possibly) reduced Tx Queue count. */
747
	adapter->netdev->real_num_tx_queues = adapter->num_tx_queues;
748 749 750
	return;
}

751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883
/**
 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
 * @adapter: board private structure to initialize
 *
 * We allocate one q_vector per queue interrupt.  If allocation fails we
 * return -ENOMEM.
 **/
static int igb_alloc_q_vectors(struct igb_adapter *adapter)
{
	struct igb_q_vector *q_vector;
	struct e1000_hw *hw = &adapter->hw;
	int v_idx;

	for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
		q_vector = kzalloc(sizeof(struct igb_q_vector), GFP_KERNEL);
		if (!q_vector)
			goto err_out;
		q_vector->adapter = adapter;
		q_vector->itr_shift = (hw->mac.type == e1000_82575) ? 16 : 0;
		q_vector->itr_register = hw->hw_addr + E1000_EITR(0);
		q_vector->itr_val = IGB_START_ITR;
		q_vector->set_itr = 1;
		netif_napi_add(adapter->netdev, &q_vector->napi, igb_poll, 64);
		adapter->q_vector[v_idx] = q_vector;
	}
	return 0;

err_out:
	while (v_idx) {
		v_idx--;
		q_vector = adapter->q_vector[v_idx];
		netif_napi_del(&q_vector->napi);
		kfree(q_vector);
		adapter->q_vector[v_idx] = NULL;
	}
	return -ENOMEM;
}

static void igb_map_rx_ring_to_vector(struct igb_adapter *adapter,
                                      int ring_idx, int v_idx)
{
	struct igb_q_vector *q_vector;

	q_vector = adapter->q_vector[v_idx];
	q_vector->rx_ring = &adapter->rx_ring[ring_idx];
	q_vector->rx_ring->q_vector = q_vector;
	q_vector->itr_val = adapter->itr;
}

static void igb_map_tx_ring_to_vector(struct igb_adapter *adapter,
                                      int ring_idx, int v_idx)
{
	struct igb_q_vector *q_vector;

	q_vector = adapter->q_vector[v_idx];
	q_vector->tx_ring = &adapter->tx_ring[ring_idx];
	q_vector->tx_ring->q_vector = q_vector;
	q_vector->itr_val = adapter->itr;
}

/**
 * igb_map_ring_to_vector - maps allocated queues to vectors
 *
 * This function maps the recently allocated queues to vectors.
 **/
static int igb_map_ring_to_vector(struct igb_adapter *adapter)
{
	int i;
	int v_idx = 0;

	if ((adapter->num_q_vectors < adapter->num_rx_queues) ||
	    (adapter->num_q_vectors < adapter->num_tx_queues))
		return -ENOMEM;

	if (adapter->num_q_vectors >=
	    (adapter->num_rx_queues + adapter->num_tx_queues)) {
		for (i = 0; i < adapter->num_rx_queues; i++)
			igb_map_rx_ring_to_vector(adapter, i, v_idx++);
		for (i = 0; i < adapter->num_tx_queues; i++)
			igb_map_tx_ring_to_vector(adapter, i, v_idx++);
	} else {
		for (i = 0; i < adapter->num_rx_queues; i++) {
			if (i < adapter->num_tx_queues)
				igb_map_tx_ring_to_vector(adapter, i, v_idx);
			igb_map_rx_ring_to_vector(adapter, i, v_idx++);
		}
		for (; i < adapter->num_tx_queues; i++)
			igb_map_tx_ring_to_vector(adapter, i, v_idx++);
	}
	return 0;
}

/**
 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
 *
 * This function initializes the interrupts and allocates all of the queues.
 **/
static int igb_init_interrupt_scheme(struct igb_adapter *adapter)
{
	struct pci_dev *pdev = adapter->pdev;
	int err;

	igb_set_interrupt_capability(adapter);

	err = igb_alloc_q_vectors(adapter);
	if (err) {
		dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
		goto err_alloc_q_vectors;
	}

	err = igb_alloc_queues(adapter);
	if (err) {
		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
		goto err_alloc_queues;
	}

	err = igb_map_ring_to_vector(adapter);
	if (err) {
		dev_err(&pdev->dev, "Invalid q_vector to ring mapping\n");
		goto err_map_queues;
	}


	return 0;
err_map_queues:
	igb_free_queues(adapter);
err_alloc_queues:
	igb_free_q_vectors(adapter);
err_alloc_q_vectors:
	igb_reset_interrupt_capability(adapter);
	return err;
}

884 885 886 887 888 889 890 891 892
/**
 * igb_request_irq - initialize interrupts
 *
 * Attempts to configure interrupts using the best available
 * capabilities of the hardware and kernel.
 **/
static int igb_request_irq(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
893
	struct pci_dev *pdev = adapter->pdev;
894 895 896 897 898
	struct e1000_hw *hw = &adapter->hw;
	int err = 0;

	if (adapter->msix_entries) {
		err = igb_request_msix(adapter);
P
PJ Waskiewicz 已提交
899
		if (!err)
900 901
			goto request_done;
		/* fall back to MSI */
902
		igb_clear_interrupt_scheme(adapter);
903
		if (!pci_enable_msi(adapter->pdev))
904
			adapter->flags |= IGB_FLAG_HAS_MSI;
905 906
		igb_free_all_tx_resources(adapter);
		igb_free_all_rx_resources(adapter);
907
		adapter->num_tx_queues = 1;
908
		adapter->num_rx_queues = 1;
909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924
		adapter->num_q_vectors = 1;
		err = igb_alloc_q_vectors(adapter);
		if (err) {
			dev_err(&pdev->dev,
			        "Unable to allocate memory for vectors\n");
			goto request_done;
		}
		err = igb_alloc_queues(adapter);
		if (err) {
			dev_err(&pdev->dev,
			        "Unable to allocate memory for queues\n");
			igb_free_q_vectors(adapter);
			goto request_done;
		}
		igb_setup_all_tx_resources(adapter);
		igb_setup_all_rx_resources(adapter);
P
PJ Waskiewicz 已提交
925
	} else {
A
Alexander Duyck 已提交
926 927 928
		switch (hw->mac.type) {
		case e1000_82575:
			wr32(E1000_MSIXBM(0),
929 930 931
			     (E1000_EICR_RX_QUEUE0 |
			      E1000_EICR_TX_QUEUE0 |
			      E1000_EIMS_OTHER));
A
Alexander Duyck 已提交
932 933 934 935 936 937 938
			break;
		case e1000_82576:
			wr32(E1000_IVAR0, E1000_IVAR_VALID);
			break;
		default:
			break;
		}
939
	}
P
PJ Waskiewicz 已提交
940

941
	if (adapter->flags & IGB_FLAG_HAS_MSI) {
942
		err = request_irq(adapter->pdev->irq, &igb_intr_msi, 0,
943
				  netdev->name, adapter);
944 945
		if (!err)
			goto request_done;
946

947 948
		/* fall back to legacy interrupts */
		igb_reset_interrupt_capability(adapter);
949
		adapter->flags &= ~IGB_FLAG_HAS_MSI;
950 951 952
	}

	err = request_irq(adapter->pdev->irq, &igb_intr, IRQF_SHARED,
953
			  netdev->name, adapter);
954

A
Andy Gospodarek 已提交
955
	if (err)
956 957 958 959 960 961 962 963 964 965 966 967
		dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n",
			err);

request_done:
	return err;
}

static void igb_free_irq(struct igb_adapter *adapter)
{
	if (adapter->msix_entries) {
		int vector = 0, i;

968
		free_irq(adapter->msix_entries[vector++].vector, adapter);
969

970 971 972 973 974 975 976
		for (i = 0; i < adapter->num_q_vectors; i++) {
			struct igb_q_vector *q_vector = adapter->q_vector[i];
			free_irq(adapter->msix_entries[vector++].vector,
			         q_vector);
		}
	} else {
		free_irq(adapter->pdev->irq, adapter);
977 978 979 980 981 982 983 984 985 986 987 988
	}
}

/**
 * igb_irq_disable - Mask off interrupt generation on the NIC
 * @adapter: board private structure
 **/
static void igb_irq_disable(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

	if (adapter->msix_entries) {
989 990 991 992 993
		u32 regval = rd32(E1000_EIAM);
		wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
		wr32(E1000_EIMC, adapter->eims_enable_mask);
		regval = rd32(E1000_EIAC);
		wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
994
	}
P
PJ Waskiewicz 已提交
995 996

	wr32(E1000_IAM, 0);
997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
	wr32(E1000_IMC, ~0);
	wrfl();
	synchronize_irq(adapter->pdev->irq);
}

/**
 * igb_irq_enable - Enable default interrupt generation settings
 * @adapter: board private structure
 **/
static void igb_irq_enable(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

	if (adapter->msix_entries) {
1011 1012 1013 1014
		u32 regval = rd32(E1000_EIAC);
		wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
		regval = rd32(E1000_EIAM);
		wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
P
PJ Waskiewicz 已提交
1015
		wr32(E1000_EIMS, adapter->eims_enable_mask);
1016 1017 1018 1019
		if (adapter->vfs_allocated_count)
			wr32(E1000_MBVFIMR, 0xFF);
		wr32(E1000_IMS, (E1000_IMS_LSC | E1000_IMS_VMMB |
		                 E1000_IMS_DOUTSYNC));
P
PJ Waskiewicz 已提交
1020 1021 1022 1023
	} else {
		wr32(E1000_IMS, IMS_ENABLE_MASK);
		wr32(E1000_IAM, IMS_ENABLE_MASK);
	}
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
}

static void igb_update_mng_vlan(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	u16 vid = adapter->hw.mng_cookie.vlan_id;
	u16 old_vid = adapter->mng_vlan_id;
	if (adapter->vlgrp) {
		if (!vlan_group_get_device(adapter->vlgrp, vid)) {
			if (adapter->hw.mng_cookie.status &
				E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
				igb_vlan_rx_add_vid(netdev, vid);
				adapter->mng_vlan_id = vid;
			} else
				adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;

			if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
					(vid != old_vid) &&
			    !vlan_group_get_device(adapter->vlgrp, old_vid))
				igb_vlan_rx_kill_vid(netdev, old_vid);
		} else
			adapter->mng_vlan_id = vid;
	}
}

/**
 * igb_release_hw_control - release control of the h/w to f/w
 * @adapter: address of board private structure
 *
 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
 * For ASF and Pass Through versions of f/w this means that the
 * driver is no longer loaded.
 *
 **/
static void igb_release_hw_control(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl_ext;

	/* Let firmware take over control of h/w */
	ctrl_ext = rd32(E1000_CTRL_EXT);
	wr32(E1000_CTRL_EXT,
			ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
}


/**
 * igb_get_hw_control - get control of the h/w from f/w
 * @adapter: address of board private structure
 *
 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
 * For ASF and Pass Through versions of f/w this means that
 * the driver is loaded.
 *
 **/
static void igb_get_hw_control(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl_ext;

	/* Let firmware know the driver has taken over */
	ctrl_ext = rd32(E1000_CTRL_EXT);
	wr32(E1000_CTRL_EXT,
			ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
}

/**
 * igb_configure - configure the hardware for RX and TX
 * @adapter: private board structure
 **/
static void igb_configure(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	int i;

	igb_get_hw_control(adapter);
1100
	igb_set_rx_mode(netdev);
1101 1102 1103

	igb_restore_vlan(adapter);

1104
	igb_setup_tctl(adapter);
1105
	igb_setup_mrqc(adapter);
1106
	igb_setup_rctl(adapter);
1107 1108

	igb_configure_tx(adapter);
1109
	igb_configure_rx(adapter);
1110 1111 1112

	igb_rx_fifo_flush_82575(&adapter->hw);

1113
	/* call igb_desc_unused which always leaves
1114 1115 1116 1117
	 * at least 1 descriptor unused to make sure
	 * next_to_use != next_to_clean */
	for (i = 0; i < adapter->num_rx_queues; i++) {
		struct igb_ring *ring = &adapter->rx_ring[i];
1118
		igb_alloc_rx_buffers_adv(ring, igb_desc_unused(ring));
1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
	}


	adapter->tx_queue_len = netdev->tx_queue_len;
}


/**
 * igb_up - Open the interface and prepare it to handle traffic
 * @adapter: board private structure
 **/

int igb_up(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	int i;

	/* hardware has been reset, we need to reload some things */
	igb_configure(adapter);

	clear_bit(__IGB_DOWN, &adapter->state);

1141 1142 1143 1144
	for (i = 0; i < adapter->num_q_vectors; i++) {
		struct igb_q_vector *q_vector = adapter->q_vector[i];
		napi_enable(&q_vector->napi);
	}
P
PJ Waskiewicz 已提交
1145
	if (adapter->msix_entries)
1146 1147
		igb_configure_msix(adapter);

1148 1149
	igb_set_vmolr(hw, adapter->vfs_allocated_count);

1150 1151 1152 1153
	/* Clear any pending interrupts. */
	rd32(E1000_ICR);
	igb_irq_enable(adapter);

1154 1155 1156 1157 1158 1159 1160
	/* notify VFs that reset has been completed */
	if (adapter->vfs_allocated_count) {
		u32 reg_data = rd32(E1000_CTRL_EXT);
		reg_data |= E1000_CTRL_EXT_PFRSTD;
		wr32(E1000_CTRL_EXT, reg_data);
	}

1161 1162
	netif_tx_start_all_queues(adapter->netdev);

1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
	/* Fire a link change interrupt to start the watchdog. */
	wr32(E1000_ICS, E1000_ICS_LSC);
	return 0;
}

void igb_down(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct net_device *netdev = adapter->netdev;
	u32 tctl, rctl;
	int i;

	/* signal that we're down so the interrupt handler does not
	 * reschedule our watchdog timer */
	set_bit(__IGB_DOWN, &adapter->state);

	/* disable receives in the hardware */
	rctl = rd32(E1000_RCTL);
	wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
	/* flush and sleep below */

1184
	netif_tx_stop_all_queues(netdev);
1185 1186 1187 1188 1189 1190 1191 1192 1193

	/* disable transmits in the hardware */
	tctl = rd32(E1000_TCTL);
	tctl &= ~E1000_TCTL_EN;
	wr32(E1000_TCTL, tctl);
	/* flush both disables and wait for them to finish */
	wrfl();
	msleep(10);

1194 1195 1196 1197
	for (i = 0; i < adapter->num_q_vectors; i++) {
		struct igb_q_vector *q_vector = adapter->q_vector[i];
		napi_disable(&q_vector->napi);
	}
1198 1199 1200 1201 1202 1203 1204 1205

	igb_irq_disable(adapter);

	del_timer_sync(&adapter->watchdog_timer);
	del_timer_sync(&adapter->phy_info_timer);

	netdev->tx_queue_len = adapter->tx_queue_len;
	netif_carrier_off(netdev);
1206 1207 1208 1209

	/* record the stats before reset*/
	igb_update_stats(adapter);

1210 1211 1212
	adapter->link_speed = 0;
	adapter->link_duplex = 0;

1213 1214
	if (!pci_channel_offline(adapter->pdev))
		igb_reset(adapter);
1215 1216
	igb_clean_all_tx_rings(adapter);
	igb_clean_all_rx_rings(adapter);
1217 1218 1219 1220 1221
#ifdef CONFIG_IGB_DCA

	/* since we reset the hardware DCA settings were cleared */
	igb_setup_dca(adapter);
#endif
1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236
}

void igb_reinit_locked(struct igb_adapter *adapter)
{
	WARN_ON(in_interrupt());
	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
		msleep(1);
	igb_down(adapter);
	igb_up(adapter);
	clear_bit(__IGB_RESETTING, &adapter->state);
}

void igb_reset(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
A
Alexander Duyck 已提交
1237 1238
	struct e1000_mac_info *mac = &hw->mac;
	struct e1000_fc_info *fc = &hw->fc;
1239 1240 1241 1242 1243 1244
	u32 pba = 0, tx_space, min_tx_space, min_rx_space;
	u16 hwm;

	/* Repartition Pba for greater than 9k mtu
	 * To take effect CTRL.RST is required.
	 */
1245 1246
	switch (mac->type) {
	case e1000_82576:
A
Alexander Duyck 已提交
1247
		pba = E1000_PBA_64K;
1248 1249 1250 1251 1252
		break;
	case e1000_82575:
	default:
		pba = E1000_PBA_34K;
		break;
A
Alexander Duyck 已提交
1253
	}
1254

A
Alexander Duyck 已提交
1255 1256
	if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
	    (mac->type < e1000_82576)) {
1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
		/* adjust PBA for jumbo frames */
		wr32(E1000_PBA, pba);

		/* To maintain wire speed transmits, the Tx FIFO should be
		 * large enough to accommodate two full transmit packets,
		 * rounded up to the next 1KB and expressed in KB.  Likewise,
		 * the Rx FIFO should be large enough to accommodate at least
		 * one full receive packet and is similarly rounded up and
		 * expressed in KB. */
		pba = rd32(E1000_PBA);
		/* upper 16 bits has Tx packet buffer allocation size in KB */
		tx_space = pba >> 16;
		/* lower 16 bits has Rx packet buffer allocation size in KB */
		pba &= 0xffff;
		/* the tx fifo also stores 16 bytes of information about the tx
		 * but don't include ethernet FCS because hardware appends it */
		min_tx_space = (adapter->max_frame_size +
1274
				sizeof(union e1000_adv_tx_desc) -
1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
				ETH_FCS_LEN) * 2;
		min_tx_space = ALIGN(min_tx_space, 1024);
		min_tx_space >>= 10;
		/* software strips receive CRC, so leave room for it */
		min_rx_space = adapter->max_frame_size;
		min_rx_space = ALIGN(min_rx_space, 1024);
		min_rx_space >>= 10;

		/* If current Tx allocation is less than the min Tx FIFO size,
		 * and the min Tx FIFO size is less than the current Rx FIFO
		 * allocation, take space away from current Rx allocation */
		if (tx_space < min_tx_space &&
		    ((min_tx_space - tx_space) < pba)) {
			pba = pba - (min_tx_space - tx_space);

			/* if short on rx space, rx wins and must trump tx
			 * adjustment */
			if (pba < min_rx_space)
				pba = min_rx_space;
		}
A
Alexander Duyck 已提交
1295
		wr32(E1000_PBA, pba);
1296 1297 1298 1299 1300 1301 1302 1303 1304
	}

	/* flow control settings */
	/* The high water mark must be low enough to fit one full frame
	 * (or the size used for early receive) above it in the Rx FIFO.
	 * Set it to the lower of:
	 * - 90% of the Rx FIFO size, or
	 * - the full Rx FIFO size minus one full frame */
	hwm = min(((pba << 10) * 9 / 10),
A
Alexander Duyck 已提交
1305
			((pba << 10) - 2 * adapter->max_frame_size));
1306

A
Alexander Duyck 已提交
1307 1308 1309 1310 1311 1312 1313
	if (mac->type < e1000_82576) {
		fc->high_water = hwm & 0xFFF8;	/* 8-byte granularity */
		fc->low_water = fc->high_water - 8;
	} else {
		fc->high_water = hwm & 0xFFF0;	/* 16-byte granularity */
		fc->low_water = fc->high_water - 16;
	}
1314 1315
	fc->pause_time = 0xFFFF;
	fc->send_xon = 1;
1316
	fc->current_mode = fc->requested_mode;
1317

1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331
	/* disable receive for all VFs and wait one second */
	if (adapter->vfs_allocated_count) {
		int i;
		for (i = 0 ; i < adapter->vfs_allocated_count; i++)
			adapter->vf_data[i].clear_to_send = false;

		/* ping all the active vfs to let them know we are going down */
			igb_ping_all_vfs(adapter);

		/* disable transmits and receives */
		wr32(E1000_VFRE, 0);
		wr32(E1000_VFTE, 0);
	}

1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
	/* Allow time for pending master requests to run */
	adapter->hw.mac.ops.reset_hw(&adapter->hw);
	wr32(E1000_WUC, 0);

	if (adapter->hw.mac.ops.init_hw(&adapter->hw))
		dev_err(&adapter->pdev->dev, "Hardware Error\n");

	igb_update_mng_vlan(adapter);

	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
	wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);

	igb_reset_adaptive(&adapter->hw);
1345
	igb_get_phy_info(&adapter->hw);
1346 1347
}

S
Stephen Hemminger 已提交
1348 1349 1350
static const struct net_device_ops igb_netdev_ops = {
	.ndo_open 		= igb_open,
	.ndo_stop		= igb_close,
1351
	.ndo_start_xmit		= igb_xmit_frame_adv,
S
Stephen Hemminger 已提交
1352
	.ndo_get_stats		= igb_get_stats,
1353 1354
	.ndo_set_rx_mode	= igb_set_rx_mode,
	.ndo_set_multicast_list	= igb_set_rx_mode,
S
Stephen Hemminger 已提交
1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
	.ndo_set_mac_address	= igb_set_mac,
	.ndo_change_mtu		= igb_change_mtu,
	.ndo_do_ioctl		= igb_ioctl,
	.ndo_tx_timeout		= igb_tx_timeout,
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_vlan_rx_register	= igb_vlan_rx_register,
	.ndo_vlan_rx_add_vid	= igb_vlan_rx_add_vid,
	.ndo_vlan_rx_kill_vid	= igb_vlan_rx_kill_vid,
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller	= igb_netpoll,
#endif
};

1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
/**
 * igb_probe - Device Initialization Routine
 * @pdev: PCI device information struct
 * @ent: entry in igb_pci_tbl
 *
 * Returns 0 on success, negative on failure
 *
 * igb_probe initializes an adapter identified by a pci_dev structure.
 * The OS initialization, configuring of the adapter private structure,
 * and a hardware reset occur.
 **/
static int __devinit igb_probe(struct pci_dev *pdev,
			       const struct pci_device_id *ent)
{
	struct net_device *netdev;
	struct igb_adapter *adapter;
	struct e1000_hw *hw;
	const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
	unsigned long mmio_start, mmio_len;
1387
	int err, pci_using_dac;
1388
	u16 eeprom_data = 0;
1389 1390 1391
	u16 eeprom_apme_mask = IGB_EEPROM_APME;
	u32 part_num;

1392
	err = pci_enable_device_mem(pdev);
1393 1394 1395 1396
	if (err)
		return err;

	pci_using_dac = 0;
1397
	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
1398
	if (!err) {
1399
		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
1400 1401 1402
		if (!err)
			pci_using_dac = 1;
	} else {
1403
		err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
1404
		if (err) {
1405
			err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
1406 1407 1408 1409 1410 1411 1412 1413
			if (err) {
				dev_err(&pdev->dev, "No usable DMA "
					"configuration, aborting\n");
				goto err_dma;
			}
		}
	}

1414 1415 1416
	err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
	                                   IORESOURCE_MEM),
	                                   igb_driver_name);
1417 1418 1419
	if (err)
		goto err_pci_reg;

1420
	pci_enable_pcie_error_reporting(pdev);
1421

1422
	pci_set_master(pdev);
1423
	pci_save_state(pdev);
1424 1425

	err = -ENOMEM;
1426 1427
	netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
	                           IGB_ABS_MAX_TX_QUEUES);
1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
	if (!netdev)
		goto err_alloc_etherdev;

	SET_NETDEV_DEV(netdev, &pdev->dev);

	pci_set_drvdata(pdev, netdev);
	adapter = netdev_priv(netdev);
	adapter->netdev = netdev;
	adapter->pdev = pdev;
	hw = &adapter->hw;
	hw->back = adapter;
	adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;

	mmio_start = pci_resource_start(pdev, 0);
	mmio_len = pci_resource_len(pdev, 0);

	err = -EIO;
1445 1446
	hw->hw_addr = ioremap(mmio_start, mmio_len);
	if (!hw->hw_addr)
1447 1448
		goto err_ioremap;

S
Stephen Hemminger 已提交
1449
	netdev->netdev_ops = &igb_netdev_ops;
1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473
	igb_set_ethtool_ops(netdev);
	netdev->watchdog_timeo = 5 * HZ;

	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);

	netdev->mem_start = mmio_start;
	netdev->mem_end = mmio_start + mmio_len;

	/* PCI config space info */
	hw->vendor_id = pdev->vendor;
	hw->device_id = pdev->device;
	hw->revision_id = pdev->revision;
	hw->subsystem_vendor_id = pdev->subsystem_vendor;
	hw->subsystem_device_id = pdev->subsystem_device;

	/* setup the private structure */
	hw->back = adapter;
	/* Copy the default MAC, PHY and NVM function pointers */
	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
	/* Initialize skew-specific constants */
	err = ei->get_invariants(hw);
	if (err)
1474
		goto err_sw_init;
1475

1476 1477 1478 1479 1480 1481 1482 1483 1484
#ifdef CONFIG_PCI_IOV
	/* since iov functionality isn't critical to base device function we
	 * can accept failure.  If it fails we don't allow iov to be enabled */
	if (hw->mac.type == e1000_82576) {
		/* 82576 supports a maximum of 7 VFs in addition to the PF */
		unsigned int num_vfs = (max_vfs > 7) ? 7 : max_vfs;
		int i;
		unsigned char mac_addr[ETH_ALEN];

1485
		if (num_vfs) {
1486 1487 1488
			adapter->vf_data = kcalloc(num_vfs,
						sizeof(struct vf_data_storage),
						GFP_KERNEL);
1489 1490 1491 1492
			if (!adapter->vf_data) {
				dev_err(&pdev->dev,
				        "Could not allocate VF private data - "
					"IOV enable failed\n");
1493
			} else {
1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
				err = pci_enable_sriov(pdev, num_vfs);
				if (!err) {
					adapter->vfs_allocated_count = num_vfs;
					dev_info(&pdev->dev,
					         "%d vfs allocated\n",
					         num_vfs);
					for (i = 0;
					     i < adapter->vfs_allocated_count;
					     i++) {
						random_ether_addr(mac_addr);
						igb_set_vf_mac(adapter, i,
						               mac_addr);
					}
				} else {
					kfree(adapter->vf_data);
					adapter->vf_data = NULL;
				}
1511 1512 1513 1514 1515
			}
		}
	}

#endif
1516
	/* setup the private structure */
1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537
	err = igb_sw_init(adapter);
	if (err)
		goto err_sw_init;

	igb_get_bus_info_pcie(hw);

	hw->phy.autoneg_wait_to_complete = false;
	hw->mac.adaptive_ifs = true;

	/* Copper options */
	if (hw->phy.media_type == e1000_media_type_copper) {
		hw->phy.mdix = AUTO_ALL_MODES;
		hw->phy.disable_polarity_correction = false;
		hw->phy.ms_type = e1000_ms_hw_default;
	}

	if (igb_check_reset_block(hw))
		dev_info(&pdev->dev,
			"PHY reset is blocked due to SOL/IDER session.\n");

	netdev->features = NETIF_F_SG |
1538
			   NETIF_F_IP_CSUM |
1539 1540 1541 1542
			   NETIF_F_HW_VLAN_TX |
			   NETIF_F_HW_VLAN_RX |
			   NETIF_F_HW_VLAN_FILTER;

1543
	netdev->features |= NETIF_F_IPV6_CSUM;
1544 1545
	netdev->features |= NETIF_F_TSO;
	netdev->features |= NETIF_F_TSO6;
1546

H
Herbert Xu 已提交
1547
	netdev->features |= NETIF_F_GRO;
1548

1549 1550
	netdev->vlan_features |= NETIF_F_TSO;
	netdev->vlan_features |= NETIF_F_TSO6;
1551
	netdev->vlan_features |= NETIF_F_IP_CSUM;
1552
	netdev->vlan_features |= NETIF_F_IPV6_CSUM;
1553 1554
	netdev->vlan_features |= NETIF_F_SG;

1555 1556 1557
	if (pci_using_dac)
		netdev->features |= NETIF_F_HIGHDMA;

1558 1559 1560
	if (adapter->hw.mac.type == e1000_82576)
		netdev->features |= NETIF_F_SCTP_CSUM;

1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586
	adapter->en_mng_pt = igb_enable_mng_pass_thru(&adapter->hw);

	/* before reading the NVM, reset the controller to put the device in a
	 * known good starting state */
	hw->mac.ops.reset_hw(hw);

	/* make sure the NVM is good */
	if (igb_validate_nvm_checksum(hw) < 0) {
		dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
		err = -EIO;
		goto err_eeprom;
	}

	/* copy the MAC address out of the NVM */
	if (hw->mac.ops.read_mac_addr(hw))
		dev_err(&pdev->dev, "NVM Read Error\n");

	memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
	memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);

	if (!is_valid_ether_addr(netdev->perm_addr)) {
		dev_err(&pdev->dev, "Invalid MAC Address\n");
		err = -EIO;
		goto err_eeprom;
	}

1587 1588 1589 1590
	setup_timer(&adapter->watchdog_timer, &igb_watchdog,
	            (unsigned long) adapter);
	setup_timer(&adapter->phy_info_timer, &igb_update_phy_info,
	            (unsigned long) adapter);
1591 1592 1593 1594

	INIT_WORK(&adapter->reset_task, igb_reset_task);
	INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);

1595
	/* Initialize link properties that are user-changeable */
1596 1597 1598 1599
	adapter->fc_autoneg = true;
	hw->mac.autoneg = true;
	hw->phy.autoneg_advertised = 0x2f;

1600 1601
	hw->fc.requested_mode = e1000_fc_default;
	hw->fc.current_mode = e1000_fc_default;
1602

A
Alexander Duyck 已提交
1603
	adapter->itr_setting = IGB_DEFAULT_ITR;
1604 1605 1606 1607 1608 1609 1610 1611
	adapter->itr = IGB_START_ITR;

	igb_validate_mdi_setting(hw);

	/* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
	 * enable the ACPI Magic Packet filter
	 */

1612
	if (hw->bus.func == 0)
A
Alexander Duyck 已提交
1613
		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1614 1615
	else if (hw->bus.func == 1)
		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627

	if (eeprom_data & eeprom_apme_mask)
		adapter->eeprom_wol |= E1000_WUFC_MAG;

	/* now that we have the eeprom settings, apply the special cases where
	 * the eeprom may be wrong or the board simply won't support wake on
	 * lan on a particular port */
	switch (pdev->device) {
	case E1000_DEV_ID_82575GB_QUAD_COPPER:
		adapter->eeprom_wol = 0;
		break;
	case E1000_DEV_ID_82575EB_FIBER_SERDES:
A
Alexander Duyck 已提交
1628 1629
	case E1000_DEV_ID_82576_FIBER:
	case E1000_DEV_ID_82576_SERDES:
1630 1631 1632 1633 1634
		/* Wake events only supported on port A for dual fiber
		 * regardless of eeprom setting */
		if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
			adapter->eeprom_wol = 0;
		break;
1635 1636 1637 1638 1639 1640 1641 1642 1643 1644
	case E1000_DEV_ID_82576_QUAD_COPPER:
		/* if quad port adapter, disable WoL on all but port A */
		if (global_quad_port_a != 0)
			adapter->eeprom_wol = 0;
		else
			adapter->flags |= IGB_FLAG_QUAD_PORT_A;
		/* Reset for multiple quad port adapters */
		if (++global_quad_port_a == 4)
			global_quad_port_a = 0;
		break;
1645 1646 1647 1648
	}

	/* initialize the wol settings based on the eeprom settings */
	adapter->wol = adapter->eeprom_wol;
1649
	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662

	/* reset the hardware with the new settings */
	igb_reset(adapter);

	/* let the f/w know that the h/w is now under the control of the
	 * driver. */
	igb_get_hw_control(adapter);

	strcpy(netdev->name, "eth%d");
	err = register_netdev(netdev);
	if (err)
		goto err_register;

1663 1664 1665
	/* carrier off reporting is important to ethtool even BEFORE open */
	netif_carrier_off(netdev);

1666
#ifdef CONFIG_IGB_DCA
1667
	if (dca_add_requester(&pdev->dev) == 0) {
1668
		adapter->flags |= IGB_FLAG_DCA_ENABLED;
J
Jeb Cramer 已提交
1669 1670 1671 1672 1673
		dev_info(&pdev->dev, "DCA enabled\n");
		igb_setup_dca(adapter);
	}
#endif

P
Patrick Ohly 已提交
1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703
	/*
	 * Initialize hardware timer: we keep it running just in case
	 * that some program needs it later on.
	 */
	memset(&adapter->cycles, 0, sizeof(adapter->cycles));
	adapter->cycles.read = igb_read_clock;
	adapter->cycles.mask = CLOCKSOURCE_MASK(64);
	adapter->cycles.mult = 1;
	adapter->cycles.shift = IGB_TSYNC_SHIFT;
	wr32(E1000_TIMINCA,
	     (1<<24) |
	     IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS * IGB_TSYNC_SCALE);
#if 0
	/*
	 * Avoid rollover while we initialize by resetting the time counter.
	 */
	wr32(E1000_SYSTIML, 0x00000000);
	wr32(E1000_SYSTIMH, 0x00000000);
#else
	/*
	 * Set registers so that rollover occurs soon to test this.
	 */
	wr32(E1000_SYSTIML, 0x00000000);
	wr32(E1000_SYSTIMH, 0xFF800000);
#endif
	wrfl();
	timecounter_init(&adapter->clock,
			 &adapter->cycles,
			 ktime_to_ns(ktime_get_real()));

1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715
	/*
	 * Synchronize our NIC clock against system wall clock. NIC
	 * time stamp reading requires ~3us per sample, each sample
	 * was pretty stable even under load => only require 10
	 * samples for each offset comparison.
	 */
	memset(&adapter->compare, 0, sizeof(adapter->compare));
	adapter->compare.source = &adapter->clock;
	adapter->compare.target = ktime_get_real;
	adapter->compare.num_samples = 10;
	timecompare_update(&adapter->compare, 0);

P
Patrick Ohly 已提交
1716 1717 1718 1719 1720 1721 1722 1723 1724 1725
#ifdef DEBUG
	{
		char buffer[160];
		printk(KERN_DEBUG
			"igb: %s: hw %p initialized timer\n",
			igb_get_time_str(adapter, buffer),
			&adapter->hw);
	}
#endif

1726 1727
	dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
	/* print bus type/speed/width info */
J
Johannes Berg 已提交
1728
	dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
1729 1730 1731
		 netdev->name,
		 ((hw->bus.speed == e1000_bus_speed_2500)
		  ? "2.5Gb/s" : "unknown"),
1732 1733 1734 1735
		 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
		  (hw->bus.width == e1000_bus_width_pcie_x2) ? "Width x2" :
		  (hw->bus.width == e1000_bus_width_pcie_x1) ? "Width x1" :
		   "unknown"),
J
Johannes Berg 已提交
1736
		 netdev->dev_addr);
1737 1738 1739 1740 1741 1742 1743 1744

	igb_read_part_num(hw, &part_num);
	dev_info(&pdev->dev, "%s: PBA No: %06x-%03x\n", netdev->name,
		(part_num >> 8), (part_num & 0xff));

	dev_info(&pdev->dev,
		"Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
		adapter->msix_entries ? "MSI-X" :
1745
		(adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
1746 1747 1748 1749 1750 1751 1752 1753
		adapter->num_rx_queues, adapter->num_tx_queues);

	return 0;

err_register:
	igb_release_hw_control(adapter);
err_eeprom:
	if (!igb_check_reset_block(hw))
1754
		igb_reset_phy(hw);
1755 1756 1757 1758

	if (hw->flash_address)
		iounmap(hw->flash_address);
err_sw_init:
1759
	igb_clear_interrupt_scheme(adapter);
1760 1761 1762 1763
	iounmap(hw->hw_addr);
err_ioremap:
	free_netdev(netdev);
err_alloc_etherdev:
1764 1765
	pci_release_selected_regions(pdev, pci_select_bars(pdev,
	                             IORESOURCE_MEM));
1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784
err_pci_reg:
err_dma:
	pci_disable_device(pdev);
	return err;
}

/**
 * igb_remove - Device Removal Routine
 * @pdev: PCI device information struct
 *
 * igb_remove is called by the PCI subsystem to alert the driver
 * that it should release a PCI device.  The could be caused by a
 * Hot-Plug event, or because the driver is going to be removed from
 * memory.
 **/
static void __devexit igb_remove(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
J
Jeb Cramer 已提交
1785
	struct e1000_hw *hw = &adapter->hw;
1786 1787 1788 1789 1790 1791 1792 1793 1794

	/* flush_scheduled work may reschedule our watchdog task, so
	 * explicitly disable watchdog tasks from being rescheduled  */
	set_bit(__IGB_DOWN, &adapter->state);
	del_timer_sync(&adapter->watchdog_timer);
	del_timer_sync(&adapter->phy_info_timer);

	flush_scheduled_work();

1795
#ifdef CONFIG_IGB_DCA
1796
	if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
J
Jeb Cramer 已提交
1797 1798
		dev_info(&pdev->dev, "DCA disabled\n");
		dca_remove_requester(&pdev->dev);
1799
		adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
A
Alexander Duyck 已提交
1800
		wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
J
Jeb Cramer 已提交
1801 1802 1803
	}
#endif

1804 1805 1806 1807 1808 1809
	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
	 * would have already happened in close and is redundant. */
	igb_release_hw_control(adapter);

	unregister_netdev(netdev);

1810 1811
	if (!igb_check_reset_block(&adapter->hw))
		igb_reset_phy(&adapter->hw);
1812

1813
	igb_clear_interrupt_scheme(adapter);
1814

1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828
#ifdef CONFIG_PCI_IOV
	/* reclaim resources allocated to VFs */
	if (adapter->vf_data) {
		/* disable iov and allow time for transactions to clear */
		pci_disable_sriov(pdev);
		msleep(500);

		kfree(adapter->vf_data);
		adapter->vf_data = NULL;
		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
		msleep(100);
		dev_info(&pdev->dev, "IOV Disabled\n");
	}
#endif
1829 1830 1831
	iounmap(hw->hw_addr);
	if (hw->flash_address)
		iounmap(hw->flash_address);
1832 1833
	pci_release_selected_regions(pdev, pci_select_bars(pdev,
	                             IORESOURCE_MEM));
1834 1835 1836

	free_netdev(netdev);

1837
	pci_disable_pcie_error_reporting(pdev);
1838

1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857
	pci_disable_device(pdev);
}

/**
 * igb_sw_init - Initialize general software structures (struct igb_adapter)
 * @adapter: board private structure to initialize
 *
 * igb_sw_init initializes the Adapter private data structure.
 * Fields are initialized based on PCI device information and
 * OS network device settings (MTU size).
 **/
static int __devinit igb_sw_init(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;

	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);

1858 1859
	adapter->tx_ring_count = IGB_DEFAULT_TXD;
	adapter->rx_ring_count = IGB_DEFAULT_RXD;
1860 1861 1862
	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;

1863 1864
	/* This call may decrease the number of queues depending on
	 * interrupt mode. */
1865
	if (igb_init_interrupt_scheme(adapter)) {
1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899
		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
		return -ENOMEM;
	}

	/* Explicitly disable IRQ since the NIC can be in any state. */
	igb_irq_disable(adapter);

	set_bit(__IGB_DOWN, &adapter->state);
	return 0;
}

/**
 * igb_open - Called when a network interface is made active
 * @netdev: network interface device structure
 *
 * Returns 0 on success, negative value on failure
 *
 * The open entry point is called when a network interface is made
 * active by the system (IFF_UP).  At this point all resources needed
 * for transmit and receive operations are allocated, the interrupt
 * handler is registered with the OS, the watchdog timer is started,
 * and the stack is notified that the interface is ready.
 **/
static int igb_open(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	int err;
	int i;

	/* disallow open during test */
	if (test_bit(__IGB_TESTING, &adapter->state))
		return -EBUSY;

1900 1901
	netif_carrier_off(netdev);

1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924
	/* allocate transmit descriptors */
	err = igb_setup_all_tx_resources(adapter);
	if (err)
		goto err_setup_tx;

	/* allocate receive descriptors */
	err = igb_setup_all_rx_resources(adapter);
	if (err)
		goto err_setup_rx;

	/* e1000_power_up_phy(adapter); */

	adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
	if ((adapter->hw.mng_cookie.status &
	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
		igb_update_mng_vlan(adapter);

	/* before we allocate an interrupt, we must be ready to handle it.
	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
	 * as soon as we call pci_request_irq, so we have to setup our
	 * clean_rx handler before we do so.  */
	igb_configure(adapter);

1925 1926
	igb_set_vmolr(hw, adapter->vfs_allocated_count);

1927 1928 1929 1930 1931 1932 1933
	err = igb_request_irq(adapter);
	if (err)
		goto err_req_irq;

	/* From here on the code is the same as igb_up() */
	clear_bit(__IGB_DOWN, &adapter->state);

1934 1935 1936 1937
	for (i = 0; i < adapter->num_q_vectors; i++) {
		struct igb_q_vector *q_vector = adapter->q_vector[i];
		napi_enable(&q_vector->napi);
	}
1938 1939 1940

	/* Clear any pending interrupts. */
	rd32(E1000_ICR);
P
PJ Waskiewicz 已提交
1941 1942 1943

	igb_irq_enable(adapter);

1944 1945 1946 1947 1948 1949 1950
	/* notify VFs that reset has been completed */
	if (adapter->vfs_allocated_count) {
		u32 reg_data = rd32(E1000_CTRL_EXT);
		reg_data |= E1000_CTRL_EXT_PFRSTD;
		wr32(E1000_CTRL_EXT, reg_data);
	}

1951 1952
	netif_tx_start_all_queues(netdev);

1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
	/* Fire a link status change interrupt to start the watchdog. */
	wr32(E1000_ICS, E1000_ICS_LSC);

	return 0;

err_req_irq:
	igb_release_hw_control(adapter);
	/* e1000_power_down_phy(adapter); */
	igb_free_all_rx_resources(adapter);
err_setup_rx:
	igb_free_all_tx_resources(adapter);
err_setup_tx:
	igb_reset(adapter);

	return err;
}

/**
 * igb_close - Disables a network interface
 * @netdev: network interface device structure
 *
 * Returns 0, this is not allowed to fail
 *
 * The close entry point is called when an interface is de-activated
 * by the OS.  The hardware is still under the driver's control, but
 * needs to be disabled.  A global MAC reset is issued to stop the
 * hardware, and all transmit and receive resources are freed.
 **/
static int igb_close(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);

	WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
	igb_down(adapter);

	igb_free_irq(adapter);

	igb_free_all_tx_resources(adapter);
	igb_free_all_rx_resources(adapter);

	/* kill manageability vlan ID if supported, but not if a vlan with
	 * the same ID is registered on the host OS (let 8021q kill it) */
	if ((adapter->hw.mng_cookie.status &
			  E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
	     !(adapter->vlgrp &&
	       vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
		igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);

	return 0;
}

/**
 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
 * @tx_ring: tx descriptor ring (for a specific queue) to setup
 *
 * Return 0 on success, negative on failure
 **/
2010
int igb_setup_tx_resources(struct igb_ring *tx_ring)
2011
{
2012
	struct pci_dev *pdev = tx_ring->pdev;
2013 2014 2015 2016 2017 2018 2019 2020 2021
	int size;

	size = sizeof(struct igb_buffer) * tx_ring->count;
	tx_ring->buffer_info = vmalloc(size);
	if (!tx_ring->buffer_info)
		goto err;
	memset(tx_ring->buffer_info, 0, size);

	/* round up to nearest 4K */
2022
	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036
	tx_ring->size = ALIGN(tx_ring->size, 4096);

	tx_ring->desc = pci_alloc_consistent(pdev, tx_ring->size,
					     &tx_ring->dma);

	if (!tx_ring->desc)
		goto err;

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;
	return 0;

err:
	vfree(tx_ring->buffer_info);
2037
	dev_err(&pdev->dev,
2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051
		"Unable to allocate memory for the transmit descriptor ring\n");
	return -ENOMEM;
}

/**
 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
 *				  (Descriptors) for all queues
 * @adapter: board private structure
 *
 * Return 0 on success, negative on failure
 **/
static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
{
	int i, err = 0;
2052
	int r_idx;
2053 2054

	for (i = 0; i < adapter->num_tx_queues; i++) {
2055
		err = igb_setup_tx_resources(&adapter->tx_ring[i]);
2056 2057 2058 2059
		if (err) {
			dev_err(&adapter->pdev->dev,
				"Allocation for Tx Queue %u failed\n", i);
			for (i--; i >= 0; i--)
2060
				igb_free_tx_resources(&adapter->tx_ring[i]);
2061 2062 2063 2064
			break;
		}
	}

2065 2066 2067
	for (i = 0; i < IGB_MAX_TX_QUEUES; i++) {
		r_idx = i % adapter->num_tx_queues;
		adapter->multi_tx_table[i] = &adapter->tx_ring[r_idx];
2068
	}
2069 2070 2071 2072
	return err;
}

/**
2073 2074
 * igb_setup_tctl - configure the transmit control registers
 * @adapter: Board private structure
2075
 **/
2076
void igb_setup_tctl(struct igb_adapter *adapter)
2077 2078 2079 2080
{
	struct e1000_hw *hw = &adapter->hw;
	u32 tctl;

2081 2082
	/* disable queue 0 which is enabled by default on 82575 and 82576 */
	wr32(E1000_TXDCTL(0), 0);
2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097

	/* Program the Transmit Control Register */
	tctl = rd32(E1000_TCTL);
	tctl &= ~E1000_TCTL_CT;
	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);

	igb_config_collision_dist(hw);

	/* Enable transmits */
	tctl |= E1000_TCTL_EN;

	wr32(E1000_TCTL, tctl);
}

2098 2099 2100 2101 2102 2103 2104
/**
 * igb_configure_tx_ring - Configure transmit ring after Reset
 * @adapter: board private structure
 * @ring: tx ring to configure
 *
 * Configure a transmit ring after a reset.
 **/
2105 2106
void igb_configure_tx_ring(struct igb_adapter *adapter,
                           struct igb_ring *ring)
2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125
{
	struct e1000_hw *hw = &adapter->hw;
	u32 txdctl;
	u64 tdba = ring->dma;
	int reg_idx = ring->reg_idx;

	/* disable the queue */
	txdctl = rd32(E1000_TXDCTL(reg_idx));
	wr32(E1000_TXDCTL(reg_idx),
	                txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
	wrfl();
	mdelay(10);

	wr32(E1000_TDLEN(reg_idx),
	                ring->count * sizeof(union e1000_adv_tx_desc));
	wr32(E1000_TDBAL(reg_idx),
	                tdba & 0x00000000ffffffffULL);
	wr32(E1000_TDBAH(reg_idx), tdba >> 32);

2126 2127 2128 2129
	ring->head = hw->hw_addr + E1000_TDH(reg_idx);
	ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
	writel(0, ring->head);
	writel(0, ring->tail);
2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152

	txdctl |= IGB_TX_PTHRESH;
	txdctl |= IGB_TX_HTHRESH << 8;
	txdctl |= IGB_TX_WTHRESH << 16;

	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
	wr32(E1000_TXDCTL(reg_idx), txdctl);
}

/**
 * igb_configure_tx - Configure transmit Unit after Reset
 * @adapter: board private structure
 *
 * Configure the Tx unit of the MAC after a reset.
 **/
static void igb_configure_tx(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_tx_queues; i++)
		igb_configure_tx_ring(adapter, &adapter->tx_ring[i]);
}

2153 2154 2155 2156 2157 2158
/**
 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
 * @rx_ring:    rx descriptor ring (for a specific queue) to setup
 *
 * Returns 0 on success, negative on failure
 **/
2159
int igb_setup_rx_resources(struct igb_ring *rx_ring)
2160
{
2161
	struct pci_dev *pdev = rx_ring->pdev;
2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188
	int size, desc_len;

	size = sizeof(struct igb_buffer) * rx_ring->count;
	rx_ring->buffer_info = vmalloc(size);
	if (!rx_ring->buffer_info)
		goto err;
	memset(rx_ring->buffer_info, 0, size);

	desc_len = sizeof(union e1000_adv_rx_desc);

	/* Round up to nearest 4K */
	rx_ring->size = rx_ring->count * desc_len;
	rx_ring->size = ALIGN(rx_ring->size, 4096);

	rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
					     &rx_ring->dma);

	if (!rx_ring->desc)
		goto err;

	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;

	return 0;

err:
	vfree(rx_ring->buffer_info);
2189
	dev_err(&pdev->dev, "Unable to allocate memory for "
2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205
		"the receive descriptor ring\n");
	return -ENOMEM;
}

/**
 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
 *				  (Descriptors) for all queues
 * @adapter: board private structure
 *
 * Return 0 on success, negative on failure
 **/
static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
{
	int i, err = 0;

	for (i = 0; i < adapter->num_rx_queues; i++) {
2206
		err = igb_setup_rx_resources(&adapter->rx_ring[i]);
2207 2208 2209 2210
		if (err) {
			dev_err(&adapter->pdev->dev,
				"Allocation for Rx Queue %u failed\n", i);
			for (i--; i >= 0; i--)
2211
				igb_free_rx_resources(&adapter->rx_ring[i]);
2212 2213 2214 2215 2216 2217 2218
			break;
		}
	}

	return err;
}

2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323
/**
 * igb_setup_mrqc - configure the multiple receive queue control registers
 * @adapter: Board private structure
 **/
static void igb_setup_mrqc(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 mrqc, rxcsum;
	u32 j, num_rx_queues, shift = 0, shift2 = 0;
	union e1000_reta {
		u32 dword;
		u8  bytes[4];
	} reta;
	static const u8 rsshash[40] = {
		0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2, 0x41, 0x67,
		0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0, 0xd0, 0xca, 0x2b, 0xcb,
		0xae, 0x7b, 0x30, 0xb4,	0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30,
		0xf2, 0x0c, 0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa };

	/* Fill out hash function seeds */
	for (j = 0; j < 10; j++) {
		u32 rsskey = rsshash[(j * 4)];
		rsskey |= rsshash[(j * 4) + 1] << 8;
		rsskey |= rsshash[(j * 4) + 2] << 16;
		rsskey |= rsshash[(j * 4) + 3] << 24;
		array_wr32(E1000_RSSRK(0), j, rsskey);
	}

	num_rx_queues = adapter->num_rx_queues;

	if (adapter->vfs_allocated_count) {
		/* 82575 and 82576 supports 2 RSS queues for VMDq */
		switch (hw->mac.type) {
		case e1000_82576:
			shift = 3;
			num_rx_queues = 2;
			break;
		case e1000_82575:
			shift = 2;
			shift2 = 6;
		default:
			break;
		}
	} else {
		if (hw->mac.type == e1000_82575)
			shift = 6;
	}

	for (j = 0; j < (32 * 4); j++) {
		reta.bytes[j & 3] = (j % num_rx_queues) << shift;
		if (shift2)
			reta.bytes[j & 3] |= num_rx_queues << shift2;
		if ((j & 3) == 3)
			wr32(E1000_RETA(j >> 2), reta.dword);
	}

	/*
	 * Disable raw packet checksumming so that RSS hash is placed in
	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
	 * offloads as they are enabled by default
	 */
	rxcsum = rd32(E1000_RXCSUM);
	rxcsum |= E1000_RXCSUM_PCSD;

	if (adapter->hw.mac.type >= e1000_82576)
		/* Enable Receive Checksum Offload for SCTP */
		rxcsum |= E1000_RXCSUM_CRCOFL;

	/* Don't need to set TUOFL or IPOFL, they default to 1 */
	wr32(E1000_RXCSUM, rxcsum);

	/* If VMDq is enabled then we set the appropriate mode for that, else
	 * we default to RSS so that an RSS hash is calculated per packet even
	 * if we are only using one queue */
	if (adapter->vfs_allocated_count) {
		if (hw->mac.type > e1000_82575) {
			/* Set the default pool for the PF's first queue */
			u32 vtctl = rd32(E1000_VT_CTL);
			vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
				   E1000_VT_CTL_DISABLE_DEF_POOL);
			vtctl |= adapter->vfs_allocated_count <<
				E1000_VT_CTL_DEFAULT_POOL_SHIFT;
			wr32(E1000_VT_CTL, vtctl);
		}
		if (adapter->num_rx_queues > 1)
			mrqc = E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
		else
			mrqc = E1000_MRQC_ENABLE_VMDQ;
	} else {
		mrqc = E1000_MRQC_ENABLE_RSS_4Q;
	}
	igb_vmm_control(adapter);

	mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
		 E1000_MRQC_RSS_FIELD_IPV4_TCP);
	mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
		 E1000_MRQC_RSS_FIELD_IPV6_TCP);
	mrqc |= (E1000_MRQC_RSS_FIELD_IPV4_UDP |
		 E1000_MRQC_RSS_FIELD_IPV6_UDP);
	mrqc |= (E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
		 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);

	wr32(E1000_MRQC, mrqc);
}

2324 2325 2326 2327
/**
 * igb_setup_rctl - configure the receive control registers
 * @adapter: Board private structure
 **/
2328
void igb_setup_rctl(struct igb_adapter *adapter)
2329 2330 2331 2332 2333 2334 2335
{
	struct e1000_hw *hw = &adapter->hw;
	u32 rctl;

	rctl = rd32(E1000_RCTL);

	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2336
	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
2337

2338
	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
2339
		(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2340

2341 2342 2343 2344
	/*
	 * enable stripping of CRC. It's unlikely this will break BMC
	 * redirection as it did with e1000. Newer features require
	 * that the HW strips the CRC.
2345
	 */
2346
	rctl |= E1000_RCTL_SECRC;
2347

2348
	/*
2349
	 * disable store bad packets and clear size bits.
2350
	 */
2351
	rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
2352

A
Alexander Duyck 已提交
2353 2354
	/* enable LPE to prevent packets larger than max_frame_size */
	rctl |= E1000_RCTL_LPE;
2355

2356 2357
	/* disable queue 0 to prevent tail write w/o re-config */
	wr32(E1000_RXDCTL(0), 0);
2358

2359 2360 2361 2362 2363 2364 2365 2366 2367 2368
	/* Attention!!!  For SR-IOV PF driver operations you must enable
	 * queue drop for all VF and PF queues to prevent head of line blocking
	 * if an un-trusted VF does not provide descriptors to hardware.
	 */
	if (adapter->vfs_allocated_count) {
		u32 vmolr;

		/* set all queue drop enable bits */
		wr32(E1000_QDE, ALL_QUEUES);

2369
		vmolr = rd32(E1000_VMOLR(adapter->vfs_allocated_count));
2370 2371
		if (rctl & E1000_RCTL_LPE)
			vmolr |= E1000_VMOLR_LPE;
2372
		if (adapter->num_rx_queues > 1)
2373
			vmolr |= E1000_VMOLR_RSSE;
2374
		wr32(E1000_VMOLR(adapter->vfs_allocated_count), vmolr);
2375 2376
	}

2377 2378 2379
	wr32(E1000_RCTL, rctl);
}

2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404
/**
 * igb_rlpml_set - set maximum receive packet size
 * @adapter: board private structure
 *
 * Configure maximum receivable packet size.
 **/
static void igb_rlpml_set(struct igb_adapter *adapter)
{
	u32 max_frame_size = adapter->max_frame_size;
	struct e1000_hw *hw = &adapter->hw;
	u16 pf_id = adapter->vfs_allocated_count;

	if (adapter->vlgrp)
		max_frame_size += VLAN_TAG_SIZE;

	/* if vfs are enabled we set RLPML to the largest possible request
	 * size and set the VMOLR RLPML to the size we need */
	if (pf_id) {
		igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
		max_frame_size = MAX_STD_JUMBO_FRAME_SIZE + VLAN_TAG_SIZE;
	}

	wr32(E1000_RLPML, max_frame_size);
}

2405 2406 2407 2408 2409 2410 2411
/**
 * igb_configure_rx_ring - Configure a receive ring after Reset
 * @adapter: board private structure
 * @ring: receive ring to be configured
 *
 * Configure the Rx unit of the MAC after a reset.
 **/
2412 2413
void igb_configure_rx_ring(struct igb_adapter *adapter,
                           struct igb_ring *ring)
2414 2415 2416 2417
{
	struct e1000_hw *hw = &adapter->hw;
	u64 rdba = ring->dma;
	int reg_idx = ring->reg_idx;
2418
	u32 srrctl, rxdctl;
2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432

	/* disable the queue */
	rxdctl = rd32(E1000_RXDCTL(reg_idx));
	wr32(E1000_RXDCTL(reg_idx),
	                rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);

	/* Set DMA base address registers */
	wr32(E1000_RDBAL(reg_idx),
	     rdba & 0x00000000ffffffffULL);
	wr32(E1000_RDBAH(reg_idx), rdba >> 32);
	wr32(E1000_RDLEN(reg_idx),
	               ring->count * sizeof(union e1000_adv_rx_desc));

	/* initialize head and tail */
2433 2434 2435 2436
	ring->head = hw->hw_addr + E1000_RDH(reg_idx);
	ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
	writel(0, ring->head);
	writel(0, ring->tail);
2437

2438
	/* set descriptor configuration */
2439 2440
	if (ring->rx_buffer_len < IGB_RXBUFFER_1024) {
		srrctl = ALIGN(ring->rx_buffer_len, 64) <<
2441 2442 2443 2444 2445 2446 2447 2448 2449 2450
		         E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
#if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
		srrctl |= IGB_RXBUFFER_16384 >>
		          E1000_SRRCTL_BSIZEPKT_SHIFT;
#else
		srrctl |= (PAGE_SIZE / 2) >>
		          E1000_SRRCTL_BSIZEPKT_SHIFT;
#endif
		srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
	} else {
2451
		srrctl = ALIGN(ring->rx_buffer_len, 1024) >>
2452 2453 2454 2455 2456 2457
		         E1000_SRRCTL_BSIZEPKT_SHIFT;
		srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
	}

	wr32(E1000_SRRCTL(reg_idx), srrctl);

2458 2459 2460 2461 2462 2463 2464 2465 2466 2467
	/* enable receive descriptor fetching */
	rxdctl = rd32(E1000_RXDCTL(reg_idx));
	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
	rxdctl &= 0xFFF00000;
	rxdctl |= IGB_RX_PTHRESH;
	rxdctl |= IGB_RX_HTHRESH << 8;
	rxdctl |= IGB_RX_WTHRESH << 16;
	wr32(E1000_RXDCTL(reg_idx), rxdctl);
}

2468 2469 2470 2471 2472 2473 2474 2475
/**
 * igb_configure_rx - Configure receive Unit after Reset
 * @adapter: board private structure
 *
 * Configure the Rx unit of the MAC after a reset.
 **/
static void igb_configure_rx(struct igb_adapter *adapter)
{
2476
	int i;
2477

2478 2479 2480
	/* set UTA to appropriate mode */
	igb_set_uta(adapter);

2481 2482 2483 2484
	/* set the correct pool for the PF default MAC address in entry 0 */
	igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
	                 adapter->vfs_allocated_count);

2485 2486 2487 2488
	/* Setup the HW Rx Head and Tail Descriptor Pointers and
	 * the Base and Length of the Rx Descriptor Ring */
	for (i = 0; i < adapter->num_rx_queues; i++)
		igb_configure_rx_ring(adapter, &adapter->rx_ring[i]);
2489 2490 2491 2492 2493 2494 2495 2496
}

/**
 * igb_free_tx_resources - Free Tx Resources per Queue
 * @tx_ring: Tx descriptor ring for a specific queue
 *
 * Free all transmit software resources
 **/
2497
void igb_free_tx_resources(struct igb_ring *tx_ring)
2498
{
2499
	igb_clean_tx_ring(tx_ring);
2500 2501 2502 2503

	vfree(tx_ring->buffer_info);
	tx_ring->buffer_info = NULL;

2504 2505
	pci_free_consistent(tx_ring->pdev, tx_ring->size,
	                    tx_ring->desc, tx_ring->dma);
2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520

	tx_ring->desc = NULL;
}

/**
 * igb_free_all_tx_resources - Free Tx Resources for All Queues
 * @adapter: board private structure
 *
 * Free all transmit software resources
 **/
static void igb_free_all_tx_resources(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_tx_queues; i++)
2521
		igb_free_tx_resources(&adapter->tx_ring[i]);
2522 2523
}

2524
static void igb_unmap_and_free_tx_resource(struct igb_ring *tx_ring,
2525 2526
					   struct igb_buffer *buffer_info)
{
2527
	buffer_info->dma = 0;
2528
	if (buffer_info->skb) {
2529 2530
		skb_dma_unmap(&tx_ring->pdev->dev,
		              buffer_info->skb,
2531
		              DMA_TO_DEVICE);
2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542
		dev_kfree_skb_any(buffer_info->skb);
		buffer_info->skb = NULL;
	}
	buffer_info->time_stamp = 0;
	/* buffer_info must be completely set up in the transmit path */
}

/**
 * igb_clean_tx_ring - Free Tx Buffers
 * @tx_ring: ring to be cleaned
 **/
2543
static void igb_clean_tx_ring(struct igb_ring *tx_ring)
2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554
{
	struct igb_buffer *buffer_info;
	unsigned long size;
	unsigned int i;

	if (!tx_ring->buffer_info)
		return;
	/* Free all the Tx ring sk_buffs */

	for (i = 0; i < tx_ring->count; i++) {
		buffer_info = &tx_ring->buffer_info[i];
2555
		igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567
	}

	size = sizeof(struct igb_buffer) * tx_ring->count;
	memset(tx_ring->buffer_info, 0, size);

	/* Zero out the descriptor ring */

	memset(tx_ring->desc, 0, tx_ring->size);

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;

2568 2569
	writel(0, tx_ring->head);
	writel(0, tx_ring->tail);
2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580
}

/**
 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
 * @adapter: board private structure
 **/
static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_tx_queues; i++)
2581
		igb_clean_tx_ring(&adapter->tx_ring[i]);
2582 2583 2584 2585 2586 2587 2588 2589
}

/**
 * igb_free_rx_resources - Free Rx Resources
 * @rx_ring: ring to clean the resources from
 *
 * Free all receive software resources
 **/
2590
void igb_free_rx_resources(struct igb_ring *rx_ring)
2591
{
2592
	igb_clean_rx_ring(rx_ring);
2593 2594 2595 2596

	vfree(rx_ring->buffer_info);
	rx_ring->buffer_info = NULL;

2597 2598
	pci_free_consistent(rx_ring->pdev, rx_ring->size,
	                    rx_ring->desc, rx_ring->dma);
2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613

	rx_ring->desc = NULL;
}

/**
 * igb_free_all_rx_resources - Free Rx Resources for All Queues
 * @adapter: board private structure
 *
 * Free all receive software resources
 **/
static void igb_free_all_rx_resources(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_rx_queues; i++)
2614
		igb_free_rx_resources(&adapter->rx_ring[i]);
2615 2616 2617 2618 2619 2620
}

/**
 * igb_clean_rx_ring - Free Rx Buffers per Queue
 * @rx_ring: ring to free buffers from
 **/
2621
static void igb_clean_rx_ring(struct igb_ring *rx_ring)
2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632
{
	struct igb_buffer *buffer_info;
	unsigned long size;
	unsigned int i;

	if (!rx_ring->buffer_info)
		return;
	/* Free all the Rx ring sk_buffs */
	for (i = 0; i < rx_ring->count; i++) {
		buffer_info = &rx_ring->buffer_info[i];
		if (buffer_info->dma) {
2633 2634
			pci_unmap_single(rx_ring->pdev,
			                 buffer_info->dma,
2635
					 rx_ring->rx_buffer_len,
A
Alexander Duyck 已提交
2636
					 PCI_DMA_FROMDEVICE);
2637 2638 2639 2640 2641 2642 2643
			buffer_info->dma = 0;
		}

		if (buffer_info->skb) {
			dev_kfree_skb(buffer_info->skb);
			buffer_info->skb = NULL;
		}
A
Alexander Duyck 已提交
2644
		if (buffer_info->page_dma) {
2645 2646
			pci_unmap_page(rx_ring->pdev,
			               buffer_info->page_dma,
A
Alexander Duyck 已提交
2647 2648 2649 2650
				       PAGE_SIZE / 2,
				       PCI_DMA_FROMDEVICE);
			buffer_info->page_dma = 0;
		}
2651 2652 2653
		if (buffer_info->page) {
			put_page(buffer_info->page);
			buffer_info->page = NULL;
2654
			buffer_info->page_offset = 0;
2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666
		}
	}

	size = sizeof(struct igb_buffer) * rx_ring->count;
	memset(rx_ring->buffer_info, 0, size);

	/* Zero out the descriptor ring */
	memset(rx_ring->desc, 0, rx_ring->size);

	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;

2667 2668
	writel(0, rx_ring->head);
	writel(0, rx_ring->tail);
2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679
}

/**
 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
 * @adapter: board private structure
 **/
static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_rx_queues; i++)
2680
		igb_clean_rx_ring(&adapter->rx_ring[i]);
2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692
}

/**
 * igb_set_mac - Change the Ethernet Address of the NIC
 * @netdev: network interface device structure
 * @p: pointer to an address structure
 *
 * Returns 0 on success, negative on failure
 **/
static int igb_set_mac(struct net_device *netdev, void *p)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
2693
	struct e1000_hw *hw = &adapter->hw;
2694 2695 2696 2697 2698 2699
	struct sockaddr *addr = p;

	if (!is_valid_ether_addr(addr->sa_data))
		return -EADDRNOTAVAIL;

	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2700
	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
2701

2702 2703 2704
	/* set the correct pool for the new PF MAC address in entry 0 */
	igb_rar_set_qsel(adapter, hw->mac.addr, 0,
	                 adapter->vfs_allocated_count);
2705

2706 2707 2708 2709
	return 0;
}

/**
2710
 * igb_write_mc_addr_list - write multicast addresses to MTA
2711 2712
 * @netdev: network interface device structure
 *
2713 2714 2715 2716
 * Writes multicast address list to the MTA hash table.
 * Returns: -ENOMEM on failure
 *                0 on no addresses written
 *                X on writing X addresses to MTA
2717
 **/
2718
static int igb_write_mc_addr_list(struct net_device *netdev)
2719 2720 2721
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
2722
	struct dev_mc_list *mc_ptr = netdev->mc_list;
2723 2724
	u8  *mta_list;
	u32 vmolr = 0;
2725 2726
	int i;

2727 2728 2729 2730 2731 2732
	if (!netdev->mc_count) {
		/* nothing to program, so clear mc list */
		igb_update_mc_addr_list(hw, NULL, 0);
		igb_restore_vf_multicasts(adapter);
		return 0;
	}
2733

2734 2735 2736
	mta_list = kzalloc(netdev->mc_count * 6, GFP_ATOMIC);
	if (!mta_list)
		return -ENOMEM;
2737

2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748
	/* set vmolr receive overflow multicast bit */
	vmolr |= E1000_VMOLR_ROMPE;

	/* The shared function expects a packed array of only addresses. */
	mc_ptr = netdev->mc_list;

	for (i = 0; i < netdev->mc_count; i++) {
		if (!mc_ptr)
			break;
		memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr, ETH_ALEN);
		mc_ptr = mc_ptr->next;
2749
	}
2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775
	igb_update_mc_addr_list(hw, mta_list, i);
	kfree(mta_list);

	return netdev->mc_count;
}

/**
 * igb_write_uc_addr_list - write unicast addresses to RAR table
 * @netdev: network interface device structure
 *
 * Writes unicast address list to the RAR table.
 * Returns: -ENOMEM on failure/insufficient address space
 *                0 on no addresses written
 *                X on writing X addresses to the RAR table
 **/
static int igb_write_uc_addr_list(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	unsigned int vfn = adapter->vfs_allocated_count;
	unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
	int count = 0;

	/* return ENOMEM indicating insufficient memory for addresses */
	if (netdev->uc.count > rar_entries)
		return -ENOMEM;
2776

2777 2778 2779 2780 2781
	if (netdev->uc.count && rar_entries) {
		struct netdev_hw_addr *ha;
		list_for_each_entry(ha, &netdev->uc.list, list) {
			if (!rar_entries)
				break;
2782 2783
			igb_rar_set_qsel(adapter, ha->addr,
			                 rar_entries--,
2784 2785
			                 vfn);
			count++;
2786 2787 2788 2789 2790 2791 2792 2793 2794
		}
	}
	/* write the addresses in reverse order to avoid write combining */
	for (; rar_entries > 0 ; rar_entries--) {
		wr32(E1000_RAH(rar_entries), 0);
		wr32(E1000_RAL(rar_entries), 0);
	}
	wrfl();

2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852
	return count;
}

/**
 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
 * @netdev: network interface device structure
 *
 * The set_rx_mode entry point is called whenever the unicast or multicast
 * address lists or the network interface flags are updated.  This routine is
 * responsible for configuring the hardware for proper unicast, multicast,
 * promiscuous mode, and all-multi behavior.
 **/
static void igb_set_rx_mode(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	unsigned int vfn = adapter->vfs_allocated_count;
	u32 rctl, vmolr = 0;
	int count;

	/* Check for Promiscuous and All Multicast modes */
	rctl = rd32(E1000_RCTL);

	/* clear the effected bits */
	rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);

	if (netdev->flags & IFF_PROMISC) {
		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
		vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
	} else {
		if (netdev->flags & IFF_ALLMULTI) {
			rctl |= E1000_RCTL_MPE;
			vmolr |= E1000_VMOLR_MPME;
		} else {
			/*
			 * Write addresses to the MTA, if the attempt fails
			 * then we should just turn on promiscous mode so
			 * that we can at least receive multicast traffic
			 */
			count = igb_write_mc_addr_list(netdev);
			if (count < 0) {
				rctl |= E1000_RCTL_MPE;
				vmolr |= E1000_VMOLR_MPME;
			} else if (count) {
				vmolr |= E1000_VMOLR_ROMPE;
			}
		}
		/*
		 * Write addresses to available RAR registers, if there is not
		 * sufficient space to store all the addresses then enable
		 * unicast promiscous mode
		 */
		count = igb_write_uc_addr_list(netdev);
		if (count < 0) {
			rctl |= E1000_RCTL_UPE;
			vmolr |= E1000_VMOLR_ROPE;
		}
		rctl |= E1000_RCTL_VFE;
2853
	}
2854
	wr32(E1000_RCTL, rctl);
2855

2856 2857 2858 2859 2860 2861 2862
	/*
	 * In order to support SR-IOV and eventually VMDq it is necessary to set
	 * the VMOLR to enable the appropriate modes.  Without this workaround
	 * we will have issues with VLAN tag stripping not being done for frames
	 * that are only arriving because we are the default pool
	 */
	if (hw->mac.type < e1000_82576)
2863
		return;
2864

2865 2866 2867
	vmolr |= rd32(E1000_VMOLR(vfn)) &
	         ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
	wr32(E1000_VMOLR(vfn), vmolr);
2868
	igb_restore_vf_multicasts(adapter);
2869 2870 2871 2872 2873 2874 2875
}

/* Need to wait a few seconds after link up to get diagnostic information from
 * the phy */
static void igb_update_phy_info(unsigned long data)
{
	struct igb_adapter *adapter = (struct igb_adapter *) data;
2876
	igb_get_phy_info(&adapter->hw);
2877 2878
}

A
Alexander Duyck 已提交
2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914
/**
 * igb_has_link - check shared code for link and determine up/down
 * @adapter: pointer to driver private info
 **/
static bool igb_has_link(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	bool link_active = false;
	s32 ret_val = 0;

	/* get_link_status is set on LSC (link status) interrupt or
	 * rx sequence error interrupt.  get_link_status will stay
	 * false until the e1000_check_for_link establishes link
	 * for copper adapters ONLY
	 */
	switch (hw->phy.media_type) {
	case e1000_media_type_copper:
		if (hw->mac.get_link_status) {
			ret_val = hw->mac.ops.check_for_link(hw);
			link_active = !hw->mac.get_link_status;
		} else {
			link_active = true;
		}
		break;
	case e1000_media_type_internal_serdes:
		ret_val = hw->mac.ops.check_for_link(hw);
		link_active = hw->mac.serdes_has_link;
		break;
	default:
	case e1000_media_type_unknown:
		break;
	}

	return link_active;
}

2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933
/**
 * igb_watchdog - Timer Call-back
 * @data: pointer to adapter cast into an unsigned long
 **/
static void igb_watchdog(unsigned long data)
{
	struct igb_adapter *adapter = (struct igb_adapter *)data;
	/* Do the rest outside of interrupt context */
	schedule_work(&adapter->watchdog_task);
}

static void igb_watchdog_task(struct work_struct *work)
{
	struct igb_adapter *adapter = container_of(work,
					struct igb_adapter, watchdog_task);
	struct e1000_hw *hw = &adapter->hw;
	struct net_device *netdev = adapter->netdev;
	struct igb_ring *tx_ring = adapter->tx_ring;
	u32 link;
2934
	int i;
2935

A
Alexander Duyck 已提交
2936 2937
	link = igb_has_link(adapter);
	if ((netif_carrier_ok(netdev)) && link)
2938 2939 2940 2941 2942 2943 2944 2945 2946 2947
		goto link_up;

	if (link) {
		if (!netif_carrier_ok(netdev)) {
			u32 ctrl;
			hw->mac.ops.get_speed_and_duplex(&adapter->hw,
						   &adapter->link_speed,
						   &adapter->link_duplex);

			ctrl = rd32(E1000_CTRL);
2948 2949
			/* Links status message must follow this format */
			printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s, "
2950
				 "Flow Control: %s\n",
2951
			         netdev->name,
2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976
				 adapter->link_speed,
				 adapter->link_duplex == FULL_DUPLEX ?
				 "Full Duplex" : "Half Duplex",
				 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
				 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
				 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
				 E1000_CTRL_TFCE) ? "TX" : "None")));

			/* tweak tx_queue_len according to speed/duplex and
			 * adjust the timeout factor */
			netdev->tx_queue_len = adapter->tx_queue_len;
			adapter->tx_timeout_factor = 1;
			switch (adapter->link_speed) {
			case SPEED_10:
				netdev->tx_queue_len = 10;
				adapter->tx_timeout_factor = 14;
				break;
			case SPEED_100:
				netdev->tx_queue_len = 100;
				/* maybe add some timeout factor ? */
				break;
			}

			netif_carrier_on(netdev);

2977 2978
			igb_ping_all_vfs(adapter);

2979
			/* link state has changed, schedule phy info update */
2980 2981 2982 2983 2984 2985 2986 2987
			if (!test_bit(__IGB_DOWN, &adapter->state))
				mod_timer(&adapter->phy_info_timer,
					  round_jiffies(jiffies + 2 * HZ));
		}
	} else {
		if (netif_carrier_ok(netdev)) {
			adapter->link_speed = 0;
			adapter->link_duplex = 0;
2988 2989 2990
			/* Links status message must follow this format */
			printk(KERN_INFO "igb: %s NIC Link is Down\n",
			       netdev->name);
2991
			netif_carrier_off(netdev);
2992

2993 2994
			igb_ping_all_vfs(adapter);

2995
			/* link state has changed, schedule phy info update */
2996 2997 2998 2999 3000 3001 3002 3003 3004
			if (!test_bit(__IGB_DOWN, &adapter->state))
				mod_timer(&adapter->phy_info_timer,
					  round_jiffies(jiffies + 2 * HZ));
		}
	}

link_up:
	igb_update_stats(adapter);

3005
	hw->mac.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
3006
	adapter->tpt_old = adapter->stats.tpt;
3007
	hw->mac.collision_delta = adapter->stats.colc - adapter->colc_old;
3008 3009 3010 3011 3012 3013 3014 3015 3016 3017
	adapter->colc_old = adapter->stats.colc;

	adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
	adapter->gorc_old = adapter->stats.gorc;
	adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
	adapter->gotc_old = adapter->stats.gotc;

	igb_update_adaptive(&adapter->hw);

	if (!netif_carrier_ok(netdev)) {
3018
		if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
3019 3020 3021 3022 3023 3024
			/* We've lost link, so the controller stops DMA,
			 * but we've got queued Tx work that's never going
			 * to get done, so reset controller to flush Tx.
			 * (Do the reset outside of interrupt context). */
			adapter->tx_timeout_count++;
			schedule_work(&adapter->reset_task);
3025 3026
			/* return immediately since reset is imminent */
			return;
3027 3028 3029 3030
		}
	}

	/* Cause software interrupt to ensure rx ring is cleaned */
3031
	if (adapter->msix_entries) {
3032 3033 3034 3035 3036
		u32 eics = 0;
		for (i = 0; i < adapter->num_q_vectors; i++) {
			struct igb_q_vector *q_vector = adapter->q_vector[i];
			eics |= q_vector->eims_value;
		}
3037 3038 3039 3040
		wr32(E1000_EICS, eics);
	} else {
		wr32(E1000_ICS, E1000_ICS_RXDMT0);
	}
3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058

	/* Force detection of hung controller every watchdog period */
	tx_ring->detect_tx_hung = true;

	/* Reset the timer */
	if (!test_bit(__IGB_DOWN, &adapter->state))
		mod_timer(&adapter->watchdog_timer,
			  round_jiffies(jiffies + 2 * HZ));
}

enum latency_range {
	lowest_latency = 0,
	low_latency = 1,
	bulk_latency = 2,
	latency_invalid = 255
};


3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072
/**
 * igb_update_ring_itr - update the dynamic ITR value based on packet size
 *
 *      Stores a new ITR value based on strictly on packet size.  This
 *      algorithm is less sophisticated than that used in igb_update_itr,
 *      due to the difficulty of synchronizing statistics across multiple
 *      receive rings.  The divisors and thresholds used by this fuction
 *      were determined based on theoretical maximum wire speed and testing
 *      data, in order to minimize response time while increasing bulk
 *      throughput.
 *      This functionality is controlled by the InterruptThrottleRate module
 *      parameter (see igb_param.c)
 *      NOTE:  This function is called only when operating in a multiqueue
 *             receive environment.
3073
 * @q_vector: pointer to q_vector
3074
 **/
3075
static void igb_update_ring_itr(struct igb_q_vector *q_vector)
3076
{
3077
	int new_val = q_vector->itr_val;
3078
	int avg_wire_size = 0;
3079
	struct igb_adapter *adapter = q_vector->adapter;
3080

3081 3082 3083 3084
	/* For non-gigabit speeds, just fix the interrupt rate at 4000
	 * ints/sec - ITR timer value of 120 ticks.
	 */
	if (adapter->link_speed != SPEED_1000) {
3085
		new_val = 976;
3086
		goto set_itr_val;
3087
	}
3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103

	if (q_vector->rx_ring && q_vector->rx_ring->total_packets) {
		struct igb_ring *ring = q_vector->rx_ring;
		avg_wire_size = ring->total_bytes / ring->total_packets;
	}

	if (q_vector->tx_ring && q_vector->tx_ring->total_packets) {
		struct igb_ring *ring = q_vector->tx_ring;
		avg_wire_size = max_t(u32, avg_wire_size,
		                      (ring->total_bytes /
		                       ring->total_packets));
	}

	/* if avg_wire_size isn't set no work was done */
	if (!avg_wire_size)
		goto clear_counts;
3104

3105 3106 3107 3108 3109
	/* Add 24 bytes to size to account for CRC, preamble, and gap */
	avg_wire_size += 24;

	/* Don't starve jumbo frames */
	avg_wire_size = min(avg_wire_size, 3000);
3110

3111 3112 3113 3114 3115
	/* Give a little boost to mid-size frames */
	if ((avg_wire_size > 300) && (avg_wire_size < 1200))
		new_val = avg_wire_size / 3;
	else
		new_val = avg_wire_size / 2;
3116

3117
set_itr_val:
3118 3119 3120
	if (new_val != q_vector->itr_val) {
		q_vector->itr_val = new_val;
		q_vector->set_itr = 1;
3121
	}
3122
clear_counts:
3123 3124 3125 3126 3127 3128 3129 3130
	if (q_vector->rx_ring) {
		q_vector->rx_ring->total_bytes = 0;
		q_vector->rx_ring->total_packets = 0;
	}
	if (q_vector->tx_ring) {
		q_vector->tx_ring->total_bytes = 0;
		q_vector->tx_ring->total_packets = 0;
	}
3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146
}

/**
 * igb_update_itr - update the dynamic ITR value based on statistics
 *      Stores a new ITR value based on packets and byte
 *      counts during the last interrupt.  The advantage of per interrupt
 *      computation is faster updates and more accurate ITR for the current
 *      traffic pattern.  Constants in this function were computed
 *      based on theoretical maximum wire speed and thresholds were set based
 *      on testing data as well as attempting to minimize response time
 *      while increasing bulk throughput.
 *      this functionality is controlled by the InterruptThrottleRate module
 *      parameter (see igb_param.c)
 *      NOTE:  These calculations are only valid when operating in a single-
 *             queue environment.
 * @adapter: pointer to adapter
3147
 * @itr_setting: current q_vector->itr_val
3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186
 * @packets: the number of packets during this measurement interval
 * @bytes: the number of bytes during this measurement interval
 **/
static unsigned int igb_update_itr(struct igb_adapter *adapter, u16 itr_setting,
				   int packets, int bytes)
{
	unsigned int retval = itr_setting;

	if (packets == 0)
		goto update_itr_done;

	switch (itr_setting) {
	case lowest_latency:
		/* handle TSO and jumbo frames */
		if (bytes/packets > 8000)
			retval = bulk_latency;
		else if ((packets < 5) && (bytes > 512))
			retval = low_latency;
		break;
	case low_latency:  /* 50 usec aka 20000 ints/s */
		if (bytes > 10000) {
			/* this if handles the TSO accounting */
			if (bytes/packets > 8000) {
				retval = bulk_latency;
			} else if ((packets < 10) || ((bytes/packets) > 1200)) {
				retval = bulk_latency;
			} else if ((packets > 35)) {
				retval = lowest_latency;
			}
		} else if (bytes/packets > 2000) {
			retval = bulk_latency;
		} else if (packets <= 2 && bytes < 512) {
			retval = lowest_latency;
		}
		break;
	case bulk_latency: /* 250 usec aka 4000 ints/s */
		if (bytes > 25000) {
			if (packets > 35)
				retval = low_latency;
3187
		} else if (bytes < 1500) {
3188 3189 3190 3191 3192 3193 3194 3195 3196
			retval = low_latency;
		}
		break;
	}

update_itr_done:
	return retval;
}

3197
static void igb_set_itr(struct igb_adapter *adapter)
3198
{
3199
	struct igb_q_vector *q_vector = adapter->q_vector[0];
3200
	u16 current_itr;
3201
	u32 new_itr = q_vector->itr_val;
3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214

	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
	if (adapter->link_speed != SPEED_1000) {
		current_itr = 0;
		new_itr = 4000;
		goto set_itr_now;
	}

	adapter->rx_itr = igb_update_itr(adapter,
				    adapter->rx_itr,
				    adapter->rx_ring->total_packets,
				    adapter->rx_ring->total_bytes);

3215 3216 3217 3218 3219
	adapter->tx_itr = igb_update_itr(adapter,
				    adapter->tx_itr,
				    adapter->tx_ring->total_packets,
				    adapter->tx_ring->total_bytes);
	current_itr = max(adapter->rx_itr, adapter->tx_itr);
3220

3221
	/* conservative mode (itr 3) eliminates the lowest_latency setting */
3222
	if (adapter->itr_setting == 3 && current_itr == lowest_latency)
3223 3224
		current_itr = low_latency;

3225 3226 3227
	switch (current_itr) {
	/* counts and packets in update_itr are dependent on these numbers */
	case lowest_latency:
3228
		new_itr = 56;  /* aka 70,000 ints/sec */
3229 3230
		break;
	case low_latency:
3231
		new_itr = 196; /* aka 20,000 ints/sec */
3232 3233
		break;
	case bulk_latency:
3234
		new_itr = 980; /* aka 4,000 ints/sec */
3235 3236 3237 3238 3239 3240
		break;
	default:
		break;
	}

set_itr_now:
3241 3242
	adapter->rx_ring->total_bytes = 0;
	adapter->rx_ring->total_packets = 0;
3243 3244
	adapter->tx_ring->total_bytes = 0;
	adapter->tx_ring->total_packets = 0;
3245

3246
	if (new_itr != q_vector->itr_val) {
3247 3248 3249
		/* this attempts to bias the interrupt rate towards Bulk
		 * by adding intermediate steps when interrupt rate is
		 * increasing */
3250 3251 3252 3253
		new_itr = new_itr > q_vector->itr_val ?
		             max((new_itr * q_vector->itr_val) /
		                 (new_itr + (q_vector->itr_val >> 2)),
		                 new_itr) :
3254 3255 3256 3257 3258 3259 3260
			     new_itr;
		/* Don't write the value here; it resets the adapter's
		 * internal timer, and causes us to delay far longer than
		 * we should between interrupts.  Instead, we write the ITR
		 * value at the beginning of the next interrupt so the timing
		 * ends up being correct.
		 */
3261 3262
		q_vector->itr_val = new_itr;
		q_vector->set_itr = 1;
3263 3264 3265 3266 3267 3268 3269 3270 3271
	}

	return;
}

#define IGB_TX_FLAGS_CSUM		0x00000001
#define IGB_TX_FLAGS_VLAN		0x00000002
#define IGB_TX_FLAGS_TSO		0x00000004
#define IGB_TX_FLAGS_IPV4		0x00000008
3272
#define IGB_TX_FLAGS_TSTAMP             0x00000010
3273 3274 3275
#define IGB_TX_FLAGS_VLAN_MASK	0xffff0000
#define IGB_TX_FLAGS_VLAN_SHIFT	16

3276
static inline int igb_tso_adv(struct igb_ring *tx_ring,
3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336
			      struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
{
	struct e1000_adv_tx_context_desc *context_desc;
	unsigned int i;
	int err;
	struct igb_buffer *buffer_info;
	u32 info = 0, tu_cmd = 0;
	u32 mss_l4len_idx, l4len;
	*hdr_len = 0;

	if (skb_header_cloned(skb)) {
		err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
		if (err)
			return err;
	}

	l4len = tcp_hdrlen(skb);
	*hdr_len += l4len;

	if (skb->protocol == htons(ETH_P_IP)) {
		struct iphdr *iph = ip_hdr(skb);
		iph->tot_len = 0;
		iph->check = 0;
		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
							 iph->daddr, 0,
							 IPPROTO_TCP,
							 0);
	} else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
		ipv6_hdr(skb)->payload_len = 0;
		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
						       &ipv6_hdr(skb)->daddr,
						       0, IPPROTO_TCP, 0);
	}

	i = tx_ring->next_to_use;

	buffer_info = &tx_ring->buffer_info[i];
	context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
	/* VLAN MACLEN IPLEN */
	if (tx_flags & IGB_TX_FLAGS_VLAN)
		info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
	info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
	*hdr_len += skb_network_offset(skb);
	info |= skb_network_header_len(skb);
	*hdr_len += skb_network_header_len(skb);
	context_desc->vlan_macip_lens = cpu_to_le32(info);

	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
	tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);

	if (skb->protocol == htons(ETH_P_IP))
		tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
	tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;

	context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);

	/* MSS L4LEN IDX */
	mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
	mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);

3337
	/* For 82575, context index must be unique per ring. */
3338 3339
	if (tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX)
		mss_l4len_idx |= tx_ring->reg_idx << 4;
3340 3341 3342 3343 3344

	context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
	context_desc->seqnum_seed = 0;

	buffer_info->time_stamp = jiffies;
A
Alexander Duyck 已提交
3345
	buffer_info->next_to_watch = i;
3346 3347 3348 3349 3350 3351 3352 3353 3354 3355
	buffer_info->dma = 0;
	i++;
	if (i == tx_ring->count)
		i = 0;

	tx_ring->next_to_use = i;

	return true;
}

3356 3357
static inline bool igb_tx_csum_adv(struct igb_ring *tx_ring,
				   struct sk_buff *skb, u32 tx_flags)
3358 3359
{
	struct e1000_adv_tx_context_desc *context_desc;
3360
	struct pci_dev *pdev = tx_ring->pdev;
3361 3362
	struct igb_buffer *buffer_info;
	u32 info = 0, tu_cmd = 0;
3363
	unsigned int i;
3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381

	if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
	    (tx_flags & IGB_TX_FLAGS_VLAN)) {
		i = tx_ring->next_to_use;
		buffer_info = &tx_ring->buffer_info[i];
		context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);

		if (tx_flags & IGB_TX_FLAGS_VLAN)
			info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
		info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
		if (skb->ip_summed == CHECKSUM_PARTIAL)
			info |= skb_network_header_len(skb);

		context_desc->vlan_macip_lens = cpu_to_le32(info);

		tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);

		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393
			__be16 protocol;

			if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
				const struct vlan_ethhdr *vhdr =
				          (const struct vlan_ethhdr*)skb->data;

				protocol = vhdr->h_vlan_encapsulated_proto;
			} else {
				protocol = skb->protocol;
			}

			switch (protocol) {
3394
			case cpu_to_be16(ETH_P_IP):
3395
				tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
3396 3397
				if (ip_hdr(skb)->protocol == IPPROTO_TCP)
					tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3398 3399
				else if (ip_hdr(skb)->protocol == IPPROTO_SCTP)
					tu_cmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
3400
				break;
3401
			case cpu_to_be16(ETH_P_IPV6):
3402 3403 3404
				/* XXX what about other V6 headers?? */
				if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
					tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3405 3406
				else if (ipv6_hdr(skb)->nexthdr == IPPROTO_SCTP)
					tu_cmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
3407 3408 3409
				break;
			default:
				if (unlikely(net_ratelimit()))
3410
					dev_warn(&pdev->dev,
3411 3412 3413 3414
					    "partial checksum but proto=%x!\n",
					    skb->protocol);
				break;
			}
3415 3416 3417 3418
		}

		context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
		context_desc->seqnum_seed = 0;
3419
		if (tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX)
3420
			context_desc->mss_l4len_idx =
3421
				cpu_to_le32(tx_ring->reg_idx << 4);
3422 3423

		buffer_info->time_stamp = jiffies;
A
Alexander Duyck 已提交
3424
		buffer_info->next_to_watch = i;
3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439
		buffer_info->dma = 0;

		i++;
		if (i == tx_ring->count)
			i = 0;
		tx_ring->next_to_use = i;

		return true;
	}
	return false;
}

#define IGB_MAX_TXD_PWR	16
#define IGB_MAX_DATA_PER_TXD	(1<<IGB_MAX_TXD_PWR)

3440
static inline int igb_tx_map_adv(struct igb_ring *tx_ring, struct sk_buff *skb,
A
Alexander Duyck 已提交
3441
				 unsigned int first)
3442 3443
{
	struct igb_buffer *buffer_info;
3444
	struct pci_dev *pdev = tx_ring->pdev;
3445 3446 3447
	unsigned int len = skb_headlen(skb);
	unsigned int count = 0, i;
	unsigned int f;
3448
	dma_addr_t *map;
3449 3450 3451

	i = tx_ring->next_to_use;

3452 3453
	if (skb_dma_map(&pdev->dev, skb, DMA_TO_DEVICE)) {
		dev_err(&pdev->dev, "TX DMA map failed\n");
3454 3455 3456 3457 3458
		return 0;
	}

	map = skb_shinfo(skb)->dma_maps;

3459 3460 3461 3462 3463
	buffer_info = &tx_ring->buffer_info[i];
	BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
	buffer_info->length = len;
	/* set time_stamp *before* dma to help avoid a possible race */
	buffer_info->time_stamp = jiffies;
A
Alexander Duyck 已提交
3464
	buffer_info->next_to_watch = i;
E
Eric Dumazet 已提交
3465
	buffer_info->dma = skb_shinfo(skb)->dma_head;
3466 3467 3468 3469

	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
		struct skb_frag_struct *frag;

3470 3471 3472 3473
		i++;
		if (i == tx_ring->count)
			i = 0;

3474 3475 3476 3477 3478 3479 3480
		frag = &skb_shinfo(skb)->frags[f];
		len = frag->size;

		buffer_info = &tx_ring->buffer_info[i];
		BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
		buffer_info->length = len;
		buffer_info->time_stamp = jiffies;
A
Alexander Duyck 已提交
3481
		buffer_info->next_to_watch = i;
3482
		buffer_info->dma = map[count];
3483 3484 3485 3486
		count++;
	}

	tx_ring->buffer_info[i].skb = skb;
A
Alexander Duyck 已提交
3487
	tx_ring->buffer_info[first].next_to_watch = i;
3488

E
Eric Dumazet 已提交
3489
	return count + 1;
3490 3491
}

3492
static inline void igb_tx_queue_adv(struct igb_ring *tx_ring,
3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506
				    int tx_flags, int count, u32 paylen,
				    u8 hdr_len)
{
	union e1000_adv_tx_desc *tx_desc = NULL;
	struct igb_buffer *buffer_info;
	u32 olinfo_status = 0, cmd_type_len;
	unsigned int i;

	cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
			E1000_ADVTXD_DCMD_DEXT);

	if (tx_flags & IGB_TX_FLAGS_VLAN)
		cmd_type_len |= E1000_ADVTXD_DCMD_VLE;

3507 3508 3509
	if (tx_flags & IGB_TX_FLAGS_TSTAMP)
		cmd_type_len |= E1000_ADVTXD_MAC_TSTAMP;

3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523
	if (tx_flags & IGB_TX_FLAGS_TSO) {
		cmd_type_len |= E1000_ADVTXD_DCMD_TSE;

		/* insert tcp checksum */
		olinfo_status |= E1000_TXD_POPTS_TXSM << 8;

		/* insert ip checksum */
		if (tx_flags & IGB_TX_FLAGS_IPV4)
			olinfo_status |= E1000_TXD_POPTS_IXSM << 8;

	} else if (tx_flags & IGB_TX_FLAGS_CSUM) {
		olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
	}

3524 3525 3526
	if ((tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX) &&
	    (tx_flags & (IGB_TX_FLAGS_CSUM |
	                 IGB_TX_FLAGS_TSO |
3527
			 IGB_TX_FLAGS_VLAN)))
3528
		olinfo_status |= tx_ring->reg_idx << 4;
3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544

	olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);

	i = tx_ring->next_to_use;
	while (count--) {
		buffer_info = &tx_ring->buffer_info[i];
		tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
		tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
		tx_desc->read.cmd_type_len =
			cpu_to_le32(cmd_type_len | buffer_info->length);
		tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
		i++;
		if (i == tx_ring->count)
			i = 0;
	}

3545
	tx_desc->read.cmd_type_len |= cpu_to_le32(IGB_ADVTXD_DCMD);
3546 3547 3548 3549 3550 3551 3552
	/* Force memory writes to complete before letting h/w
	 * know there are new descriptors to fetch.  (Only
	 * applicable for weak-ordered memory model archs,
	 * such as IA-64). */
	wmb();

	tx_ring->next_to_use = i;
3553
	writel(i, tx_ring->tail);
3554 3555 3556 3557 3558
	/* we need this if more than one processor can write to our tail
	 * at a time, it syncronizes IO on IA64/Altix systems */
	mmiowb();
}

3559
static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, int size)
3560
{
3561 3562
	struct net_device *netdev = tx_ring->netdev;

3563 3564
	netif_stop_subqueue(netdev, tx_ring->queue_index);

3565 3566 3567 3568 3569 3570 3571
	/* Herbert's original patch had:
	 *  smp_mb__after_netif_stop_queue();
	 * but since that doesn't exist yet, just open code it. */
	smp_mb();

	/* We need to check again in a case another CPU has just
	 * made room available. */
3572
	if (igb_desc_unused(tx_ring) < size)
3573 3574 3575
		return -EBUSY;

	/* A reprieve! */
3576
	netif_wake_subqueue(netdev, tx_ring->queue_index);
3577
	tx_ring->tx_stats.restart_queue++;
3578 3579 3580
	return 0;
}

3581
static int igb_maybe_stop_tx(struct igb_ring *tx_ring, int size)
3582
{
3583
	if (igb_desc_unused(tx_ring) >= size)
3584
		return 0;
3585
	return __igb_maybe_stop_tx(tx_ring, size);
3586 3587
}

3588 3589
static netdev_tx_t igb_xmit_frame_ring_adv(struct sk_buff *skb,
					   struct igb_ring *tx_ring)
3590
{
3591
	struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
A
Alexander Duyck 已提交
3592
	unsigned int first;
3593 3594
	unsigned int tx_flags = 0;
	u8 hdr_len = 0;
3595
	int count = 0;
3596
	int tso = 0;
3597
	union skb_shared_tx *shtx;
3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613

	if (test_bit(__IGB_DOWN, &adapter->state)) {
		dev_kfree_skb_any(skb);
		return NETDEV_TX_OK;
	}

	if (skb->len <= 0) {
		dev_kfree_skb_any(skb);
		return NETDEV_TX_OK;
	}

	/* need: 1 descriptor per page,
	 *       + 2 desc gap to keep tail from touching head,
	 *       + 1 desc for skb->data,
	 *       + 1 desc for context descriptor,
	 * otherwise try next time */
3614
	if (igb_maybe_stop_tx(tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
3615 3616 3617
		/* this is a hard error */
		return NETDEV_TX_BUSY;
	}
3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632

	/*
	 * TODO: check that there currently is no other packet with
	 * time stamping in the queue
	 *
	 * When doing time stamping, keep the connection to the socket
	 * a while longer: it is still needed by skb_hwtstamp_tx(),
	 * called either in igb_tx_hwtstamp() or by our caller when
	 * doing software time stamping.
	 */
	shtx = skb_tx(skb);
	if (unlikely(shtx->hardware)) {
		shtx->in_progress = 1;
		tx_flags |= IGB_TX_FLAGS_TSTAMP;
	}
3633 3634 3635 3636 3637 3638

	if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
		tx_flags |= IGB_TX_FLAGS_VLAN;
		tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
	}

3639 3640 3641
	if (skb->protocol == htons(ETH_P_IP))
		tx_flags |= IGB_TX_FLAGS_IPV4;

A
Alexander Duyck 已提交
3642
	first = tx_ring->next_to_use;
3643 3644 3645 3646 3647 3648
	if (skb_is_gso(skb)) {
		tso = igb_tso_adv(tx_ring, skb, tx_flags, &hdr_len);
		if (tso < 0) {
			dev_kfree_skb_any(skb);
			return NETDEV_TX_OK;
		}
3649 3650 3651 3652
	}

	if (tso)
		tx_flags |= IGB_TX_FLAGS_TSO;
3653
	else if (igb_tx_csum_adv(tx_ring, skb, tx_flags) &&
3654 3655
	         (skb->ip_summed == CHECKSUM_PARTIAL))
		tx_flags |= IGB_TX_FLAGS_CSUM;
3656

3657 3658 3659 3660
	/*
	 * count reflects descriptors mapped, if 0 then mapping error
	 * has occured and we need to rewind the descriptor queue
	 */
3661
	count = igb_tx_map_adv(tx_ring, skb, first);
3662

3663
	if (!count) {
3664 3665 3666
		dev_kfree_skb_any(skb);
		tx_ring->buffer_info[first].time_stamp = 0;
		tx_ring->next_to_use = first;
3667
		return NETDEV_TX_OK;
3668
	}
3669

3670 3671 3672
	igb_tx_queue_adv(tx_ring, tx_flags, count, skb->len, hdr_len);

	/* Make sure there is space in the ring for the next send. */
3673
	igb_maybe_stop_tx(tx_ring, MAX_SKB_FRAGS + 4);
3674

3675 3676 3677
	return NETDEV_TX_OK;
}

3678 3679
static netdev_tx_t igb_xmit_frame_adv(struct sk_buff *skb,
				      struct net_device *netdev)
3680 3681
{
	struct igb_adapter *adapter = netdev_priv(netdev);
3682 3683 3684
	struct igb_ring *tx_ring;

	int r_idx = 0;
3685
	r_idx = skb->queue_mapping & (IGB_ABS_MAX_TX_QUEUES - 1);
3686
	tx_ring = adapter->multi_tx_table[r_idx];
3687 3688 3689 3690 3691

	/* This goes back to the question of how to logically map a tx queue
	 * to a flow.  Right now, performance is impacted slightly negatively
	 * if using multiple tx queues.  If the stack breaks away from a
	 * single qdisc implementation, we can look at this again. */
3692
	return igb_xmit_frame_ring_adv(skb, tx_ring);
3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706
}

/**
 * igb_tx_timeout - Respond to a Tx Hang
 * @netdev: network interface device structure
 **/
static void igb_tx_timeout(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;

	/* Do the reset outside of interrupt context */
	adapter->tx_timeout_count++;
	schedule_work(&adapter->reset_task);
3707 3708
	wr32(E1000_EICS,
	     (adapter->eims_enable_mask & ~adapter->eims_other));
3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725
}

static void igb_reset_task(struct work_struct *work)
{
	struct igb_adapter *adapter;
	adapter = container_of(work, struct igb_adapter, reset_task);

	igb_reinit_locked(adapter);
}

/**
 * igb_get_stats - Get System Network Statistics
 * @netdev: network interface device structure
 *
 * Returns the address of the device statistics structure.
 * The statistics are actually updated from the timer callback.
 **/
3726
static struct net_device_stats *igb_get_stats(struct net_device *netdev)
3727 3728
{
	/* only return the current stats */
3729
	return &netdev->stats;
3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742
}

/**
 * igb_change_mtu - Change the Maximum Transfer Unit
 * @netdev: network interface device structure
 * @new_mtu: new value for maximum frame size
 *
 * Returns 0 on success, negative on failure
 **/
static int igb_change_mtu(struct net_device *netdev, int new_mtu)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3743
	u32 rx_buffer_len, i;
3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757

	if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) ||
	    (max_frame > MAX_JUMBO_FRAME_SIZE)) {
		dev_err(&adapter->pdev->dev, "Invalid MTU setting\n");
		return -EINVAL;
	}

	if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
		dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n");
		return -EINVAL;
	}

	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
		msleep(1);
3758

3759 3760 3761 3762 3763 3764 3765 3766
	/* igb_down has a dependency on max_frame_size */
	adapter->max_frame_size = max_frame;
	/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
	 * means we reserve 2 more, this pushes us to allocate from the next
	 * larger slab size.
	 * i.e. RXBUFFER_2048 --> size-4096 slab
	 */

3767
	if (max_frame <= IGB_RXBUFFER_1024)
3768
		rx_buffer_len = IGB_RXBUFFER_1024;
A
Alexander Duyck 已提交
3769
	else if (max_frame <= MAXIMUM_ETHERNET_VLAN_SIZE)
3770
		rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
A
Alexander Duyck 已提交
3771
	else
3772 3773 3774 3775
		rx_buffer_len = IGB_RXBUFFER_128;

	if (netif_running(netdev))
		igb_down(adapter);
3776 3777 3778 3779 3780

	dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
		 netdev->mtu, new_mtu);
	netdev->mtu = new_mtu;

3781 3782 3783
	for (i = 0; i < adapter->num_rx_queues; i++)
		adapter->rx_ring[i].rx_buffer_len = rx_buffer_len;

3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800
	if (netif_running(netdev))
		igb_up(adapter);
	else
		igb_reset(adapter);

	clear_bit(__IGB_RESETTING, &adapter->state);

	return 0;
}

/**
 * igb_update_stats - Update the board statistics counters
 * @adapter: board private structure
 **/

void igb_update_stats(struct igb_adapter *adapter)
{
3801
	struct net_device *netdev = adapter->netdev;
3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890
	struct e1000_hw *hw = &adapter->hw;
	struct pci_dev *pdev = adapter->pdev;
	u16 phy_tmp;

#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF

	/*
	 * Prevent stats update while adapter is being reset, or if the pci
	 * connection is down.
	 */
	if (adapter->link_speed == 0)
		return;
	if (pci_channel_offline(pdev))
		return;

	adapter->stats.crcerrs += rd32(E1000_CRCERRS);
	adapter->stats.gprc += rd32(E1000_GPRC);
	adapter->stats.gorc += rd32(E1000_GORCL);
	rd32(E1000_GORCH); /* clear GORCL */
	adapter->stats.bprc += rd32(E1000_BPRC);
	adapter->stats.mprc += rd32(E1000_MPRC);
	adapter->stats.roc += rd32(E1000_ROC);

	adapter->stats.prc64 += rd32(E1000_PRC64);
	adapter->stats.prc127 += rd32(E1000_PRC127);
	adapter->stats.prc255 += rd32(E1000_PRC255);
	adapter->stats.prc511 += rd32(E1000_PRC511);
	adapter->stats.prc1023 += rd32(E1000_PRC1023);
	adapter->stats.prc1522 += rd32(E1000_PRC1522);
	adapter->stats.symerrs += rd32(E1000_SYMERRS);
	adapter->stats.sec += rd32(E1000_SEC);

	adapter->stats.mpc += rd32(E1000_MPC);
	adapter->stats.scc += rd32(E1000_SCC);
	adapter->stats.ecol += rd32(E1000_ECOL);
	adapter->stats.mcc += rd32(E1000_MCC);
	adapter->stats.latecol += rd32(E1000_LATECOL);
	adapter->stats.dc += rd32(E1000_DC);
	adapter->stats.rlec += rd32(E1000_RLEC);
	adapter->stats.xonrxc += rd32(E1000_XONRXC);
	adapter->stats.xontxc += rd32(E1000_XONTXC);
	adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
	adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
	adapter->stats.fcruc += rd32(E1000_FCRUC);
	adapter->stats.gptc += rd32(E1000_GPTC);
	adapter->stats.gotc += rd32(E1000_GOTCL);
	rd32(E1000_GOTCH); /* clear GOTCL */
	adapter->stats.rnbc += rd32(E1000_RNBC);
	adapter->stats.ruc += rd32(E1000_RUC);
	adapter->stats.rfc += rd32(E1000_RFC);
	adapter->stats.rjc += rd32(E1000_RJC);
	adapter->stats.tor += rd32(E1000_TORH);
	adapter->stats.tot += rd32(E1000_TOTH);
	adapter->stats.tpr += rd32(E1000_TPR);

	adapter->stats.ptc64 += rd32(E1000_PTC64);
	adapter->stats.ptc127 += rd32(E1000_PTC127);
	adapter->stats.ptc255 += rd32(E1000_PTC255);
	adapter->stats.ptc511 += rd32(E1000_PTC511);
	adapter->stats.ptc1023 += rd32(E1000_PTC1023);
	adapter->stats.ptc1522 += rd32(E1000_PTC1522);

	adapter->stats.mptc += rd32(E1000_MPTC);
	adapter->stats.bptc += rd32(E1000_BPTC);

	/* used for adaptive IFS */

	hw->mac.tx_packet_delta = rd32(E1000_TPT);
	adapter->stats.tpt += hw->mac.tx_packet_delta;
	hw->mac.collision_delta = rd32(E1000_COLC);
	adapter->stats.colc += hw->mac.collision_delta;

	adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
	adapter->stats.rxerrc += rd32(E1000_RXERRC);
	adapter->stats.tncrs += rd32(E1000_TNCRS);
	adapter->stats.tsctc += rd32(E1000_TSCTC);
	adapter->stats.tsctfc += rd32(E1000_TSCTFC);

	adapter->stats.iac += rd32(E1000_IAC);
	adapter->stats.icrxoc += rd32(E1000_ICRXOC);
	adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
	adapter->stats.icrxatc += rd32(E1000_ICRXATC);
	adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
	adapter->stats.ictxatc += rd32(E1000_ICTXATC);
	adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
	adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
	adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);

	/* Fill out the OS statistics structure */
3891 3892
	netdev->stats.multicast = adapter->stats.mprc;
	netdev->stats.collisions = adapter->stats.colc;
3893 3894 3895

	/* Rx Errors */

3896 3897
	if (hw->mac.type != e1000_82575) {
		u32 rqdpc_tmp;
3898
		u64 rqdpc_total = 0;
3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910
		int i;
		/* Read out drops stats per RX queue.  Notice RQDPC (Receive
		 * Queue Drop Packet Count) stats only gets incremented, if
		 * the DROP_EN but it set (in the SRRCTL register for that
		 * queue).  If DROP_EN bit is NOT set, then the some what
		 * equivalent count is stored in RNBC (not per queue basis).
		 * Also note the drop count is due to lack of available
		 * descriptors.
		 */
		for (i = 0; i < adapter->num_rx_queues; i++) {
			rqdpc_tmp = rd32(E1000_RQDPC(i)) & 0xFFF;
			adapter->rx_ring[i].rx_stats.drops += rqdpc_tmp;
3911
			rqdpc_total += adapter->rx_ring[i].rx_stats.drops;
3912
		}
3913
		netdev->stats.rx_fifo_errors = rqdpc_total;
3914 3915
	}

3916 3917 3918 3919 3920
	/* Note RNBC (Receive No Buffers Count) is an not an exact
	 * drop count as the hardware FIFO might save the day.  Thats
	 * one of the reason for saving it in rx_fifo_errors, as its
	 * potentially not a true drop.
	 */
3921
	netdev->stats.rx_fifo_errors += adapter->stats.rnbc;
3922

3923
	/* RLEC on some newer hardware can be incorrect so build
3924
	 * our own version based on RUC and ROC */
3925
	netdev->stats.rx_errors = adapter->stats.rxerrc +
3926 3927 3928
		adapter->stats.crcerrs + adapter->stats.algnerrc +
		adapter->stats.ruc + adapter->stats.roc +
		adapter->stats.cexterr;
3929
	netdev->stats.rx_length_errors = adapter->stats.ruc +
3930
					      adapter->stats.roc;
3931 3932 3933
	netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
	netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
	netdev->stats.rx_missed_errors = adapter->stats.mpc;
3934 3935

	/* Tx Errors */
3936
	netdev->stats.tx_errors = adapter->stats.ecol +
3937
				       adapter->stats.latecol;
3938 3939 3940
	netdev->stats.tx_aborted_errors = adapter->stats.ecol;
	netdev->stats.tx_window_errors = adapter->stats.latecol;
	netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3941 3942 3943 3944 3945 3946

	/* Tx Dropped needs to be maintained elsewhere */

	/* Phy Stats */
	if (hw->phy.media_type == e1000_media_type_copper) {
		if ((adapter->link_speed == SPEED_1000) &&
3947
		   (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960
			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
			adapter->phy_stats.idle_errors += phy_tmp;
		}
	}

	/* Management Stats */
	adapter->stats.mgptc += rd32(E1000_MGTPTC);
	adapter->stats.mgprc += rd32(E1000_MGTPRC);
	adapter->stats.mgpdc += rd32(E1000_MGTPDC);
}

static irqreturn_t igb_msix_other(int irq, void *data)
{
3961
	struct igb_adapter *adapter = data;
3962
	struct e1000_hw *hw = &adapter->hw;
P
PJ Waskiewicz 已提交
3963 3964
	u32 icr = rd32(E1000_ICR);
	/* reading ICR causes bit 31 of EICR to be cleared */
3965

3966
	if (icr & E1000_ICR_DOUTSYNC) {
3967 3968 3969
		/* HW is reporting DMA is out of sync */
		adapter->stats.doosync++;
	}
3970

3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982
	/* Check for a mailbox event */
	if (icr & E1000_ICR_VMMB)
		igb_msg_task(adapter);

	if (icr & E1000_ICR_LSC) {
		hw->mac.get_link_status = 1;
		/* guard against interrupt when we're going down */
		if (!test_bit(__IGB_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

	wr32(E1000_IMS, E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_VMMB);
P
PJ Waskiewicz 已提交
3983
	wr32(E1000_EIMS, adapter->eims_other);
3984 3985 3986 3987

	return IRQ_HANDLED;
}

3988
static void igb_write_itr(struct igb_q_vector *q_vector)
3989
{
3990
	u32 itr_val = q_vector->itr_val & 0x7FFC;
3991

3992 3993
	if (!q_vector->set_itr)
		return;
3994

3995 3996
	if (!itr_val)
		itr_val = 0x4;
3997

3998 3999
	if (q_vector->itr_shift)
		itr_val |= itr_val << q_vector->itr_shift;
4000
	else
4001
		itr_val |= 0x8000000;
4002

4003 4004
	writel(itr_val, q_vector->itr_register);
	q_vector->set_itr = 0;
4005 4006
}

4007
static irqreturn_t igb_msix_ring(int irq, void *data)
4008
{
4009
	struct igb_q_vector *q_vector = data;
4010

4011 4012
	/* Write the ITR value calculated from the previous interrupt. */
	igb_write_itr(q_vector);
4013

4014
	napi_schedule(&q_vector->napi);
P
PJ Waskiewicz 已提交
4015

4016
	return IRQ_HANDLED;
J
Jeb Cramer 已提交
4017 4018
}

4019
#ifdef CONFIG_IGB_DCA
4020
static void igb_update_dca(struct igb_q_vector *q_vector)
J
Jeb Cramer 已提交
4021
{
4022
	struct igb_adapter *adapter = q_vector->adapter;
J
Jeb Cramer 已提交
4023 4024 4025
	struct e1000_hw *hw = &adapter->hw;
	int cpu = get_cpu();

4026 4027 4028 4029 4030 4031 4032 4033 4034
	if (q_vector->cpu == cpu)
		goto out_no_update;

	if (q_vector->tx_ring) {
		int q = q_vector->tx_ring->reg_idx;
		u32 dca_txctrl = rd32(E1000_DCA_TXCTRL(q));
		if (hw->mac.type == e1000_82575) {
			dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK;
			dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
A
Alexander Duyck 已提交
4035
		} else {
4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046
			dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576;
			dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
			              E1000_DCA_TXCTRL_CPUID_SHIFT;
		}
		dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN;
		wr32(E1000_DCA_TXCTRL(q), dca_txctrl);
	}
	if (q_vector->rx_ring) {
		int q = q_vector->rx_ring->reg_idx;
		u32 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q));
		if (hw->mac.type == e1000_82575) {
A
Alexander Duyck 已提交
4047
			dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK;
M
Maciej Sosnowski 已提交
4048
			dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
4049 4050 4051 4052
		} else {
			dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576;
			dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
			              E1000_DCA_RXCTRL_CPUID_SHIFT;
A
Alexander Duyck 已提交
4053
		}
J
Jeb Cramer 已提交
4054 4055 4056 4057 4058
		dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN;
		dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN;
		dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN;
		wr32(E1000_DCA_RXCTRL(q), dca_rxctrl);
	}
4059 4060
	q_vector->cpu = cpu;
out_no_update:
J
Jeb Cramer 已提交
4061 4062 4063 4064 4065
	put_cpu();
}

static void igb_setup_dca(struct igb_adapter *adapter)
{
4066
	struct e1000_hw *hw = &adapter->hw;
J
Jeb Cramer 已提交
4067 4068
	int i;

4069
	if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
J
Jeb Cramer 已提交
4070 4071
		return;

4072 4073 4074
	/* Always use CB2 mode, difference is masked in the CB driver. */
	wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);

4075 4076 4077 4078
	for (i = 0; i < adapter->num_q_vectors; i++) {
		struct igb_q_vector *q_vector = adapter->q_vector[i];
		q_vector->cpu = -1;
		igb_update_dca(q_vector);
J
Jeb Cramer 已提交
4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091
	}
}

static int __igb_notify_dca(struct device *dev, void *data)
{
	struct net_device *netdev = dev_get_drvdata(dev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	unsigned long event = *(unsigned long *)data;

	switch (event) {
	case DCA_PROVIDER_ADD:
		/* if already enabled, don't do it again */
4092
		if (adapter->flags & IGB_FLAG_DCA_ENABLED)
J
Jeb Cramer 已提交
4093 4094 4095
			break;
		/* Always use CB2 mode, difference is masked
		 * in the CB driver. */
A
Alexander Duyck 已提交
4096
		wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
J
Jeb Cramer 已提交
4097
		if (dca_add_requester(dev) == 0) {
4098
			adapter->flags |= IGB_FLAG_DCA_ENABLED;
J
Jeb Cramer 已提交
4099 4100 4101 4102 4103 4104
			dev_info(&adapter->pdev->dev, "DCA enabled\n");
			igb_setup_dca(adapter);
			break;
		}
		/* Fall Through since DCA is disabled. */
	case DCA_PROVIDER_REMOVE:
4105
		if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
J
Jeb Cramer 已提交
4106
			/* without this a class_device is left
4107
			 * hanging around in the sysfs model */
J
Jeb Cramer 已提交
4108 4109
			dca_remove_requester(dev);
			dev_info(&adapter->pdev->dev, "DCA disabled\n");
4110
			adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
A
Alexander Duyck 已提交
4111
			wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
J
Jeb Cramer 已提交
4112 4113 4114
		}
		break;
	}
4115

J
Jeb Cramer 已提交
4116
	return 0;
4117 4118
}

J
Jeb Cramer 已提交
4119 4120 4121 4122 4123 4124 4125 4126 4127 4128
static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
                          void *p)
{
	int ret_val;

	ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
	                                 __igb_notify_dca);

	return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
}
4129
#endif /* CONFIG_IGB_DCA */
4130

4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165
static void igb_ping_all_vfs(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ping;
	int i;

	for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
		ping = E1000_PF_CONTROL_MSG;
		if (adapter->vf_data[i].clear_to_send)
			ping |= E1000_VT_MSGTYPE_CTS;
		igb_write_mbx(hw, &ping, 1, i);
	}
}

static int igb_set_vf_multicasts(struct igb_adapter *adapter,
				  u32 *msgbuf, u32 vf)
{
	int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
	u16 *hash_list = (u16 *)&msgbuf[1];
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
	int i;

	/* only up to 30 hash values supported */
	if (n > 30)
		n = 30;

	/* salt away the number of multi cast addresses assigned
	 * to this VF for later use to restore when the PF multi cast
	 * list changes
	 */
	vf_data->num_vf_mc_hashes = n;

	/* VFs are limited to using the MTA hash table for their multicast
	 * addresses */
	for (i = 0; i < n; i++)
4166
		vf_data->vf_mc_hashes[i] = hash_list[i];
4167 4168

	/* Flush and reset the mta with the new values */
4169
	igb_set_rx_mode(adapter->netdev);
4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181

	return 0;
}

static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct vf_data_storage *vf_data;
	int i, j;

	for (i = 0; i < adapter->vfs_allocated_count; i++) {
		vf_data = &adapter->vf_data[i];
4182
		for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211
			igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
	}
}

static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 pool_mask, reg, vid;
	int i;

	pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);

	/* Find the vlan filter for this id */
	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
		reg = rd32(E1000_VLVF(i));

		/* remove the vf from the pool */
		reg &= ~pool_mask;

		/* if pool is empty then remove entry from vfta */
		if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
		    (reg & E1000_VLVF_VLANID_ENABLE)) {
			reg = 0;
			vid = reg & E1000_VLVF_VLANID_MASK;
			igb_vfta_set(hw, vid, false);
		}

		wr32(E1000_VLVF(i), reg);
	}
4212 4213

	adapter->vf_data[vf].vlans_enabled = 0;
4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250
}

static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 reg, i;

	/* It is an error to call this function when VFs are not enabled */
	if (!adapter->vfs_allocated_count)
		return -1;

	/* Find the vlan filter for this id */
	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
		reg = rd32(E1000_VLVF(i));
		if ((reg & E1000_VLVF_VLANID_ENABLE) &&
		    vid == (reg & E1000_VLVF_VLANID_MASK))
			break;
	}

	if (add) {
		if (i == E1000_VLVF_ARRAY_SIZE) {
			/* Did not find a matching VLAN ID entry that was
			 * enabled.  Search for a free filter entry, i.e.
			 * one without the enable bit set
			 */
			for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
				reg = rd32(E1000_VLVF(i));
				if (!(reg & E1000_VLVF_VLANID_ENABLE))
					break;
			}
		}
		if (i < E1000_VLVF_ARRAY_SIZE) {
			/* Found an enabled/available entry */
			reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);

			/* if !enabled we need to set this up in vfta */
			if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
A
Alexander Duyck 已提交
4251 4252 4253 4254 4255
				/* add VID to filter table, if bit already set
				 * PF must have added it outside of table */
				if (igb_vfta_set(hw, vid, true))
					reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT +
						adapter->vfs_allocated_count);
4256 4257
				reg |= E1000_VLVF_VLANID_ENABLE;
			}
A
Alexander Duyck 已提交
4258 4259
			reg &= ~E1000_VLVF_VLANID_MASK;
			reg |= vid;
4260 4261

			wr32(E1000_VLVF(i), reg);
4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277

			/* do not modify RLPML for PF devices */
			if (vf >= adapter->vfs_allocated_count)
				return 0;

			if (!adapter->vf_data[vf].vlans_enabled) {
				u32 size;
				reg = rd32(E1000_VMOLR(vf));
				size = reg & E1000_VMOLR_RLPML_MASK;
				size += 4;
				reg &= ~E1000_VMOLR_RLPML_MASK;
				reg |= size;
				wr32(E1000_VMOLR(vf), reg);
			}
			adapter->vf_data[vf].vlans_enabled++;

4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289
			return 0;
		}
	} else {
		if (i < E1000_VLVF_ARRAY_SIZE) {
			/* remove vf from the pool */
			reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
			/* if pool is empty then remove entry from vfta */
			if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
				reg = 0;
				igb_vfta_set(hw, vid, false);
			}
			wr32(E1000_VLVF(i), reg);
4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304

			/* do not modify RLPML for PF devices */
			if (vf >= adapter->vfs_allocated_count)
				return 0;

			adapter->vf_data[vf].vlans_enabled--;
			if (!adapter->vf_data[vf].vlans_enabled) {
				u32 size;
				reg = rd32(E1000_VMOLR(vf));
				size = reg & E1000_VMOLR_RLPML_MASK;
				size -= 4;
				reg &= ~E1000_VMOLR_RLPML_MASK;
				reg |= size;
				wr32(E1000_VMOLR(vf), reg);
			}
4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335
			return 0;
		}
	}
	return -1;
}

static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
{
	int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
	int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);

	return igb_vlvf_set(adapter, vid, add, vf);
}

static inline void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;

	/* disable mailbox functionality for vf */
	adapter->vf_data[vf].clear_to_send = false;

	/* reset offloads to defaults */
	igb_set_vmolr(hw, vf);

	/* reset vlans for device */
	igb_clear_vf_vfta(adapter, vf);

	/* reset multicast table array for vf */
	adapter->vf_data[vf].num_vf_mc_hashes = 0;

	/* Flush and reset the mta with the new values */
4336
	igb_set_rx_mode(adapter->netdev);
4337 4338 4339 4340 4341 4342
}

static inline void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
4343
	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
4344 4345 4346 4347 4348 4349 4350
	u32 reg, msgbuf[3];
	u8 *addr = (u8 *)(&msgbuf[1]);

	/* process all the same items cleared in a function level reset */
	igb_vf_reset_event(adapter, vf);

	/* set vf mac address */
4351
	igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479

	/* enable transmit and receive for vf */
	reg = rd32(E1000_VFTE);
	wr32(E1000_VFTE, reg | (1 << vf));
	reg = rd32(E1000_VFRE);
	wr32(E1000_VFRE, reg | (1 << vf));

	/* enable mailbox functionality for vf */
	adapter->vf_data[vf].clear_to_send = true;

	/* reply to reset with ack and vf mac address */
	msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
	memcpy(addr, vf_mac, 6);
	igb_write_mbx(hw, msgbuf, 3, vf);
}

static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
{
		unsigned char *addr = (char *)&msg[1];
		int err = -1;

		if (is_valid_ether_addr(addr))
			err = igb_set_vf_mac(adapter, vf, addr);

		return err;

}

static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 msg = E1000_VT_MSGTYPE_NACK;

	/* if device isn't clear to send it shouldn't be reading either */
	if (!adapter->vf_data[vf].clear_to_send)
		igb_write_mbx(hw, &msg, 1, vf);
}


static void igb_msg_task(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vf;

	for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
		/* process any reset requests */
		if (!igb_check_for_rst(hw, vf)) {
			adapter->vf_data[vf].clear_to_send = false;
			igb_vf_reset_event(adapter, vf);
		}

		/* process any messages pending */
		if (!igb_check_for_msg(hw, vf))
			igb_rcv_msg_from_vf(adapter, vf);

		/* process any acks */
		if (!igb_check_for_ack(hw, vf))
			igb_rcv_ack_from_vf(adapter, vf);

	}
}

static int igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
{
	u32 mbx_size = E1000_VFMAILBOX_SIZE;
	u32 msgbuf[mbx_size];
	struct e1000_hw *hw = &adapter->hw;
	s32 retval;

	retval = igb_read_mbx(hw, msgbuf, mbx_size, vf);

	if (retval)
		dev_err(&adapter->pdev->dev,
		        "Error receiving message from VF\n");

	/* this is a message we already processed, do nothing */
	if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
		return retval;

	/*
	 * until the vf completes a reset it should not be
	 * allowed to start any configuration.
	 */

	if (msgbuf[0] == E1000_VF_RESET) {
		igb_vf_reset_msg(adapter, vf);

		return retval;
	}

	if (!adapter->vf_data[vf].clear_to_send) {
		msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
		igb_write_mbx(hw, msgbuf, 1, vf);
		return retval;
	}

	switch ((msgbuf[0] & 0xFFFF)) {
	case E1000_VF_SET_MAC_ADDR:
		retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
		break;
	case E1000_VF_SET_MULTICAST:
		retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
		break;
	case E1000_VF_SET_LPE:
		retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
		break;
	case E1000_VF_SET_VLAN:
		retval = igb_set_vf_vlan(adapter, msgbuf, vf);
		break;
	default:
		dev_err(&adapter->pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
		retval = -1;
		break;
	}

	/* notify the VF of the results of what it sent us */
	if (retval)
		msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
	else
		msgbuf[0] |= E1000_VT_MSGTYPE_ACK;

	msgbuf[0] |= E1000_VT_MSGTYPE_CTS;

	igb_write_mbx(hw, msgbuf, 1, vf);

	return retval;
}

4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506
/**
 *  igb_set_uta - Set unicast filter table address
 *  @adapter: board private structure
 *
 *  The unicast table address is a register array of 32-bit registers.
 *  The table is meant to be used in a way similar to how the MTA is used
 *  however due to certain limitations in the hardware it is necessary to
 *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscous
 *  enable bit to allow vlan tag stripping when promiscous mode is enabled
 **/
static void igb_set_uta(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	int i;

	/* The UTA table only exists on 82576 hardware and newer */
	if (hw->mac.type < e1000_82576)
		return;

	/* we only need to do this if VMDq is enabled */
	if (!adapter->vfs_allocated_count)
		return;

	for (i = 0; i < hw->mac.uta_reg_count; i++)
		array_wr32(E1000_UTA, i, ~0);
}

4507 4508 4509 4510 4511 4512 4513
/**
 * igb_intr_msi - Interrupt Handler
 * @irq: interrupt number
 * @data: pointer to a network interface device structure
 **/
static irqreturn_t igb_intr_msi(int irq, void *data)
{
4514 4515
	struct igb_adapter *adapter = data;
	struct igb_q_vector *q_vector = adapter->q_vector[0];
4516 4517 4518 4519
	struct e1000_hw *hw = &adapter->hw;
	/* read ICR disables interrupts using IAM */
	u32 icr = rd32(E1000_ICR);

4520
	igb_write_itr(q_vector);
4521

4522
	if (icr & E1000_ICR_DOUTSYNC) {
4523 4524 4525 4526
		/* HW is reporting DMA is out of sync */
		adapter->stats.doosync++;
	}

4527 4528 4529 4530 4531 4532
	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
		hw->mac.get_link_status = 1;
		if (!test_bit(__IGB_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

4533
	napi_schedule(&q_vector->napi);
4534 4535 4536 4537 4538

	return IRQ_HANDLED;
}

/**
4539
 * igb_intr - Legacy Interrupt Handler
4540 4541 4542 4543 4544
 * @irq: interrupt number
 * @data: pointer to a network interface device structure
 **/
static irqreturn_t igb_intr(int irq, void *data)
{
4545 4546
	struct igb_adapter *adapter = data;
	struct igb_q_vector *q_vector = adapter->q_vector[0];
4547 4548 4549 4550 4551 4552 4553
	struct e1000_hw *hw = &adapter->hw;
	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
	 * need for the IMC write */
	u32 icr = rd32(E1000_ICR);
	if (!icr)
		return IRQ_NONE;  /* Not our interrupt */

4554
	igb_write_itr(q_vector);
4555 4556 4557 4558 4559 4560

	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
	 * not set, then the adapter didn't send an interrupt */
	if (!(icr & E1000_ICR_INT_ASSERTED))
		return IRQ_NONE;

4561
	if (icr & E1000_ICR_DOUTSYNC) {
4562 4563 4564 4565
		/* HW is reporting DMA is out of sync */
		adapter->stats.doosync++;
	}

4566 4567 4568 4569 4570 4571 4572
	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
		hw->mac.get_link_status = 1;
		/* guard against interrupt when we're going down */
		if (!test_bit(__IGB_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

4573
	napi_schedule(&q_vector->napi);
4574 4575 4576 4577

	return IRQ_HANDLED;
}

4578
static inline void igb_ring_irq_enable(struct igb_q_vector *q_vector)
4579
{
4580
	struct igb_adapter *adapter = q_vector->adapter;
4581
	struct e1000_hw *hw = &adapter->hw;
4582

4583
	if (adapter->itr_setting & 3) {
4584
		if (!adapter->msix_entries)
4585
			igb_set_itr(adapter);
4586
		else
4587
			igb_update_ring_itr(q_vector);
4588 4589
	}

4590 4591
	if (!test_bit(__IGB_DOWN, &adapter->state)) {
		if (adapter->msix_entries)
4592
			wr32(E1000_EIMS, q_vector->eims_value);
4593 4594 4595
		else
			igb_irq_enable(adapter);
	}
4596 4597
}

4598 4599 4600 4601 4602 4603
/**
 * igb_poll - NAPI Rx polling callback
 * @napi: napi polling structure
 * @budget: count of how many packets we should handle
 **/
static int igb_poll(struct napi_struct *napi, int budget)
4604
{
4605 4606 4607 4608
	struct igb_q_vector *q_vector = container_of(napi,
	                                             struct igb_q_vector,
	                                             napi);
	int tx_clean_complete = 1, work_done = 0;
4609

4610
#ifdef CONFIG_IGB_DCA
4611 4612
	if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
		igb_update_dca(q_vector);
J
Jeb Cramer 已提交
4613
#endif
4614 4615
	if (q_vector->tx_ring)
		tx_clean_complete = igb_clean_tx_irq(q_vector);
4616

4617 4618 4619 4620 4621
	if (q_vector->rx_ring)
		igb_clean_rx_irq_adv(q_vector, &work_done, budget);

	if (!tx_clean_complete)
		work_done = budget;
4622

4623
	/* If not enough Rx work done, exit the polling mode */
4624
	if (work_done < budget) {
4625
		napi_complete(napi);
4626
		igb_ring_irq_enable(q_vector);
4627 4628
	}

4629
	return work_done;
4630
}
A
Al Viro 已提交
4631

4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665
/**
 * igb_hwtstamp - utility function which checks for TX time stamp
 * @adapter: board private structure
 * @skb: packet that was just sent
 *
 * If we were asked to do hardware stamping and such a time stamp is
 * available, then it must have been for this skb here because we only
 * allow only one such packet into the queue.
 */
static void igb_tx_hwtstamp(struct igb_adapter *adapter, struct sk_buff *skb)
{
	union skb_shared_tx *shtx = skb_tx(skb);
	struct e1000_hw *hw = &adapter->hw;

	if (unlikely(shtx->hardware)) {
		u32 valid = rd32(E1000_TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID;
		if (valid) {
			u64 regval = rd32(E1000_TXSTMPL);
			u64 ns;
			struct skb_shared_hwtstamps shhwtstamps;

			memset(&shhwtstamps, 0, sizeof(shhwtstamps));
			regval |= (u64)rd32(E1000_TXSTMPH) << 32;
			ns = timecounter_cyc2time(&adapter->clock,
						  regval);
			timecompare_update(&adapter->compare, ns);
			shhwtstamps.hwtstamp = ns_to_ktime(ns);
			shhwtstamps.syststamp =
				timecompare_transform(&adapter->compare, ns);
			skb_tstamp_tx(skb, &shhwtstamps);
		}
	}
}

4666 4667
/**
 * igb_clean_tx_irq - Reclaim resources after transmit completes
4668
 * @q_vector: pointer to q_vector containing needed info
4669 4670
 * returns true if ring is completely cleaned
 **/
4671
static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
4672
{
4673 4674
	struct igb_adapter *adapter = q_vector->adapter;
	struct igb_ring *tx_ring = q_vector->tx_ring;
4675
	struct net_device *netdev = tx_ring->netdev;
A
Alexander Duyck 已提交
4676
	struct e1000_hw *hw = &adapter->hw;
4677 4678
	struct igb_buffer *buffer_info;
	struct sk_buff *skb;
A
Alexander Duyck 已提交
4679
	union e1000_adv_tx_desc *tx_desc, *eop_desc;
4680
	unsigned int total_bytes = 0, total_packets = 0;
A
Alexander Duyck 已提交
4681 4682
	unsigned int i, eop, count = 0;
	bool cleaned = false;
4683 4684

	i = tx_ring->next_to_clean;
A
Alexander Duyck 已提交
4685 4686 4687 4688 4689 4690 4691
	eop = tx_ring->buffer_info[i].next_to_watch;
	eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);

	while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) &&
	       (count < tx_ring->count)) {
		for (cleaned = false; !cleaned; count++) {
			tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
4692
			buffer_info = &tx_ring->buffer_info[i];
A
Alexander Duyck 已提交
4693
			cleaned = (i == eop);
4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704
			skb = buffer_info->skb;

			if (skb) {
				unsigned int segs, bytecount;
				/* gso_segs is currently only valid for tcp */
				segs = skb_shinfo(skb)->gso_segs ?: 1;
				/* multiply data chunks by size of headers */
				bytecount = ((segs - 1) * skb_headlen(skb)) +
					    skb->len;
				total_packets += segs;
				total_bytes += bytecount;
4705 4706

				igb_tx_hwtstamp(adapter, skb);
4707 4708
			}

4709
			igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
A
Alexander Duyck 已提交
4710
			tx_desc->wb.status = 0;
4711 4712 4713 4714 4715

			i++;
			if (i == tx_ring->count)
				i = 0;
		}
A
Alexander Duyck 已提交
4716 4717 4718 4719
		eop = tx_ring->buffer_info[i].next_to_watch;
		eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
	}

4720 4721
	tx_ring->next_to_clean = i;

4722
	if (unlikely(count &&
4723
		     netif_carrier_ok(netdev) &&
4724
		     igb_desc_unused(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
4725 4726 4727 4728
		/* Make sure that anybody stopping the queue after this
		 * sees the new next_to_clean.
		 */
		smp_mb();
4729 4730 4731
		if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) &&
		    !(test_bit(__IGB_DOWN, &adapter->state))) {
			netif_wake_subqueue(netdev, tx_ring->queue_index);
4732
			tx_ring->tx_stats.restart_queue++;
4733
		}
4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746
	}

	if (tx_ring->detect_tx_hung) {
		/* Detect a transmit hang in hardware, this serializes the
		 * check with the clearing of time_stamp and movement of i */
		tx_ring->detect_tx_hung = false;
		if (tx_ring->buffer_info[i].time_stamp &&
		    time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
			       (adapter->tx_timeout_factor * HZ))
		    && !(rd32(E1000_STATUS) &
			 E1000_STATUS_TXOFF)) {

			/* detected Tx unit hang */
4747
			dev_err(&tx_ring->pdev->dev,
4748
				"Detected Tx Unit Hang\n"
A
Alexander Duyck 已提交
4749
				"  Tx Queue             <%d>\n"
4750 4751 4752 4753 4754 4755
				"  TDH                  <%x>\n"
				"  TDT                  <%x>\n"
				"  next_to_use          <%x>\n"
				"  next_to_clean        <%x>\n"
				"buffer_info[next_to_clean]\n"
				"  time_stamp           <%lx>\n"
A
Alexander Duyck 已提交
4756
				"  next_to_watch        <%x>\n"
4757 4758
				"  jiffies              <%lx>\n"
				"  desc.status          <%x>\n",
A
Alexander Duyck 已提交
4759
				tx_ring->queue_index,
4760 4761
				readl(tx_ring->head),
				readl(tx_ring->tail),
4762 4763 4764
				tx_ring->next_to_use,
				tx_ring->next_to_clean,
				tx_ring->buffer_info[i].time_stamp,
A
Alexander Duyck 已提交
4765
				eop,
4766
				jiffies,
A
Alexander Duyck 已提交
4767
				eop_desc->wb.status);
4768
			netif_stop_subqueue(netdev, tx_ring->queue_index);
4769 4770 4771 4772
		}
	}
	tx_ring->total_bytes += total_bytes;
	tx_ring->total_packets += total_packets;
4773 4774
	tx_ring->tx_stats.bytes += total_bytes;
	tx_ring->tx_stats.packets += total_packets;
4775 4776
	netdev->stats.tx_bytes += total_bytes;
	netdev->stats.tx_packets += total_packets;
A
Alexander Duyck 已提交
4777
	return (count < tx_ring->count);
4778 4779 4780 4781
}

/**
 * igb_receive_skb - helper function to handle rx indications
4782 4783 4784
 * @q_vector: structure containing interrupt and ring information
 * @skb: packet to send up
 * @vlan_tag: vlan tag for packet
4785
 **/
4786 4787 4788 4789 4790 4791 4792 4793 4794
static void igb_receive_skb(struct igb_q_vector *q_vector,
                            struct sk_buff *skb,
                            u16 vlan_tag)
{
	struct igb_adapter *adapter = q_vector->adapter;

	if (vlan_tag)
		vlan_gro_receive(&q_vector->napi, adapter->vlgrp,
		                 vlan_tag, skb);
4795
	else
4796
		napi_gro_receive(&q_vector->napi, skb);
4797 4798
}

4799
static inline void igb_rx_checksum_adv(struct igb_ring *ring,
4800 4801 4802 4803 4804
				       u32 status_err, struct sk_buff *skb)
{
	skb->ip_summed = CHECKSUM_NONE;

	/* Ignore Checksum bit is set or checksum is disabled through ethtool */
4805 4806
	if (!(ring->flags & IGB_RING_FLAG_RX_CSUM) ||
	     (status_err & E1000_RXD_STAT_IXSM))
4807
		return;
4808

4809 4810 4811
	/* TCP/UDP checksum error bit is set */
	if (status_err &
	    (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
4812 4813 4814 4815 4816
		/*
		 * work around errata with sctp packets where the TCPE aka
		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
		 * packets, (aka let the stack check the crc32c)
		 */
4817 4818
		if ((skb->len == 60) &&
		    (ring->flags & IGB_RING_FLAG_RX_SCTP_CSUM))
4819
			ring->rx_stats.csum_err++;
4820

4821 4822 4823 4824 4825 4826 4827
		/* let the stack verify checksum errors */
		return;
	}
	/* It must be a TCP or UDP packet with a valid checksum */
	if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
		skb->ip_summed = CHECKSUM_UNNECESSARY;

4828
	dev_dbg(&ring->pdev->dev, "cksum success: bits %08X\n", status_err);
4829 4830
}

4831
static inline u16 igb_get_hlen(struct igb_ring *rx_ring,
4832 4833 4834 4835 4836 4837 4838 4839
                               union e1000_adv_rx_desc *rx_desc)
{
	/* HW will not DMA in data larger than the given buffer, even if it
	 * parses the (NFS, of course) header to be larger.  In that case, it
	 * fills the header buffer and spills the rest into the page.
	 */
	u16 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
	           E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
4840 4841
	if (hlen > rx_ring->rx_buffer_len)
		hlen = rx_ring->rx_buffer_len;
4842 4843 4844
	return hlen;
}

4845 4846
static bool igb_clean_rx_irq_adv(struct igb_q_vector *q_vector,
                                 int *work_done, int budget)
4847
{
4848 4849
	struct igb_adapter *adapter = q_vector->adapter;
	struct igb_ring *rx_ring = q_vector->rx_ring;
4850
	struct net_device *netdev = rx_ring->netdev;
4851
	struct e1000_hw *hw = &adapter->hw;
4852
	struct pci_dev *pdev = rx_ring->pdev;
4853 4854 4855 4856 4857 4858
	union e1000_adv_rx_desc *rx_desc , *next_rxd;
	struct igb_buffer *buffer_info , *next_buffer;
	struct sk_buff *skb;
	bool cleaned = false;
	int cleaned_count = 0;
	unsigned int total_bytes = 0, total_packets = 0;
4859
	unsigned int i;
4860 4861
	u32 staterr;
	u16 length;
4862
	u16 vlan_tag;
4863 4864

	i = rx_ring->next_to_clean;
4865
	buffer_info = &rx_ring->buffer_info[i];
4866 4867 4868 4869 4870 4871 4872 4873
	rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);

	while (staterr & E1000_RXD_STAT_DD) {
		if (*work_done >= budget)
			break;
		(*work_done)++;

4874 4875 4876 4877 4878 4879 4880 4881 4882 4883
		skb = buffer_info->skb;
		prefetch(skb->data - NET_IP_ALIGN);
		buffer_info->skb = NULL;

		i++;
		if (i == rx_ring->count)
			i = 0;
		next_rxd = E1000_RX_DESC_ADV(*rx_ring, i);
		prefetch(next_rxd);
		next_buffer = &rx_ring->buffer_info[i];
4884 4885 4886 4887 4888

		length = le16_to_cpu(rx_desc->wb.upper.length);
		cleaned = true;
		cleaned_count++;

4889
		if (buffer_info->dma) {
4890
			pci_unmap_single(pdev, buffer_info->dma,
4891
					 rx_ring->rx_buffer_len,
4892
					 PCI_DMA_FROMDEVICE);
J
Jesse Brandeburg 已提交
4893
			buffer_info->dma = 0;
4894
			if (rx_ring->rx_buffer_len >= IGB_RXBUFFER_1024) {
A
Alexander Duyck 已提交
4895 4896 4897
				skb_put(skb, length);
				goto send_up;
			}
4898
			skb_put(skb, igb_get_hlen(rx_ring, rx_desc));
4899 4900 4901
		}

		if (length) {
4902
			pci_unmap_page(pdev, buffer_info->page_dma,
4903
				       PAGE_SIZE / 2, PCI_DMA_FROMDEVICE);
4904
			buffer_info->page_dma = 0;
4905 4906 4907 4908 4909 4910

			skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags++,
						buffer_info->page,
						buffer_info->page_offset,
						length);

A
Alexander Duyck 已提交
4911
			if (page_count(buffer_info->page) != 1)
4912 4913 4914
				buffer_info->page = NULL;
			else
				get_page(buffer_info->page);
4915 4916 4917 4918

			skb->len += length;
			skb->data_len += length;

4919
			skb->truesize += length;
4920 4921
		}

4922
		if (!(staterr & E1000_RXD_STAT_EOP)) {
4923 4924 4925 4926
			buffer_info->skb = next_buffer->skb;
			buffer_info->dma = next_buffer->dma;
			next_buffer->skb = skb;
			next_buffer->dma = 0;
4927 4928
			goto next_desc;
		}
4929
send_up:
4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970
		/*
		 * If this bit is set, then the RX registers contain
		 * the time stamp. No other packet will be time
		 * stamped until we read these registers, so read the
		 * registers to make them available again. Because
		 * only one packet can be time stamped at a time, we
		 * know that the register values must belong to this
		 * one here and therefore we don't need to compare
		 * any of the additional attributes stored for it.
		 *
		 * If nothing went wrong, then it should have a
		 * skb_shared_tx that we can turn into a
		 * skb_shared_hwtstamps.
		 *
		 * TODO: can time stamping be triggered (thus locking
		 * the registers) without the packet reaching this point
		 * here? In that case RX time stamping would get stuck.
		 *
		 * TODO: in "time stamp all packets" mode this bit is
		 * not set. Need a global flag for this mode and then
		 * always read the registers. Cannot be done without
		 * a race condition.
		 */
		if (unlikely(staterr & E1000_RXD_STAT_TS)) {
			u64 regval;
			u64 ns;
			struct skb_shared_hwtstamps *shhwtstamps =
				skb_hwtstamps(skb);

			WARN(!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID),
			     "igb: no RX time stamp available for time stamped packet");
			regval = rd32(E1000_RXSTMPL);
			regval |= (u64)rd32(E1000_RXSTMPH) << 32;
			ns = timecounter_cyc2time(&adapter->clock, regval);
			timecompare_update(&adapter->compare, ns);
			memset(shhwtstamps, 0, sizeof(*shhwtstamps));
			shhwtstamps->hwtstamp = ns_to_ktime(ns);
			shhwtstamps->syststamp =
				timecompare_transform(&adapter->compare, ns);
		}

4971 4972 4973 4974 4975 4976 4977 4978
		if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
			dev_kfree_skb_irq(skb);
			goto next_desc;
		}

		total_bytes += skb->len;
		total_packets++;

4979
		igb_rx_checksum_adv(rx_ring, staterr, skb);
4980 4981

		skb->protocol = eth_type_trans(skb, netdev);
4982 4983 4984 4985
		skb_record_rx_queue(skb, rx_ring->queue_index);

		vlan_tag = ((staterr & E1000_RXD_STAT_VP) ?
		            le16_to_cpu(rx_desc->wb.upper.vlan) : 0);
4986

4987
		igb_receive_skb(q_vector, skb, vlan_tag);
4988 4989 4990 4991 4992 4993

next_desc:
		rx_desc->wb.upper.status_error = 0;

		/* return some buffers to hardware, one at a time is too slow */
		if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
4994
			igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
4995 4996 4997 4998 4999 5000 5001 5002
			cleaned_count = 0;
		}

		/* use prefetched values */
		rx_desc = next_rxd;
		buffer_info = next_buffer;
		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
	}
5003

5004
	rx_ring->next_to_clean = i;
5005
	cleaned_count = igb_desc_unused(rx_ring);
5006 5007

	if (cleaned_count)
5008
		igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
5009 5010 5011 5012 5013

	rx_ring->total_packets += total_packets;
	rx_ring->total_bytes += total_bytes;
	rx_ring->rx_stats.packets += total_packets;
	rx_ring->rx_stats.bytes += total_bytes;
5014 5015
	netdev->stats.rx_bytes += total_bytes;
	netdev->stats.rx_packets += total_packets;
5016 5017 5018 5019 5020 5021 5022
	return cleaned;
}

/**
 * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split
 * @adapter: address of board private structure
 **/
5023
void igb_alloc_rx_buffers_adv(struct igb_ring *rx_ring, int cleaned_count)
5024
{
5025
	struct net_device *netdev = rx_ring->netdev;
5026 5027 5028 5029
	union e1000_adv_rx_desc *rx_desc;
	struct igb_buffer *buffer_info;
	struct sk_buff *skb;
	unsigned int i;
5030
	int bufsz;
5031 5032 5033 5034

	i = rx_ring->next_to_use;
	buffer_info = &rx_ring->buffer_info[i];

5035
	bufsz = rx_ring->rx_buffer_len;
5036

5037 5038 5039
	while (cleaned_count--) {
		rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);

A
Alexander Duyck 已提交
5040
		if ((bufsz < IGB_RXBUFFER_1024) && !buffer_info->page_dma) {
5041
			if (!buffer_info->page) {
5042 5043
				buffer_info->page = alloc_page(GFP_ATOMIC);
				if (!buffer_info->page) {
5044
					rx_ring->rx_stats.alloc_failed++;
5045 5046 5047 5048 5049
					goto no_buffers;
				}
				buffer_info->page_offset = 0;
			} else {
				buffer_info->page_offset ^= PAGE_SIZE / 2;
5050 5051
			}
			buffer_info->page_dma =
5052
				pci_map_page(rx_ring->pdev, buffer_info->page,
5053 5054
					     buffer_info->page_offset,
					     PAGE_SIZE / 2,
5055 5056 5057 5058
					     PCI_DMA_FROMDEVICE);
		}

		if (!buffer_info->skb) {
5059
			skb = netdev_alloc_skb_ip_align(netdev, bufsz);
5060
			if (!skb) {
5061
				rx_ring->rx_stats.alloc_failed++;
5062 5063 5064 5065
				goto no_buffers;
			}

			buffer_info->skb = skb;
5066 5067
			buffer_info->dma = pci_map_single(rx_ring->pdev,
			                                  skb->data,
5068 5069 5070 5071 5072
							  bufsz,
							  PCI_DMA_FROMDEVICE);
		}
		/* Refresh the desc even if buffer_addrs didn't change because
		 * each write-back erases this info. */
A
Alexander Duyck 已提交
5073
		if (bufsz < IGB_RXBUFFER_1024) {
5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101
			rx_desc->read.pkt_addr =
			     cpu_to_le64(buffer_info->page_dma);
			rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
		} else {
			rx_desc->read.pkt_addr =
			     cpu_to_le64(buffer_info->dma);
			rx_desc->read.hdr_addr = 0;
		}

		i++;
		if (i == rx_ring->count)
			i = 0;
		buffer_info = &rx_ring->buffer_info[i];
	}

no_buffers:
	if (rx_ring->next_to_use != i) {
		rx_ring->next_to_use = i;
		if (i == 0)
			i = (rx_ring->count - 1);
		else
			i--;

		/* Force memory writes to complete before letting h/w
		 * know there are new descriptors to fetch.  (Only
		 * applicable for weak-ordered memory model archs,
		 * such as IA-64). */
		wmb();
5102
		writel(i, rx_ring->tail);
5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124
	}
}

/**
 * igb_mii_ioctl -
 * @netdev:
 * @ifreq:
 * @cmd:
 **/
static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct mii_ioctl_data *data = if_mii(ifr);

	if (adapter->hw.phy.media_type != e1000_media_type_copper)
		return -EOPNOTSUPP;

	switch (cmd) {
	case SIOCGMIIPHY:
		data->phy_id = adapter->hw.phy.addr;
		break;
	case SIOCGMIIREG:
5125 5126
		if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
		                     &data->val_out))
5127 5128 5129 5130 5131 5132 5133 5134 5135
			return -EIO;
		break;
	case SIOCSMIIREG:
	default:
		return -EOPNOTSUPP;
	}
	return 0;
}

5136 5137 5138 5139 5140 5141
/**
 * igb_hwtstamp_ioctl - control hardware time stamping
 * @netdev:
 * @ifreq:
 * @cmd:
 *
5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153
 * Outgoing time stamping can be enabled and disabled. Play nice and
 * disable it when requested, although it shouldn't case any overhead
 * when no packet needs it. At most one packet in the queue may be
 * marked for time stamping, otherwise it would be impossible to tell
 * for sure to which packet the hardware time stamp belongs.
 *
 * Incoming time stamping has to be configured via the hardware
 * filters. Not all combinations are supported, in particular event
 * type has to be specified. Matching the kind of event packet is
 * not supported, with the exception of "all V2 events regardless of
 * level 2 or 4".
 *
5154 5155 5156 5157
 **/
static int igb_hwtstamp_ioctl(struct net_device *netdev,
			      struct ifreq *ifr, int cmd)
{
5158 5159
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
5160
	struct hwtstamp_config config;
5161 5162 5163 5164 5165 5166 5167 5168
	u32 tsync_tx_ctl_bit = E1000_TSYNCTXCTL_ENABLED;
	u32 tsync_rx_ctl_bit = E1000_TSYNCRXCTL_ENABLED;
	u32 tsync_rx_ctl_type = 0;
	u32 tsync_rx_cfg = 0;
	int is_l4 = 0;
	int is_l2 = 0;
	short port = 319; /* PTP */
	u32 regval;
5169 5170 5171 5172 5173 5174 5175 5176

	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
		return -EFAULT;

	/* reserved for future extensions */
	if (config.flags)
		return -EINVAL;

5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287
	switch (config.tx_type) {
	case HWTSTAMP_TX_OFF:
		tsync_tx_ctl_bit = 0;
		break;
	case HWTSTAMP_TX_ON:
		tsync_tx_ctl_bit = E1000_TSYNCTXCTL_ENABLED;
		break;
	default:
		return -ERANGE;
	}

	switch (config.rx_filter) {
	case HWTSTAMP_FILTER_NONE:
		tsync_rx_ctl_bit = 0;
		break;
	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
	case HWTSTAMP_FILTER_ALL:
		/*
		 * register TSYNCRXCFG must be set, therefore it is not
		 * possible to time stamp both Sync and Delay_Req messages
		 * => fall back to time stamping all packets
		 */
		tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_ALL;
		config.rx_filter = HWTSTAMP_FILTER_ALL;
		break;
	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
		tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_L4_V1;
		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
		is_l4 = 1;
		break;
	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
		tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_L4_V1;
		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
		is_l4 = 1;
		break;
	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
		tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_SYNC_MESSAGE;
		is_l2 = 1;
		is_l4 = 1;
		config.rx_filter = HWTSTAMP_FILTER_SOME;
		break;
	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
		tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_DELAY_REQ_MESSAGE;
		is_l2 = 1;
		is_l4 = 1;
		config.rx_filter = HWTSTAMP_FILTER_SOME;
		break;
	case HWTSTAMP_FILTER_PTP_V2_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
		tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_EVENT_V2;
		config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
		is_l2 = 1;
		break;
	default:
		return -ERANGE;
	}

	/* enable/disable TX */
	regval = rd32(E1000_TSYNCTXCTL);
	regval = (regval & ~E1000_TSYNCTXCTL_ENABLED) | tsync_tx_ctl_bit;
	wr32(E1000_TSYNCTXCTL, regval);

	/* enable/disable RX, define which PTP packets are time stamped */
	regval = rd32(E1000_TSYNCRXCTL);
	regval = (regval & ~E1000_TSYNCRXCTL_ENABLED) | tsync_rx_ctl_bit;
	regval = (regval & ~0xE) | tsync_rx_ctl_type;
	wr32(E1000_TSYNCRXCTL, regval);
	wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);

	/*
	 * Ethertype Filter Queue Filter[0][15:0] = 0x88F7
	 *                                          (Ethertype to filter on)
	 * Ethertype Filter Queue Filter[0][26] = 0x1 (Enable filter)
	 * Ethertype Filter Queue Filter[0][30] = 0x1 (Enable Timestamping)
	 */
	wr32(E1000_ETQF0, is_l2 ? 0x440088f7 : 0);

	/* L4 Queue Filter[0]: only filter by source and destination port */
	wr32(E1000_SPQF0, htons(port));
	wr32(E1000_IMIREXT(0), is_l4 ?
	     ((1<<12) | (1<<19) /* bypass size and control flags */) : 0);
	wr32(E1000_IMIR(0), is_l4 ?
	     (htons(port)
	      | (0<<16) /* immediate interrupt disabled */
	      | 0 /* (1<<17) bit cleared: do not bypass
		     destination port check */)
		: 0);
	wr32(E1000_FTQF0, is_l4 ?
	     (0x11 /* UDP */
	      | (1<<15) /* VF not compared */
	      | (1<<27) /* Enable Timestamping */
	      | (7<<28) /* only source port filter enabled,
			   source/target address and protocol
			   masked */)
	     : ((1<<15) | (15<<28) /* all mask bits set = filter not
				      enabled */));

	wrfl();

	adapter->hwtstamp_config = config;

	/* clear TX/RX time stamp registers, just to be sure */
	regval = rd32(E1000_TXSTMPH);
	regval = rd32(E1000_RXSTMPH);
5288

5289 5290
	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
		-EFAULT : 0;
5291 5292
}

5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305
/**
 * igb_ioctl -
 * @netdev:
 * @ifreq:
 * @cmd:
 **/
static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
	switch (cmd) {
	case SIOCGMIIPHY:
	case SIOCGMIIREG:
	case SIOCSMIIREG:
		return igb_mii_ioctl(netdev, ifr, cmd);
5306 5307
	case SIOCSHWTSTAMP:
		return igb_hwtstamp_ioctl(netdev, ifr, cmd);
5308 5309 5310 5311 5312
	default:
		return -EOPNOTSUPP;
	}
}

5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340
s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
{
	struct igb_adapter *adapter = hw->back;
	u16 cap_offset;

	cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
	if (!cap_offset)
		return -E1000_ERR_CONFIG;

	pci_read_config_word(adapter->pdev, cap_offset + reg, value);

	return 0;
}

s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
{
	struct igb_adapter *adapter = hw->back;
	u16 cap_offset;

	cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
	if (!cap_offset)
		return -E1000_ERR_CONFIG;

	pci_write_config_word(adapter->pdev, cap_offset + reg, *value);

	return 0;
}

5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373
static void igb_vlan_rx_register(struct net_device *netdev,
				 struct vlan_group *grp)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl, rctl;

	igb_irq_disable(adapter);
	adapter->vlgrp = grp;

	if (grp) {
		/* enable VLAN tag insert/strip */
		ctrl = rd32(E1000_CTRL);
		ctrl |= E1000_CTRL_VME;
		wr32(E1000_CTRL, ctrl);

		/* enable VLAN receive filtering */
		rctl = rd32(E1000_RCTL);
		rctl &= ~E1000_RCTL_CFIEN;
		wr32(E1000_RCTL, rctl);
		igb_update_mng_vlan(adapter);
	} else {
		/* disable VLAN tag insert/strip */
		ctrl = rd32(E1000_CTRL);
		ctrl &= ~E1000_CTRL_VME;
		wr32(E1000_CTRL, ctrl);

		if (adapter->mng_vlan_id != (u16)IGB_MNG_VLAN_NONE) {
			igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
			adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
		}
	}

5374 5375
	igb_rlpml_set(adapter);

5376 5377 5378 5379 5380 5381 5382 5383
	if (!test_bit(__IGB_DOWN, &adapter->state))
		igb_irq_enable(adapter);
}

static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
5384
	int pf_id = adapter->vfs_allocated_count;
5385

5386
	if ((hw->mng_cookie.status &
5387 5388 5389
	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
	    (vid == adapter->mng_vlan_id))
		return;
5390 5391 5392 5393 5394 5395

	/* add vid to vlvf if sr-iov is enabled,
	 * if that fails add directly to filter table */
	if (igb_vlvf_set(adapter, vid, true, pf_id))
		igb_vfta_set(hw, vid, true);

5396 5397 5398 5399 5400 5401
}

static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
5402
	int pf_id = adapter->vfs_allocated_count;
5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417

	igb_irq_disable(adapter);
	vlan_group_set_device(adapter->vlgrp, vid, NULL);

	if (!test_bit(__IGB_DOWN, &adapter->state))
		igb_irq_enable(adapter);

	if ((adapter->hw.mng_cookie.status &
	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
	    (vid == adapter->mng_vlan_id)) {
		/* release control to f/w */
		igb_release_hw_control(adapter);
		return;
	}

5418 5419 5420 5421
	/* remove vid from vlvf if sr-iov is enabled,
	 * if not in vlvf remove from vfta */
	if (igb_vlvf_set(adapter, vid, false, pf_id))
		igb_vfta_set(hw, vid, false);
5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469
}

static void igb_restore_vlan(struct igb_adapter *adapter)
{
	igb_vlan_rx_register(adapter->netdev, adapter->vlgrp);

	if (adapter->vlgrp) {
		u16 vid;
		for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
			if (!vlan_group_get_device(adapter->vlgrp, vid))
				continue;
			igb_vlan_rx_add_vid(adapter->netdev, vid);
		}
	}
}

int igb_set_spd_dplx(struct igb_adapter *adapter, u16 spddplx)
{
	struct e1000_mac_info *mac = &adapter->hw.mac;

	mac->autoneg = 0;

	switch (spddplx) {
	case SPEED_10 + DUPLEX_HALF:
		mac->forced_speed_duplex = ADVERTISE_10_HALF;
		break;
	case SPEED_10 + DUPLEX_FULL:
		mac->forced_speed_duplex = ADVERTISE_10_FULL;
		break;
	case SPEED_100 + DUPLEX_HALF:
		mac->forced_speed_duplex = ADVERTISE_100_HALF;
		break;
	case SPEED_100 + DUPLEX_FULL:
		mac->forced_speed_duplex = ADVERTISE_100_FULL;
		break;
	case SPEED_1000 + DUPLEX_FULL:
		mac->autoneg = 1;
		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
		break;
	case SPEED_1000 + DUPLEX_HALF: /* not supported */
	default:
		dev_err(&adapter->pdev->dev,
			"Unsupported Speed/Duplex configuration\n");
		return -EINVAL;
	}
	return 0;
}

5470
static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake)
5471 5472 5473 5474
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
A
Alexander Duyck 已提交
5475
	u32 ctrl, rctl, status;
5476 5477 5478 5479 5480 5481 5482
	u32 wufc = adapter->wol;
#ifdef CONFIG_PM
	int retval = 0;
#endif

	netif_device_detach(netdev);

A
Alexander Duyck 已提交
5483 5484 5485
	if (netif_running(netdev))
		igb_close(netdev);

5486
	igb_clear_interrupt_scheme(adapter);
5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499

#ifdef CONFIG_PM
	retval = pci_save_state(pdev);
	if (retval)
		return retval;
#endif

	status = rd32(E1000_STATUS);
	if (status & E1000_STATUS_LU)
		wufc &= ~E1000_WUFC_LNKC;

	if (wufc) {
		igb_setup_rctl(adapter);
5500
		igb_set_rx_mode(netdev);
5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526

		/* turn on all-multi mode if wake on multicast is enabled */
		if (wufc & E1000_WUFC_MC) {
			rctl = rd32(E1000_RCTL);
			rctl |= E1000_RCTL_MPE;
			wr32(E1000_RCTL, rctl);
		}

		ctrl = rd32(E1000_CTRL);
		/* advertise wake from D3Cold */
		#define E1000_CTRL_ADVD3WUC 0x00100000
		/* phy power management enable */
		#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
		ctrl |= E1000_CTRL_ADVD3WUC;
		wr32(E1000_CTRL, ctrl);

		/* Allow time for pending master requests to run */
		igb_disable_pcie_master(&adapter->hw);

		wr32(E1000_WUC, E1000_WUC_PME_EN);
		wr32(E1000_WUFC, wufc);
	} else {
		wr32(E1000_WUC, 0);
		wr32(E1000_WUFC, 0);
	}

5527 5528
	*enable_wake = wufc || adapter->en_mng_pt;
	if (!*enable_wake)
5529
		igb_shutdown_serdes_link_82575(hw);
5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540

	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
	 * would have already happened in close and is redundant. */
	igb_release_hw_control(adapter);

	pci_disable_device(pdev);

	return 0;
}

#ifdef CONFIG_PM
5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559
static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
{
	int retval;
	bool wake;

	retval = __igb_shutdown(pdev, &wake);
	if (retval)
		return retval;

	if (wake) {
		pci_prepare_to_sleep(pdev);
	} else {
		pci_wake_from_d3(pdev, false);
		pci_set_power_state(pdev, PCI_D3hot);
	}

	return 0;
}

5560 5561 5562 5563 5564 5565 5566 5567 5568
static int igb_resume(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 err;

	pci_set_power_state(pdev, PCI_D0);
	pci_restore_state(pdev);
T
Taku Izumi 已提交
5569

5570
	err = pci_enable_device_mem(pdev);
5571 5572 5573 5574 5575 5576 5577 5578 5579 5580
	if (err) {
		dev_err(&pdev->dev,
			"igb: Cannot enable PCI device from suspend\n");
		return err;
	}
	pci_set_master(pdev);

	pci_enable_wake(pdev, PCI_D3hot, 0);
	pci_enable_wake(pdev, PCI_D3cold, 0);

5581
	if (igb_init_interrupt_scheme(adapter)) {
A
Alexander Duyck 已提交
5582 5583
		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
		return -ENOMEM;
5584 5585 5586 5587 5588
	}

	/* e1000_power_up_phy(adapter); */

	igb_reset(adapter);
5589 5590 5591 5592 5593

	/* let the f/w know that the h/w is now under the control of the
	 * driver. */
	igb_get_hw_control(adapter);

5594 5595
	wr32(E1000_WUS, ~0);

A
Alexander Duyck 已提交
5596 5597 5598 5599 5600
	if (netif_running(netdev)) {
		err = igb_open(netdev);
		if (err)
			return err;
	}
5601 5602 5603 5604 5605 5606 5607 5608 5609

	netif_device_attach(netdev);

	return 0;
}
#endif

static void igb_shutdown(struct pci_dev *pdev)
{
5610 5611 5612 5613 5614 5615 5616 5617
	bool wake;

	__igb_shutdown(pdev, &wake);

	if (system_state == SYSTEM_POWER_OFF) {
		pci_wake_from_d3(pdev, wake);
		pci_set_power_state(pdev, PCI_D3hot);
	}
5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628
}

#ifdef CONFIG_NET_POLL_CONTROLLER
/*
 * Polling 'interrupt' - used by things like netconsole to send skbs
 * without having to re-enable interrupts. It's not called while
 * the interrupt routine is executing.
 */
static void igb_netpoll(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
5629
	struct e1000_hw *hw = &adapter->hw;
5630 5631
	int i;

5632
	if (!adapter->msix_entries) {
5633
		struct igb_q_vector *q_vector = adapter->q_vector[0];
5634
		igb_irq_disable(adapter);
5635
		napi_schedule(&q_vector->napi);
5636 5637
		return;
	}
5638

5639 5640 5641 5642
	for (i = 0; i < adapter->num_q_vectors; i++) {
		struct igb_q_vector *q_vector = adapter->q_vector[i];
		wr32(E1000_EIMC, q_vector->eims_value);
		napi_schedule(&q_vector->napi);
5643
	}
5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662
}
#endif /* CONFIG_NET_POLL_CONTROLLER */

/**
 * igb_io_error_detected - called when PCI error is detected
 * @pdev: Pointer to PCI device
 * @state: The current pci connection state
 *
 * This function is called after a PCI bus error affecting
 * this device has been detected.
 */
static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
					      pci_channel_state_t state)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);

	netif_device_detach(netdev);

5663 5664 5665
	if (state == pci_channel_io_perm_failure)
		return PCI_ERS_RESULT_DISCONNECT;

5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685
	if (netif_running(netdev))
		igb_down(adapter);
	pci_disable_device(pdev);

	/* Request a slot slot reset. */
	return PCI_ERS_RESULT_NEED_RESET;
}

/**
 * igb_io_slot_reset - called after the pci bus has been reset.
 * @pdev: Pointer to PCI device
 *
 * Restart the card from scratch, as if from a cold-boot. Implementation
 * resembles the first-half of the igb_resume routine.
 */
static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
5686
	pci_ers_result_t result;
T
Taku Izumi 已提交
5687
	int err;
5688

5689
	if (pci_enable_device_mem(pdev)) {
5690 5691
		dev_err(&pdev->dev,
			"Cannot re-enable PCI device after reset.\n");
5692 5693 5694 5695
		result = PCI_ERS_RESULT_DISCONNECT;
	} else {
		pci_set_master(pdev);
		pci_restore_state(pdev);
5696

5697 5698
		pci_enable_wake(pdev, PCI_D3hot, 0);
		pci_enable_wake(pdev, PCI_D3cold, 0);
5699

5700 5701 5702 5703
		igb_reset(adapter);
		wr32(E1000_WUS, ~0);
		result = PCI_ERS_RESULT_RECOVERED;
	}
5704

5705 5706 5707 5708 5709 5710
	err = pci_cleanup_aer_uncorrect_error_status(pdev);
	if (err) {
		dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
		        "failed 0x%0x\n", err);
		/* non-fatal, continue */
	}
5711 5712

	return result;
5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741
}

/**
 * igb_io_resume - called when traffic can start flowing again.
 * @pdev: Pointer to PCI device
 *
 * This callback is called when the error recovery driver tells us that
 * its OK to resume normal operation. Implementation resembles the
 * second-half of the igb_resume routine.
 */
static void igb_io_resume(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);

	if (netif_running(netdev)) {
		if (igb_up(adapter)) {
			dev_err(&pdev->dev, "igb_up failed after reset\n");
			return;
		}
	}

	netif_device_attach(netdev);

	/* let the f/w know that the h/w is now under the control of the
	 * driver. */
	igb_get_hw_control(adapter);
}

5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768
static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
                             u8 qsel)
{
	u32 rar_low, rar_high;
	struct e1000_hw *hw = &adapter->hw;

	/* HW expects these in little endian so we reverse the byte order
	 * from network order (big endian) to little endian
	 */
	rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
	          ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));

	/* Indicate to hardware the Address is Valid. */
	rar_high |= E1000_RAH_AV;

	if (hw->mac.type == e1000_82575)
		rar_high |= E1000_RAH_POOL_1 * qsel;
	else
		rar_high |= E1000_RAH_POOL_1 << qsel;

	wr32(E1000_RAL(index), rar_low);
	wrfl();
	wr32(E1000_RAH(index), rar_high);
	wrfl();
}

5769 5770 5771 5772
static int igb_set_vf_mac(struct igb_adapter *adapter,
                          int vf, unsigned char *mac_addr)
{
	struct e1000_hw *hw = &adapter->hw;
5773 5774 5775
	/* VF MAC addresses start at end of receive addresses and moves
	 * torwards the first, as a result a collision should not be possible */
	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
5776

5777
	memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
5778

5779
	igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
5780 5781 5782 5783 5784 5785 5786

	return 0;
}

static void igb_vmm_control(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
5787
	u32 reg;
5788

5789 5790
	/* replication is not supported for 82575 */
	if (hw->mac.type == e1000_82575)
5791 5792
		return;

5793 5794 5795 5796 5797 5798 5799 5800 5801 5802
	/* enable replication vlan tag stripping */
	reg = rd32(E1000_RPLOLR);
	reg |= E1000_RPLOLR_STRVLAN;
	wr32(E1000_RPLOLR, reg);

	/* notify HW that the MAC is adding vlan tags */
	reg = rd32(E1000_DTXCTL);
	reg |= E1000_DTXCTL_VLAN_ADDED;
	wr32(E1000_DTXCTL, reg);

5803 5804 5805 5806 5807 5808 5809
	if (adapter->vfs_allocated_count) {
		igb_vmdq_set_loopback_pf(hw, true);
		igb_vmdq_set_replication_pf(hw, true);
	} else {
		igb_vmdq_set_loopback_pf(hw, false);
		igb_vmdq_set_replication_pf(hw, false);
	}
5810 5811
}

5812
/* igb_main.c */