igb_main.c 158.0 KB
Newer Older
1 2 3
/*******************************************************************************

  Intel(R) Gigabit Ethernet Linux driver
4
  Copyright(c) 2007-2009 Intel Corporation.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

  This program is free software; you can redistribute it and/or modify it
  under the terms and conditions of the GNU General Public License,
  version 2, as published by the Free Software Foundation.

  This program is distributed in the hope it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  more details.

  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc.,
  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.

  The full GNU General Public License is included in this distribution in
  the file called "COPYING".

  Contact Information:
  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497

*******************************************************************************/

#include <linux/module.h>
#include <linux/types.h>
#include <linux/init.h>
#include <linux/vmalloc.h>
#include <linux/pagemap.h>
#include <linux/netdevice.h>
#include <linux/ipv6.h>
#include <net/checksum.h>
#include <net/ip6_checksum.h>
37
#include <linux/net_tstamp.h>
38 39 40 41
#include <linux/mii.h>
#include <linux/ethtool.h>
#include <linux/if_vlan.h>
#include <linux/pci.h>
42
#include <linux/pci-aspm.h>
43 44 45
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/if_ether.h>
46
#include <linux/aer.h>
47
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
48 49
#include <linux/dca.h>
#endif
50 51
#include "igb.h"

52
#define DRV_VERSION "1.3.16-k2"
53 54 55 56
char igb_driver_name[] = "igb";
char igb_driver_version[] = DRV_VERSION;
static const char igb_driver_string[] =
				"Intel(R) Gigabit Ethernet Network Driver";
57
static const char igb_copyright[] = "Copyright (c) 2007-2009 Intel Corporation.";
58 59 60 61 62 63

static const struct e1000_info *igb_info_tbl[] = {
	[board_82575] = &e1000_82575_info,
};

static struct pci_device_id igb_pci_tbl[] = {
A
Alexander Duyck 已提交
64
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
65
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
66
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
A
Alexander Duyck 已提交
67 68
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
69
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
70
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
	/* required last entry */
	{0, }
};

MODULE_DEVICE_TABLE(pci, igb_pci_tbl);

void igb_reset(struct igb_adapter *);
static int igb_setup_all_tx_resources(struct igb_adapter *);
static int igb_setup_all_rx_resources(struct igb_adapter *);
static void igb_free_all_tx_resources(struct igb_adapter *);
static void igb_free_all_rx_resources(struct igb_adapter *);
void igb_update_stats(struct igb_adapter *);
static int igb_probe(struct pci_dev *, const struct pci_device_id *);
static void __devexit igb_remove(struct pci_dev *pdev);
static int igb_sw_init(struct igb_adapter *);
static int igb_open(struct net_device *);
static int igb_close(struct net_device *);
static void igb_configure_tx(struct igb_adapter *);
static void igb_configure_rx(struct igb_adapter *);
93
static void igb_setup_tctl(struct igb_adapter *);
94 95 96
static void igb_setup_rctl(struct igb_adapter *);
static void igb_clean_all_tx_rings(struct igb_adapter *);
static void igb_clean_all_rx_rings(struct igb_adapter *);
97 98
static void igb_clean_tx_ring(struct igb_ring *);
static void igb_clean_rx_ring(struct igb_ring *);
99
static void igb_set_rx_mode(struct net_device *);
100 101 102
static void igb_update_phy_info(unsigned long);
static void igb_watchdog(unsigned long);
static void igb_watchdog_task(struct work_struct *);
103 104 105 106 107
static netdev_tx_t igb_xmit_frame_ring_adv(struct sk_buff *,
					   struct net_device *,
					   struct igb_ring *);
static netdev_tx_t igb_xmit_frame_adv(struct sk_buff *skb,
				      struct net_device *);
108 109 110
static struct net_device_stats *igb_get_stats(struct net_device *);
static int igb_change_mtu(struct net_device *, int);
static int igb_set_mac(struct net_device *, void *);
111
static void igb_set_uta(struct igb_adapter *adapter);
112 113 114
static irqreturn_t igb_intr(int irq, void *);
static irqreturn_t igb_intr_msi(int irq, void *);
static irqreturn_t igb_msix_other(int irq, void *);
115
static irqreturn_t igb_msix_ring(int irq, void *);
116
#ifdef CONFIG_IGB_DCA
117
static void igb_update_dca(struct igb_q_vector *);
J
Jeb Cramer 已提交
118
static void igb_setup_dca(struct igb_adapter *);
119
#endif /* CONFIG_IGB_DCA */
120
static bool igb_clean_tx_irq(struct igb_q_vector *);
121
static int igb_poll(struct napi_struct *, int);
122
static bool igb_clean_rx_irq_adv(struct igb_q_vector *, int *, int);
123
static void igb_alloc_rx_buffers_adv(struct igb_ring *, int);
124 125 126 127 128 129 130
static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
static void igb_tx_timeout(struct net_device *);
static void igb_reset_task(struct work_struct *);
static void igb_vlan_rx_register(struct net_device *, struct vlan_group *);
static void igb_vlan_rx_add_vid(struct net_device *, u16);
static void igb_vlan_rx_kill_vid(struct net_device *, u16);
static void igb_restore_vlan(struct igb_adapter *);
131
static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
132 133 134 135 136 137
static void igb_ping_all_vfs(struct igb_adapter *);
static void igb_msg_task(struct igb_adapter *);
static int igb_rcv_msg_from_vf(struct igb_adapter *, u32);
static void igb_vmm_control(struct igb_adapter *);
static int igb_set_vf_mac(struct igb_adapter *adapter, int, unsigned char *);
static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
138

E
Eric Dumazet 已提交
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
static inline void igb_set_vmolr(struct e1000_hw *hw, int vfn)
{
	u32 reg_data;

	reg_data = rd32(E1000_VMOLR(vfn));
	reg_data |= E1000_VMOLR_BAM |	 /* Accept broadcast */
	            E1000_VMOLR_ROMPE |  /* Accept packets matched in MTA */
	            E1000_VMOLR_AUPE |   /* Accept untagged packets */
	            E1000_VMOLR_STRVLAN; /* Strip vlan tags */
	wr32(E1000_VMOLR(vfn), reg_data);
}

static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
                                 int vfn)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vmolr;

157 158 159 160 161 162
	/* if it isn't the PF check to see if VFs are enabled and
	 * increase the size to support vlan tags */
	if (vfn < adapter->vfs_allocated_count &&
	    adapter->vf_data[vfn].vlans_enabled)
		size += VLAN_TAG_SIZE;

E
Eric Dumazet 已提交
163 164 165 166 167 168 169 170
	vmolr = rd32(E1000_VMOLR(vfn));
	vmolr &= ~E1000_VMOLR_RLPML_MASK;
	vmolr |= size | E1000_VMOLR_LPE;
	wr32(E1000_VMOLR(vfn), vmolr);

	return 0;
}

171
#ifdef CONFIG_PM
172
static int igb_suspend(struct pci_dev *, pm_message_t);
173 174 175
static int igb_resume(struct pci_dev *);
#endif
static void igb_shutdown(struct pci_dev *);
176
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
177 178 179 180 181 182 183
static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
static struct notifier_block dca_notifier = {
	.notifier_call	= igb_notify_dca,
	.next		= NULL,
	.priority	= 0
};
#endif
184 185 186 187
#ifdef CONFIG_NET_POLL_CONTROLLER
/* for netdump / net console */
static void igb_netpoll(struct net_device *);
#endif
188
#ifdef CONFIG_PCI_IOV
189 190 191 192 193 194
static unsigned int max_vfs = 0;
module_param(max_vfs, uint, 0);
MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
                 "per physical function");
#endif /* CONFIG_PCI_IOV */

195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
		     pci_channel_state_t);
static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
static void igb_io_resume(struct pci_dev *);

static struct pci_error_handlers igb_err_handler = {
	.error_detected = igb_io_error_detected,
	.slot_reset = igb_io_slot_reset,
	.resume = igb_io_resume,
};


static struct pci_driver igb_driver = {
	.name     = igb_driver_name,
	.id_table = igb_pci_tbl,
	.probe    = igb_probe,
	.remove   = __devexit_p(igb_remove),
#ifdef CONFIG_PM
	/* Power Managment Hooks */
	.suspend  = igb_suspend,
	.resume   = igb_resume,
#endif
	.shutdown = igb_shutdown,
	.err_handler = &igb_err_handler
};

221 222
static int global_quad_port_a; /* global quad port a indication */

223 224 225 226 227
MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_VERSION);

P
Patrick Ohly 已提交
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
/**
 * Scale the NIC clock cycle by a large factor so that
 * relatively small clock corrections can be added or
 * substracted at each clock tick. The drawbacks of a
 * large factor are a) that the clock register overflows
 * more quickly (not such a big deal) and b) that the
 * increment per tick has to fit into 24 bits.
 *
 * Note that
 *   TIMINCA = IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS *
 *             IGB_TSYNC_SCALE
 *   TIMINCA += TIMINCA * adjustment [ppm] / 1e9
 *
 * The base scale factor is intentionally a power of two
 * so that the division in %struct timecounter can be done with
 * a shift.
 */
#define IGB_TSYNC_SHIFT (19)
#define IGB_TSYNC_SCALE (1<<IGB_TSYNC_SHIFT)

/**
 * The duration of one clock cycle of the NIC.
 *
 * @todo This hard-coded value is part of the specification and might change
 * in future hardware revisions. Add revision check.
 */
#define IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS 16

#if (IGB_TSYNC_SCALE * IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS) >= (1<<24)
# error IGB_TSYNC_SCALE and/or IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS are too large to fit into TIMINCA
#endif

/**
 * igb_read_clock - read raw cycle counter (to be used by time counter)
 */
static cycle_t igb_read_clock(const struct cyclecounter *tc)
{
	struct igb_adapter *adapter =
		container_of(tc, struct igb_adapter, cycles);
	struct e1000_hw *hw = &adapter->hw;
	u64 stamp;

	stamp =  rd32(E1000_SYSTIML);
	stamp |= (u64)rd32(E1000_SYSTIMH) << 32ULL;

	return stamp;
}

276 277 278 279 280 281 282 283 284 285
#ifdef DEBUG
/**
 * igb_get_hw_dev_name - return device name string
 * used by hardware layer to print debugging information
 **/
char *igb_get_hw_dev_name(struct e1000_hw *hw)
{
	struct igb_adapter *adapter = hw->back;
	return adapter->netdev->name;
}
P
Patrick Ohly 已提交
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301

/**
 * igb_get_time_str - format current NIC and system time as string
 */
static char *igb_get_time_str(struct igb_adapter *adapter,
			      char buffer[160])
{
	cycle_t hw = adapter->cycles.read(&adapter->cycles);
	struct timespec nic = ns_to_timespec(timecounter_read(&adapter->clock));
	struct timespec sys;
	struct timespec delta;
	getnstimeofday(&sys);

	delta = timespec_sub(nic, sys);

	sprintf(buffer,
302 303
		"HW %llu, NIC %ld.%09lus, SYS %ld.%09lus, NIC-SYS %lds + %09luns",
		hw,
P
Patrick Ohly 已提交
304 305 306 307 308 309
		(long)nic.tv_sec, nic.tv_nsec,
		(long)sys.tv_sec, sys.tv_nsec,
		(long)delta.tv_sec, delta.tv_nsec);

	return buffer;
}
310 311
#endif

312 313 314 315 316 317 318 319 320 321 322
/**
 * igb_desc_unused - calculate if we have unused descriptors
 **/
static int igb_desc_unused(struct igb_ring *ring)
{
	if (ring->next_to_clean > ring->next_to_use)
		return ring->next_to_clean - ring->next_to_use - 1;

	return ring->count + ring->next_to_clean - ring->next_to_use - 1;
}

323 324 325 326 327 328 329 330 331 332 333 334 335 336
/**
 * igb_init_module - Driver Registration Routine
 *
 * igb_init_module is the first routine called when the driver is
 * loaded. All it does is register with the PCI subsystem.
 **/
static int __init igb_init_module(void)
{
	int ret;
	printk(KERN_INFO "%s - version %s\n",
	       igb_driver_string, igb_driver_version);

	printk(KERN_INFO "%s\n", igb_copyright);

337 338
	global_quad_port_a = 0;

339
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
340 341
	dca_register_notify(&dca_notifier);
#endif
342 343

	ret = pci_register_driver(&igb_driver);
344 345 346 347 348 349 350 351 352 353 354 355 356
	return ret;
}

module_init(igb_init_module);

/**
 * igb_exit_module - Driver Exit Cleanup Routine
 *
 * igb_exit_module is called just before the driver is removed
 * from memory.
 **/
static void __exit igb_exit_module(void)
{
357
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
358 359
	dca_unregister_notify(&dca_notifier);
#endif
360 361 362 363 364
	pci_unregister_driver(&igb_driver);
}

module_exit(igb_exit_module);

365 366 367 368 369 370 371 372 373 374 375
#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
/**
 * igb_cache_ring_register - Descriptor ring to register mapping
 * @adapter: board private structure to initialize
 *
 * Once we know the feature-set enabled for the device, we'll cache
 * the register offset the descriptor ring is assigned to.
 **/
static void igb_cache_ring_register(struct igb_adapter *adapter)
{
	int i;
376
	u32 rbase_offset = adapter->vfs_allocated_count;
377 378 379 380 381 382 383 384 385

	switch (adapter->hw.mac.type) {
	case e1000_82576:
		/* The queues are allocated for virtualization such that VF 0
		 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
		 * In order to avoid collision we start at the first free queue
		 * and continue consuming queues in the same sequence
		 */
		for (i = 0; i < adapter->num_rx_queues; i++)
386 387
			adapter->rx_ring[i].reg_idx = rbase_offset +
			                              Q_IDX_82576(i);
388
		for (i = 0; i < adapter->num_tx_queues; i++)
389 390
			adapter->tx_ring[i].reg_idx = rbase_offset +
			                              Q_IDX_82576(i);
391 392 393 394 395 396 397 398 399 400 401
		break;
	case e1000_82575:
	default:
		for (i = 0; i < adapter->num_rx_queues; i++)
			adapter->rx_ring[i].reg_idx = i;
		for (i = 0; i < adapter->num_tx_queues; i++)
			adapter->tx_ring[i].reg_idx = i;
		break;
	}
}

402 403 404 405 406 407 408 409 410 411 412 413
static void igb_free_queues(struct igb_adapter *adapter)
{
	kfree(adapter->tx_ring);
	kfree(adapter->rx_ring);

	adapter->tx_ring = NULL;
	adapter->rx_ring = NULL;

	adapter->num_rx_queues = 0;
	adapter->num_tx_queues = 0;
}

414 415 416 417 418 419 420 421 422 423 424 425 426 427
/**
 * igb_alloc_queues - Allocate memory for all rings
 * @adapter: board private structure to initialize
 *
 * We allocate one ring per queue at run-time since we don't know the
 * number of queues at compile-time.
 **/
static int igb_alloc_queues(struct igb_adapter *adapter)
{
	int i;

	adapter->tx_ring = kcalloc(adapter->num_tx_queues,
				   sizeof(struct igb_ring), GFP_KERNEL);
	if (!adapter->tx_ring)
428
		goto err;
429 430 431

	adapter->rx_ring = kcalloc(adapter->num_rx_queues,
				   sizeof(struct igb_ring), GFP_KERNEL);
432 433
	if (!adapter->rx_ring)
		goto err;
434

435 436
	for (i = 0; i < adapter->num_tx_queues; i++) {
		struct igb_ring *ring = &(adapter->tx_ring[i]);
437
		ring->count = adapter->tx_ring_count;
438
		ring->queue_index = i;
439
		ring->pdev = adapter->pdev;
440 441 442
		/* For 82575, context index must be unique per ring. */
		if (adapter->hw.mac.type == e1000_82575)
			ring->flags = IGB_RING_FLAG_TX_CTX_IDX;
443
	}
444

445 446
	for (i = 0; i < adapter->num_rx_queues; i++) {
		struct igb_ring *ring = &(adapter->rx_ring[i]);
447
		ring->count = adapter->rx_ring_count;
P
PJ Waskiewicz 已提交
448
		ring->queue_index = i;
449
		ring->pdev = adapter->pdev;
450
		ring->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
451 452 453 454
		ring->flags = IGB_RING_FLAG_RX_CSUM; /* enable rx checksum */
		/* set flag indicating ring supports SCTP checksum offload */
		if (adapter->hw.mac.type >= e1000_82576)
			ring->flags |= IGB_RING_FLAG_RX_SCTP_CSUM;
455
	}
456 457

	igb_cache_ring_register(adapter);
458

459
	return 0;
A
Alexander Duyck 已提交
460

461 462
err:
	igb_free_queues(adapter);
463

464
	return -ENOMEM;
A
Alexander Duyck 已提交
465 466
}

467
#define IGB_N0_QUEUE -1
468
static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
469 470
{
	u32 msixbm = 0;
471
	struct igb_adapter *adapter = q_vector->adapter;
472
	struct e1000_hw *hw = &adapter->hw;
A
Alexander Duyck 已提交
473
	u32 ivar, index;
474 475 476 477 478 479 480
	int rx_queue = IGB_N0_QUEUE;
	int tx_queue = IGB_N0_QUEUE;

	if (q_vector->rx_ring)
		rx_queue = q_vector->rx_ring->reg_idx;
	if (q_vector->tx_ring)
		tx_queue = q_vector->tx_ring->reg_idx;
A
Alexander Duyck 已提交
481 482 483

	switch (hw->mac.type) {
	case e1000_82575:
484 485 486 487
		/* The 82575 assigns vectors using a bitmask, which matches the
		   bitmask for the EICR/EIMS/EIMC registers.  To assign one
		   or more queues to a vector, we write the appropriate bits
		   into the MSIXBM register for that vector. */
488
		if (rx_queue > IGB_N0_QUEUE)
489
			msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
490
		if (tx_queue > IGB_N0_QUEUE)
491 492
			msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
		array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
493
		q_vector->eims_value = msixbm;
A
Alexander Duyck 已提交
494 495
		break;
	case e1000_82576:
496
		/* 82576 uses a table-based method for assigning vectors.
A
Alexander Duyck 已提交
497 498 499 500
		   Each queue has a single entry in the table to which we write
		   a vector number along with a "valid" bit.  Sadly, the layout
		   of the table is somewhat counterintuitive. */
		if (rx_queue > IGB_N0_QUEUE) {
501
			index = (rx_queue & 0x7);
A
Alexander Duyck 已提交
502
			ivar = array_rd32(E1000_IVAR0, index);
503
			if (rx_queue < 8) {
504 505 506
				/* vector goes into low byte of register */
				ivar = ivar & 0xFFFFFF00;
				ivar |= msix_vector | E1000_IVAR_VALID;
507 508 509 510
			} else {
				/* vector goes into third byte of register */
				ivar = ivar & 0xFF00FFFF;
				ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
A
Alexander Duyck 已提交
511 512 513 514
			}
			array_wr32(E1000_IVAR0, index, ivar);
		}
		if (tx_queue > IGB_N0_QUEUE) {
515
			index = (tx_queue & 0x7);
A
Alexander Duyck 已提交
516
			ivar = array_rd32(E1000_IVAR0, index);
517
			if (tx_queue < 8) {
518 519 520
				/* vector goes into second byte of register */
				ivar = ivar & 0xFFFF00FF;
				ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
521 522 523 524
			} else {
				/* vector goes into high byte of register */
				ivar = ivar & 0x00FFFFFF;
				ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
A
Alexander Duyck 已提交
525 526 527
			}
			array_wr32(E1000_IVAR0, index, ivar);
		}
528
		q_vector->eims_value = 1 << msix_vector;
A
Alexander Duyck 已提交
529 530 531 532 533
		break;
	default:
		BUG();
		break;
	}
534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
}

/**
 * igb_configure_msix - Configure MSI-X hardware
 *
 * igb_configure_msix sets up the hardware to properly
 * generate MSI-X interrupts.
 **/
static void igb_configure_msix(struct igb_adapter *adapter)
{
	u32 tmp;
	int i, vector = 0;
	struct e1000_hw *hw = &adapter->hw;

	adapter->eims_enable_mask = 0;

	/* set vector for other causes, i.e. link changes */
A
Alexander Duyck 已提交
551 552
	switch (hw->mac.type) {
	case e1000_82575:
553 554 555 556 557 558 559 560 561
		tmp = rd32(E1000_CTRL_EXT);
		/* enable MSI-X PBA support*/
		tmp |= E1000_CTRL_EXT_PBA_CLR;

		/* Auto-Mask interrupts upon ICR read. */
		tmp |= E1000_CTRL_EXT_EIAME;
		tmp |= E1000_CTRL_EXT_IRCA;

		wr32(E1000_CTRL_EXT, tmp);
562 563 564 565

		/* enable msix_other interrupt */
		array_wr32(E1000_MSIXBM(0), vector++,
		                      E1000_EIMS_OTHER);
P
PJ Waskiewicz 已提交
566
		adapter->eims_other = E1000_EIMS_OTHER;
567

A
Alexander Duyck 已提交
568 569 570
		break;

	case e1000_82576:
571 572 573 574 575 576 577 578
		/* Turn on MSI-X capability first, or our settings
		 * won't stick.  And it will take days to debug. */
		wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
		                E1000_GPIE_PBA | E1000_GPIE_EIAME |
		                E1000_GPIE_NSICR);

		/* enable msix_other interrupt */
		adapter->eims_other = 1 << vector;
A
Alexander Duyck 已提交
579 580
		tmp = (vector++ | E1000_IVAR_VALID) << 8;

581
		wr32(E1000_IVAR_MISC, tmp);
A
Alexander Duyck 已提交
582 583 584 585 586
		break;
	default:
		/* do nothing, since nothing else supports MSI-X */
		break;
	} /* switch (hw->mac.type) */
587 588 589 590 591 592 593 594 595

	adapter->eims_enable_mask |= adapter->eims_other;

	for (i = 0; i < adapter->num_q_vectors; i++) {
		struct igb_q_vector *q_vector = adapter->q_vector[i];
		igb_assign_vector(q_vector, vector++);
		adapter->eims_enable_mask |= q_vector->eims_value;
	}

596 597 598 599 600 601 602 603 604 605 606 607
	wrfl();
}

/**
 * igb_request_msix - Initialize MSI-X interrupts
 *
 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
 * kernel.
 **/
static int igb_request_msix(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
608
	struct e1000_hw *hw = &adapter->hw;
609 610
	int i, err = 0, vector = 0;

611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630
	err = request_irq(adapter->msix_entries[vector].vector,
	                  &igb_msix_other, 0, netdev->name, adapter);
	if (err)
		goto out;
	vector++;

	for (i = 0; i < adapter->num_q_vectors; i++) {
		struct igb_q_vector *q_vector = adapter->q_vector[i];

		q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);

		if (q_vector->rx_ring && q_vector->tx_ring)
			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
			        q_vector->rx_ring->queue_index);
		else if (q_vector->tx_ring)
			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
			        q_vector->tx_ring->queue_index);
		else if (q_vector->rx_ring)
			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
			        q_vector->rx_ring->queue_index);
631
		else
632 633
			sprintf(q_vector->name, "%s-unused", netdev->name);

634
		err = request_irq(adapter->msix_entries[vector].vector,
635 636
		                  &igb_msix_ring, 0, q_vector->name,
		                  q_vector);
637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
		if (err)
			goto out;
		vector++;
	}

	igb_configure_msix(adapter);
	return 0;
out:
	return err;
}

static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
{
	if (adapter->msix_entries) {
		pci_disable_msix(adapter->pdev);
		kfree(adapter->msix_entries);
		adapter->msix_entries = NULL;
654
	} else if (adapter->flags & IGB_FLAG_HAS_MSI) {
655
		pci_disable_msi(adapter->pdev);
656
	}
657 658
}

659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
/**
 * igb_free_q_vectors - Free memory allocated for interrupt vectors
 * @adapter: board private structure to initialize
 *
 * This function frees the memory allocated to the q_vectors.  In addition if
 * NAPI is enabled it will delete any references to the NAPI struct prior
 * to freeing the q_vector.
 **/
static void igb_free_q_vectors(struct igb_adapter *adapter)
{
	int v_idx;

	for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
		struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
		adapter->q_vector[v_idx] = NULL;
		netif_napi_del(&q_vector->napi);
		kfree(q_vector);
	}
	adapter->num_q_vectors = 0;
}

/**
 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
 *
 * This function resets the device so that it has 0 rx queues, tx queues, and
 * MSI-X interrupts allocated.
 */
static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
{
	igb_free_queues(adapter);
	igb_free_q_vectors(adapter);
	igb_reset_interrupt_capability(adapter);
}
692 693 694 695 696 697 698 699 700 701 702 703

/**
 * igb_set_interrupt_capability - set MSI or MSI-X if supported
 *
 * Attempt to configure interrupts using the best available
 * capabilities of the hardware and kernel.
 **/
static void igb_set_interrupt_capability(struct igb_adapter *adapter)
{
	int err;
	int numvecs, i;

704 705 706 707
	/* Number of supported queues. */
	adapter->num_rx_queues = min_t(u32, IGB_MAX_RX_QUEUES, num_online_cpus());
	adapter->num_tx_queues = min_t(u32, IGB_MAX_TX_QUEUES, num_online_cpus());

708 709 710 711 712 713 714 715 716 717 718
	/* start with one vector for every rx queue */
	numvecs = adapter->num_rx_queues;

	/* if tx handler is seperate add 1 for every tx queue */
	numvecs += adapter->num_tx_queues;

	/* store the number of vectors reserved for queues */
	adapter->num_q_vectors = numvecs;

	/* add 1 vector for link status interrupts */
	numvecs++;
719 720 721 722 723 724 725 726 727 728 729 730
	adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
					GFP_KERNEL);
	if (!adapter->msix_entries)
		goto msi_only;

	for (i = 0; i < numvecs; i++)
		adapter->msix_entries[i].entry = i;

	err = pci_enable_msix(adapter->pdev,
			      adapter->msix_entries,
			      numvecs);
	if (err == 0)
731
		goto out;
732 733 734 735 736

	igb_reset_interrupt_capability(adapter);

	/* If we can't do MSI-X, try MSI */
msi_only:
737 738 739 740 741 742 743 744 745 746 747 748 749 750 751
#ifdef CONFIG_PCI_IOV
	/* disable SR-IOV for non MSI-X configurations */
	if (adapter->vf_data) {
		struct e1000_hw *hw = &adapter->hw;
		/* disable iov and allow time for transactions to clear */
		pci_disable_sriov(adapter->pdev);
		msleep(500);

		kfree(adapter->vf_data);
		adapter->vf_data = NULL;
		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
		msleep(100);
		dev_info(&adapter->pdev->dev, "IOV Disabled\n");
	}
#endif
752
	adapter->num_rx_queues = 1;
753
	adapter->num_tx_queues = 1;
754
	adapter->num_q_vectors = 1;
755
	if (!pci_enable_msi(adapter->pdev))
756
		adapter->flags |= IGB_FLAG_HAS_MSI;
757
out:
758
	/* Notify the stack of the (possibly) reduced Tx Queue count. */
759
	adapter->netdev->real_num_tx_queues = adapter->num_tx_queues;
760 761 762
	return;
}

763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895
/**
 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
 * @adapter: board private structure to initialize
 *
 * We allocate one q_vector per queue interrupt.  If allocation fails we
 * return -ENOMEM.
 **/
static int igb_alloc_q_vectors(struct igb_adapter *adapter)
{
	struct igb_q_vector *q_vector;
	struct e1000_hw *hw = &adapter->hw;
	int v_idx;

	for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
		q_vector = kzalloc(sizeof(struct igb_q_vector), GFP_KERNEL);
		if (!q_vector)
			goto err_out;
		q_vector->adapter = adapter;
		q_vector->itr_shift = (hw->mac.type == e1000_82575) ? 16 : 0;
		q_vector->itr_register = hw->hw_addr + E1000_EITR(0);
		q_vector->itr_val = IGB_START_ITR;
		q_vector->set_itr = 1;
		netif_napi_add(adapter->netdev, &q_vector->napi, igb_poll, 64);
		adapter->q_vector[v_idx] = q_vector;
	}
	return 0;

err_out:
	while (v_idx) {
		v_idx--;
		q_vector = adapter->q_vector[v_idx];
		netif_napi_del(&q_vector->napi);
		kfree(q_vector);
		adapter->q_vector[v_idx] = NULL;
	}
	return -ENOMEM;
}

static void igb_map_rx_ring_to_vector(struct igb_adapter *adapter,
                                      int ring_idx, int v_idx)
{
	struct igb_q_vector *q_vector;

	q_vector = adapter->q_vector[v_idx];
	q_vector->rx_ring = &adapter->rx_ring[ring_idx];
	q_vector->rx_ring->q_vector = q_vector;
	q_vector->itr_val = adapter->itr;
}

static void igb_map_tx_ring_to_vector(struct igb_adapter *adapter,
                                      int ring_idx, int v_idx)
{
	struct igb_q_vector *q_vector;

	q_vector = adapter->q_vector[v_idx];
	q_vector->tx_ring = &adapter->tx_ring[ring_idx];
	q_vector->tx_ring->q_vector = q_vector;
	q_vector->itr_val = adapter->itr;
}

/**
 * igb_map_ring_to_vector - maps allocated queues to vectors
 *
 * This function maps the recently allocated queues to vectors.
 **/
static int igb_map_ring_to_vector(struct igb_adapter *adapter)
{
	int i;
	int v_idx = 0;

	if ((adapter->num_q_vectors < adapter->num_rx_queues) ||
	    (adapter->num_q_vectors < adapter->num_tx_queues))
		return -ENOMEM;

	if (adapter->num_q_vectors >=
	    (adapter->num_rx_queues + adapter->num_tx_queues)) {
		for (i = 0; i < adapter->num_rx_queues; i++)
			igb_map_rx_ring_to_vector(adapter, i, v_idx++);
		for (i = 0; i < adapter->num_tx_queues; i++)
			igb_map_tx_ring_to_vector(adapter, i, v_idx++);
	} else {
		for (i = 0; i < adapter->num_rx_queues; i++) {
			if (i < adapter->num_tx_queues)
				igb_map_tx_ring_to_vector(adapter, i, v_idx);
			igb_map_rx_ring_to_vector(adapter, i, v_idx++);
		}
		for (; i < adapter->num_tx_queues; i++)
			igb_map_tx_ring_to_vector(adapter, i, v_idx++);
	}
	return 0;
}

/**
 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
 *
 * This function initializes the interrupts and allocates all of the queues.
 **/
static int igb_init_interrupt_scheme(struct igb_adapter *adapter)
{
	struct pci_dev *pdev = adapter->pdev;
	int err;

	igb_set_interrupt_capability(adapter);

	err = igb_alloc_q_vectors(adapter);
	if (err) {
		dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
		goto err_alloc_q_vectors;
	}

	err = igb_alloc_queues(adapter);
	if (err) {
		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
		goto err_alloc_queues;
	}

	err = igb_map_ring_to_vector(adapter);
	if (err) {
		dev_err(&pdev->dev, "Invalid q_vector to ring mapping\n");
		goto err_map_queues;
	}


	return 0;
err_map_queues:
	igb_free_queues(adapter);
err_alloc_queues:
	igb_free_q_vectors(adapter);
err_alloc_q_vectors:
	igb_reset_interrupt_capability(adapter);
	return err;
}

896 897 898 899 900 901 902 903 904
/**
 * igb_request_irq - initialize interrupts
 *
 * Attempts to configure interrupts using the best available
 * capabilities of the hardware and kernel.
 **/
static int igb_request_irq(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
905
	struct pci_dev *pdev = adapter->pdev;
906 907 908 909 910
	struct e1000_hw *hw = &adapter->hw;
	int err = 0;

	if (adapter->msix_entries) {
		err = igb_request_msix(adapter);
P
PJ Waskiewicz 已提交
911
		if (!err)
912 913
			goto request_done;
		/* fall back to MSI */
914
		igb_clear_interrupt_scheme(adapter);
915
		if (!pci_enable_msi(adapter->pdev))
916
			adapter->flags |= IGB_FLAG_HAS_MSI;
917 918
		igb_free_all_tx_resources(adapter);
		igb_free_all_rx_resources(adapter);
919
		adapter->num_tx_queues = 1;
920
		adapter->num_rx_queues = 1;
921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936
		adapter->num_q_vectors = 1;
		err = igb_alloc_q_vectors(adapter);
		if (err) {
			dev_err(&pdev->dev,
			        "Unable to allocate memory for vectors\n");
			goto request_done;
		}
		err = igb_alloc_queues(adapter);
		if (err) {
			dev_err(&pdev->dev,
			        "Unable to allocate memory for queues\n");
			igb_free_q_vectors(adapter);
			goto request_done;
		}
		igb_setup_all_tx_resources(adapter);
		igb_setup_all_rx_resources(adapter);
P
PJ Waskiewicz 已提交
937
	} else {
A
Alexander Duyck 已提交
938 939 940
		switch (hw->mac.type) {
		case e1000_82575:
			wr32(E1000_MSIXBM(0),
941 942 943
			     (E1000_EICR_RX_QUEUE0 |
			      E1000_EICR_TX_QUEUE0 |
			      E1000_EIMS_OTHER));
A
Alexander Duyck 已提交
944 945 946 947 948 949 950
			break;
		case e1000_82576:
			wr32(E1000_IVAR0, E1000_IVAR_VALID);
			break;
		default:
			break;
		}
951
	}
P
PJ Waskiewicz 已提交
952

953
	if (adapter->flags & IGB_FLAG_HAS_MSI) {
954
		err = request_irq(adapter->pdev->irq, &igb_intr_msi, 0,
955
				  netdev->name, adapter);
956 957
		if (!err)
			goto request_done;
958

959 960
		/* fall back to legacy interrupts */
		igb_reset_interrupt_capability(adapter);
961
		adapter->flags &= ~IGB_FLAG_HAS_MSI;
962 963 964
	}

	err = request_irq(adapter->pdev->irq, &igb_intr, IRQF_SHARED,
965
			  netdev->name, adapter);
966

A
Andy Gospodarek 已提交
967
	if (err)
968 969 970 971 972 973 974 975 976 977 978 979
		dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n",
			err);

request_done:
	return err;
}

static void igb_free_irq(struct igb_adapter *adapter)
{
	if (adapter->msix_entries) {
		int vector = 0, i;

980
		free_irq(adapter->msix_entries[vector++].vector, adapter);
981

982 983 984 985 986 987 988
		for (i = 0; i < adapter->num_q_vectors; i++) {
			struct igb_q_vector *q_vector = adapter->q_vector[i];
			free_irq(adapter->msix_entries[vector++].vector,
			         q_vector);
		}
	} else {
		free_irq(adapter->pdev->irq, adapter);
989 990 991 992 993 994 995 996 997 998 999 1000
	}
}

/**
 * igb_irq_disable - Mask off interrupt generation on the NIC
 * @adapter: board private structure
 **/
static void igb_irq_disable(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

	if (adapter->msix_entries) {
1001 1002 1003 1004 1005
		u32 regval = rd32(E1000_EIAM);
		wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
		wr32(E1000_EIMC, adapter->eims_enable_mask);
		regval = rd32(E1000_EIAC);
		wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1006
	}
P
PJ Waskiewicz 已提交
1007 1008

	wr32(E1000_IAM, 0);
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
	wr32(E1000_IMC, ~0);
	wrfl();
	synchronize_irq(adapter->pdev->irq);
}

/**
 * igb_irq_enable - Enable default interrupt generation settings
 * @adapter: board private structure
 **/
static void igb_irq_enable(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

	if (adapter->msix_entries) {
1023 1024 1025 1026
		u32 regval = rd32(E1000_EIAC);
		wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
		regval = rd32(E1000_EIAM);
		wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
P
PJ Waskiewicz 已提交
1027
		wr32(E1000_EIMS, adapter->eims_enable_mask);
1028 1029 1030 1031
		if (adapter->vfs_allocated_count)
			wr32(E1000_MBVFIMR, 0xFF);
		wr32(E1000_IMS, (E1000_IMS_LSC | E1000_IMS_VMMB |
		                 E1000_IMS_DOUTSYNC));
P
PJ Waskiewicz 已提交
1032 1033 1034 1035
	} else {
		wr32(E1000_IMS, IMS_ENABLE_MASK);
		wr32(E1000_IAM, IMS_ENABLE_MASK);
	}
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
}

static void igb_update_mng_vlan(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	u16 vid = adapter->hw.mng_cookie.vlan_id;
	u16 old_vid = adapter->mng_vlan_id;
	if (adapter->vlgrp) {
		if (!vlan_group_get_device(adapter->vlgrp, vid)) {
			if (adapter->hw.mng_cookie.status &
				E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
				igb_vlan_rx_add_vid(netdev, vid);
				adapter->mng_vlan_id = vid;
			} else
				adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;

			if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
					(vid != old_vid) &&
			    !vlan_group_get_device(adapter->vlgrp, old_vid))
				igb_vlan_rx_kill_vid(netdev, old_vid);
		} else
			adapter->mng_vlan_id = vid;
	}
}

/**
 * igb_release_hw_control - release control of the h/w to f/w
 * @adapter: address of board private structure
 *
 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
 * For ASF and Pass Through versions of f/w this means that the
 * driver is no longer loaded.
 *
 **/
static void igb_release_hw_control(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl_ext;

	/* Let firmware take over control of h/w */
	ctrl_ext = rd32(E1000_CTRL_EXT);
	wr32(E1000_CTRL_EXT,
			ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
}


/**
 * igb_get_hw_control - get control of the h/w from f/w
 * @adapter: address of board private structure
 *
 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
 * For ASF and Pass Through versions of f/w this means that
 * the driver is loaded.
 *
 **/
static void igb_get_hw_control(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl_ext;

	/* Let firmware know the driver has taken over */
	ctrl_ext = rd32(E1000_CTRL_EXT);
	wr32(E1000_CTRL_EXT,
			ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
}

/**
 * igb_configure - configure the hardware for RX and TX
 * @adapter: private board structure
 **/
static void igb_configure(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	int i;

	igb_get_hw_control(adapter);
1112
	igb_set_rx_mode(netdev);
1113 1114 1115

	igb_restore_vlan(adapter);

1116
	igb_setup_tctl(adapter);
1117
	igb_setup_rctl(adapter);
1118 1119

	igb_configure_tx(adapter);
1120
	igb_configure_rx(adapter);
1121 1122 1123

	igb_rx_fifo_flush_82575(&adapter->hw);

1124
	/* call igb_desc_unused which always leaves
1125 1126 1127 1128
	 * at least 1 descriptor unused to make sure
	 * next_to_use != next_to_clean */
	for (i = 0; i < adapter->num_rx_queues; i++) {
		struct igb_ring *ring = &adapter->rx_ring[i];
1129
		igb_alloc_rx_buffers_adv(ring, igb_desc_unused(ring));
1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
	}


	adapter->tx_queue_len = netdev->tx_queue_len;
}


/**
 * igb_up - Open the interface and prepare it to handle traffic
 * @adapter: board private structure
 **/

int igb_up(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	int i;

	/* hardware has been reset, we need to reload some things */
	igb_configure(adapter);

	clear_bit(__IGB_DOWN, &adapter->state);

1152 1153 1154 1155
	for (i = 0; i < adapter->num_q_vectors; i++) {
		struct igb_q_vector *q_vector = adapter->q_vector[i];
		napi_enable(&q_vector->napi);
	}
P
PJ Waskiewicz 已提交
1156
	if (adapter->msix_entries)
1157 1158
		igb_configure_msix(adapter);

1159
	igb_vmm_control(adapter);
1160 1161
	igb_set_vmolr(hw, adapter->vfs_allocated_count);

1162 1163 1164 1165
	/* Clear any pending interrupts. */
	rd32(E1000_ICR);
	igb_irq_enable(adapter);

1166 1167
	netif_tx_start_all_queues(adapter->netdev);

1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
	/* Fire a link change interrupt to start the watchdog. */
	wr32(E1000_ICS, E1000_ICS_LSC);
	return 0;
}

void igb_down(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct net_device *netdev = adapter->netdev;
	u32 tctl, rctl;
	int i;

	/* signal that we're down so the interrupt handler does not
	 * reschedule our watchdog timer */
	set_bit(__IGB_DOWN, &adapter->state);

	/* disable receives in the hardware */
	rctl = rd32(E1000_RCTL);
	wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
	/* flush and sleep below */

1189
	netif_tx_stop_all_queues(netdev);
1190 1191 1192 1193 1194 1195 1196 1197 1198

	/* disable transmits in the hardware */
	tctl = rd32(E1000_TCTL);
	tctl &= ~E1000_TCTL_EN;
	wr32(E1000_TCTL, tctl);
	/* flush both disables and wait for them to finish */
	wrfl();
	msleep(10);

1199 1200 1201 1202
	for (i = 0; i < adapter->num_q_vectors; i++) {
		struct igb_q_vector *q_vector = adapter->q_vector[i];
		napi_disable(&q_vector->napi);
	}
1203 1204 1205 1206 1207 1208 1209 1210

	igb_irq_disable(adapter);

	del_timer_sync(&adapter->watchdog_timer);
	del_timer_sync(&adapter->phy_info_timer);

	netdev->tx_queue_len = adapter->tx_queue_len;
	netif_carrier_off(netdev);
1211 1212 1213 1214

	/* record the stats before reset*/
	igb_update_stats(adapter);

1215 1216 1217
	adapter->link_speed = 0;
	adapter->link_duplex = 0;

1218 1219
	if (!pci_channel_offline(adapter->pdev))
		igb_reset(adapter);
1220 1221
	igb_clean_all_tx_rings(adapter);
	igb_clean_all_rx_rings(adapter);
1222 1223 1224 1225 1226
#ifdef CONFIG_IGB_DCA

	/* since we reset the hardware DCA settings were cleared */
	igb_setup_dca(adapter);
#endif
1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241
}

void igb_reinit_locked(struct igb_adapter *adapter)
{
	WARN_ON(in_interrupt());
	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
		msleep(1);
	igb_down(adapter);
	igb_up(adapter);
	clear_bit(__IGB_RESETTING, &adapter->state);
}

void igb_reset(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
A
Alexander Duyck 已提交
1242 1243
	struct e1000_mac_info *mac = &hw->mac;
	struct e1000_fc_info *fc = &hw->fc;
1244 1245 1246 1247 1248 1249
	u32 pba = 0, tx_space, min_tx_space, min_rx_space;
	u16 hwm;

	/* Repartition Pba for greater than 9k mtu
	 * To take effect CTRL.RST is required.
	 */
1250 1251
	switch (mac->type) {
	case e1000_82576:
A
Alexander Duyck 已提交
1252
		pba = E1000_PBA_64K;
1253 1254 1255 1256 1257
		break;
	case e1000_82575:
	default:
		pba = E1000_PBA_34K;
		break;
A
Alexander Duyck 已提交
1258
	}
1259

A
Alexander Duyck 已提交
1260 1261
	if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
	    (mac->type < e1000_82576)) {
1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
		/* adjust PBA for jumbo frames */
		wr32(E1000_PBA, pba);

		/* To maintain wire speed transmits, the Tx FIFO should be
		 * large enough to accommodate two full transmit packets,
		 * rounded up to the next 1KB and expressed in KB.  Likewise,
		 * the Rx FIFO should be large enough to accommodate at least
		 * one full receive packet and is similarly rounded up and
		 * expressed in KB. */
		pba = rd32(E1000_PBA);
		/* upper 16 bits has Tx packet buffer allocation size in KB */
		tx_space = pba >> 16;
		/* lower 16 bits has Rx packet buffer allocation size in KB */
		pba &= 0xffff;
		/* the tx fifo also stores 16 bytes of information about the tx
		 * but don't include ethernet FCS because hardware appends it */
		min_tx_space = (adapter->max_frame_size +
1279
				sizeof(union e1000_adv_tx_desc) -
1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
				ETH_FCS_LEN) * 2;
		min_tx_space = ALIGN(min_tx_space, 1024);
		min_tx_space >>= 10;
		/* software strips receive CRC, so leave room for it */
		min_rx_space = adapter->max_frame_size;
		min_rx_space = ALIGN(min_rx_space, 1024);
		min_rx_space >>= 10;

		/* If current Tx allocation is less than the min Tx FIFO size,
		 * and the min Tx FIFO size is less than the current Rx FIFO
		 * allocation, take space away from current Rx allocation */
		if (tx_space < min_tx_space &&
		    ((min_tx_space - tx_space) < pba)) {
			pba = pba - (min_tx_space - tx_space);

			/* if short on rx space, rx wins and must trump tx
			 * adjustment */
			if (pba < min_rx_space)
				pba = min_rx_space;
		}
A
Alexander Duyck 已提交
1300
		wr32(E1000_PBA, pba);
1301 1302 1303 1304 1305 1306 1307 1308 1309
	}

	/* flow control settings */
	/* The high water mark must be low enough to fit one full frame
	 * (or the size used for early receive) above it in the Rx FIFO.
	 * Set it to the lower of:
	 * - 90% of the Rx FIFO size, or
	 * - the full Rx FIFO size minus one full frame */
	hwm = min(((pba << 10) * 9 / 10),
A
Alexander Duyck 已提交
1310
			((pba << 10) - 2 * adapter->max_frame_size));
1311

A
Alexander Duyck 已提交
1312 1313 1314 1315 1316 1317 1318
	if (mac->type < e1000_82576) {
		fc->high_water = hwm & 0xFFF8;	/* 8-byte granularity */
		fc->low_water = fc->high_water - 8;
	} else {
		fc->high_water = hwm & 0xFFF0;	/* 16-byte granularity */
		fc->low_water = fc->high_water - 16;
	}
1319 1320
	fc->pause_time = 0xFFFF;
	fc->send_xon = 1;
1321
	fc->current_mode = fc->requested_mode;
1322

1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
	/* disable receive for all VFs and wait one second */
	if (adapter->vfs_allocated_count) {
		int i;
		for (i = 0 ; i < adapter->vfs_allocated_count; i++)
			adapter->vf_data[i].clear_to_send = false;

		/* ping all the active vfs to let them know we are going down */
			igb_ping_all_vfs(adapter);

		/* disable transmits and receives */
		wr32(E1000_VFRE, 0);
		wr32(E1000_VFTE, 0);
	}

1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
	/* Allow time for pending master requests to run */
	adapter->hw.mac.ops.reset_hw(&adapter->hw);
	wr32(E1000_WUC, 0);

	if (adapter->hw.mac.ops.init_hw(&adapter->hw))
		dev_err(&adapter->pdev->dev, "Hardware Error\n");

	igb_update_mng_vlan(adapter);

	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
	wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);

	igb_reset_adaptive(&adapter->hw);
1350
	igb_get_phy_info(&adapter->hw);
1351 1352
}

S
Stephen Hemminger 已提交
1353 1354 1355
static const struct net_device_ops igb_netdev_ops = {
	.ndo_open 		= igb_open,
	.ndo_stop		= igb_close,
1356
	.ndo_start_xmit		= igb_xmit_frame_adv,
S
Stephen Hemminger 已提交
1357
	.ndo_get_stats		= igb_get_stats,
1358 1359
	.ndo_set_rx_mode	= igb_set_rx_mode,
	.ndo_set_multicast_list	= igb_set_rx_mode,
S
Stephen Hemminger 已提交
1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
	.ndo_set_mac_address	= igb_set_mac,
	.ndo_change_mtu		= igb_change_mtu,
	.ndo_do_ioctl		= igb_ioctl,
	.ndo_tx_timeout		= igb_tx_timeout,
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_vlan_rx_register	= igb_vlan_rx_register,
	.ndo_vlan_rx_add_vid	= igb_vlan_rx_add_vid,
	.ndo_vlan_rx_kill_vid	= igb_vlan_rx_kill_vid,
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller	= igb_netpoll,
#endif
};

1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
/**
 * igb_probe - Device Initialization Routine
 * @pdev: PCI device information struct
 * @ent: entry in igb_pci_tbl
 *
 * Returns 0 on success, negative on failure
 *
 * igb_probe initializes an adapter identified by a pci_dev structure.
 * The OS initialization, configuring of the adapter private structure,
 * and a hardware reset occur.
 **/
static int __devinit igb_probe(struct pci_dev *pdev,
			       const struct pci_device_id *ent)
{
	struct net_device *netdev;
	struct igb_adapter *adapter;
	struct e1000_hw *hw;
	const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
	unsigned long mmio_start, mmio_len;
1392
	int err, pci_using_dac;
1393
	u16 eeprom_data = 0;
1394 1395 1396
	u16 eeprom_apme_mask = IGB_EEPROM_APME;
	u32 part_num;

1397
	err = pci_enable_device_mem(pdev);
1398 1399 1400 1401
	if (err)
		return err;

	pci_using_dac = 0;
1402
	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
1403
	if (!err) {
1404
		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
1405 1406 1407
		if (!err)
			pci_using_dac = 1;
	} else {
1408
		err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
1409
		if (err) {
1410
			err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
1411 1412 1413 1414 1415 1416 1417 1418
			if (err) {
				dev_err(&pdev->dev, "No usable DMA "
					"configuration, aborting\n");
				goto err_dma;
			}
		}
	}

1419 1420 1421
	err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
	                                   IORESOURCE_MEM),
	                                   igb_driver_name);
1422 1423 1424
	if (err)
		goto err_pci_reg;

1425
	pci_enable_pcie_error_reporting(pdev);
1426

1427
	pci_set_master(pdev);
1428
	pci_save_state(pdev);
1429 1430

	err = -ENOMEM;
1431 1432
	netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
	                           IGB_ABS_MAX_TX_QUEUES);
1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
	if (!netdev)
		goto err_alloc_etherdev;

	SET_NETDEV_DEV(netdev, &pdev->dev);

	pci_set_drvdata(pdev, netdev);
	adapter = netdev_priv(netdev);
	adapter->netdev = netdev;
	adapter->pdev = pdev;
	hw = &adapter->hw;
	hw->back = adapter;
	adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;

	mmio_start = pci_resource_start(pdev, 0);
	mmio_len = pci_resource_len(pdev, 0);

	err = -EIO;
1450 1451
	hw->hw_addr = ioremap(mmio_start, mmio_len);
	if (!hw->hw_addr)
1452 1453
		goto err_ioremap;

S
Stephen Hemminger 已提交
1454
	netdev->netdev_ops = &igb_netdev_ops;
1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478
	igb_set_ethtool_ops(netdev);
	netdev->watchdog_timeo = 5 * HZ;

	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);

	netdev->mem_start = mmio_start;
	netdev->mem_end = mmio_start + mmio_len;

	/* PCI config space info */
	hw->vendor_id = pdev->vendor;
	hw->device_id = pdev->device;
	hw->revision_id = pdev->revision;
	hw->subsystem_vendor_id = pdev->subsystem_vendor;
	hw->subsystem_device_id = pdev->subsystem_device;

	/* setup the private structure */
	hw->back = adapter;
	/* Copy the default MAC, PHY and NVM function pointers */
	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
	/* Initialize skew-specific constants */
	err = ei->get_invariants(hw);
	if (err)
1479
		goto err_sw_init;
1480

1481 1482 1483 1484 1485 1486 1487 1488 1489
#ifdef CONFIG_PCI_IOV
	/* since iov functionality isn't critical to base device function we
	 * can accept failure.  If it fails we don't allow iov to be enabled */
	if (hw->mac.type == e1000_82576) {
		/* 82576 supports a maximum of 7 VFs in addition to the PF */
		unsigned int num_vfs = (max_vfs > 7) ? 7 : max_vfs;
		int i;
		unsigned char mac_addr[ETH_ALEN];

1490
		if (num_vfs) {
1491 1492 1493
			adapter->vf_data = kcalloc(num_vfs,
						sizeof(struct vf_data_storage),
						GFP_KERNEL);
1494 1495 1496 1497
			if (!adapter->vf_data) {
				dev_err(&pdev->dev,
				        "Could not allocate VF private data - "
					"IOV enable failed\n");
1498
			} else {
1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515
				err = pci_enable_sriov(pdev, num_vfs);
				if (!err) {
					adapter->vfs_allocated_count = num_vfs;
					dev_info(&pdev->dev,
					         "%d vfs allocated\n",
					         num_vfs);
					for (i = 0;
					     i < adapter->vfs_allocated_count;
					     i++) {
						random_ether_addr(mac_addr);
						igb_set_vf_mac(adapter, i,
						               mac_addr);
					}
				} else {
					kfree(adapter->vf_data);
					adapter->vf_data = NULL;
				}
1516 1517 1518 1519 1520
			}
		}
	}

#endif
1521
	/* setup the private structure */
1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542
	err = igb_sw_init(adapter);
	if (err)
		goto err_sw_init;

	igb_get_bus_info_pcie(hw);

	hw->phy.autoneg_wait_to_complete = false;
	hw->mac.adaptive_ifs = true;

	/* Copper options */
	if (hw->phy.media_type == e1000_media_type_copper) {
		hw->phy.mdix = AUTO_ALL_MODES;
		hw->phy.disable_polarity_correction = false;
		hw->phy.ms_type = e1000_ms_hw_default;
	}

	if (igb_check_reset_block(hw))
		dev_info(&pdev->dev,
			"PHY reset is blocked due to SOL/IDER session.\n");

	netdev->features = NETIF_F_SG |
1543
			   NETIF_F_IP_CSUM |
1544 1545 1546 1547
			   NETIF_F_HW_VLAN_TX |
			   NETIF_F_HW_VLAN_RX |
			   NETIF_F_HW_VLAN_FILTER;

1548
	netdev->features |= NETIF_F_IPV6_CSUM;
1549 1550
	netdev->features |= NETIF_F_TSO;
	netdev->features |= NETIF_F_TSO6;
1551

H
Herbert Xu 已提交
1552
	netdev->features |= NETIF_F_GRO;
1553

1554 1555
	netdev->vlan_features |= NETIF_F_TSO;
	netdev->vlan_features |= NETIF_F_TSO6;
1556
	netdev->vlan_features |= NETIF_F_IP_CSUM;
1557
	netdev->vlan_features |= NETIF_F_IPV6_CSUM;
1558 1559
	netdev->vlan_features |= NETIF_F_SG;

1560 1561 1562
	if (pci_using_dac)
		netdev->features |= NETIF_F_HIGHDMA;

1563 1564 1565
	if (adapter->hw.mac.type == e1000_82576)
		netdev->features |= NETIF_F_SCTP_CSUM;

1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591
	adapter->en_mng_pt = igb_enable_mng_pass_thru(&adapter->hw);

	/* before reading the NVM, reset the controller to put the device in a
	 * known good starting state */
	hw->mac.ops.reset_hw(hw);

	/* make sure the NVM is good */
	if (igb_validate_nvm_checksum(hw) < 0) {
		dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
		err = -EIO;
		goto err_eeprom;
	}

	/* copy the MAC address out of the NVM */
	if (hw->mac.ops.read_mac_addr(hw))
		dev_err(&pdev->dev, "NVM Read Error\n");

	memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
	memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);

	if (!is_valid_ether_addr(netdev->perm_addr)) {
		dev_err(&pdev->dev, "Invalid MAC Address\n");
		err = -EIO;
		goto err_eeprom;
	}

1592 1593 1594 1595
	setup_timer(&adapter->watchdog_timer, &igb_watchdog,
	            (unsigned long) adapter);
	setup_timer(&adapter->phy_info_timer, &igb_update_phy_info,
	            (unsigned long) adapter);
1596 1597 1598 1599

	INIT_WORK(&adapter->reset_task, igb_reset_task);
	INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);

1600
	/* Initialize link properties that are user-changeable */
1601 1602 1603 1604
	adapter->fc_autoneg = true;
	hw->mac.autoneg = true;
	hw->phy.autoneg_advertised = 0x2f;

1605 1606
	hw->fc.requested_mode = e1000_fc_default;
	hw->fc.current_mode = e1000_fc_default;
1607

A
Alexander Duyck 已提交
1608
	adapter->itr_setting = IGB_DEFAULT_ITR;
1609 1610 1611 1612 1613 1614 1615 1616
	adapter->itr = IGB_START_ITR;

	igb_validate_mdi_setting(hw);

	/* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
	 * enable the ACPI Magic Packet filter
	 */

1617
	if (hw->bus.func == 0)
A
Alexander Duyck 已提交
1618
		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1619 1620
	else if (hw->bus.func == 1)
		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632

	if (eeprom_data & eeprom_apme_mask)
		adapter->eeprom_wol |= E1000_WUFC_MAG;

	/* now that we have the eeprom settings, apply the special cases where
	 * the eeprom may be wrong or the board simply won't support wake on
	 * lan on a particular port */
	switch (pdev->device) {
	case E1000_DEV_ID_82575GB_QUAD_COPPER:
		adapter->eeprom_wol = 0;
		break;
	case E1000_DEV_ID_82575EB_FIBER_SERDES:
A
Alexander Duyck 已提交
1633 1634
	case E1000_DEV_ID_82576_FIBER:
	case E1000_DEV_ID_82576_SERDES:
1635 1636 1637 1638 1639
		/* Wake events only supported on port A for dual fiber
		 * regardless of eeprom setting */
		if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
			adapter->eeprom_wol = 0;
		break;
1640 1641 1642 1643 1644 1645 1646 1647 1648 1649
	case E1000_DEV_ID_82576_QUAD_COPPER:
		/* if quad port adapter, disable WoL on all but port A */
		if (global_quad_port_a != 0)
			adapter->eeprom_wol = 0;
		else
			adapter->flags |= IGB_FLAG_QUAD_PORT_A;
		/* Reset for multiple quad port adapters */
		if (++global_quad_port_a == 4)
			global_quad_port_a = 0;
		break;
1650 1651 1652 1653
	}

	/* initialize the wol settings based on the eeprom settings */
	adapter->wol = adapter->eeprom_wol;
1654
	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667

	/* reset the hardware with the new settings */
	igb_reset(adapter);

	/* let the f/w know that the h/w is now under the control of the
	 * driver. */
	igb_get_hw_control(adapter);

	strcpy(netdev->name, "eth%d");
	err = register_netdev(netdev);
	if (err)
		goto err_register;

1668 1669 1670
	/* carrier off reporting is important to ethtool even BEFORE open */
	netif_carrier_off(netdev);

1671
#ifdef CONFIG_IGB_DCA
1672
	if (dca_add_requester(&pdev->dev) == 0) {
1673
		adapter->flags |= IGB_FLAG_DCA_ENABLED;
J
Jeb Cramer 已提交
1674 1675 1676 1677 1678
		dev_info(&pdev->dev, "DCA enabled\n");
		igb_setup_dca(adapter);
	}
#endif

P
Patrick Ohly 已提交
1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708
	/*
	 * Initialize hardware timer: we keep it running just in case
	 * that some program needs it later on.
	 */
	memset(&adapter->cycles, 0, sizeof(adapter->cycles));
	adapter->cycles.read = igb_read_clock;
	adapter->cycles.mask = CLOCKSOURCE_MASK(64);
	adapter->cycles.mult = 1;
	adapter->cycles.shift = IGB_TSYNC_SHIFT;
	wr32(E1000_TIMINCA,
	     (1<<24) |
	     IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS * IGB_TSYNC_SCALE);
#if 0
	/*
	 * Avoid rollover while we initialize by resetting the time counter.
	 */
	wr32(E1000_SYSTIML, 0x00000000);
	wr32(E1000_SYSTIMH, 0x00000000);
#else
	/*
	 * Set registers so that rollover occurs soon to test this.
	 */
	wr32(E1000_SYSTIML, 0x00000000);
	wr32(E1000_SYSTIMH, 0xFF800000);
#endif
	wrfl();
	timecounter_init(&adapter->clock,
			 &adapter->cycles,
			 ktime_to_ns(ktime_get_real()));

1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720
	/*
	 * Synchronize our NIC clock against system wall clock. NIC
	 * time stamp reading requires ~3us per sample, each sample
	 * was pretty stable even under load => only require 10
	 * samples for each offset comparison.
	 */
	memset(&adapter->compare, 0, sizeof(adapter->compare));
	adapter->compare.source = &adapter->clock;
	adapter->compare.target = ktime_get_real;
	adapter->compare.num_samples = 10;
	timecompare_update(&adapter->compare, 0);

P
Patrick Ohly 已提交
1721 1722 1723 1724 1725 1726 1727 1728 1729 1730
#ifdef DEBUG
	{
		char buffer[160];
		printk(KERN_DEBUG
			"igb: %s: hw %p initialized timer\n",
			igb_get_time_str(adapter, buffer),
			&adapter->hw);
	}
#endif

1731 1732
	dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
	/* print bus type/speed/width info */
J
Johannes Berg 已提交
1733
	dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
1734 1735 1736
		 netdev->name,
		 ((hw->bus.speed == e1000_bus_speed_2500)
		  ? "2.5Gb/s" : "unknown"),
1737 1738 1739 1740
		 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
		  (hw->bus.width == e1000_bus_width_pcie_x2) ? "Width x2" :
		  (hw->bus.width == e1000_bus_width_pcie_x1) ? "Width x1" :
		   "unknown"),
J
Johannes Berg 已提交
1741
		 netdev->dev_addr);
1742 1743 1744 1745 1746 1747 1748 1749

	igb_read_part_num(hw, &part_num);
	dev_info(&pdev->dev, "%s: PBA No: %06x-%03x\n", netdev->name,
		(part_num >> 8), (part_num & 0xff));

	dev_info(&pdev->dev,
		"Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
		adapter->msix_entries ? "MSI-X" :
1750
		(adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
1751 1752 1753 1754 1755 1756 1757 1758
		adapter->num_rx_queues, adapter->num_tx_queues);

	return 0;

err_register:
	igb_release_hw_control(adapter);
err_eeprom:
	if (!igb_check_reset_block(hw))
1759
		igb_reset_phy(hw);
1760 1761 1762 1763

	if (hw->flash_address)
		iounmap(hw->flash_address);
err_sw_init:
1764
	igb_clear_interrupt_scheme(adapter);
1765 1766 1767 1768
	iounmap(hw->hw_addr);
err_ioremap:
	free_netdev(netdev);
err_alloc_etherdev:
1769 1770
	pci_release_selected_regions(pdev, pci_select_bars(pdev,
	                             IORESOURCE_MEM));
1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789
err_pci_reg:
err_dma:
	pci_disable_device(pdev);
	return err;
}

/**
 * igb_remove - Device Removal Routine
 * @pdev: PCI device information struct
 *
 * igb_remove is called by the PCI subsystem to alert the driver
 * that it should release a PCI device.  The could be caused by a
 * Hot-Plug event, or because the driver is going to be removed from
 * memory.
 **/
static void __devexit igb_remove(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
J
Jeb Cramer 已提交
1790
	struct e1000_hw *hw = &adapter->hw;
1791 1792 1793 1794 1795 1796 1797 1798 1799

	/* flush_scheduled work may reschedule our watchdog task, so
	 * explicitly disable watchdog tasks from being rescheduled  */
	set_bit(__IGB_DOWN, &adapter->state);
	del_timer_sync(&adapter->watchdog_timer);
	del_timer_sync(&adapter->phy_info_timer);

	flush_scheduled_work();

1800
#ifdef CONFIG_IGB_DCA
1801
	if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
J
Jeb Cramer 已提交
1802 1803
		dev_info(&pdev->dev, "DCA disabled\n");
		dca_remove_requester(&pdev->dev);
1804
		adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
A
Alexander Duyck 已提交
1805
		wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
J
Jeb Cramer 已提交
1806 1807 1808
	}
#endif

1809 1810 1811 1812 1813 1814
	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
	 * would have already happened in close and is redundant. */
	igb_release_hw_control(adapter);

	unregister_netdev(netdev);

1815 1816
	if (!igb_check_reset_block(&adapter->hw))
		igb_reset_phy(&adapter->hw);
1817

1818
	igb_clear_interrupt_scheme(adapter);
1819

1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833
#ifdef CONFIG_PCI_IOV
	/* reclaim resources allocated to VFs */
	if (adapter->vf_data) {
		/* disable iov and allow time for transactions to clear */
		pci_disable_sriov(pdev);
		msleep(500);

		kfree(adapter->vf_data);
		adapter->vf_data = NULL;
		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
		msleep(100);
		dev_info(&pdev->dev, "IOV Disabled\n");
	}
#endif
1834 1835 1836
	iounmap(hw->hw_addr);
	if (hw->flash_address)
		iounmap(hw->flash_address);
1837 1838
	pci_release_selected_regions(pdev, pci_select_bars(pdev,
	                             IORESOURCE_MEM));
1839 1840 1841

	free_netdev(netdev);

1842
	pci_disable_pcie_error_reporting(pdev);
1843

1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862
	pci_disable_device(pdev);
}

/**
 * igb_sw_init - Initialize general software structures (struct igb_adapter)
 * @adapter: board private structure to initialize
 *
 * igb_sw_init initializes the Adapter private data structure.
 * Fields are initialized based on PCI device information and
 * OS network device settings (MTU size).
 **/
static int __devinit igb_sw_init(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;

	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);

1863 1864
	adapter->tx_ring_count = IGB_DEFAULT_TXD;
	adapter->rx_ring_count = IGB_DEFAULT_RXD;
1865 1866 1867
	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;

1868 1869
	/* This call may decrease the number of queues depending on
	 * interrupt mode. */
1870
	if (igb_init_interrupt_scheme(adapter)) {
1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904
		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
		return -ENOMEM;
	}

	/* Explicitly disable IRQ since the NIC can be in any state. */
	igb_irq_disable(adapter);

	set_bit(__IGB_DOWN, &adapter->state);
	return 0;
}

/**
 * igb_open - Called when a network interface is made active
 * @netdev: network interface device structure
 *
 * Returns 0 on success, negative value on failure
 *
 * The open entry point is called when a network interface is made
 * active by the system (IFF_UP).  At this point all resources needed
 * for transmit and receive operations are allocated, the interrupt
 * handler is registered with the OS, the watchdog timer is started,
 * and the stack is notified that the interface is ready.
 **/
static int igb_open(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	int err;
	int i;

	/* disallow open during test */
	if (test_bit(__IGB_TESTING, &adapter->state))
		return -EBUSY;

1905 1906
	netif_carrier_off(netdev);

1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929
	/* allocate transmit descriptors */
	err = igb_setup_all_tx_resources(adapter);
	if (err)
		goto err_setup_tx;

	/* allocate receive descriptors */
	err = igb_setup_all_rx_resources(adapter);
	if (err)
		goto err_setup_rx;

	/* e1000_power_up_phy(adapter); */

	adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
	if ((adapter->hw.mng_cookie.status &
	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
		igb_update_mng_vlan(adapter);

	/* before we allocate an interrupt, we must be ready to handle it.
	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
	 * as soon as we call pci_request_irq, so we have to setup our
	 * clean_rx handler before we do so.  */
	igb_configure(adapter);

1930
	igb_vmm_control(adapter);
1931 1932
	igb_set_vmolr(hw, adapter->vfs_allocated_count);

1933 1934 1935 1936 1937 1938 1939
	err = igb_request_irq(adapter);
	if (err)
		goto err_req_irq;

	/* From here on the code is the same as igb_up() */
	clear_bit(__IGB_DOWN, &adapter->state);

1940 1941 1942 1943
	for (i = 0; i < adapter->num_q_vectors; i++) {
		struct igb_q_vector *q_vector = adapter->q_vector[i];
		napi_enable(&q_vector->napi);
	}
1944 1945 1946

	/* Clear any pending interrupts. */
	rd32(E1000_ICR);
P
PJ Waskiewicz 已提交
1947 1948 1949

	igb_irq_enable(adapter);

1950 1951
	netif_tx_start_all_queues(netdev);

1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008
	/* Fire a link status change interrupt to start the watchdog. */
	wr32(E1000_ICS, E1000_ICS_LSC);

	return 0;

err_req_irq:
	igb_release_hw_control(adapter);
	/* e1000_power_down_phy(adapter); */
	igb_free_all_rx_resources(adapter);
err_setup_rx:
	igb_free_all_tx_resources(adapter);
err_setup_tx:
	igb_reset(adapter);

	return err;
}

/**
 * igb_close - Disables a network interface
 * @netdev: network interface device structure
 *
 * Returns 0, this is not allowed to fail
 *
 * The close entry point is called when an interface is de-activated
 * by the OS.  The hardware is still under the driver's control, but
 * needs to be disabled.  A global MAC reset is issued to stop the
 * hardware, and all transmit and receive resources are freed.
 **/
static int igb_close(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);

	WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
	igb_down(adapter);

	igb_free_irq(adapter);

	igb_free_all_tx_resources(adapter);
	igb_free_all_rx_resources(adapter);

	/* kill manageability vlan ID if supported, but not if a vlan with
	 * the same ID is registered on the host OS (let 8021q kill it) */
	if ((adapter->hw.mng_cookie.status &
			  E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
	     !(adapter->vlgrp &&
	       vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
		igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);

	return 0;
}

/**
 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
 * @tx_ring: tx descriptor ring (for a specific queue) to setup
 *
 * Return 0 on success, negative on failure
 **/
2009
int igb_setup_tx_resources(struct igb_ring *tx_ring)
2010
{
2011
	struct pci_dev *pdev = tx_ring->pdev;
2012 2013 2014 2015 2016 2017 2018 2019 2020
	int size;

	size = sizeof(struct igb_buffer) * tx_ring->count;
	tx_ring->buffer_info = vmalloc(size);
	if (!tx_ring->buffer_info)
		goto err;
	memset(tx_ring->buffer_info, 0, size);

	/* round up to nearest 4K */
2021
	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035
	tx_ring->size = ALIGN(tx_ring->size, 4096);

	tx_ring->desc = pci_alloc_consistent(pdev, tx_ring->size,
					     &tx_ring->dma);

	if (!tx_ring->desc)
		goto err;

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;
	return 0;

err:
	vfree(tx_ring->buffer_info);
2036
	dev_err(&pdev->dev,
2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050
		"Unable to allocate memory for the transmit descriptor ring\n");
	return -ENOMEM;
}

/**
 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
 *				  (Descriptors) for all queues
 * @adapter: board private structure
 *
 * Return 0 on success, negative on failure
 **/
static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
{
	int i, err = 0;
2051
	int r_idx;
2052 2053

	for (i = 0; i < adapter->num_tx_queues; i++) {
2054
		err = igb_setup_tx_resources(&adapter->tx_ring[i]);
2055 2056 2057 2058
		if (err) {
			dev_err(&adapter->pdev->dev,
				"Allocation for Tx Queue %u failed\n", i);
			for (i--; i >= 0; i--)
2059
				igb_free_tx_resources(&adapter->tx_ring[i]);
2060 2061 2062 2063
			break;
		}
	}

2064 2065 2066
	for (i = 0; i < IGB_MAX_TX_QUEUES; i++) {
		r_idx = i % adapter->num_tx_queues;
		adapter->multi_tx_table[i] = &adapter->tx_ring[r_idx];
2067
	}
2068 2069 2070 2071
	return err;
}

/**
2072 2073
 * igb_setup_tctl - configure the transmit control registers
 * @adapter: Board private structure
2074
 **/
2075
static void igb_setup_tctl(struct igb_adapter *adapter)
2076 2077 2078 2079
{
	struct e1000_hw *hw = &adapter->hw;
	u32 tctl;

2080 2081
	/* disable queue 0 which is enabled by default on 82575 and 82576 */
	wr32(E1000_TXDCTL(0), 0);
2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096

	/* Program the Transmit Control Register */
	tctl = rd32(E1000_TCTL);
	tctl &= ~E1000_TCTL_CT;
	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);

	igb_config_collision_dist(hw);

	/* Enable transmits */
	tctl |= E1000_TCTL_EN;

	wr32(E1000_TCTL, tctl);
}

2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124
/**
 * igb_configure_tx_ring - Configure transmit ring after Reset
 * @adapter: board private structure
 * @ring: tx ring to configure
 *
 * Configure a transmit ring after a reset.
 **/
static void igb_configure_tx_ring(struct igb_adapter *adapter,
                                  struct igb_ring *ring)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 txdctl;
	u64 tdba = ring->dma;
	int reg_idx = ring->reg_idx;

	/* disable the queue */
	txdctl = rd32(E1000_TXDCTL(reg_idx));
	wr32(E1000_TXDCTL(reg_idx),
	                txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
	wrfl();
	mdelay(10);

	wr32(E1000_TDLEN(reg_idx),
	                ring->count * sizeof(union e1000_adv_tx_desc));
	wr32(E1000_TDBAL(reg_idx),
	                tdba & 0x00000000ffffffffULL);
	wr32(E1000_TDBAH(reg_idx), tdba >> 32);

2125 2126 2127 2128
	ring->head = hw->hw_addr + E1000_TDH(reg_idx);
	ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
	writel(0, ring->head);
	writel(0, ring->tail);
2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151

	txdctl |= IGB_TX_PTHRESH;
	txdctl |= IGB_TX_HTHRESH << 8;
	txdctl |= IGB_TX_WTHRESH << 16;

	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
	wr32(E1000_TXDCTL(reg_idx), txdctl);
}

/**
 * igb_configure_tx - Configure transmit Unit after Reset
 * @adapter: board private structure
 *
 * Configure the Tx unit of the MAC after a reset.
 **/
static void igb_configure_tx(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_tx_queues; i++)
		igb_configure_tx_ring(adapter, &adapter->tx_ring[i]);
}

2152 2153 2154 2155 2156 2157
/**
 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
 * @rx_ring:    rx descriptor ring (for a specific queue) to setup
 *
 * Returns 0 on success, negative on failure
 **/
2158
int igb_setup_rx_resources(struct igb_ring *rx_ring)
2159
{
2160
	struct pci_dev *pdev = rx_ring->pdev;
2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187
	int size, desc_len;

	size = sizeof(struct igb_buffer) * rx_ring->count;
	rx_ring->buffer_info = vmalloc(size);
	if (!rx_ring->buffer_info)
		goto err;
	memset(rx_ring->buffer_info, 0, size);

	desc_len = sizeof(union e1000_adv_rx_desc);

	/* Round up to nearest 4K */
	rx_ring->size = rx_ring->count * desc_len;
	rx_ring->size = ALIGN(rx_ring->size, 4096);

	rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
					     &rx_ring->dma);

	if (!rx_ring->desc)
		goto err;

	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;

	return 0;

err:
	vfree(rx_ring->buffer_info);
2188
	dev_err(&pdev->dev, "Unable to allocate memory for "
2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204
		"the receive descriptor ring\n");
	return -ENOMEM;
}

/**
 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
 *				  (Descriptors) for all queues
 * @adapter: board private structure
 *
 * Return 0 on success, negative on failure
 **/
static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
{
	int i, err = 0;

	for (i = 0; i < adapter->num_rx_queues; i++) {
2205
		err = igb_setup_rx_resources(&adapter->rx_ring[i]);
2206 2207 2208 2209
		if (err) {
			dev_err(&adapter->pdev->dev,
				"Allocation for Rx Queue %u failed\n", i);
			for (i--; i >= 0; i--)
2210
				igb_free_rx_resources(&adapter->rx_ring[i]);
2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229
			break;
		}
	}

	return err;
}

/**
 * igb_setup_rctl - configure the receive control registers
 * @adapter: Board private structure
 **/
static void igb_setup_rctl(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 rctl;

	rctl = rd32(E1000_RCTL);

	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2230
	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
2231

2232
	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
2233
		(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2234

2235 2236 2237 2238
	/*
	 * enable stripping of CRC. It's unlikely this will break BMC
	 * redirection as it did with e1000. Newer features require
	 * that the HW strips the CRC.
2239
	 */
2240
	rctl |= E1000_RCTL_SECRC;
2241

2242
	/*
2243
	 * disable store bad packets and clear size bits.
2244
	 */
2245
	rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
2246

A
Alexander Duyck 已提交
2247 2248
	/* enable LPE to prevent packets larger than max_frame_size */
	rctl |= E1000_RCTL_LPE;
2249

2250 2251
	/* disable queue 0 to prevent tail write w/o re-config */
	wr32(E1000_RXDCTL(0), 0);
2252

2253 2254 2255 2256 2257 2258 2259 2260 2261 2262
	/* Attention!!!  For SR-IOV PF driver operations you must enable
	 * queue drop for all VF and PF queues to prevent head of line blocking
	 * if an un-trusted VF does not provide descriptors to hardware.
	 */
	if (adapter->vfs_allocated_count) {
		u32 vmolr;

		/* set all queue drop enable bits */
		wr32(E1000_QDE, ALL_QUEUES);

2263
		vmolr = rd32(E1000_VMOLR(adapter->vfs_allocated_count));
2264 2265
		if (rctl & E1000_RCTL_LPE)
			vmolr |= E1000_VMOLR_LPE;
2266
		if (adapter->num_rx_queues > 1)
2267
			vmolr |= E1000_VMOLR_RSSE;
2268
		wr32(E1000_VMOLR(adapter->vfs_allocated_count), vmolr);
2269 2270
	}

2271 2272 2273
	wr32(E1000_RCTL, rctl);
}

2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321
/**
 * igb_rlpml_set - set maximum receive packet size
 * @adapter: board private structure
 *
 * Configure maximum receivable packet size.
 **/
static void igb_rlpml_set(struct igb_adapter *adapter)
{
	u32 max_frame_size = adapter->max_frame_size;
	struct e1000_hw *hw = &adapter->hw;
	u16 pf_id = adapter->vfs_allocated_count;

	if (adapter->vlgrp)
		max_frame_size += VLAN_TAG_SIZE;

	/* if vfs are enabled we set RLPML to the largest possible request
	 * size and set the VMOLR RLPML to the size we need */
	if (pf_id) {
		igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
		max_frame_size = MAX_STD_JUMBO_FRAME_SIZE + VLAN_TAG_SIZE;
	}

	wr32(E1000_RLPML, max_frame_size);
}

/**
 * igb_configure_vt_default_pool - Configure VT default pool
 * @adapter: board private structure
 *
 * Configure the default pool
 **/
static void igb_configure_vt_default_pool(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u16 pf_id = adapter->vfs_allocated_count;
	u32 vtctl;

	/* not in sr-iov mode - do nothing */
	if (!pf_id)
		return;

	vtctl = rd32(E1000_VT_CTL);
	vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
		   E1000_VT_CTL_DISABLE_DEF_POOL);
	vtctl |= pf_id << E1000_VT_CTL_DEFAULT_POOL_SHIFT;
	wr32(E1000_VT_CTL, vtctl);
}

2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334
/**
 * igb_configure_rx_ring - Configure a receive ring after Reset
 * @adapter: board private structure
 * @ring: receive ring to be configured
 *
 * Configure the Rx unit of the MAC after a reset.
 **/
static void igb_configure_rx_ring(struct igb_adapter *adapter,
                                  struct igb_ring *ring)
{
	struct e1000_hw *hw = &adapter->hw;
	u64 rdba = ring->dma;
	int reg_idx = ring->reg_idx;
2335
	u32 srrctl, rxdctl;
2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349

	/* disable the queue */
	rxdctl = rd32(E1000_RXDCTL(reg_idx));
	wr32(E1000_RXDCTL(reg_idx),
	                rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);

	/* Set DMA base address registers */
	wr32(E1000_RDBAL(reg_idx),
	     rdba & 0x00000000ffffffffULL);
	wr32(E1000_RDBAH(reg_idx), rdba >> 32);
	wr32(E1000_RDLEN(reg_idx),
	               ring->count * sizeof(union e1000_adv_rx_desc));

	/* initialize head and tail */
2350 2351 2352 2353
	ring->head = hw->hw_addr + E1000_RDH(reg_idx);
	ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
	writel(0, ring->head);
	writel(0, ring->tail);
2354

2355
	/* set descriptor configuration */
2356 2357
	if (ring->rx_buffer_len < IGB_RXBUFFER_1024) {
		srrctl = ALIGN(ring->rx_buffer_len, 64) <<
2358 2359 2360 2361 2362 2363 2364 2365 2366 2367
		         E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
#if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
		srrctl |= IGB_RXBUFFER_16384 >>
		          E1000_SRRCTL_BSIZEPKT_SHIFT;
#else
		srrctl |= (PAGE_SIZE / 2) >>
		          E1000_SRRCTL_BSIZEPKT_SHIFT;
#endif
		srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
	} else {
2368
		srrctl = ALIGN(ring->rx_buffer_len, 1024) >>
2369 2370 2371 2372 2373 2374
		         E1000_SRRCTL_BSIZEPKT_SHIFT;
		srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
	}

	wr32(E1000_SRRCTL(reg_idx), srrctl);

2375 2376 2377 2378 2379 2380 2381 2382 2383 2384
	/* enable receive descriptor fetching */
	rxdctl = rd32(E1000_RXDCTL(reg_idx));
	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
	rxdctl &= 0xFFF00000;
	rxdctl |= IGB_RX_PTHRESH;
	rxdctl |= IGB_RX_HTHRESH << 8;
	rxdctl |= IGB_RX_WTHRESH << 16;
	wr32(E1000_RXDCTL(reg_idx), rxdctl);
}

2385 2386 2387 2388 2389 2390 2391 2392 2393 2394
/**
 * igb_configure_rx - Configure receive Unit after Reset
 * @adapter: board private structure
 *
 * Configure the Rx unit of the MAC after a reset.
 **/
static void igb_configure_rx(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 rctl, rxcsum;
2395
	int i;
2396 2397 2398 2399 2400 2401 2402 2403

	/* disable receives while setting up the descriptors */
	rctl = rd32(E1000_RCTL);
	wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
	wrfl();
	mdelay(10);

	if (adapter->itr_setting > 3)
2404
		wr32(E1000_ITR, adapter->itr);
2405 2406 2407

	/* Setup the HW Rx Head and Tail Descriptor Pointers and
	 * the Base and Length of the Rx Descriptor Ring */
2408 2409
	for (i = 0; i < adapter->num_rx_queues; i++)
		igb_configure_rx_ring(adapter, &adapter->rx_ring[i]);
2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421

	if (adapter->num_rx_queues > 1) {
		u32 random[10];
		u32 mrqc;
		u32 j, shift;
		union e1000_reta {
			u32 dword;
			u8  bytes[4];
		} reta;

		get_random_bytes(&random[0], 40);

A
Alexander Duyck 已提交
2422 2423 2424 2425
		if (hw->mac.type >= e1000_82576)
			shift = 0;
		else
			shift = 6;
2426 2427
		for (j = 0; j < (32 * 4); j++) {
			reta.bytes[j & 3] =
2428
				adapter->rx_ring[(j % adapter->num_rx_queues)].reg_idx << shift;
2429 2430 2431 2432
			if ((j & 3) == 3)
				writel(reta.dword,
				       hw->hw_addr + E1000_RETA(0) + (j & ~3));
		}
2433 2434 2435 2436
		if (adapter->vfs_allocated_count)
			mrqc = E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
		else
			mrqc = E1000_MRQC_ENABLE_RSS_4Q;
2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451

		/* Fill out hash function seeds */
		for (j = 0; j < 10; j++)
			array_wr32(E1000_RSSRK(0), j, random[j]);

		mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
			 E1000_MRQC_RSS_FIELD_IPV4_TCP);
		mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
			 E1000_MRQC_RSS_FIELD_IPV6_TCP);
		mrqc |= (E1000_MRQC_RSS_FIELD_IPV4_UDP |
			 E1000_MRQC_RSS_FIELD_IPV6_UDP);
		mrqc |= (E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
			 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);

		wr32(E1000_MRQC, mrqc);
2452
	} else if (adapter->vfs_allocated_count) {
2453
		/* Enable multi-queue for sr-iov */
2454
		wr32(E1000_MRQC, E1000_MRQC_ENABLE_VMDQ);
2455 2456
	}

2457 2458 2459 2460
	/* Enable Receive Checksum Offload for TCP and UDP */
	rxcsum = rd32(E1000_RXCSUM);
	/* Disable raw packet checksumming */
	rxcsum |= E1000_RXCSUM_PCSD;
2461 2462

	if (adapter->hw.mac.type == e1000_82576)
2463 2464 2465
		/* Enable Receive Checksum Offload for SCTP */
		rxcsum |= E1000_RXCSUM_CRCOFL;

2466
	/* Don't need to set TUOFL or IPOFL, they default to 1 */
2467 2468
	wr32(E1000_RXCSUM, rxcsum);

2469 2470 2471
	/* Set the default pool for the PF's first queue */
	igb_configure_vt_default_pool(adapter);

2472 2473 2474
	/* set UTA to appropriate mode */
	igb_set_uta(adapter);

2475 2476 2477 2478
	/* set the correct pool for the PF default MAC address in entry 0 */
	igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
	                 adapter->vfs_allocated_count);

2479
	igb_rlpml_set(adapter);
2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490

	/* Enable Receives */
	wr32(E1000_RCTL, rctl);
}

/**
 * igb_free_tx_resources - Free Tx Resources per Queue
 * @tx_ring: Tx descriptor ring for a specific queue
 *
 * Free all transmit software resources
 **/
2491
void igb_free_tx_resources(struct igb_ring *tx_ring)
2492
{
2493
	igb_clean_tx_ring(tx_ring);
2494 2495 2496 2497

	vfree(tx_ring->buffer_info);
	tx_ring->buffer_info = NULL;

2498 2499
	pci_free_consistent(tx_ring->pdev, tx_ring->size,
	                    tx_ring->desc, tx_ring->dma);
2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514

	tx_ring->desc = NULL;
}

/**
 * igb_free_all_tx_resources - Free Tx Resources for All Queues
 * @adapter: board private structure
 *
 * Free all transmit software resources
 **/
static void igb_free_all_tx_resources(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_tx_queues; i++)
2515
		igb_free_tx_resources(&adapter->tx_ring[i]);
2516 2517
}

2518
static void igb_unmap_and_free_tx_resource(struct igb_ring *tx_ring,
2519 2520
					   struct igb_buffer *buffer_info)
{
2521
	buffer_info->dma = 0;
2522
	if (buffer_info->skb) {
2523 2524
		skb_dma_unmap(&tx_ring->pdev->dev,
		              buffer_info->skb,
2525
		              DMA_TO_DEVICE);
2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536
		dev_kfree_skb_any(buffer_info->skb);
		buffer_info->skb = NULL;
	}
	buffer_info->time_stamp = 0;
	/* buffer_info must be completely set up in the transmit path */
}

/**
 * igb_clean_tx_ring - Free Tx Buffers
 * @tx_ring: ring to be cleaned
 **/
2537
static void igb_clean_tx_ring(struct igb_ring *tx_ring)
2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548
{
	struct igb_buffer *buffer_info;
	unsigned long size;
	unsigned int i;

	if (!tx_ring->buffer_info)
		return;
	/* Free all the Tx ring sk_buffs */

	for (i = 0; i < tx_ring->count; i++) {
		buffer_info = &tx_ring->buffer_info[i];
2549
		igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561
	}

	size = sizeof(struct igb_buffer) * tx_ring->count;
	memset(tx_ring->buffer_info, 0, size);

	/* Zero out the descriptor ring */

	memset(tx_ring->desc, 0, tx_ring->size);

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;

2562 2563
	writel(0, tx_ring->head);
	writel(0, tx_ring->tail);
2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574
}

/**
 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
 * @adapter: board private structure
 **/
static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_tx_queues; i++)
2575
		igb_clean_tx_ring(&adapter->tx_ring[i]);
2576 2577 2578 2579 2580 2581 2582 2583
}

/**
 * igb_free_rx_resources - Free Rx Resources
 * @rx_ring: ring to clean the resources from
 *
 * Free all receive software resources
 **/
2584
void igb_free_rx_resources(struct igb_ring *rx_ring)
2585
{
2586
	igb_clean_rx_ring(rx_ring);
2587 2588 2589 2590

	vfree(rx_ring->buffer_info);
	rx_ring->buffer_info = NULL;

2591 2592
	pci_free_consistent(rx_ring->pdev, rx_ring->size,
	                    rx_ring->desc, rx_ring->dma);
2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607

	rx_ring->desc = NULL;
}

/**
 * igb_free_all_rx_resources - Free Rx Resources for All Queues
 * @adapter: board private structure
 *
 * Free all receive software resources
 **/
static void igb_free_all_rx_resources(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_rx_queues; i++)
2608
		igb_free_rx_resources(&adapter->rx_ring[i]);
2609 2610 2611 2612 2613 2614
}

/**
 * igb_clean_rx_ring - Free Rx Buffers per Queue
 * @rx_ring: ring to free buffers from
 **/
2615
static void igb_clean_rx_ring(struct igb_ring *rx_ring)
2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626
{
	struct igb_buffer *buffer_info;
	unsigned long size;
	unsigned int i;

	if (!rx_ring->buffer_info)
		return;
	/* Free all the Rx ring sk_buffs */
	for (i = 0; i < rx_ring->count; i++) {
		buffer_info = &rx_ring->buffer_info[i];
		if (buffer_info->dma) {
2627 2628
			pci_unmap_single(rx_ring->pdev,
			                 buffer_info->dma,
2629
					 rx_ring->rx_buffer_len,
A
Alexander Duyck 已提交
2630
					 PCI_DMA_FROMDEVICE);
2631 2632 2633 2634 2635 2636 2637
			buffer_info->dma = 0;
		}

		if (buffer_info->skb) {
			dev_kfree_skb(buffer_info->skb);
			buffer_info->skb = NULL;
		}
A
Alexander Duyck 已提交
2638
		if (buffer_info->page_dma) {
2639 2640
			pci_unmap_page(rx_ring->pdev,
			               buffer_info->page_dma,
A
Alexander Duyck 已提交
2641 2642 2643 2644
				       PAGE_SIZE / 2,
				       PCI_DMA_FROMDEVICE);
			buffer_info->page_dma = 0;
		}
2645 2646 2647
		if (buffer_info->page) {
			put_page(buffer_info->page);
			buffer_info->page = NULL;
2648
			buffer_info->page_offset = 0;
2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660
		}
	}

	size = sizeof(struct igb_buffer) * rx_ring->count;
	memset(rx_ring->buffer_info, 0, size);

	/* Zero out the descriptor ring */
	memset(rx_ring->desc, 0, rx_ring->size);

	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;

2661 2662
	writel(0, rx_ring->head);
	writel(0, rx_ring->tail);
2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673
}

/**
 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
 * @adapter: board private structure
 **/
static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_rx_queues; i++)
2674
		igb_clean_rx_ring(&adapter->rx_ring[i]);
2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686
}

/**
 * igb_set_mac - Change the Ethernet Address of the NIC
 * @netdev: network interface device structure
 * @p: pointer to an address structure
 *
 * Returns 0 on success, negative on failure
 **/
static int igb_set_mac(struct net_device *netdev, void *p)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
2687
	struct e1000_hw *hw = &adapter->hw;
2688 2689 2690 2691 2692 2693
	struct sockaddr *addr = p;

	if (!is_valid_ether_addr(addr->sa_data))
		return -EADDRNOTAVAIL;

	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2694
	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
2695

2696 2697 2698
	/* set the correct pool for the new PF MAC address in entry 0 */
	igb_rar_set_qsel(adapter, hw->mac.addr, 0,
	                 adapter->vfs_allocated_count);
2699

2700 2701 2702 2703
	return 0;
}

/**
2704
 * igb_write_mc_addr_list - write multicast addresses to MTA
2705 2706
 * @netdev: network interface device structure
 *
2707 2708 2709 2710
 * Writes multicast address list to the MTA hash table.
 * Returns: -ENOMEM on failure
 *                0 on no addresses written
 *                X on writing X addresses to MTA
2711
 **/
2712
static int igb_write_mc_addr_list(struct net_device *netdev)
2713 2714 2715
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
2716
	struct dev_mc_list *mc_ptr = netdev->mc_list;
2717 2718
	u8  *mta_list;
	u32 vmolr = 0;
2719 2720
	int i;

2721 2722 2723 2724 2725 2726
	if (!netdev->mc_count) {
		/* nothing to program, so clear mc list */
		igb_update_mc_addr_list(hw, NULL, 0);
		igb_restore_vf_multicasts(adapter);
		return 0;
	}
2727

2728 2729 2730
	mta_list = kzalloc(netdev->mc_count * 6, GFP_ATOMIC);
	if (!mta_list)
		return -ENOMEM;
2731

2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742
	/* set vmolr receive overflow multicast bit */
	vmolr |= E1000_VMOLR_ROMPE;

	/* The shared function expects a packed array of only addresses. */
	mc_ptr = netdev->mc_list;

	for (i = 0; i < netdev->mc_count; i++) {
		if (!mc_ptr)
			break;
		memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr, ETH_ALEN);
		mc_ptr = mc_ptr->next;
2743
	}
2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769
	igb_update_mc_addr_list(hw, mta_list, i);
	kfree(mta_list);

	return netdev->mc_count;
}

/**
 * igb_write_uc_addr_list - write unicast addresses to RAR table
 * @netdev: network interface device structure
 *
 * Writes unicast address list to the RAR table.
 * Returns: -ENOMEM on failure/insufficient address space
 *                0 on no addresses written
 *                X on writing X addresses to the RAR table
 **/
static int igb_write_uc_addr_list(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	unsigned int vfn = adapter->vfs_allocated_count;
	unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
	int count = 0;

	/* return ENOMEM indicating insufficient memory for addresses */
	if (netdev->uc.count > rar_entries)
		return -ENOMEM;
2770

2771 2772 2773 2774 2775
	if (netdev->uc.count && rar_entries) {
		struct netdev_hw_addr *ha;
		list_for_each_entry(ha, &netdev->uc.list, list) {
			if (!rar_entries)
				break;
2776 2777
			igb_rar_set_qsel(adapter, ha->addr,
			                 rar_entries--,
2778 2779
			                 vfn);
			count++;
2780 2781 2782 2783 2784 2785 2786 2787 2788
		}
	}
	/* write the addresses in reverse order to avoid write combining */
	for (; rar_entries > 0 ; rar_entries--) {
		wr32(E1000_RAH(rar_entries), 0);
		wr32(E1000_RAL(rar_entries), 0);
	}
	wrfl();

2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846
	return count;
}

/**
 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
 * @netdev: network interface device structure
 *
 * The set_rx_mode entry point is called whenever the unicast or multicast
 * address lists or the network interface flags are updated.  This routine is
 * responsible for configuring the hardware for proper unicast, multicast,
 * promiscuous mode, and all-multi behavior.
 **/
static void igb_set_rx_mode(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	unsigned int vfn = adapter->vfs_allocated_count;
	u32 rctl, vmolr = 0;
	int count;

	/* Check for Promiscuous and All Multicast modes */
	rctl = rd32(E1000_RCTL);

	/* clear the effected bits */
	rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);

	if (netdev->flags & IFF_PROMISC) {
		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
		vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
	} else {
		if (netdev->flags & IFF_ALLMULTI) {
			rctl |= E1000_RCTL_MPE;
			vmolr |= E1000_VMOLR_MPME;
		} else {
			/*
			 * Write addresses to the MTA, if the attempt fails
			 * then we should just turn on promiscous mode so
			 * that we can at least receive multicast traffic
			 */
			count = igb_write_mc_addr_list(netdev);
			if (count < 0) {
				rctl |= E1000_RCTL_MPE;
				vmolr |= E1000_VMOLR_MPME;
			} else if (count) {
				vmolr |= E1000_VMOLR_ROMPE;
			}
		}
		/*
		 * Write addresses to available RAR registers, if there is not
		 * sufficient space to store all the addresses then enable
		 * unicast promiscous mode
		 */
		count = igb_write_uc_addr_list(netdev);
		if (count < 0) {
			rctl |= E1000_RCTL_UPE;
			vmolr |= E1000_VMOLR_ROPE;
		}
		rctl |= E1000_RCTL_VFE;
2847
	}
2848
	wr32(E1000_RCTL, rctl);
2849

2850 2851 2852 2853 2854 2855 2856
	/*
	 * In order to support SR-IOV and eventually VMDq it is necessary to set
	 * the VMOLR to enable the appropriate modes.  Without this workaround
	 * we will have issues with VLAN tag stripping not being done for frames
	 * that are only arriving because we are the default pool
	 */
	if (hw->mac.type < e1000_82576)
2857
		return;
2858

2859 2860 2861
	vmolr |= rd32(E1000_VMOLR(vfn)) &
	         ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
	wr32(E1000_VMOLR(vfn), vmolr);
2862
	igb_restore_vf_multicasts(adapter);
2863 2864 2865 2866 2867 2868 2869
}

/* Need to wait a few seconds after link up to get diagnostic information from
 * the phy */
static void igb_update_phy_info(unsigned long data)
{
	struct igb_adapter *adapter = (struct igb_adapter *) data;
2870
	igb_get_phy_info(&adapter->hw);
2871 2872
}

A
Alexander Duyck 已提交
2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908
/**
 * igb_has_link - check shared code for link and determine up/down
 * @adapter: pointer to driver private info
 **/
static bool igb_has_link(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	bool link_active = false;
	s32 ret_val = 0;

	/* get_link_status is set on LSC (link status) interrupt or
	 * rx sequence error interrupt.  get_link_status will stay
	 * false until the e1000_check_for_link establishes link
	 * for copper adapters ONLY
	 */
	switch (hw->phy.media_type) {
	case e1000_media_type_copper:
		if (hw->mac.get_link_status) {
			ret_val = hw->mac.ops.check_for_link(hw);
			link_active = !hw->mac.get_link_status;
		} else {
			link_active = true;
		}
		break;
	case e1000_media_type_internal_serdes:
		ret_val = hw->mac.ops.check_for_link(hw);
		link_active = hw->mac.serdes_has_link;
		break;
	default:
	case e1000_media_type_unknown:
		break;
	}

	return link_active;
}

2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927
/**
 * igb_watchdog - Timer Call-back
 * @data: pointer to adapter cast into an unsigned long
 **/
static void igb_watchdog(unsigned long data)
{
	struct igb_adapter *adapter = (struct igb_adapter *)data;
	/* Do the rest outside of interrupt context */
	schedule_work(&adapter->watchdog_task);
}

static void igb_watchdog_task(struct work_struct *work)
{
	struct igb_adapter *adapter = container_of(work,
					struct igb_adapter, watchdog_task);
	struct e1000_hw *hw = &adapter->hw;
	struct net_device *netdev = adapter->netdev;
	struct igb_ring *tx_ring = adapter->tx_ring;
	u32 link;
2928
	int i;
2929

A
Alexander Duyck 已提交
2930 2931
	link = igb_has_link(adapter);
	if ((netif_carrier_ok(netdev)) && link)
2932 2933 2934 2935 2936 2937 2938 2939 2940 2941
		goto link_up;

	if (link) {
		if (!netif_carrier_ok(netdev)) {
			u32 ctrl;
			hw->mac.ops.get_speed_and_duplex(&adapter->hw,
						   &adapter->link_speed,
						   &adapter->link_duplex);

			ctrl = rd32(E1000_CTRL);
2942 2943
			/* Links status message must follow this format */
			printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s, "
2944
				 "Flow Control: %s\n",
2945
			         netdev->name,
2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970
				 adapter->link_speed,
				 adapter->link_duplex == FULL_DUPLEX ?
				 "Full Duplex" : "Half Duplex",
				 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
				 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
				 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
				 E1000_CTRL_TFCE) ? "TX" : "None")));

			/* tweak tx_queue_len according to speed/duplex and
			 * adjust the timeout factor */
			netdev->tx_queue_len = adapter->tx_queue_len;
			adapter->tx_timeout_factor = 1;
			switch (adapter->link_speed) {
			case SPEED_10:
				netdev->tx_queue_len = 10;
				adapter->tx_timeout_factor = 14;
				break;
			case SPEED_100:
				netdev->tx_queue_len = 100;
				/* maybe add some timeout factor ? */
				break;
			}

			netif_carrier_on(netdev);

2971 2972
			igb_ping_all_vfs(adapter);

2973
			/* link state has changed, schedule phy info update */
2974 2975 2976 2977 2978 2979 2980 2981
			if (!test_bit(__IGB_DOWN, &adapter->state))
				mod_timer(&adapter->phy_info_timer,
					  round_jiffies(jiffies + 2 * HZ));
		}
	} else {
		if (netif_carrier_ok(netdev)) {
			adapter->link_speed = 0;
			adapter->link_duplex = 0;
2982 2983 2984
			/* Links status message must follow this format */
			printk(KERN_INFO "igb: %s NIC Link is Down\n",
			       netdev->name);
2985
			netif_carrier_off(netdev);
2986

2987 2988
			igb_ping_all_vfs(adapter);

2989
			/* link state has changed, schedule phy info update */
2990 2991 2992 2993 2994 2995 2996 2997 2998
			if (!test_bit(__IGB_DOWN, &adapter->state))
				mod_timer(&adapter->phy_info_timer,
					  round_jiffies(jiffies + 2 * HZ));
		}
	}

link_up:
	igb_update_stats(adapter);

2999
	hw->mac.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
3000
	adapter->tpt_old = adapter->stats.tpt;
3001
	hw->mac.collision_delta = adapter->stats.colc - adapter->colc_old;
3002 3003 3004 3005 3006 3007 3008 3009 3010 3011
	adapter->colc_old = adapter->stats.colc;

	adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
	adapter->gorc_old = adapter->stats.gorc;
	adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
	adapter->gotc_old = adapter->stats.gotc;

	igb_update_adaptive(&adapter->hw);

	if (!netif_carrier_ok(netdev)) {
3012
		if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
3013 3014 3015 3016 3017 3018
			/* We've lost link, so the controller stops DMA,
			 * but we've got queued Tx work that's never going
			 * to get done, so reset controller to flush Tx.
			 * (Do the reset outside of interrupt context). */
			adapter->tx_timeout_count++;
			schedule_work(&adapter->reset_task);
3019 3020
			/* return immediately since reset is imminent */
			return;
3021 3022 3023 3024
		}
	}

	/* Cause software interrupt to ensure rx ring is cleaned */
3025
	if (adapter->msix_entries) {
3026 3027 3028 3029 3030
		u32 eics = 0;
		for (i = 0; i < adapter->num_q_vectors; i++) {
			struct igb_q_vector *q_vector = adapter->q_vector[i];
			eics |= q_vector->eims_value;
		}
3031 3032 3033 3034
		wr32(E1000_EICS, eics);
	} else {
		wr32(E1000_ICS, E1000_ICS_RXDMT0);
	}
3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052

	/* Force detection of hung controller every watchdog period */
	tx_ring->detect_tx_hung = true;

	/* Reset the timer */
	if (!test_bit(__IGB_DOWN, &adapter->state))
		mod_timer(&adapter->watchdog_timer,
			  round_jiffies(jiffies + 2 * HZ));
}

enum latency_range {
	lowest_latency = 0,
	low_latency = 1,
	bulk_latency = 2,
	latency_invalid = 255
};


3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066
/**
 * igb_update_ring_itr - update the dynamic ITR value based on packet size
 *
 *      Stores a new ITR value based on strictly on packet size.  This
 *      algorithm is less sophisticated than that used in igb_update_itr,
 *      due to the difficulty of synchronizing statistics across multiple
 *      receive rings.  The divisors and thresholds used by this fuction
 *      were determined based on theoretical maximum wire speed and testing
 *      data, in order to minimize response time while increasing bulk
 *      throughput.
 *      This functionality is controlled by the InterruptThrottleRate module
 *      parameter (see igb_param.c)
 *      NOTE:  This function is called only when operating in a multiqueue
 *             receive environment.
3067
 * @q_vector: pointer to q_vector
3068
 **/
3069
static void igb_update_ring_itr(struct igb_q_vector *q_vector)
3070
{
3071
	int new_val = q_vector->itr_val;
3072
	int avg_wire_size = 0;
3073
	struct igb_adapter *adapter = q_vector->adapter;
3074

3075 3076 3077 3078
	/* For non-gigabit speeds, just fix the interrupt rate at 4000
	 * ints/sec - ITR timer value of 120 ticks.
	 */
	if (adapter->link_speed != SPEED_1000) {
3079
		new_val = 976;
3080
		goto set_itr_val;
3081
	}
3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097

	if (q_vector->rx_ring && q_vector->rx_ring->total_packets) {
		struct igb_ring *ring = q_vector->rx_ring;
		avg_wire_size = ring->total_bytes / ring->total_packets;
	}

	if (q_vector->tx_ring && q_vector->tx_ring->total_packets) {
		struct igb_ring *ring = q_vector->tx_ring;
		avg_wire_size = max_t(u32, avg_wire_size,
		                      (ring->total_bytes /
		                       ring->total_packets));
	}

	/* if avg_wire_size isn't set no work was done */
	if (!avg_wire_size)
		goto clear_counts;
3098

3099 3100 3101 3102 3103
	/* Add 24 bytes to size to account for CRC, preamble, and gap */
	avg_wire_size += 24;

	/* Don't starve jumbo frames */
	avg_wire_size = min(avg_wire_size, 3000);
3104

3105 3106 3107 3108 3109
	/* Give a little boost to mid-size frames */
	if ((avg_wire_size > 300) && (avg_wire_size < 1200))
		new_val = avg_wire_size / 3;
	else
		new_val = avg_wire_size / 2;
3110

3111
set_itr_val:
3112 3113 3114
	if (new_val != q_vector->itr_val) {
		q_vector->itr_val = new_val;
		q_vector->set_itr = 1;
3115
	}
3116
clear_counts:
3117 3118 3119 3120 3121 3122 3123 3124
	if (q_vector->rx_ring) {
		q_vector->rx_ring->total_bytes = 0;
		q_vector->rx_ring->total_packets = 0;
	}
	if (q_vector->tx_ring) {
		q_vector->tx_ring->total_bytes = 0;
		q_vector->tx_ring->total_packets = 0;
	}
3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140
}

/**
 * igb_update_itr - update the dynamic ITR value based on statistics
 *      Stores a new ITR value based on packets and byte
 *      counts during the last interrupt.  The advantage of per interrupt
 *      computation is faster updates and more accurate ITR for the current
 *      traffic pattern.  Constants in this function were computed
 *      based on theoretical maximum wire speed and thresholds were set based
 *      on testing data as well as attempting to minimize response time
 *      while increasing bulk throughput.
 *      this functionality is controlled by the InterruptThrottleRate module
 *      parameter (see igb_param.c)
 *      NOTE:  These calculations are only valid when operating in a single-
 *             queue environment.
 * @adapter: pointer to adapter
3141
 * @itr_setting: current q_vector->itr_val
3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180
 * @packets: the number of packets during this measurement interval
 * @bytes: the number of bytes during this measurement interval
 **/
static unsigned int igb_update_itr(struct igb_adapter *adapter, u16 itr_setting,
				   int packets, int bytes)
{
	unsigned int retval = itr_setting;

	if (packets == 0)
		goto update_itr_done;

	switch (itr_setting) {
	case lowest_latency:
		/* handle TSO and jumbo frames */
		if (bytes/packets > 8000)
			retval = bulk_latency;
		else if ((packets < 5) && (bytes > 512))
			retval = low_latency;
		break;
	case low_latency:  /* 50 usec aka 20000 ints/s */
		if (bytes > 10000) {
			/* this if handles the TSO accounting */
			if (bytes/packets > 8000) {
				retval = bulk_latency;
			} else if ((packets < 10) || ((bytes/packets) > 1200)) {
				retval = bulk_latency;
			} else if ((packets > 35)) {
				retval = lowest_latency;
			}
		} else if (bytes/packets > 2000) {
			retval = bulk_latency;
		} else if (packets <= 2 && bytes < 512) {
			retval = lowest_latency;
		}
		break;
	case bulk_latency: /* 250 usec aka 4000 ints/s */
		if (bytes > 25000) {
			if (packets > 35)
				retval = low_latency;
3181
		} else if (bytes < 1500) {
3182 3183 3184 3185 3186 3187 3188 3189 3190
			retval = low_latency;
		}
		break;
	}

update_itr_done:
	return retval;
}

3191
static void igb_set_itr(struct igb_adapter *adapter)
3192
{
3193
	struct igb_q_vector *q_vector = adapter->q_vector[0];
3194
	u16 current_itr;
3195
	u32 new_itr = q_vector->itr_val;
3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208

	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
	if (adapter->link_speed != SPEED_1000) {
		current_itr = 0;
		new_itr = 4000;
		goto set_itr_now;
	}

	adapter->rx_itr = igb_update_itr(adapter,
				    adapter->rx_itr,
				    adapter->rx_ring->total_packets,
				    adapter->rx_ring->total_bytes);

3209 3210 3211 3212 3213
	adapter->tx_itr = igb_update_itr(adapter,
				    adapter->tx_itr,
				    adapter->tx_ring->total_packets,
				    adapter->tx_ring->total_bytes);
	current_itr = max(adapter->rx_itr, adapter->tx_itr);
3214

3215
	/* conservative mode (itr 3) eliminates the lowest_latency setting */
3216
	if (adapter->itr_setting == 3 && current_itr == lowest_latency)
3217 3218
		current_itr = low_latency;

3219 3220 3221
	switch (current_itr) {
	/* counts and packets in update_itr are dependent on these numbers */
	case lowest_latency:
3222
		new_itr = 56;  /* aka 70,000 ints/sec */
3223 3224
		break;
	case low_latency:
3225
		new_itr = 196; /* aka 20,000 ints/sec */
3226 3227
		break;
	case bulk_latency:
3228
		new_itr = 980; /* aka 4,000 ints/sec */
3229 3230 3231 3232 3233 3234
		break;
	default:
		break;
	}

set_itr_now:
3235 3236
	adapter->rx_ring->total_bytes = 0;
	adapter->rx_ring->total_packets = 0;
3237 3238
	adapter->tx_ring->total_bytes = 0;
	adapter->tx_ring->total_packets = 0;
3239

3240
	if (new_itr != q_vector->itr_val) {
3241 3242 3243
		/* this attempts to bias the interrupt rate towards Bulk
		 * by adding intermediate steps when interrupt rate is
		 * increasing */
3244 3245 3246 3247
		new_itr = new_itr > q_vector->itr_val ?
		             max((new_itr * q_vector->itr_val) /
		                 (new_itr + (q_vector->itr_val >> 2)),
		                 new_itr) :
3248 3249 3250 3251 3252 3253 3254
			     new_itr;
		/* Don't write the value here; it resets the adapter's
		 * internal timer, and causes us to delay far longer than
		 * we should between interrupts.  Instead, we write the ITR
		 * value at the beginning of the next interrupt so the timing
		 * ends up being correct.
		 */
3255 3256
		q_vector->itr_val = new_itr;
		q_vector->set_itr = 1;
3257 3258 3259 3260 3261 3262 3263 3264 3265
	}

	return;
}

#define IGB_TX_FLAGS_CSUM		0x00000001
#define IGB_TX_FLAGS_VLAN		0x00000002
#define IGB_TX_FLAGS_TSO		0x00000004
#define IGB_TX_FLAGS_IPV4		0x00000008
3266
#define IGB_TX_FLAGS_TSTAMP             0x00000010
3267 3268 3269
#define IGB_TX_FLAGS_VLAN_MASK	0xffff0000
#define IGB_TX_FLAGS_VLAN_SHIFT	16

3270
static inline int igb_tso_adv(struct igb_ring *tx_ring,
3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330
			      struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
{
	struct e1000_adv_tx_context_desc *context_desc;
	unsigned int i;
	int err;
	struct igb_buffer *buffer_info;
	u32 info = 0, tu_cmd = 0;
	u32 mss_l4len_idx, l4len;
	*hdr_len = 0;

	if (skb_header_cloned(skb)) {
		err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
		if (err)
			return err;
	}

	l4len = tcp_hdrlen(skb);
	*hdr_len += l4len;

	if (skb->protocol == htons(ETH_P_IP)) {
		struct iphdr *iph = ip_hdr(skb);
		iph->tot_len = 0;
		iph->check = 0;
		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
							 iph->daddr, 0,
							 IPPROTO_TCP,
							 0);
	} else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
		ipv6_hdr(skb)->payload_len = 0;
		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
						       &ipv6_hdr(skb)->daddr,
						       0, IPPROTO_TCP, 0);
	}

	i = tx_ring->next_to_use;

	buffer_info = &tx_ring->buffer_info[i];
	context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
	/* VLAN MACLEN IPLEN */
	if (tx_flags & IGB_TX_FLAGS_VLAN)
		info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
	info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
	*hdr_len += skb_network_offset(skb);
	info |= skb_network_header_len(skb);
	*hdr_len += skb_network_header_len(skb);
	context_desc->vlan_macip_lens = cpu_to_le32(info);

	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
	tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);

	if (skb->protocol == htons(ETH_P_IP))
		tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
	tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;

	context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);

	/* MSS L4LEN IDX */
	mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
	mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);

3331
	/* For 82575, context index must be unique per ring. */
3332 3333
	if (tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX)
		mss_l4len_idx |= tx_ring->reg_idx << 4;
3334 3335 3336 3337 3338

	context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
	context_desc->seqnum_seed = 0;

	buffer_info->time_stamp = jiffies;
A
Alexander Duyck 已提交
3339
	buffer_info->next_to_watch = i;
3340 3341 3342 3343 3344 3345 3346 3347 3348 3349
	buffer_info->dma = 0;
	i++;
	if (i == tx_ring->count)
		i = 0;

	tx_ring->next_to_use = i;

	return true;
}

3350 3351
static inline bool igb_tx_csum_adv(struct igb_ring *tx_ring,
				   struct sk_buff *skb, u32 tx_flags)
3352 3353
{
	struct e1000_adv_tx_context_desc *context_desc;
3354
	struct pci_dev *pdev = tx_ring->pdev;
3355 3356
	struct igb_buffer *buffer_info;
	u32 info = 0, tu_cmd = 0;
3357
	unsigned int i;
3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375

	if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
	    (tx_flags & IGB_TX_FLAGS_VLAN)) {
		i = tx_ring->next_to_use;
		buffer_info = &tx_ring->buffer_info[i];
		context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);

		if (tx_flags & IGB_TX_FLAGS_VLAN)
			info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
		info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
		if (skb->ip_summed == CHECKSUM_PARTIAL)
			info |= skb_network_header_len(skb);

		context_desc->vlan_macip_lens = cpu_to_le32(info);

		tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);

		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387
			__be16 protocol;

			if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
				const struct vlan_ethhdr *vhdr =
				          (const struct vlan_ethhdr*)skb->data;

				protocol = vhdr->h_vlan_encapsulated_proto;
			} else {
				protocol = skb->protocol;
			}

			switch (protocol) {
3388
			case cpu_to_be16(ETH_P_IP):
3389
				tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
3390 3391
				if (ip_hdr(skb)->protocol == IPPROTO_TCP)
					tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3392 3393
				else if (ip_hdr(skb)->protocol == IPPROTO_SCTP)
					tu_cmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
3394
				break;
3395
			case cpu_to_be16(ETH_P_IPV6):
3396 3397 3398
				/* XXX what about other V6 headers?? */
				if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
					tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3399 3400
				else if (ipv6_hdr(skb)->nexthdr == IPPROTO_SCTP)
					tu_cmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
3401 3402 3403
				break;
			default:
				if (unlikely(net_ratelimit()))
3404
					dev_warn(&pdev->dev,
3405 3406 3407 3408
					    "partial checksum but proto=%x!\n",
					    skb->protocol);
				break;
			}
3409 3410 3411 3412
		}

		context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
		context_desc->seqnum_seed = 0;
3413
		if (tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX)
3414
			context_desc->mss_l4len_idx =
3415
				cpu_to_le32(tx_ring->reg_idx << 4);
3416 3417

		buffer_info->time_stamp = jiffies;
A
Alexander Duyck 已提交
3418
		buffer_info->next_to_watch = i;
3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433
		buffer_info->dma = 0;

		i++;
		if (i == tx_ring->count)
			i = 0;
		tx_ring->next_to_use = i;

		return true;
	}
	return false;
}

#define IGB_MAX_TXD_PWR	16
#define IGB_MAX_DATA_PER_TXD	(1<<IGB_MAX_TXD_PWR)

3434
static inline int igb_tx_map_adv(struct igb_ring *tx_ring, struct sk_buff *skb,
A
Alexander Duyck 已提交
3435
				 unsigned int first)
3436 3437
{
	struct igb_buffer *buffer_info;
3438
	struct pci_dev *pdev = tx_ring->pdev;
3439 3440 3441
	unsigned int len = skb_headlen(skb);
	unsigned int count = 0, i;
	unsigned int f;
3442
	dma_addr_t *map;
3443 3444 3445

	i = tx_ring->next_to_use;

3446 3447
	if (skb_dma_map(&pdev->dev, skb, DMA_TO_DEVICE)) {
		dev_err(&pdev->dev, "TX DMA map failed\n");
3448 3449 3450 3451 3452
		return 0;
	}

	map = skb_shinfo(skb)->dma_maps;

3453 3454 3455 3456 3457
	buffer_info = &tx_ring->buffer_info[i];
	BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
	buffer_info->length = len;
	/* set time_stamp *before* dma to help avoid a possible race */
	buffer_info->time_stamp = jiffies;
A
Alexander Duyck 已提交
3458
	buffer_info->next_to_watch = i;
E
Eric Dumazet 已提交
3459
	buffer_info->dma = skb_shinfo(skb)->dma_head;
3460 3461 3462 3463

	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
		struct skb_frag_struct *frag;

3464 3465 3466 3467
		i++;
		if (i == tx_ring->count)
			i = 0;

3468 3469 3470 3471 3472 3473 3474
		frag = &skb_shinfo(skb)->frags[f];
		len = frag->size;

		buffer_info = &tx_ring->buffer_info[i];
		BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
		buffer_info->length = len;
		buffer_info->time_stamp = jiffies;
A
Alexander Duyck 已提交
3475
		buffer_info->next_to_watch = i;
3476
		buffer_info->dma = map[count];
3477 3478 3479 3480
		count++;
	}

	tx_ring->buffer_info[i].skb = skb;
A
Alexander Duyck 已提交
3481
	tx_ring->buffer_info[first].next_to_watch = i;
3482

E
Eric Dumazet 已提交
3483
	return count + 1;
3484 3485
}

3486
static inline void igb_tx_queue_adv(struct igb_ring *tx_ring,
3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500
				    int tx_flags, int count, u32 paylen,
				    u8 hdr_len)
{
	union e1000_adv_tx_desc *tx_desc = NULL;
	struct igb_buffer *buffer_info;
	u32 olinfo_status = 0, cmd_type_len;
	unsigned int i;

	cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
			E1000_ADVTXD_DCMD_DEXT);

	if (tx_flags & IGB_TX_FLAGS_VLAN)
		cmd_type_len |= E1000_ADVTXD_DCMD_VLE;

3501 3502 3503
	if (tx_flags & IGB_TX_FLAGS_TSTAMP)
		cmd_type_len |= E1000_ADVTXD_MAC_TSTAMP;

3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517
	if (tx_flags & IGB_TX_FLAGS_TSO) {
		cmd_type_len |= E1000_ADVTXD_DCMD_TSE;

		/* insert tcp checksum */
		olinfo_status |= E1000_TXD_POPTS_TXSM << 8;

		/* insert ip checksum */
		if (tx_flags & IGB_TX_FLAGS_IPV4)
			olinfo_status |= E1000_TXD_POPTS_IXSM << 8;

	} else if (tx_flags & IGB_TX_FLAGS_CSUM) {
		olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
	}

3518 3519 3520
	if ((tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX) &&
	    (tx_flags & (IGB_TX_FLAGS_CSUM |
	                 IGB_TX_FLAGS_TSO |
3521
			 IGB_TX_FLAGS_VLAN)))
3522
		olinfo_status |= tx_ring->reg_idx << 4;
3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538

	olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);

	i = tx_ring->next_to_use;
	while (count--) {
		buffer_info = &tx_ring->buffer_info[i];
		tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
		tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
		tx_desc->read.cmd_type_len =
			cpu_to_le32(cmd_type_len | buffer_info->length);
		tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
		i++;
		if (i == tx_ring->count)
			i = 0;
	}

3539
	tx_desc->read.cmd_type_len |= cpu_to_le32(IGB_ADVTXD_DCMD);
3540 3541 3542 3543 3544 3545 3546
	/* Force memory writes to complete before letting h/w
	 * know there are new descriptors to fetch.  (Only
	 * applicable for weak-ordered memory model archs,
	 * such as IA-64). */
	wmb();

	tx_ring->next_to_use = i;
3547
	writel(i, tx_ring->tail);
3548 3549 3550 3551 3552 3553 3554 3555
	/* we need this if more than one processor can write to our tail
	 * at a time, it syncronizes IO on IA64/Altix systems */
	mmiowb();
}

static int __igb_maybe_stop_tx(struct net_device *netdev,
			       struct igb_ring *tx_ring, int size)
{
3556 3557
	netif_stop_subqueue(netdev, tx_ring->queue_index);

3558 3559 3560 3561 3562 3563 3564
	/* Herbert's original patch had:
	 *  smp_mb__after_netif_stop_queue();
	 * but since that doesn't exist yet, just open code it. */
	smp_mb();

	/* We need to check again in a case another CPU has just
	 * made room available. */
3565
	if (igb_desc_unused(tx_ring) < size)
3566 3567 3568
		return -EBUSY;

	/* A reprieve! */
3569
	netif_wake_subqueue(netdev, tx_ring->queue_index);
3570
	tx_ring->tx_stats.restart_queue++;
3571 3572 3573 3574 3575 3576
	return 0;
}

static int igb_maybe_stop_tx(struct net_device *netdev,
			     struct igb_ring *tx_ring, int size)
{
3577
	if (igb_desc_unused(tx_ring) >= size)
3578 3579 3580 3581
		return 0;
	return __igb_maybe_stop_tx(netdev, tx_ring, size);
}

3582 3583 3584
static netdev_tx_t igb_xmit_frame_ring_adv(struct sk_buff *skb,
					   struct net_device *netdev,
					   struct igb_ring *tx_ring)
3585 3586
{
	struct igb_adapter *adapter = netdev_priv(netdev);
A
Alexander Duyck 已提交
3587
	unsigned int first;
3588 3589
	unsigned int tx_flags = 0;
	u8 hdr_len = 0;
3590
	int count = 0;
3591
	int tso = 0;
3592
	union skb_shared_tx *shtx;
3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612

	if (test_bit(__IGB_DOWN, &adapter->state)) {
		dev_kfree_skb_any(skb);
		return NETDEV_TX_OK;
	}

	if (skb->len <= 0) {
		dev_kfree_skb_any(skb);
		return NETDEV_TX_OK;
	}

	/* need: 1 descriptor per page,
	 *       + 2 desc gap to keep tail from touching head,
	 *       + 1 desc for skb->data,
	 *       + 1 desc for context descriptor,
	 * otherwise try next time */
	if (igb_maybe_stop_tx(netdev, tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
		/* this is a hard error */
		return NETDEV_TX_BUSY;
	}
3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627

	/*
	 * TODO: check that there currently is no other packet with
	 * time stamping in the queue
	 *
	 * When doing time stamping, keep the connection to the socket
	 * a while longer: it is still needed by skb_hwtstamp_tx(),
	 * called either in igb_tx_hwtstamp() or by our caller when
	 * doing software time stamping.
	 */
	shtx = skb_tx(skb);
	if (unlikely(shtx->hardware)) {
		shtx->in_progress = 1;
		tx_flags |= IGB_TX_FLAGS_TSTAMP;
	}
3628 3629 3630 3631 3632 3633

	if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
		tx_flags |= IGB_TX_FLAGS_VLAN;
		tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
	}

3634 3635 3636
	if (skb->protocol == htons(ETH_P_IP))
		tx_flags |= IGB_TX_FLAGS_IPV4;

A
Alexander Duyck 已提交
3637
	first = tx_ring->next_to_use;
3638 3639 3640 3641 3642 3643
	if (skb_is_gso(skb)) {
		tso = igb_tso_adv(tx_ring, skb, tx_flags, &hdr_len);
		if (tso < 0) {
			dev_kfree_skb_any(skb);
			return NETDEV_TX_OK;
		}
3644 3645 3646 3647
	}

	if (tso)
		tx_flags |= IGB_TX_FLAGS_TSO;
3648
	else if (igb_tx_csum_adv(tx_ring, skb, tx_flags) &&
3649 3650
	         (skb->ip_summed == CHECKSUM_PARTIAL))
		tx_flags |= IGB_TX_FLAGS_CSUM;
3651

3652 3653 3654 3655
	/*
	 * count reflects descriptors mapped, if 0 then mapping error
	 * has occured and we need to rewind the descriptor queue
	 */
3656
	count = igb_tx_map_adv(tx_ring, skb, first);
3657

3658
	if (!count) {
3659 3660 3661
		dev_kfree_skb_any(skb);
		tx_ring->buffer_info[first].time_stamp = 0;
		tx_ring->next_to_use = first;
3662
		return NETDEV_TX_OK;
3663
	}
3664

3665 3666 3667 3668 3669
	igb_tx_queue_adv(tx_ring, tx_flags, count, skb->len, hdr_len);

	/* Make sure there is space in the ring for the next send. */
	igb_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 4);

3670 3671 3672
	return NETDEV_TX_OK;
}

3673 3674
static netdev_tx_t igb_xmit_frame_adv(struct sk_buff *skb,
				      struct net_device *netdev)
3675 3676
{
	struct igb_adapter *adapter = netdev_priv(netdev);
3677 3678 3679
	struct igb_ring *tx_ring;

	int r_idx = 0;
3680
	r_idx = skb->queue_mapping & (IGB_ABS_MAX_TX_QUEUES - 1);
3681
	tx_ring = adapter->multi_tx_table[r_idx];
3682 3683 3684 3685 3686

	/* This goes back to the question of how to logically map a tx queue
	 * to a flow.  Right now, performance is impacted slightly negatively
	 * if using multiple tx queues.  If the stack breaks away from a
	 * single qdisc implementation, we can look at this again. */
3687
	return igb_xmit_frame_ring_adv(skb, netdev, tx_ring);
3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701
}

/**
 * igb_tx_timeout - Respond to a Tx Hang
 * @netdev: network interface device structure
 **/
static void igb_tx_timeout(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;

	/* Do the reset outside of interrupt context */
	adapter->tx_timeout_count++;
	schedule_work(&adapter->reset_task);
3702 3703
	wr32(E1000_EICS,
	     (adapter->eims_enable_mask & ~adapter->eims_other));
3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720
}

static void igb_reset_task(struct work_struct *work)
{
	struct igb_adapter *adapter;
	adapter = container_of(work, struct igb_adapter, reset_task);

	igb_reinit_locked(adapter);
}

/**
 * igb_get_stats - Get System Network Statistics
 * @netdev: network interface device structure
 *
 * Returns the address of the device statistics structure.
 * The statistics are actually updated from the timer callback.
 **/
3721
static struct net_device_stats *igb_get_stats(struct net_device *netdev)
3722 3723
{
	/* only return the current stats */
3724
	return &netdev->stats;
3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737
}

/**
 * igb_change_mtu - Change the Maximum Transfer Unit
 * @netdev: network interface device structure
 * @new_mtu: new value for maximum frame size
 *
 * Returns 0 on success, negative on failure
 **/
static int igb_change_mtu(struct net_device *netdev, int new_mtu)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3738
	u32 rx_buffer_len, i;
3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752

	if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) ||
	    (max_frame > MAX_JUMBO_FRAME_SIZE)) {
		dev_err(&adapter->pdev->dev, "Invalid MTU setting\n");
		return -EINVAL;
	}

	if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
		dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n");
		return -EINVAL;
	}

	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
		msleep(1);
3753

3754 3755 3756 3757 3758 3759 3760 3761
	/* igb_down has a dependency on max_frame_size */
	adapter->max_frame_size = max_frame;
	/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
	 * means we reserve 2 more, this pushes us to allocate from the next
	 * larger slab size.
	 * i.e. RXBUFFER_2048 --> size-4096 slab
	 */

3762
	if (max_frame <= IGB_RXBUFFER_1024)
3763
		rx_buffer_len = IGB_RXBUFFER_1024;
A
Alexander Duyck 已提交
3764
	else if (max_frame <= MAXIMUM_ETHERNET_VLAN_SIZE)
3765
		rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
A
Alexander Duyck 已提交
3766
	else
3767 3768 3769 3770
		rx_buffer_len = IGB_RXBUFFER_128;

	if (netif_running(netdev))
		igb_down(adapter);
3771 3772 3773 3774 3775

	dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
		 netdev->mtu, new_mtu);
	netdev->mtu = new_mtu;

3776 3777 3778
	for (i = 0; i < adapter->num_rx_queues; i++)
		adapter->rx_ring[i].rx_buffer_len = rx_buffer_len;

3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795
	if (netif_running(netdev))
		igb_up(adapter);
	else
		igb_reset(adapter);

	clear_bit(__IGB_RESETTING, &adapter->state);

	return 0;
}

/**
 * igb_update_stats - Update the board statistics counters
 * @adapter: board private structure
 **/

void igb_update_stats(struct igb_adapter *adapter)
{
3796
	struct net_device *netdev = adapter->netdev;
3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885
	struct e1000_hw *hw = &adapter->hw;
	struct pci_dev *pdev = adapter->pdev;
	u16 phy_tmp;

#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF

	/*
	 * Prevent stats update while adapter is being reset, or if the pci
	 * connection is down.
	 */
	if (adapter->link_speed == 0)
		return;
	if (pci_channel_offline(pdev))
		return;

	adapter->stats.crcerrs += rd32(E1000_CRCERRS);
	adapter->stats.gprc += rd32(E1000_GPRC);
	adapter->stats.gorc += rd32(E1000_GORCL);
	rd32(E1000_GORCH); /* clear GORCL */
	adapter->stats.bprc += rd32(E1000_BPRC);
	adapter->stats.mprc += rd32(E1000_MPRC);
	adapter->stats.roc += rd32(E1000_ROC);

	adapter->stats.prc64 += rd32(E1000_PRC64);
	adapter->stats.prc127 += rd32(E1000_PRC127);
	adapter->stats.prc255 += rd32(E1000_PRC255);
	adapter->stats.prc511 += rd32(E1000_PRC511);
	adapter->stats.prc1023 += rd32(E1000_PRC1023);
	adapter->stats.prc1522 += rd32(E1000_PRC1522);
	adapter->stats.symerrs += rd32(E1000_SYMERRS);
	adapter->stats.sec += rd32(E1000_SEC);

	adapter->stats.mpc += rd32(E1000_MPC);
	adapter->stats.scc += rd32(E1000_SCC);
	adapter->stats.ecol += rd32(E1000_ECOL);
	adapter->stats.mcc += rd32(E1000_MCC);
	adapter->stats.latecol += rd32(E1000_LATECOL);
	adapter->stats.dc += rd32(E1000_DC);
	adapter->stats.rlec += rd32(E1000_RLEC);
	adapter->stats.xonrxc += rd32(E1000_XONRXC);
	adapter->stats.xontxc += rd32(E1000_XONTXC);
	adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
	adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
	adapter->stats.fcruc += rd32(E1000_FCRUC);
	adapter->stats.gptc += rd32(E1000_GPTC);
	adapter->stats.gotc += rd32(E1000_GOTCL);
	rd32(E1000_GOTCH); /* clear GOTCL */
	adapter->stats.rnbc += rd32(E1000_RNBC);
	adapter->stats.ruc += rd32(E1000_RUC);
	adapter->stats.rfc += rd32(E1000_RFC);
	adapter->stats.rjc += rd32(E1000_RJC);
	adapter->stats.tor += rd32(E1000_TORH);
	adapter->stats.tot += rd32(E1000_TOTH);
	adapter->stats.tpr += rd32(E1000_TPR);

	adapter->stats.ptc64 += rd32(E1000_PTC64);
	adapter->stats.ptc127 += rd32(E1000_PTC127);
	adapter->stats.ptc255 += rd32(E1000_PTC255);
	adapter->stats.ptc511 += rd32(E1000_PTC511);
	adapter->stats.ptc1023 += rd32(E1000_PTC1023);
	adapter->stats.ptc1522 += rd32(E1000_PTC1522);

	adapter->stats.mptc += rd32(E1000_MPTC);
	adapter->stats.bptc += rd32(E1000_BPTC);

	/* used for adaptive IFS */

	hw->mac.tx_packet_delta = rd32(E1000_TPT);
	adapter->stats.tpt += hw->mac.tx_packet_delta;
	hw->mac.collision_delta = rd32(E1000_COLC);
	adapter->stats.colc += hw->mac.collision_delta;

	adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
	adapter->stats.rxerrc += rd32(E1000_RXERRC);
	adapter->stats.tncrs += rd32(E1000_TNCRS);
	adapter->stats.tsctc += rd32(E1000_TSCTC);
	adapter->stats.tsctfc += rd32(E1000_TSCTFC);

	adapter->stats.iac += rd32(E1000_IAC);
	adapter->stats.icrxoc += rd32(E1000_ICRXOC);
	adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
	adapter->stats.icrxatc += rd32(E1000_ICRXATC);
	adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
	adapter->stats.ictxatc += rd32(E1000_ICTXATC);
	adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
	adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
	adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);

	/* Fill out the OS statistics structure */
3886 3887
	netdev->stats.multicast = adapter->stats.mprc;
	netdev->stats.collisions = adapter->stats.colc;
3888 3889 3890

	/* Rx Errors */

3891 3892
	if (hw->mac.type != e1000_82575) {
		u32 rqdpc_tmp;
3893
		u64 rqdpc_total = 0;
3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905
		int i;
		/* Read out drops stats per RX queue.  Notice RQDPC (Receive
		 * Queue Drop Packet Count) stats only gets incremented, if
		 * the DROP_EN but it set (in the SRRCTL register for that
		 * queue).  If DROP_EN bit is NOT set, then the some what
		 * equivalent count is stored in RNBC (not per queue basis).
		 * Also note the drop count is due to lack of available
		 * descriptors.
		 */
		for (i = 0; i < adapter->num_rx_queues; i++) {
			rqdpc_tmp = rd32(E1000_RQDPC(i)) & 0xFFF;
			adapter->rx_ring[i].rx_stats.drops += rqdpc_tmp;
3906
			rqdpc_total += adapter->rx_ring[i].rx_stats.drops;
3907
		}
3908
		netdev->stats.rx_fifo_errors = rqdpc_total;
3909 3910
	}

3911 3912 3913 3914 3915
	/* Note RNBC (Receive No Buffers Count) is an not an exact
	 * drop count as the hardware FIFO might save the day.  Thats
	 * one of the reason for saving it in rx_fifo_errors, as its
	 * potentially not a true drop.
	 */
3916
	netdev->stats.rx_fifo_errors += adapter->stats.rnbc;
3917

3918
	/* RLEC on some newer hardware can be incorrect so build
3919
	 * our own version based on RUC and ROC */
3920
	netdev->stats.rx_errors = adapter->stats.rxerrc +
3921 3922 3923
		adapter->stats.crcerrs + adapter->stats.algnerrc +
		adapter->stats.ruc + adapter->stats.roc +
		adapter->stats.cexterr;
3924
	netdev->stats.rx_length_errors = adapter->stats.ruc +
3925
					      adapter->stats.roc;
3926 3927 3928
	netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
	netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
	netdev->stats.rx_missed_errors = adapter->stats.mpc;
3929 3930

	/* Tx Errors */
3931
	netdev->stats.tx_errors = adapter->stats.ecol +
3932
				       adapter->stats.latecol;
3933 3934 3935
	netdev->stats.tx_aborted_errors = adapter->stats.ecol;
	netdev->stats.tx_window_errors = adapter->stats.latecol;
	netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3936 3937 3938 3939 3940 3941

	/* Tx Dropped needs to be maintained elsewhere */

	/* Phy Stats */
	if (hw->phy.media_type == e1000_media_type_copper) {
		if ((adapter->link_speed == SPEED_1000) &&
3942
		   (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955
			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
			adapter->phy_stats.idle_errors += phy_tmp;
		}
	}

	/* Management Stats */
	adapter->stats.mgptc += rd32(E1000_MGTPTC);
	adapter->stats.mgprc += rd32(E1000_MGTPRC);
	adapter->stats.mgpdc += rd32(E1000_MGTPDC);
}

static irqreturn_t igb_msix_other(int irq, void *data)
{
3956
	struct igb_adapter *adapter = data;
3957
	struct e1000_hw *hw = &adapter->hw;
P
PJ Waskiewicz 已提交
3958 3959
	u32 icr = rd32(E1000_ICR);
	/* reading ICR causes bit 31 of EICR to be cleared */
3960

3961
	if (icr & E1000_ICR_DOUTSYNC) {
3962 3963 3964
		/* HW is reporting DMA is out of sync */
		adapter->stats.doosync++;
	}
3965

3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977
	/* Check for a mailbox event */
	if (icr & E1000_ICR_VMMB)
		igb_msg_task(adapter);

	if (icr & E1000_ICR_LSC) {
		hw->mac.get_link_status = 1;
		/* guard against interrupt when we're going down */
		if (!test_bit(__IGB_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

	wr32(E1000_IMS, E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_VMMB);
P
PJ Waskiewicz 已提交
3978
	wr32(E1000_EIMS, adapter->eims_other);
3979 3980 3981 3982

	return IRQ_HANDLED;
}

3983
static void igb_write_itr(struct igb_q_vector *q_vector)
3984
{
3985
	u32 itr_val = q_vector->itr_val & 0x7FFC;
3986

3987 3988
	if (!q_vector->set_itr)
		return;
3989

3990 3991
	if (!itr_val)
		itr_val = 0x4;
3992

3993 3994
	if (q_vector->itr_shift)
		itr_val |= itr_val << q_vector->itr_shift;
3995
	else
3996
		itr_val |= 0x8000000;
3997

3998 3999
	writel(itr_val, q_vector->itr_register);
	q_vector->set_itr = 0;
4000 4001
}

4002
static irqreturn_t igb_msix_ring(int irq, void *data)
4003
{
4004
	struct igb_q_vector *q_vector = data;
4005

4006 4007
	/* Write the ITR value calculated from the previous interrupt. */
	igb_write_itr(q_vector);
4008

4009
	napi_schedule(&q_vector->napi);
P
PJ Waskiewicz 已提交
4010

4011
	return IRQ_HANDLED;
J
Jeb Cramer 已提交
4012 4013
}

4014
#ifdef CONFIG_IGB_DCA
4015
static void igb_update_dca(struct igb_q_vector *q_vector)
J
Jeb Cramer 已提交
4016
{
4017
	struct igb_adapter *adapter = q_vector->adapter;
J
Jeb Cramer 已提交
4018 4019 4020
	struct e1000_hw *hw = &adapter->hw;
	int cpu = get_cpu();

4021 4022 4023 4024 4025 4026 4027 4028 4029
	if (q_vector->cpu == cpu)
		goto out_no_update;

	if (q_vector->tx_ring) {
		int q = q_vector->tx_ring->reg_idx;
		u32 dca_txctrl = rd32(E1000_DCA_TXCTRL(q));
		if (hw->mac.type == e1000_82575) {
			dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK;
			dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
A
Alexander Duyck 已提交
4030
		} else {
4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041
			dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576;
			dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
			              E1000_DCA_TXCTRL_CPUID_SHIFT;
		}
		dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN;
		wr32(E1000_DCA_TXCTRL(q), dca_txctrl);
	}
	if (q_vector->rx_ring) {
		int q = q_vector->rx_ring->reg_idx;
		u32 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q));
		if (hw->mac.type == e1000_82575) {
A
Alexander Duyck 已提交
4042
			dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK;
M
Maciej Sosnowski 已提交
4043
			dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
4044 4045 4046 4047
		} else {
			dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576;
			dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
			              E1000_DCA_RXCTRL_CPUID_SHIFT;
A
Alexander Duyck 已提交
4048
		}
J
Jeb Cramer 已提交
4049 4050 4051 4052 4053
		dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN;
		dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN;
		dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN;
		wr32(E1000_DCA_RXCTRL(q), dca_rxctrl);
	}
4054 4055
	q_vector->cpu = cpu;
out_no_update:
J
Jeb Cramer 已提交
4056 4057 4058 4059 4060
	put_cpu();
}

static void igb_setup_dca(struct igb_adapter *adapter)
{
4061
	struct e1000_hw *hw = &adapter->hw;
J
Jeb Cramer 已提交
4062 4063
	int i;

4064
	if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
J
Jeb Cramer 已提交
4065 4066
		return;

4067 4068 4069
	/* Always use CB2 mode, difference is masked in the CB driver. */
	wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);

4070 4071 4072 4073
	for (i = 0; i < adapter->num_q_vectors; i++) {
		struct igb_q_vector *q_vector = adapter->q_vector[i];
		q_vector->cpu = -1;
		igb_update_dca(q_vector);
J
Jeb Cramer 已提交
4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086
	}
}

static int __igb_notify_dca(struct device *dev, void *data)
{
	struct net_device *netdev = dev_get_drvdata(dev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	unsigned long event = *(unsigned long *)data;

	switch (event) {
	case DCA_PROVIDER_ADD:
		/* if already enabled, don't do it again */
4087
		if (adapter->flags & IGB_FLAG_DCA_ENABLED)
J
Jeb Cramer 已提交
4088 4089 4090
			break;
		/* Always use CB2 mode, difference is masked
		 * in the CB driver. */
A
Alexander Duyck 已提交
4091
		wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
J
Jeb Cramer 已提交
4092
		if (dca_add_requester(dev) == 0) {
4093
			adapter->flags |= IGB_FLAG_DCA_ENABLED;
J
Jeb Cramer 已提交
4094 4095 4096 4097 4098 4099
			dev_info(&adapter->pdev->dev, "DCA enabled\n");
			igb_setup_dca(adapter);
			break;
		}
		/* Fall Through since DCA is disabled. */
	case DCA_PROVIDER_REMOVE:
4100
		if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
J
Jeb Cramer 已提交
4101
			/* without this a class_device is left
4102
			 * hanging around in the sysfs model */
J
Jeb Cramer 已提交
4103 4104
			dca_remove_requester(dev);
			dev_info(&adapter->pdev->dev, "DCA disabled\n");
4105
			adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
A
Alexander Duyck 已提交
4106
			wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
J
Jeb Cramer 已提交
4107 4108 4109
		}
		break;
	}
4110

J
Jeb Cramer 已提交
4111
	return 0;
4112 4113
}

J
Jeb Cramer 已提交
4114 4115 4116 4117 4118 4119 4120 4121 4122 4123
static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
                          void *p)
{
	int ret_val;

	ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
	                                 __igb_notify_dca);

	return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
}
4124
#endif /* CONFIG_IGB_DCA */
4125

4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160
static void igb_ping_all_vfs(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ping;
	int i;

	for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
		ping = E1000_PF_CONTROL_MSG;
		if (adapter->vf_data[i].clear_to_send)
			ping |= E1000_VT_MSGTYPE_CTS;
		igb_write_mbx(hw, &ping, 1, i);
	}
}

static int igb_set_vf_multicasts(struct igb_adapter *adapter,
				  u32 *msgbuf, u32 vf)
{
	int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
	u16 *hash_list = (u16 *)&msgbuf[1];
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
	int i;

	/* only up to 30 hash values supported */
	if (n > 30)
		n = 30;

	/* salt away the number of multi cast addresses assigned
	 * to this VF for later use to restore when the PF multi cast
	 * list changes
	 */
	vf_data->num_vf_mc_hashes = n;

	/* VFs are limited to using the MTA hash table for their multicast
	 * addresses */
	for (i = 0; i < n; i++)
4161
		vf_data->vf_mc_hashes[i] = hash_list[i];
4162 4163

	/* Flush and reset the mta with the new values */
4164
	igb_set_rx_mode(adapter->netdev);
4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176

	return 0;
}

static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct vf_data_storage *vf_data;
	int i, j;

	for (i = 0; i < adapter->vfs_allocated_count; i++) {
		vf_data = &adapter->vf_data[i];
4177
		for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206
			igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
	}
}

static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 pool_mask, reg, vid;
	int i;

	pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);

	/* Find the vlan filter for this id */
	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
		reg = rd32(E1000_VLVF(i));

		/* remove the vf from the pool */
		reg &= ~pool_mask;

		/* if pool is empty then remove entry from vfta */
		if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
		    (reg & E1000_VLVF_VLANID_ENABLE)) {
			reg = 0;
			vid = reg & E1000_VLVF_VLANID_MASK;
			igb_vfta_set(hw, vid, false);
		}

		wr32(E1000_VLVF(i), reg);
	}
4207 4208

	adapter->vf_data[vf].vlans_enabled = 0;
4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245
}

static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 reg, i;

	/* It is an error to call this function when VFs are not enabled */
	if (!adapter->vfs_allocated_count)
		return -1;

	/* Find the vlan filter for this id */
	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
		reg = rd32(E1000_VLVF(i));
		if ((reg & E1000_VLVF_VLANID_ENABLE) &&
		    vid == (reg & E1000_VLVF_VLANID_MASK))
			break;
	}

	if (add) {
		if (i == E1000_VLVF_ARRAY_SIZE) {
			/* Did not find a matching VLAN ID entry that was
			 * enabled.  Search for a free filter entry, i.e.
			 * one without the enable bit set
			 */
			for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
				reg = rd32(E1000_VLVF(i));
				if (!(reg & E1000_VLVF_VLANID_ENABLE))
					break;
			}
		}
		if (i < E1000_VLVF_ARRAY_SIZE) {
			/* Found an enabled/available entry */
			reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);

			/* if !enabled we need to set this up in vfta */
			if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
A
Alexander Duyck 已提交
4246 4247 4248 4249 4250
				/* add VID to filter table, if bit already set
				 * PF must have added it outside of table */
				if (igb_vfta_set(hw, vid, true))
					reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT +
						adapter->vfs_allocated_count);
4251 4252
				reg |= E1000_VLVF_VLANID_ENABLE;
			}
A
Alexander Duyck 已提交
4253 4254
			reg &= ~E1000_VLVF_VLANID_MASK;
			reg |= vid;
4255 4256

			wr32(E1000_VLVF(i), reg);
4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272

			/* do not modify RLPML for PF devices */
			if (vf >= adapter->vfs_allocated_count)
				return 0;

			if (!adapter->vf_data[vf].vlans_enabled) {
				u32 size;
				reg = rd32(E1000_VMOLR(vf));
				size = reg & E1000_VMOLR_RLPML_MASK;
				size += 4;
				reg &= ~E1000_VMOLR_RLPML_MASK;
				reg |= size;
				wr32(E1000_VMOLR(vf), reg);
			}
			adapter->vf_data[vf].vlans_enabled++;

4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284
			return 0;
		}
	} else {
		if (i < E1000_VLVF_ARRAY_SIZE) {
			/* remove vf from the pool */
			reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
			/* if pool is empty then remove entry from vfta */
			if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
				reg = 0;
				igb_vfta_set(hw, vid, false);
			}
			wr32(E1000_VLVF(i), reg);
4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299

			/* do not modify RLPML for PF devices */
			if (vf >= adapter->vfs_allocated_count)
				return 0;

			adapter->vf_data[vf].vlans_enabled--;
			if (!adapter->vf_data[vf].vlans_enabled) {
				u32 size;
				reg = rd32(E1000_VMOLR(vf));
				size = reg & E1000_VMOLR_RLPML_MASK;
				size -= 4;
				reg &= ~E1000_VMOLR_RLPML_MASK;
				reg |= size;
				wr32(E1000_VMOLR(vf), reg);
			}
4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330
			return 0;
		}
	}
	return -1;
}

static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
{
	int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
	int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);

	return igb_vlvf_set(adapter, vid, add, vf);
}

static inline void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;

	/* disable mailbox functionality for vf */
	adapter->vf_data[vf].clear_to_send = false;

	/* reset offloads to defaults */
	igb_set_vmolr(hw, vf);

	/* reset vlans for device */
	igb_clear_vf_vfta(adapter, vf);

	/* reset multicast table array for vf */
	adapter->vf_data[vf].num_vf_mc_hashes = 0;

	/* Flush and reset the mta with the new values */
4331
	igb_set_rx_mode(adapter->netdev);
4332 4333 4334 4335 4336 4337
}

static inline void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
4338
	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
4339 4340 4341 4342 4343 4344 4345
	u32 reg, msgbuf[3];
	u8 *addr = (u8 *)(&msgbuf[1]);

	/* process all the same items cleared in a function level reset */
	igb_vf_reset_event(adapter, vf);

	/* set vf mac address */
4346
	igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474

	/* enable transmit and receive for vf */
	reg = rd32(E1000_VFTE);
	wr32(E1000_VFTE, reg | (1 << vf));
	reg = rd32(E1000_VFRE);
	wr32(E1000_VFRE, reg | (1 << vf));

	/* enable mailbox functionality for vf */
	adapter->vf_data[vf].clear_to_send = true;

	/* reply to reset with ack and vf mac address */
	msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
	memcpy(addr, vf_mac, 6);
	igb_write_mbx(hw, msgbuf, 3, vf);
}

static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
{
		unsigned char *addr = (char *)&msg[1];
		int err = -1;

		if (is_valid_ether_addr(addr))
			err = igb_set_vf_mac(adapter, vf, addr);

		return err;

}

static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 msg = E1000_VT_MSGTYPE_NACK;

	/* if device isn't clear to send it shouldn't be reading either */
	if (!adapter->vf_data[vf].clear_to_send)
		igb_write_mbx(hw, &msg, 1, vf);
}


static void igb_msg_task(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vf;

	for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
		/* process any reset requests */
		if (!igb_check_for_rst(hw, vf)) {
			adapter->vf_data[vf].clear_to_send = false;
			igb_vf_reset_event(adapter, vf);
		}

		/* process any messages pending */
		if (!igb_check_for_msg(hw, vf))
			igb_rcv_msg_from_vf(adapter, vf);

		/* process any acks */
		if (!igb_check_for_ack(hw, vf))
			igb_rcv_ack_from_vf(adapter, vf);

	}
}

static int igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
{
	u32 mbx_size = E1000_VFMAILBOX_SIZE;
	u32 msgbuf[mbx_size];
	struct e1000_hw *hw = &adapter->hw;
	s32 retval;

	retval = igb_read_mbx(hw, msgbuf, mbx_size, vf);

	if (retval)
		dev_err(&adapter->pdev->dev,
		        "Error receiving message from VF\n");

	/* this is a message we already processed, do nothing */
	if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
		return retval;

	/*
	 * until the vf completes a reset it should not be
	 * allowed to start any configuration.
	 */

	if (msgbuf[0] == E1000_VF_RESET) {
		igb_vf_reset_msg(adapter, vf);

		return retval;
	}

	if (!adapter->vf_data[vf].clear_to_send) {
		msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
		igb_write_mbx(hw, msgbuf, 1, vf);
		return retval;
	}

	switch ((msgbuf[0] & 0xFFFF)) {
	case E1000_VF_SET_MAC_ADDR:
		retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
		break;
	case E1000_VF_SET_MULTICAST:
		retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
		break;
	case E1000_VF_SET_LPE:
		retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
		break;
	case E1000_VF_SET_VLAN:
		retval = igb_set_vf_vlan(adapter, msgbuf, vf);
		break;
	default:
		dev_err(&adapter->pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
		retval = -1;
		break;
	}

	/* notify the VF of the results of what it sent us */
	if (retval)
		msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
	else
		msgbuf[0] |= E1000_VT_MSGTYPE_ACK;

	msgbuf[0] |= E1000_VT_MSGTYPE_CTS;

	igb_write_mbx(hw, msgbuf, 1, vf);

	return retval;
}

4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501
/**
 *  igb_set_uta - Set unicast filter table address
 *  @adapter: board private structure
 *
 *  The unicast table address is a register array of 32-bit registers.
 *  The table is meant to be used in a way similar to how the MTA is used
 *  however due to certain limitations in the hardware it is necessary to
 *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscous
 *  enable bit to allow vlan tag stripping when promiscous mode is enabled
 **/
static void igb_set_uta(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	int i;

	/* The UTA table only exists on 82576 hardware and newer */
	if (hw->mac.type < e1000_82576)
		return;

	/* we only need to do this if VMDq is enabled */
	if (!adapter->vfs_allocated_count)
		return;

	for (i = 0; i < hw->mac.uta_reg_count; i++)
		array_wr32(E1000_UTA, i, ~0);
}

4502 4503 4504 4505 4506 4507 4508
/**
 * igb_intr_msi - Interrupt Handler
 * @irq: interrupt number
 * @data: pointer to a network interface device structure
 **/
static irqreturn_t igb_intr_msi(int irq, void *data)
{
4509 4510
	struct igb_adapter *adapter = data;
	struct igb_q_vector *q_vector = adapter->q_vector[0];
4511 4512 4513 4514
	struct e1000_hw *hw = &adapter->hw;
	/* read ICR disables interrupts using IAM */
	u32 icr = rd32(E1000_ICR);

4515
	igb_write_itr(q_vector);
4516

4517
	if (icr & E1000_ICR_DOUTSYNC) {
4518 4519 4520 4521
		/* HW is reporting DMA is out of sync */
		adapter->stats.doosync++;
	}

4522 4523 4524 4525 4526 4527
	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
		hw->mac.get_link_status = 1;
		if (!test_bit(__IGB_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

4528
	napi_schedule(&q_vector->napi);
4529 4530 4531 4532 4533

	return IRQ_HANDLED;
}

/**
4534
 * igb_intr - Legacy Interrupt Handler
4535 4536 4537 4538 4539
 * @irq: interrupt number
 * @data: pointer to a network interface device structure
 **/
static irqreturn_t igb_intr(int irq, void *data)
{
4540 4541
	struct igb_adapter *adapter = data;
	struct igb_q_vector *q_vector = adapter->q_vector[0];
4542 4543 4544 4545 4546 4547 4548
	struct e1000_hw *hw = &adapter->hw;
	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
	 * need for the IMC write */
	u32 icr = rd32(E1000_ICR);
	if (!icr)
		return IRQ_NONE;  /* Not our interrupt */

4549
	igb_write_itr(q_vector);
4550 4551 4552 4553 4554 4555

	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
	 * not set, then the adapter didn't send an interrupt */
	if (!(icr & E1000_ICR_INT_ASSERTED))
		return IRQ_NONE;

4556
	if (icr & E1000_ICR_DOUTSYNC) {
4557 4558 4559 4560
		/* HW is reporting DMA is out of sync */
		adapter->stats.doosync++;
	}

4561 4562 4563 4564 4565 4566 4567
	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
		hw->mac.get_link_status = 1;
		/* guard against interrupt when we're going down */
		if (!test_bit(__IGB_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

4568
	napi_schedule(&q_vector->napi);
4569 4570 4571 4572

	return IRQ_HANDLED;
}

4573
static inline void igb_ring_irq_enable(struct igb_q_vector *q_vector)
4574
{
4575
	struct igb_adapter *adapter = q_vector->adapter;
4576
	struct e1000_hw *hw = &adapter->hw;
4577

4578
	if (adapter->itr_setting & 3) {
4579
		if (!adapter->msix_entries)
4580
			igb_set_itr(adapter);
4581
		else
4582
			igb_update_ring_itr(q_vector);
4583 4584
	}

4585 4586
	if (!test_bit(__IGB_DOWN, &adapter->state)) {
		if (adapter->msix_entries)
4587
			wr32(E1000_EIMS, q_vector->eims_value);
4588 4589 4590
		else
			igb_irq_enable(adapter);
	}
4591 4592
}

4593 4594 4595 4596 4597 4598
/**
 * igb_poll - NAPI Rx polling callback
 * @napi: napi polling structure
 * @budget: count of how many packets we should handle
 **/
static int igb_poll(struct napi_struct *napi, int budget)
4599
{
4600 4601 4602 4603
	struct igb_q_vector *q_vector = container_of(napi,
	                                             struct igb_q_vector,
	                                             napi);
	int tx_clean_complete = 1, work_done = 0;
4604

4605
#ifdef CONFIG_IGB_DCA
4606 4607
	if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
		igb_update_dca(q_vector);
J
Jeb Cramer 已提交
4608
#endif
4609 4610
	if (q_vector->tx_ring)
		tx_clean_complete = igb_clean_tx_irq(q_vector);
4611

4612 4613 4614 4615 4616
	if (q_vector->rx_ring)
		igb_clean_rx_irq_adv(q_vector, &work_done, budget);

	if (!tx_clean_complete)
		work_done = budget;
4617

4618
	/* If not enough Rx work done, exit the polling mode */
4619
	if (work_done < budget) {
4620
		napi_complete(napi);
4621
		igb_ring_irq_enable(q_vector);
4622 4623
	}

4624
	return work_done;
4625
}
A
Al Viro 已提交
4626

4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660
/**
 * igb_hwtstamp - utility function which checks for TX time stamp
 * @adapter: board private structure
 * @skb: packet that was just sent
 *
 * If we were asked to do hardware stamping and such a time stamp is
 * available, then it must have been for this skb here because we only
 * allow only one such packet into the queue.
 */
static void igb_tx_hwtstamp(struct igb_adapter *adapter, struct sk_buff *skb)
{
	union skb_shared_tx *shtx = skb_tx(skb);
	struct e1000_hw *hw = &adapter->hw;

	if (unlikely(shtx->hardware)) {
		u32 valid = rd32(E1000_TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID;
		if (valid) {
			u64 regval = rd32(E1000_TXSTMPL);
			u64 ns;
			struct skb_shared_hwtstamps shhwtstamps;

			memset(&shhwtstamps, 0, sizeof(shhwtstamps));
			regval |= (u64)rd32(E1000_TXSTMPH) << 32;
			ns = timecounter_cyc2time(&adapter->clock,
						  regval);
			timecompare_update(&adapter->compare, ns);
			shhwtstamps.hwtstamp = ns_to_ktime(ns);
			shhwtstamps.syststamp =
				timecompare_transform(&adapter->compare, ns);
			skb_tstamp_tx(skb, &shhwtstamps);
		}
	}
}

4661 4662
/**
 * igb_clean_tx_irq - Reclaim resources after transmit completes
4663
 * @q_vector: pointer to q_vector containing needed info
4664 4665
 * returns true if ring is completely cleaned
 **/
4666
static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
4667
{
4668 4669
	struct igb_adapter *adapter = q_vector->adapter;
	struct igb_ring *tx_ring = q_vector->tx_ring;
4670
	struct net_device *netdev = adapter->netdev;
A
Alexander Duyck 已提交
4671
	struct e1000_hw *hw = &adapter->hw;
4672 4673
	struct igb_buffer *buffer_info;
	struct sk_buff *skb;
A
Alexander Duyck 已提交
4674
	union e1000_adv_tx_desc *tx_desc, *eop_desc;
4675
	unsigned int total_bytes = 0, total_packets = 0;
A
Alexander Duyck 已提交
4676 4677
	unsigned int i, eop, count = 0;
	bool cleaned = false;
4678 4679

	i = tx_ring->next_to_clean;
A
Alexander Duyck 已提交
4680 4681 4682 4683 4684 4685 4686
	eop = tx_ring->buffer_info[i].next_to_watch;
	eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);

	while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) &&
	       (count < tx_ring->count)) {
		for (cleaned = false; !cleaned; count++) {
			tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
4687
			buffer_info = &tx_ring->buffer_info[i];
A
Alexander Duyck 已提交
4688
			cleaned = (i == eop);
4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699
			skb = buffer_info->skb;

			if (skb) {
				unsigned int segs, bytecount;
				/* gso_segs is currently only valid for tcp */
				segs = skb_shinfo(skb)->gso_segs ?: 1;
				/* multiply data chunks by size of headers */
				bytecount = ((segs - 1) * skb_headlen(skb)) +
					    skb->len;
				total_packets += segs;
				total_bytes += bytecount;
4700 4701

				igb_tx_hwtstamp(adapter, skb);
4702 4703
			}

4704
			igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
A
Alexander Duyck 已提交
4705
			tx_desc->wb.status = 0;
4706 4707 4708 4709 4710

			i++;
			if (i == tx_ring->count)
				i = 0;
		}
A
Alexander Duyck 已提交
4711 4712 4713 4714
		eop = tx_ring->buffer_info[i].next_to_watch;
		eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
	}

4715 4716
	tx_ring->next_to_clean = i;

4717
	if (unlikely(count &&
4718
		     netif_carrier_ok(netdev) &&
4719
		     igb_desc_unused(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
4720 4721 4722 4723
		/* Make sure that anybody stopping the queue after this
		 * sees the new next_to_clean.
		 */
		smp_mb();
4724 4725 4726
		if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) &&
		    !(test_bit(__IGB_DOWN, &adapter->state))) {
			netif_wake_subqueue(netdev, tx_ring->queue_index);
4727
			tx_ring->tx_stats.restart_queue++;
4728
		}
4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741
	}

	if (tx_ring->detect_tx_hung) {
		/* Detect a transmit hang in hardware, this serializes the
		 * check with the clearing of time_stamp and movement of i */
		tx_ring->detect_tx_hung = false;
		if (tx_ring->buffer_info[i].time_stamp &&
		    time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
			       (adapter->tx_timeout_factor * HZ))
		    && !(rd32(E1000_STATUS) &
			 E1000_STATUS_TXOFF)) {

			/* detected Tx unit hang */
4742
			dev_err(&tx_ring->pdev->dev,
4743
				"Detected Tx Unit Hang\n"
A
Alexander Duyck 已提交
4744
				"  Tx Queue             <%d>\n"
4745 4746 4747 4748 4749 4750
				"  TDH                  <%x>\n"
				"  TDT                  <%x>\n"
				"  next_to_use          <%x>\n"
				"  next_to_clean        <%x>\n"
				"buffer_info[next_to_clean]\n"
				"  time_stamp           <%lx>\n"
A
Alexander Duyck 已提交
4751
				"  next_to_watch        <%x>\n"
4752 4753
				"  jiffies              <%lx>\n"
				"  desc.status          <%x>\n",
A
Alexander Duyck 已提交
4754
				tx_ring->queue_index,
4755 4756
				readl(tx_ring->head),
				readl(tx_ring->tail),
4757 4758 4759
				tx_ring->next_to_use,
				tx_ring->next_to_clean,
				tx_ring->buffer_info[i].time_stamp,
A
Alexander Duyck 已提交
4760
				eop,
4761
				jiffies,
A
Alexander Duyck 已提交
4762
				eop_desc->wb.status);
4763
			netif_stop_subqueue(netdev, tx_ring->queue_index);
4764 4765 4766 4767
		}
	}
	tx_ring->total_bytes += total_bytes;
	tx_ring->total_packets += total_packets;
4768 4769
	tx_ring->tx_stats.bytes += total_bytes;
	tx_ring->tx_stats.packets += total_packets;
4770 4771
	netdev->stats.tx_bytes += total_bytes;
	netdev->stats.tx_packets += total_packets;
A
Alexander Duyck 已提交
4772
	return (count < tx_ring->count);
4773 4774 4775 4776
}

/**
 * igb_receive_skb - helper function to handle rx indications
4777 4778 4779
 * @q_vector: structure containing interrupt and ring information
 * @skb: packet to send up
 * @vlan_tag: vlan tag for packet
4780
 **/
4781 4782 4783 4784 4785 4786 4787 4788 4789
static void igb_receive_skb(struct igb_q_vector *q_vector,
                            struct sk_buff *skb,
                            u16 vlan_tag)
{
	struct igb_adapter *adapter = q_vector->adapter;

	if (vlan_tag)
		vlan_gro_receive(&q_vector->napi, adapter->vlgrp,
		                 vlan_tag, skb);
4790
	else
4791
		napi_gro_receive(&q_vector->napi, skb);
4792 4793
}

4794
static inline void igb_rx_checksum_adv(struct igb_ring *ring,
4795 4796 4797 4798 4799
				       u32 status_err, struct sk_buff *skb)
{
	skb->ip_summed = CHECKSUM_NONE;

	/* Ignore Checksum bit is set or checksum is disabled through ethtool */
4800 4801
	if (!(ring->flags & IGB_RING_FLAG_RX_CSUM) ||
	     (status_err & E1000_RXD_STAT_IXSM))
4802
		return;
4803

4804 4805 4806
	/* TCP/UDP checksum error bit is set */
	if (status_err &
	    (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
4807 4808 4809 4810 4811
		/*
		 * work around errata with sctp packets where the TCPE aka
		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
		 * packets, (aka let the stack check the crc32c)
		 */
4812 4813
		if ((skb->len == 60) &&
		    (ring->flags & IGB_RING_FLAG_RX_SCTP_CSUM))
4814
			ring->rx_stats.csum_err++;
4815

4816 4817 4818 4819 4820 4821 4822
		/* let the stack verify checksum errors */
		return;
	}
	/* It must be a TCP or UDP packet with a valid checksum */
	if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
		skb->ip_summed = CHECKSUM_UNNECESSARY;

4823
	dev_dbg(&ring->pdev->dev, "cksum success: bits %08X\n", status_err);
4824 4825
}

4826
static inline u16 igb_get_hlen(struct igb_ring *rx_ring,
4827 4828 4829 4830 4831 4832 4833 4834
                               union e1000_adv_rx_desc *rx_desc)
{
	/* HW will not DMA in data larger than the given buffer, even if it
	 * parses the (NFS, of course) header to be larger.  In that case, it
	 * fills the header buffer and spills the rest into the page.
	 */
	u16 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
	           E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
4835 4836
	if (hlen > rx_ring->rx_buffer_len)
		hlen = rx_ring->rx_buffer_len;
4837 4838 4839
	return hlen;
}

4840 4841
static bool igb_clean_rx_irq_adv(struct igb_q_vector *q_vector,
                                 int *work_done, int budget)
4842
{
4843
	struct igb_adapter *adapter = q_vector->adapter;
4844
	struct net_device *netdev = adapter->netdev;
4845
	struct igb_ring *rx_ring = q_vector->rx_ring;
4846
	struct e1000_hw *hw = &adapter->hw;
4847
	struct pci_dev *pdev = rx_ring->pdev;
4848 4849 4850 4851 4852 4853
	union e1000_adv_rx_desc *rx_desc , *next_rxd;
	struct igb_buffer *buffer_info , *next_buffer;
	struct sk_buff *skb;
	bool cleaned = false;
	int cleaned_count = 0;
	unsigned int total_bytes = 0, total_packets = 0;
4854
	unsigned int i;
4855 4856
	u32 staterr;
	u16 length;
4857
	u16 vlan_tag;
4858 4859

	i = rx_ring->next_to_clean;
4860
	buffer_info = &rx_ring->buffer_info[i];
4861 4862 4863 4864 4865 4866 4867 4868
	rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);

	while (staterr & E1000_RXD_STAT_DD) {
		if (*work_done >= budget)
			break;
		(*work_done)++;

4869 4870 4871 4872 4873 4874 4875 4876 4877 4878
		skb = buffer_info->skb;
		prefetch(skb->data - NET_IP_ALIGN);
		buffer_info->skb = NULL;

		i++;
		if (i == rx_ring->count)
			i = 0;
		next_rxd = E1000_RX_DESC_ADV(*rx_ring, i);
		prefetch(next_rxd);
		next_buffer = &rx_ring->buffer_info[i];
4879 4880 4881 4882 4883

		length = le16_to_cpu(rx_desc->wb.upper.length);
		cleaned = true;
		cleaned_count++;

4884
		if (buffer_info->dma) {
4885
			pci_unmap_single(pdev, buffer_info->dma,
4886
					 rx_ring->rx_buffer_len,
4887
					 PCI_DMA_FROMDEVICE);
J
Jesse Brandeburg 已提交
4888
			buffer_info->dma = 0;
4889
			if (rx_ring->rx_buffer_len >= IGB_RXBUFFER_1024) {
A
Alexander Duyck 已提交
4890 4891 4892
				skb_put(skb, length);
				goto send_up;
			}
4893
			skb_put(skb, igb_get_hlen(rx_ring, rx_desc));
4894 4895 4896
		}

		if (length) {
4897
			pci_unmap_page(pdev, buffer_info->page_dma,
4898
				       PAGE_SIZE / 2, PCI_DMA_FROMDEVICE);
4899
			buffer_info->page_dma = 0;
4900 4901 4902 4903 4904 4905

			skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags++,
						buffer_info->page,
						buffer_info->page_offset,
						length);

A
Alexander Duyck 已提交
4906
			if (page_count(buffer_info->page) != 1)
4907 4908 4909
				buffer_info->page = NULL;
			else
				get_page(buffer_info->page);
4910 4911 4912 4913

			skb->len += length;
			skb->data_len += length;

4914
			skb->truesize += length;
4915 4916
		}

4917
		if (!(staterr & E1000_RXD_STAT_EOP)) {
4918 4919 4920 4921
			buffer_info->skb = next_buffer->skb;
			buffer_info->dma = next_buffer->dma;
			next_buffer->skb = skb;
			next_buffer->dma = 0;
4922 4923
			goto next_desc;
		}
4924
send_up:
4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965
		/*
		 * If this bit is set, then the RX registers contain
		 * the time stamp. No other packet will be time
		 * stamped until we read these registers, so read the
		 * registers to make them available again. Because
		 * only one packet can be time stamped at a time, we
		 * know that the register values must belong to this
		 * one here and therefore we don't need to compare
		 * any of the additional attributes stored for it.
		 *
		 * If nothing went wrong, then it should have a
		 * skb_shared_tx that we can turn into a
		 * skb_shared_hwtstamps.
		 *
		 * TODO: can time stamping be triggered (thus locking
		 * the registers) without the packet reaching this point
		 * here? In that case RX time stamping would get stuck.
		 *
		 * TODO: in "time stamp all packets" mode this bit is
		 * not set. Need a global flag for this mode and then
		 * always read the registers. Cannot be done without
		 * a race condition.
		 */
		if (unlikely(staterr & E1000_RXD_STAT_TS)) {
			u64 regval;
			u64 ns;
			struct skb_shared_hwtstamps *shhwtstamps =
				skb_hwtstamps(skb);

			WARN(!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID),
			     "igb: no RX time stamp available for time stamped packet");
			regval = rd32(E1000_RXSTMPL);
			regval |= (u64)rd32(E1000_RXSTMPH) << 32;
			ns = timecounter_cyc2time(&adapter->clock, regval);
			timecompare_update(&adapter->compare, ns);
			memset(shhwtstamps, 0, sizeof(*shhwtstamps));
			shhwtstamps->hwtstamp = ns_to_ktime(ns);
			shhwtstamps->syststamp =
				timecompare_transform(&adapter->compare, ns);
		}

4966 4967 4968 4969 4970 4971 4972 4973
		if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
			dev_kfree_skb_irq(skb);
			goto next_desc;
		}

		total_bytes += skb->len;
		total_packets++;

4974
		igb_rx_checksum_adv(rx_ring, staterr, skb);
4975 4976

		skb->protocol = eth_type_trans(skb, netdev);
4977 4978 4979 4980
		skb_record_rx_queue(skb, rx_ring->queue_index);

		vlan_tag = ((staterr & E1000_RXD_STAT_VP) ?
		            le16_to_cpu(rx_desc->wb.upper.vlan) : 0);
4981

4982
		igb_receive_skb(q_vector, skb, vlan_tag);
4983 4984 4985 4986 4987 4988

next_desc:
		rx_desc->wb.upper.status_error = 0;

		/* return some buffers to hardware, one at a time is too slow */
		if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
4989
			igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
4990 4991 4992 4993 4994 4995 4996 4997
			cleaned_count = 0;
		}

		/* use prefetched values */
		rx_desc = next_rxd;
		buffer_info = next_buffer;
		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
	}
4998

4999
	rx_ring->next_to_clean = i;
5000
	cleaned_count = igb_desc_unused(rx_ring);
5001 5002

	if (cleaned_count)
5003
		igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
5004 5005 5006 5007 5008

	rx_ring->total_packets += total_packets;
	rx_ring->total_bytes += total_bytes;
	rx_ring->rx_stats.packets += total_packets;
	rx_ring->rx_stats.bytes += total_bytes;
5009 5010
	netdev->stats.rx_bytes += total_bytes;
	netdev->stats.rx_packets += total_packets;
5011 5012 5013 5014 5015 5016 5017
	return cleaned;
}

/**
 * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split
 * @adapter: address of board private structure
 **/
5018
static void igb_alloc_rx_buffers_adv(struct igb_ring *rx_ring,
5019 5020
				     int cleaned_count)
{
5021
	struct igb_adapter *adapter = rx_ring->q_vector->adapter;
5022 5023 5024 5025 5026
	struct net_device *netdev = adapter->netdev;
	union e1000_adv_rx_desc *rx_desc;
	struct igb_buffer *buffer_info;
	struct sk_buff *skb;
	unsigned int i;
5027
	int bufsz;
5028 5029 5030 5031

	i = rx_ring->next_to_use;
	buffer_info = &rx_ring->buffer_info[i];

5032
	bufsz = rx_ring->rx_buffer_len;
5033

5034 5035 5036
	while (cleaned_count--) {
		rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);

A
Alexander Duyck 已提交
5037
		if ((bufsz < IGB_RXBUFFER_1024) && !buffer_info->page_dma) {
5038
			if (!buffer_info->page) {
5039 5040
				buffer_info->page = alloc_page(GFP_ATOMIC);
				if (!buffer_info->page) {
5041
					rx_ring->rx_stats.alloc_failed++;
5042 5043 5044 5045 5046
					goto no_buffers;
				}
				buffer_info->page_offset = 0;
			} else {
				buffer_info->page_offset ^= PAGE_SIZE / 2;
5047 5048
			}
			buffer_info->page_dma =
5049
				pci_map_page(rx_ring->pdev, buffer_info->page,
5050 5051
					     buffer_info->page_offset,
					     PAGE_SIZE / 2,
5052 5053 5054 5055
					     PCI_DMA_FROMDEVICE);
		}

		if (!buffer_info->skb) {
5056
			skb = netdev_alloc_skb_ip_align(netdev, bufsz);
5057
			if (!skb) {
5058
				rx_ring->rx_stats.alloc_failed++;
5059 5060 5061 5062
				goto no_buffers;
			}

			buffer_info->skb = skb;
5063 5064
			buffer_info->dma = pci_map_single(rx_ring->pdev,
			                                  skb->data,
5065 5066 5067 5068 5069
							  bufsz,
							  PCI_DMA_FROMDEVICE);
		}
		/* Refresh the desc even if buffer_addrs didn't change because
		 * each write-back erases this info. */
A
Alexander Duyck 已提交
5070
		if (bufsz < IGB_RXBUFFER_1024) {
5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098
			rx_desc->read.pkt_addr =
			     cpu_to_le64(buffer_info->page_dma);
			rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
		} else {
			rx_desc->read.pkt_addr =
			     cpu_to_le64(buffer_info->dma);
			rx_desc->read.hdr_addr = 0;
		}

		i++;
		if (i == rx_ring->count)
			i = 0;
		buffer_info = &rx_ring->buffer_info[i];
	}

no_buffers:
	if (rx_ring->next_to_use != i) {
		rx_ring->next_to_use = i;
		if (i == 0)
			i = (rx_ring->count - 1);
		else
			i--;

		/* Force memory writes to complete before letting h/w
		 * know there are new descriptors to fetch.  (Only
		 * applicable for weak-ordered memory model archs,
		 * such as IA-64). */
		wmb();
5099
		writel(i, rx_ring->tail);
5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121
	}
}

/**
 * igb_mii_ioctl -
 * @netdev:
 * @ifreq:
 * @cmd:
 **/
static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct mii_ioctl_data *data = if_mii(ifr);

	if (adapter->hw.phy.media_type != e1000_media_type_copper)
		return -EOPNOTSUPP;

	switch (cmd) {
	case SIOCGMIIPHY:
		data->phy_id = adapter->hw.phy.addr;
		break;
	case SIOCGMIIREG:
5122 5123
		if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
		                     &data->val_out))
5124 5125 5126 5127 5128 5129 5130 5131 5132
			return -EIO;
		break;
	case SIOCSMIIREG:
	default:
		return -EOPNOTSUPP;
	}
	return 0;
}

5133 5134 5135 5136 5137 5138
/**
 * igb_hwtstamp_ioctl - control hardware time stamping
 * @netdev:
 * @ifreq:
 * @cmd:
 *
5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150
 * Outgoing time stamping can be enabled and disabled. Play nice and
 * disable it when requested, although it shouldn't case any overhead
 * when no packet needs it. At most one packet in the queue may be
 * marked for time stamping, otherwise it would be impossible to tell
 * for sure to which packet the hardware time stamp belongs.
 *
 * Incoming time stamping has to be configured via the hardware
 * filters. Not all combinations are supported, in particular event
 * type has to be specified. Matching the kind of event packet is
 * not supported, with the exception of "all V2 events regardless of
 * level 2 or 4".
 *
5151 5152 5153 5154
 **/
static int igb_hwtstamp_ioctl(struct net_device *netdev,
			      struct ifreq *ifr, int cmd)
{
5155 5156
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
5157
	struct hwtstamp_config config;
5158 5159 5160 5161 5162 5163 5164 5165
	u32 tsync_tx_ctl_bit = E1000_TSYNCTXCTL_ENABLED;
	u32 tsync_rx_ctl_bit = E1000_TSYNCRXCTL_ENABLED;
	u32 tsync_rx_ctl_type = 0;
	u32 tsync_rx_cfg = 0;
	int is_l4 = 0;
	int is_l2 = 0;
	short port = 319; /* PTP */
	u32 regval;
5166 5167 5168 5169 5170 5171 5172 5173

	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
		return -EFAULT;

	/* reserved for future extensions */
	if (config.flags)
		return -EINVAL;

5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284
	switch (config.tx_type) {
	case HWTSTAMP_TX_OFF:
		tsync_tx_ctl_bit = 0;
		break;
	case HWTSTAMP_TX_ON:
		tsync_tx_ctl_bit = E1000_TSYNCTXCTL_ENABLED;
		break;
	default:
		return -ERANGE;
	}

	switch (config.rx_filter) {
	case HWTSTAMP_FILTER_NONE:
		tsync_rx_ctl_bit = 0;
		break;
	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
	case HWTSTAMP_FILTER_ALL:
		/*
		 * register TSYNCRXCFG must be set, therefore it is not
		 * possible to time stamp both Sync and Delay_Req messages
		 * => fall back to time stamping all packets
		 */
		tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_ALL;
		config.rx_filter = HWTSTAMP_FILTER_ALL;
		break;
	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
		tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_L4_V1;
		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
		is_l4 = 1;
		break;
	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
		tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_L4_V1;
		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
		is_l4 = 1;
		break;
	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
		tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_SYNC_MESSAGE;
		is_l2 = 1;
		is_l4 = 1;
		config.rx_filter = HWTSTAMP_FILTER_SOME;
		break;
	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
		tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_DELAY_REQ_MESSAGE;
		is_l2 = 1;
		is_l4 = 1;
		config.rx_filter = HWTSTAMP_FILTER_SOME;
		break;
	case HWTSTAMP_FILTER_PTP_V2_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
		tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_EVENT_V2;
		config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
		is_l2 = 1;
		break;
	default:
		return -ERANGE;
	}

	/* enable/disable TX */
	regval = rd32(E1000_TSYNCTXCTL);
	regval = (regval & ~E1000_TSYNCTXCTL_ENABLED) | tsync_tx_ctl_bit;
	wr32(E1000_TSYNCTXCTL, regval);

	/* enable/disable RX, define which PTP packets are time stamped */
	regval = rd32(E1000_TSYNCRXCTL);
	regval = (regval & ~E1000_TSYNCRXCTL_ENABLED) | tsync_rx_ctl_bit;
	regval = (regval & ~0xE) | tsync_rx_ctl_type;
	wr32(E1000_TSYNCRXCTL, regval);
	wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);

	/*
	 * Ethertype Filter Queue Filter[0][15:0] = 0x88F7
	 *                                          (Ethertype to filter on)
	 * Ethertype Filter Queue Filter[0][26] = 0x1 (Enable filter)
	 * Ethertype Filter Queue Filter[0][30] = 0x1 (Enable Timestamping)
	 */
	wr32(E1000_ETQF0, is_l2 ? 0x440088f7 : 0);

	/* L4 Queue Filter[0]: only filter by source and destination port */
	wr32(E1000_SPQF0, htons(port));
	wr32(E1000_IMIREXT(0), is_l4 ?
	     ((1<<12) | (1<<19) /* bypass size and control flags */) : 0);
	wr32(E1000_IMIR(0), is_l4 ?
	     (htons(port)
	      | (0<<16) /* immediate interrupt disabled */
	      | 0 /* (1<<17) bit cleared: do not bypass
		     destination port check */)
		: 0);
	wr32(E1000_FTQF0, is_l4 ?
	     (0x11 /* UDP */
	      | (1<<15) /* VF not compared */
	      | (1<<27) /* Enable Timestamping */
	      | (7<<28) /* only source port filter enabled,
			   source/target address and protocol
			   masked */)
	     : ((1<<15) | (15<<28) /* all mask bits set = filter not
				      enabled */));

	wrfl();

	adapter->hwtstamp_config = config;

	/* clear TX/RX time stamp registers, just to be sure */
	regval = rd32(E1000_TXSTMPH);
	regval = rd32(E1000_RXSTMPH);
5285

5286 5287
	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
		-EFAULT : 0;
5288 5289
}

5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302
/**
 * igb_ioctl -
 * @netdev:
 * @ifreq:
 * @cmd:
 **/
static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
	switch (cmd) {
	case SIOCGMIIPHY:
	case SIOCGMIIREG:
	case SIOCSMIIREG:
		return igb_mii_ioctl(netdev, ifr, cmd);
5303 5304
	case SIOCSHWTSTAMP:
		return igb_hwtstamp_ioctl(netdev, ifr, cmd);
5305 5306 5307 5308 5309
	default:
		return -EOPNOTSUPP;
	}
}

5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337
s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
{
	struct igb_adapter *adapter = hw->back;
	u16 cap_offset;

	cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
	if (!cap_offset)
		return -E1000_ERR_CONFIG;

	pci_read_config_word(adapter->pdev, cap_offset + reg, value);

	return 0;
}

s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
{
	struct igb_adapter *adapter = hw->back;
	u16 cap_offset;

	cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
	if (!cap_offset)
		return -E1000_ERR_CONFIG;

	pci_write_config_word(adapter->pdev, cap_offset + reg, *value);

	return 0;
}

5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370
static void igb_vlan_rx_register(struct net_device *netdev,
				 struct vlan_group *grp)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl, rctl;

	igb_irq_disable(adapter);
	adapter->vlgrp = grp;

	if (grp) {
		/* enable VLAN tag insert/strip */
		ctrl = rd32(E1000_CTRL);
		ctrl |= E1000_CTRL_VME;
		wr32(E1000_CTRL, ctrl);

		/* enable VLAN receive filtering */
		rctl = rd32(E1000_RCTL);
		rctl &= ~E1000_RCTL_CFIEN;
		wr32(E1000_RCTL, rctl);
		igb_update_mng_vlan(adapter);
	} else {
		/* disable VLAN tag insert/strip */
		ctrl = rd32(E1000_CTRL);
		ctrl &= ~E1000_CTRL_VME;
		wr32(E1000_CTRL, ctrl);

		if (adapter->mng_vlan_id != (u16)IGB_MNG_VLAN_NONE) {
			igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
			adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
		}
	}

5371 5372
	igb_rlpml_set(adapter);

5373 5374 5375 5376 5377 5378 5379 5380
	if (!test_bit(__IGB_DOWN, &adapter->state))
		igb_irq_enable(adapter);
}

static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
5381
	int pf_id = adapter->vfs_allocated_count;
5382

5383
	if ((hw->mng_cookie.status &
5384 5385 5386
	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
	    (vid == adapter->mng_vlan_id))
		return;
5387 5388 5389 5390 5391 5392

	/* add vid to vlvf if sr-iov is enabled,
	 * if that fails add directly to filter table */
	if (igb_vlvf_set(adapter, vid, true, pf_id))
		igb_vfta_set(hw, vid, true);

5393 5394 5395 5396 5397 5398
}

static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
5399
	int pf_id = adapter->vfs_allocated_count;
5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414

	igb_irq_disable(adapter);
	vlan_group_set_device(adapter->vlgrp, vid, NULL);

	if (!test_bit(__IGB_DOWN, &adapter->state))
		igb_irq_enable(adapter);

	if ((adapter->hw.mng_cookie.status &
	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
	    (vid == adapter->mng_vlan_id)) {
		/* release control to f/w */
		igb_release_hw_control(adapter);
		return;
	}

5415 5416 5417 5418
	/* remove vid from vlvf if sr-iov is enabled,
	 * if not in vlvf remove from vfta */
	if (igb_vlvf_set(adapter, vid, false, pf_id))
		igb_vfta_set(hw, vid, false);
5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466
}

static void igb_restore_vlan(struct igb_adapter *adapter)
{
	igb_vlan_rx_register(adapter->netdev, adapter->vlgrp);

	if (adapter->vlgrp) {
		u16 vid;
		for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
			if (!vlan_group_get_device(adapter->vlgrp, vid))
				continue;
			igb_vlan_rx_add_vid(adapter->netdev, vid);
		}
	}
}

int igb_set_spd_dplx(struct igb_adapter *adapter, u16 spddplx)
{
	struct e1000_mac_info *mac = &adapter->hw.mac;

	mac->autoneg = 0;

	switch (spddplx) {
	case SPEED_10 + DUPLEX_HALF:
		mac->forced_speed_duplex = ADVERTISE_10_HALF;
		break;
	case SPEED_10 + DUPLEX_FULL:
		mac->forced_speed_duplex = ADVERTISE_10_FULL;
		break;
	case SPEED_100 + DUPLEX_HALF:
		mac->forced_speed_duplex = ADVERTISE_100_HALF;
		break;
	case SPEED_100 + DUPLEX_FULL:
		mac->forced_speed_duplex = ADVERTISE_100_FULL;
		break;
	case SPEED_1000 + DUPLEX_FULL:
		mac->autoneg = 1;
		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
		break;
	case SPEED_1000 + DUPLEX_HALF: /* not supported */
	default:
		dev_err(&adapter->pdev->dev,
			"Unsupported Speed/Duplex configuration\n");
		return -EINVAL;
	}
	return 0;
}

5467
static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake)
5468 5469 5470 5471
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
A
Alexander Duyck 已提交
5472
	u32 ctrl, rctl, status;
5473 5474 5475 5476 5477 5478 5479
	u32 wufc = adapter->wol;
#ifdef CONFIG_PM
	int retval = 0;
#endif

	netif_device_detach(netdev);

A
Alexander Duyck 已提交
5480 5481 5482
	if (netif_running(netdev))
		igb_close(netdev);

5483
	igb_clear_interrupt_scheme(adapter);
5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496

#ifdef CONFIG_PM
	retval = pci_save_state(pdev);
	if (retval)
		return retval;
#endif

	status = rd32(E1000_STATUS);
	if (status & E1000_STATUS_LU)
		wufc &= ~E1000_WUFC_LNKC;

	if (wufc) {
		igb_setup_rctl(adapter);
5497
		igb_set_rx_mode(netdev);
5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523

		/* turn on all-multi mode if wake on multicast is enabled */
		if (wufc & E1000_WUFC_MC) {
			rctl = rd32(E1000_RCTL);
			rctl |= E1000_RCTL_MPE;
			wr32(E1000_RCTL, rctl);
		}

		ctrl = rd32(E1000_CTRL);
		/* advertise wake from D3Cold */
		#define E1000_CTRL_ADVD3WUC 0x00100000
		/* phy power management enable */
		#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
		ctrl |= E1000_CTRL_ADVD3WUC;
		wr32(E1000_CTRL, ctrl);

		/* Allow time for pending master requests to run */
		igb_disable_pcie_master(&adapter->hw);

		wr32(E1000_WUC, E1000_WUC_PME_EN);
		wr32(E1000_WUFC, wufc);
	} else {
		wr32(E1000_WUC, 0);
		wr32(E1000_WUFC, 0);
	}

5524 5525
	*enable_wake = wufc || adapter->en_mng_pt;
	if (!*enable_wake)
5526
		igb_shutdown_serdes_link_82575(hw);
5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537

	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
	 * would have already happened in close and is redundant. */
	igb_release_hw_control(adapter);

	pci_disable_device(pdev);

	return 0;
}

#ifdef CONFIG_PM
5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556
static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
{
	int retval;
	bool wake;

	retval = __igb_shutdown(pdev, &wake);
	if (retval)
		return retval;

	if (wake) {
		pci_prepare_to_sleep(pdev);
	} else {
		pci_wake_from_d3(pdev, false);
		pci_set_power_state(pdev, PCI_D3hot);
	}

	return 0;
}

5557 5558 5559 5560 5561 5562 5563 5564 5565
static int igb_resume(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 err;

	pci_set_power_state(pdev, PCI_D0);
	pci_restore_state(pdev);
T
Taku Izumi 已提交
5566

5567
	err = pci_enable_device_mem(pdev);
5568 5569 5570 5571 5572 5573 5574 5575 5576 5577
	if (err) {
		dev_err(&pdev->dev,
			"igb: Cannot enable PCI device from suspend\n");
		return err;
	}
	pci_set_master(pdev);

	pci_enable_wake(pdev, PCI_D3hot, 0);
	pci_enable_wake(pdev, PCI_D3cold, 0);

5578
	if (igb_init_interrupt_scheme(adapter)) {
A
Alexander Duyck 已提交
5579 5580
		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
		return -ENOMEM;
5581 5582 5583 5584 5585
	}

	/* e1000_power_up_phy(adapter); */

	igb_reset(adapter);
5586 5587 5588 5589 5590

	/* let the f/w know that the h/w is now under the control of the
	 * driver. */
	igb_get_hw_control(adapter);

5591 5592
	wr32(E1000_WUS, ~0);

A
Alexander Duyck 已提交
5593 5594 5595 5596 5597
	if (netif_running(netdev)) {
		err = igb_open(netdev);
		if (err)
			return err;
	}
5598 5599 5600 5601 5602 5603 5604 5605 5606

	netif_device_attach(netdev);

	return 0;
}
#endif

static void igb_shutdown(struct pci_dev *pdev)
{
5607 5608 5609 5610 5611 5612 5613 5614
	bool wake;

	__igb_shutdown(pdev, &wake);

	if (system_state == SYSTEM_POWER_OFF) {
		pci_wake_from_d3(pdev, wake);
		pci_set_power_state(pdev, PCI_D3hot);
	}
5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625
}

#ifdef CONFIG_NET_POLL_CONTROLLER
/*
 * Polling 'interrupt' - used by things like netconsole to send skbs
 * without having to re-enable interrupts. It's not called while
 * the interrupt routine is executing.
 */
static void igb_netpoll(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
5626
	struct e1000_hw *hw = &adapter->hw;
5627 5628
	int i;

5629
	if (!adapter->msix_entries) {
5630
		struct igb_q_vector *q_vector = adapter->q_vector[0];
5631
		igb_irq_disable(adapter);
5632
		napi_schedule(&q_vector->napi);
5633 5634
		return;
	}
5635

5636 5637 5638 5639
	for (i = 0; i < adapter->num_q_vectors; i++) {
		struct igb_q_vector *q_vector = adapter->q_vector[i];
		wr32(E1000_EIMC, q_vector->eims_value);
		napi_schedule(&q_vector->napi);
5640
	}
5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659
}
#endif /* CONFIG_NET_POLL_CONTROLLER */

/**
 * igb_io_error_detected - called when PCI error is detected
 * @pdev: Pointer to PCI device
 * @state: The current pci connection state
 *
 * This function is called after a PCI bus error affecting
 * this device has been detected.
 */
static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
					      pci_channel_state_t state)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);

	netif_device_detach(netdev);

5660 5661 5662
	if (state == pci_channel_io_perm_failure)
		return PCI_ERS_RESULT_DISCONNECT;

5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682
	if (netif_running(netdev))
		igb_down(adapter);
	pci_disable_device(pdev);

	/* Request a slot slot reset. */
	return PCI_ERS_RESULT_NEED_RESET;
}

/**
 * igb_io_slot_reset - called after the pci bus has been reset.
 * @pdev: Pointer to PCI device
 *
 * Restart the card from scratch, as if from a cold-boot. Implementation
 * resembles the first-half of the igb_resume routine.
 */
static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
5683
	pci_ers_result_t result;
T
Taku Izumi 已提交
5684
	int err;
5685

5686
	if (pci_enable_device_mem(pdev)) {
5687 5688
		dev_err(&pdev->dev,
			"Cannot re-enable PCI device after reset.\n");
5689 5690 5691 5692
		result = PCI_ERS_RESULT_DISCONNECT;
	} else {
		pci_set_master(pdev);
		pci_restore_state(pdev);
5693

5694 5695
		pci_enable_wake(pdev, PCI_D3hot, 0);
		pci_enable_wake(pdev, PCI_D3cold, 0);
5696

5697 5698 5699 5700
		igb_reset(adapter);
		wr32(E1000_WUS, ~0);
		result = PCI_ERS_RESULT_RECOVERED;
	}
5701

5702 5703 5704 5705 5706 5707
	err = pci_cleanup_aer_uncorrect_error_status(pdev);
	if (err) {
		dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
		        "failed 0x%0x\n", err);
		/* non-fatal, continue */
	}
5708 5709

	return result;
5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738
}

/**
 * igb_io_resume - called when traffic can start flowing again.
 * @pdev: Pointer to PCI device
 *
 * This callback is called when the error recovery driver tells us that
 * its OK to resume normal operation. Implementation resembles the
 * second-half of the igb_resume routine.
 */
static void igb_io_resume(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);

	if (netif_running(netdev)) {
		if (igb_up(adapter)) {
			dev_err(&pdev->dev, "igb_up failed after reset\n");
			return;
		}
	}

	netif_device_attach(netdev);

	/* let the f/w know that the h/w is now under the control of the
	 * driver. */
	igb_get_hw_control(adapter);
}

5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765
static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
                             u8 qsel)
{
	u32 rar_low, rar_high;
	struct e1000_hw *hw = &adapter->hw;

	/* HW expects these in little endian so we reverse the byte order
	 * from network order (big endian) to little endian
	 */
	rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
	          ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));

	/* Indicate to hardware the Address is Valid. */
	rar_high |= E1000_RAH_AV;

	if (hw->mac.type == e1000_82575)
		rar_high |= E1000_RAH_POOL_1 * qsel;
	else
		rar_high |= E1000_RAH_POOL_1 << qsel;

	wr32(E1000_RAL(index), rar_low);
	wrfl();
	wr32(E1000_RAH(index), rar_high);
	wrfl();
}

5766 5767 5768 5769
static int igb_set_vf_mac(struct igb_adapter *adapter,
                          int vf, unsigned char *mac_addr)
{
	struct e1000_hw *hw = &adapter->hw;
5770 5771 5772
	/* VF MAC addresses start at end of receive addresses and moves
	 * torwards the first, as a result a collision should not be possible */
	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
5773

5774
	memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
5775

5776
	igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798

	return 0;
}

static void igb_vmm_control(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 reg_data;

	if (!adapter->vfs_allocated_count)
		return;

	/* VF's need PF reset indication before they
	 * can send/receive mail */
	reg_data = rd32(E1000_CTRL_EXT);
	reg_data |= E1000_CTRL_EXT_PFRSTD;
	wr32(E1000_CTRL_EXT, reg_data);

	igb_vmdq_set_loopback_pf(hw, true);
	igb_vmdq_set_replication_pf(hw, true);
}

5799
/* igb_main.c */