igb_main.c 148.7 KB
Newer Older
1 2 3
/*******************************************************************************

  Intel(R) Gigabit Ethernet Linux driver
4
  Copyright(c) 2007-2009 Intel Corporation.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

  This program is free software; you can redistribute it and/or modify it
  under the terms and conditions of the GNU General Public License,
  version 2, as published by the Free Software Foundation.

  This program is distributed in the hope it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  more details.

  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc.,
  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.

  The full GNU General Public License is included in this distribution in
  the file called "COPYING".

  Contact Information:
  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497

*******************************************************************************/

#include <linux/module.h>
#include <linux/types.h>
#include <linux/init.h>
#include <linux/vmalloc.h>
#include <linux/pagemap.h>
#include <linux/netdevice.h>
#include <linux/ipv6.h>
#include <net/checksum.h>
#include <net/ip6_checksum.h>
37
#include <linux/net_tstamp.h>
38 39 40 41
#include <linux/mii.h>
#include <linux/ethtool.h>
#include <linux/if_vlan.h>
#include <linux/pci.h>
42
#include <linux/pci-aspm.h>
43 44 45
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/if_ether.h>
46
#include <linux/aer.h>
47
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
48 49
#include <linux/dca.h>
#endif
50 51
#include "igb.h"

52
#define DRV_VERSION "1.3.16-k2"
53 54 55 56
char igb_driver_name[] = "igb";
char igb_driver_version[] = DRV_VERSION;
static const char igb_driver_string[] =
				"Intel(R) Gigabit Ethernet Network Driver";
57
static const char igb_copyright[] = "Copyright (c) 2007-2009 Intel Corporation.";
58 59 60 61 62 63

static const struct e1000_info *igb_info_tbl[] = {
	[board_82575] = &e1000_82575_info,
};

static struct pci_device_id igb_pci_tbl[] = {
A
Alexander Duyck 已提交
64
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
65
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
A
Alexander Duyck 已提交
66 67
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
68
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
	/* required last entry */
	{0, }
};

MODULE_DEVICE_TABLE(pci, igb_pci_tbl);

void igb_reset(struct igb_adapter *);
static int igb_setup_all_tx_resources(struct igb_adapter *);
static int igb_setup_all_rx_resources(struct igb_adapter *);
static void igb_free_all_tx_resources(struct igb_adapter *);
static void igb_free_all_rx_resources(struct igb_adapter *);
void igb_update_stats(struct igb_adapter *);
static int igb_probe(struct pci_dev *, const struct pci_device_id *);
static void __devexit igb_remove(struct pci_dev *pdev);
static int igb_sw_init(struct igb_adapter *);
static int igb_open(struct net_device *);
static int igb_close(struct net_device *);
static void igb_configure_tx(struct igb_adapter *);
static void igb_configure_rx(struct igb_adapter *);
static void igb_setup_rctl(struct igb_adapter *);
static void igb_clean_all_tx_rings(struct igb_adapter *);
static void igb_clean_all_rx_rings(struct igb_adapter *);
94 95
static void igb_clean_tx_ring(struct igb_ring *);
static void igb_clean_rx_ring(struct igb_ring *);
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
static void igb_set_multi(struct net_device *);
static void igb_update_phy_info(unsigned long);
static void igb_watchdog(unsigned long);
static void igb_watchdog_task(struct work_struct *);
static int igb_xmit_frame_ring_adv(struct sk_buff *, struct net_device *,
				  struct igb_ring *);
static int igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *);
static struct net_device_stats *igb_get_stats(struct net_device *);
static int igb_change_mtu(struct net_device *, int);
static int igb_set_mac(struct net_device *, void *);
static irqreturn_t igb_intr(int irq, void *);
static irqreturn_t igb_intr_msi(int irq, void *);
static irqreturn_t igb_msix_other(int irq, void *);
static irqreturn_t igb_msix_rx(int irq, void *);
static irqreturn_t igb_msix_tx(int irq, void *);
111
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
112 113 114
static void igb_update_rx_dca(struct igb_ring *);
static void igb_update_tx_dca(struct igb_ring *);
static void igb_setup_dca(struct igb_adapter *);
115
#endif /* CONFIG_IGB_DCA */
116
static bool igb_clean_tx_irq(struct igb_ring *);
117
static int igb_poll(struct napi_struct *, int);
118 119
static bool igb_clean_rx_irq_adv(struct igb_ring *, int *, int);
static void igb_alloc_rx_buffers_adv(struct igb_ring *, int);
120 121 122 123 124 125 126
static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
static void igb_tx_timeout(struct net_device *);
static void igb_reset_task(struct work_struct *);
static void igb_vlan_rx_register(struct net_device *, struct vlan_group *);
static void igb_vlan_rx_add_vid(struct net_device *, u16);
static void igb_vlan_rx_kill_vid(struct net_device *, u16);
static void igb_restore_vlan(struct igb_adapter *);
127 128 129
static void igb_ping_all_vfs(struct igb_adapter *);
static void igb_msg_task(struct igb_adapter *);
static int igb_rcv_msg_from_vf(struct igb_adapter *, u32);
130 131
static inline void igb_set_rah_pool(struct e1000_hw *, int , int);
static void igb_set_mc_list_pools(struct igb_adapter *, int, u16);
132
static void igb_vmm_control(struct igb_adapter *);
133
static inline void igb_set_vmolr(struct e1000_hw *, int);
134 135 136
static inline int igb_set_vf_rlpml(struct igb_adapter *, int, int);
static int igb_set_vf_mac(struct igb_adapter *adapter, int, unsigned char *);
static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
137 138

#ifdef CONFIG_PM
139
static int igb_suspend(struct pci_dev *, pm_message_t);
140 141 142
static int igb_resume(struct pci_dev *);
#endif
static void igb_shutdown(struct pci_dev *);
143
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
144 145 146 147 148 149 150
static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
static struct notifier_block dca_notifier = {
	.notifier_call	= igb_notify_dca,
	.next		= NULL,
	.priority	= 0
};
#endif
151 152 153 154
#ifdef CONFIG_NET_POLL_CONTROLLER
/* for netdump / net console */
static void igb_netpoll(struct net_device *);
#endif
155
#ifdef CONFIG_PCI_IOV
156 157 158 159 160 161
static unsigned int max_vfs = 0;
module_param(max_vfs, uint, 0);
MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
                 "per physical function");
#endif /* CONFIG_PCI_IOV */

162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
		     pci_channel_state_t);
static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
static void igb_io_resume(struct pci_dev *);

static struct pci_error_handlers igb_err_handler = {
	.error_detected = igb_io_error_detected,
	.slot_reset = igb_io_slot_reset,
	.resume = igb_io_resume,
};


static struct pci_driver igb_driver = {
	.name     = igb_driver_name,
	.id_table = igb_pci_tbl,
	.probe    = igb_probe,
	.remove   = __devexit_p(igb_remove),
#ifdef CONFIG_PM
	/* Power Managment Hooks */
	.suspend  = igb_suspend,
	.resume   = igb_resume,
#endif
	.shutdown = igb_shutdown,
	.err_handler = &igb_err_handler
};

188 189
static int global_quad_port_a; /* global quad port a indication */

190 191 192 193 194
MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_VERSION);

P
Patrick Ohly 已提交
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
/**
 * Scale the NIC clock cycle by a large factor so that
 * relatively small clock corrections can be added or
 * substracted at each clock tick. The drawbacks of a
 * large factor are a) that the clock register overflows
 * more quickly (not such a big deal) and b) that the
 * increment per tick has to fit into 24 bits.
 *
 * Note that
 *   TIMINCA = IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS *
 *             IGB_TSYNC_SCALE
 *   TIMINCA += TIMINCA * adjustment [ppm] / 1e9
 *
 * The base scale factor is intentionally a power of two
 * so that the division in %struct timecounter can be done with
 * a shift.
 */
#define IGB_TSYNC_SHIFT (19)
#define IGB_TSYNC_SCALE (1<<IGB_TSYNC_SHIFT)

/**
 * The duration of one clock cycle of the NIC.
 *
 * @todo This hard-coded value is part of the specification and might change
 * in future hardware revisions. Add revision check.
 */
#define IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS 16

#if (IGB_TSYNC_SCALE * IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS) >= (1<<24)
# error IGB_TSYNC_SCALE and/or IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS are too large to fit into TIMINCA
#endif

/**
 * igb_read_clock - read raw cycle counter (to be used by time counter)
 */
static cycle_t igb_read_clock(const struct cyclecounter *tc)
{
	struct igb_adapter *adapter =
		container_of(tc, struct igb_adapter, cycles);
	struct e1000_hw *hw = &adapter->hw;
	u64 stamp;

	stamp =  rd32(E1000_SYSTIML);
	stamp |= (u64)rd32(E1000_SYSTIMH) << 32ULL;

	return stamp;
}

243 244 245 246 247 248 249 250 251 252
#ifdef DEBUG
/**
 * igb_get_hw_dev_name - return device name string
 * used by hardware layer to print debugging information
 **/
char *igb_get_hw_dev_name(struct e1000_hw *hw)
{
	struct igb_adapter *adapter = hw->back;
	return adapter->netdev->name;
}
P
Patrick Ohly 已提交
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268

/**
 * igb_get_time_str - format current NIC and system time as string
 */
static char *igb_get_time_str(struct igb_adapter *adapter,
			      char buffer[160])
{
	cycle_t hw = adapter->cycles.read(&adapter->cycles);
	struct timespec nic = ns_to_timespec(timecounter_read(&adapter->clock));
	struct timespec sys;
	struct timespec delta;
	getnstimeofday(&sys);

	delta = timespec_sub(nic, sys);

	sprintf(buffer,
269 270
		"HW %llu, NIC %ld.%09lus, SYS %ld.%09lus, NIC-SYS %lds + %09luns",
		hw,
P
Patrick Ohly 已提交
271 272 273 274 275 276
		(long)nic.tv_sec, nic.tv_nsec,
		(long)sys.tv_sec, sys.tv_nsec,
		(long)delta.tv_sec, delta.tv_nsec);

	return buffer;
}
277 278
#endif

279 280 281 282 283 284 285 286 287 288 289
/**
 * igb_desc_unused - calculate if we have unused descriptors
 **/
static int igb_desc_unused(struct igb_ring *ring)
{
	if (ring->next_to_clean > ring->next_to_use)
		return ring->next_to_clean - ring->next_to_use - 1;

	return ring->count + ring->next_to_clean - ring->next_to_use - 1;
}

290 291 292 293 294 295 296 297 298 299 300 301 302 303
/**
 * igb_init_module - Driver Registration Routine
 *
 * igb_init_module is the first routine called when the driver is
 * loaded. All it does is register with the PCI subsystem.
 **/
static int __init igb_init_module(void)
{
	int ret;
	printk(KERN_INFO "%s - version %s\n",
	       igb_driver_string, igb_driver_version);

	printk(KERN_INFO "%s\n", igb_copyright);

304 305
	global_quad_port_a = 0;

306
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
307 308
	dca_register_notify(&dca_notifier);
#endif
309 310

	ret = pci_register_driver(&igb_driver);
311 312 313 314 315 316 317 318 319 320 321 322 323
	return ret;
}

module_init(igb_init_module);

/**
 * igb_exit_module - Driver Exit Cleanup Routine
 *
 * igb_exit_module is called just before the driver is removed
 * from memory.
 **/
static void __exit igb_exit_module(void)
{
324
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
325 326
	dca_unregister_notify(&dca_notifier);
#endif
327 328 329 330 331
	pci_unregister_driver(&igb_driver);
}

module_exit(igb_exit_module);

332 333 334 335 336 337 338 339 340 341 342
#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
/**
 * igb_cache_ring_register - Descriptor ring to register mapping
 * @adapter: board private structure to initialize
 *
 * Once we know the feature-set enabled for the device, we'll cache
 * the register offset the descriptor ring is assigned to.
 **/
static void igb_cache_ring_register(struct igb_adapter *adapter)
{
	int i;
343
	unsigned int rbase_offset = adapter->vfs_allocated_count;
344 345 346 347 348 349 350 351 352

	switch (adapter->hw.mac.type) {
	case e1000_82576:
		/* The queues are allocated for virtualization such that VF 0
		 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
		 * In order to avoid collision we start at the first free queue
		 * and continue consuming queues in the same sequence
		 */
		for (i = 0; i < adapter->num_rx_queues; i++)
353 354
			adapter->rx_ring[i].reg_idx = rbase_offset +
			                              Q_IDX_82576(i);
355
		for (i = 0; i < adapter->num_tx_queues; i++)
356 357
			adapter->tx_ring[i].reg_idx = rbase_offset +
			                              Q_IDX_82576(i);
358 359 360 361 362 363 364 365 366 367 368
		break;
	case e1000_82575:
	default:
		for (i = 0; i < adapter->num_rx_queues; i++)
			adapter->rx_ring[i].reg_idx = i;
		for (i = 0; i < adapter->num_tx_queues; i++)
			adapter->tx_ring[i].reg_idx = i;
		break;
	}
}

369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
/**
 * igb_alloc_queues - Allocate memory for all rings
 * @adapter: board private structure to initialize
 *
 * We allocate one ring per queue at run-time since we don't know the
 * number of queues at compile-time.
 **/
static int igb_alloc_queues(struct igb_adapter *adapter)
{
	int i;

	adapter->tx_ring = kcalloc(adapter->num_tx_queues,
				   sizeof(struct igb_ring), GFP_KERNEL);
	if (!adapter->tx_ring)
		return -ENOMEM;

	adapter->rx_ring = kcalloc(adapter->num_rx_queues,
				   sizeof(struct igb_ring), GFP_KERNEL);
	if (!adapter->rx_ring) {
		kfree(adapter->tx_ring);
		return -ENOMEM;
	}

392 393
	adapter->rx_ring->buddy = adapter->tx_ring;

394 395
	for (i = 0; i < adapter->num_tx_queues; i++) {
		struct igb_ring *ring = &(adapter->tx_ring[i]);
396
		ring->count = adapter->tx_ring_count;
397 398 399
		ring->adapter = adapter;
		ring->queue_index = i;
	}
400 401
	for (i = 0; i < adapter->num_rx_queues; i++) {
		struct igb_ring *ring = &(adapter->rx_ring[i]);
402
		ring->count = adapter->rx_ring_count;
403
		ring->adapter = adapter;
P
PJ Waskiewicz 已提交
404
		ring->queue_index = i;
405 406
		ring->itr_register = E1000_ITR;

P
PJ Waskiewicz 已提交
407
		/* set a default napi handler for each rx_ring */
408
		netif_napi_add(adapter->netdev, &ring->napi, igb_poll, 64);
409
	}
410 411

	igb_cache_ring_register(adapter);
412 413 414
	return 0;
}

A
Alexander Duyck 已提交
415 416 417 418 419 420 421
static void igb_free_queues(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_rx_queues; i++)
		netif_napi_del(&adapter->rx_ring[i].napi);

422 423 424
	adapter->num_rx_queues = 0;
	adapter->num_tx_queues = 0;

A
Alexander Duyck 已提交
425 426 427 428
	kfree(adapter->tx_ring);
	kfree(adapter->rx_ring);
}

429 430 431 432 433 434
#define IGB_N0_QUEUE -1
static void igb_assign_vector(struct igb_adapter *adapter, int rx_queue,
			      int tx_queue, int msix_vector)
{
	u32 msixbm = 0;
	struct e1000_hw *hw = &adapter->hw;
A
Alexander Duyck 已提交
435 436 437 438
	u32 ivar, index;

	switch (hw->mac.type) {
	case e1000_82575:
439 440 441 442 443 444 445 446 447 448 449 450 451 452
		/* The 82575 assigns vectors using a bitmask, which matches the
		   bitmask for the EICR/EIMS/EIMC registers.  To assign one
		   or more queues to a vector, we write the appropriate bits
		   into the MSIXBM register for that vector. */
		if (rx_queue > IGB_N0_QUEUE) {
			msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
			adapter->rx_ring[rx_queue].eims_value = msixbm;
		}
		if (tx_queue > IGB_N0_QUEUE) {
			msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
			adapter->tx_ring[tx_queue].eims_value =
				  E1000_EICR_TX_QUEUE0 << tx_queue;
		}
		array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
A
Alexander Duyck 已提交
453 454
		break;
	case e1000_82576:
455
		/* 82576 uses a table-based method for assigning vectors.
A
Alexander Duyck 已提交
456 457 458 459
		   Each queue has a single entry in the table to which we write
		   a vector number along with a "valid" bit.  Sadly, the layout
		   of the table is somewhat counterintuitive. */
		if (rx_queue > IGB_N0_QUEUE) {
460
			index = (rx_queue >> 1) + adapter->vfs_allocated_count;
A
Alexander Duyck 已提交
461
			ivar = array_rd32(E1000_IVAR0, index);
462
			if (rx_queue & 0x1) {
A
Alexander Duyck 已提交
463 464 465
				/* vector goes into third byte of register */
				ivar = ivar & 0xFF00FFFF;
				ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
466 467 468 469
			} else {
				/* vector goes into low byte of register */
				ivar = ivar & 0xFFFFFF00;
				ivar |= msix_vector | E1000_IVAR_VALID;
A
Alexander Duyck 已提交
470 471 472 473 474
			}
			adapter->rx_ring[rx_queue].eims_value= 1 << msix_vector;
			array_wr32(E1000_IVAR0, index, ivar);
		}
		if (tx_queue > IGB_N0_QUEUE) {
475
			index = (tx_queue >> 1) + adapter->vfs_allocated_count;
A
Alexander Duyck 已提交
476
			ivar = array_rd32(E1000_IVAR0, index);
477
			if (tx_queue & 0x1) {
A
Alexander Duyck 已提交
478 479 480
				/* vector goes into high byte of register */
				ivar = ivar & 0x00FFFFFF;
				ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
481 482 483 484
			} else {
				/* vector goes into second byte of register */
				ivar = ivar & 0xFFFF00FF;
				ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
A
Alexander Duyck 已提交
485 486 487 488 489 490 491 492 493
			}
			adapter->tx_ring[tx_queue].eims_value= 1 << msix_vector;
			array_wr32(E1000_IVAR0, index, ivar);
		}
		break;
	default:
		BUG();
		break;
	}
494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
}

/**
 * igb_configure_msix - Configure MSI-X hardware
 *
 * igb_configure_msix sets up the hardware to properly
 * generate MSI-X interrupts.
 **/
static void igb_configure_msix(struct igb_adapter *adapter)
{
	u32 tmp;
	int i, vector = 0;
	struct e1000_hw *hw = &adapter->hw;

	adapter->eims_enable_mask = 0;
A
Alexander Duyck 已提交
509 510 511 512
	if (hw->mac.type == e1000_82576)
		/* Turn on MSI-X capability first, or our settings
		 * won't stick.  And it will take days to debug. */
		wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
513
				   E1000_GPIE_PBA | E1000_GPIE_EIAME |
A
Alexander Duyck 已提交
514
 				   E1000_GPIE_NSICR);
515 516 517 518 519 520

	for (i = 0; i < adapter->num_tx_queues; i++) {
		struct igb_ring *tx_ring = &adapter->tx_ring[i];
		igb_assign_vector(adapter, IGB_N0_QUEUE, i, vector++);
		adapter->eims_enable_mask |= tx_ring->eims_value;
		if (tx_ring->itr_val)
521
			writel(tx_ring->itr_val,
522 523 524 525 526 527 528
			       hw->hw_addr + tx_ring->itr_register);
		else
			writel(1, hw->hw_addr + tx_ring->itr_register);
	}

	for (i = 0; i < adapter->num_rx_queues; i++) {
		struct igb_ring *rx_ring = &adapter->rx_ring[i];
529
		rx_ring->buddy = NULL;
530 531 532
		igb_assign_vector(adapter, i, IGB_N0_QUEUE, vector++);
		adapter->eims_enable_mask |= rx_ring->eims_value;
		if (rx_ring->itr_val)
533
			writel(rx_ring->itr_val,
534 535 536 537 538 539 540
			       hw->hw_addr + rx_ring->itr_register);
		else
			writel(1, hw->hw_addr + rx_ring->itr_register);
	}


	/* set vector for other causes, i.e. link changes */
A
Alexander Duyck 已提交
541 542
	switch (hw->mac.type) {
	case e1000_82575:
543 544 545 546 547 548 549 550 551 552 553 554 555
		array_wr32(E1000_MSIXBM(0), vector++,
				      E1000_EIMS_OTHER);

		tmp = rd32(E1000_CTRL_EXT);
		/* enable MSI-X PBA support*/
		tmp |= E1000_CTRL_EXT_PBA_CLR;

		/* Auto-Mask interrupts upon ICR read. */
		tmp |= E1000_CTRL_EXT_EIAME;
		tmp |= E1000_CTRL_EXT_IRCA;

		wr32(E1000_CTRL_EXT, tmp);
		adapter->eims_enable_mask |= E1000_EIMS_OTHER;
P
PJ Waskiewicz 已提交
556
		adapter->eims_other = E1000_EIMS_OTHER;
557

A
Alexander Duyck 已提交
558 559 560 561 562 563 564 565 566 567 568 569 570
		break;

	case e1000_82576:
		tmp = (vector++ | E1000_IVAR_VALID) << 8;
		wr32(E1000_IVAR_MISC, tmp);

		adapter->eims_enable_mask = (1 << (vector)) - 1;
		adapter->eims_other = 1 << (vector - 1);
		break;
	default:
		/* do nothing, since nothing else supports MSI-X */
		break;
	} /* switch (hw->mac.type) */
571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
	wrfl();
}

/**
 * igb_request_msix - Initialize MSI-X interrupts
 *
 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
 * kernel.
 **/
static int igb_request_msix(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	int i, err = 0, vector = 0;

	vector = 0;

	for (i = 0; i < adapter->num_tx_queues; i++) {
		struct igb_ring *ring = &(adapter->tx_ring[i]);
589
		sprintf(ring->name, "%s-tx-%d", netdev->name, i);
590 591 592 593 594 595
		err = request_irq(adapter->msix_entries[vector].vector,
				  &igb_msix_tx, 0, ring->name,
				  &(adapter->tx_ring[i]));
		if (err)
			goto out;
		ring->itr_register = E1000_EITR(0) + (vector << 2);
596
		ring->itr_val = 976; /* ~4000 ints/sec */
597 598 599 600 601
		vector++;
	}
	for (i = 0; i < adapter->num_rx_queues; i++) {
		struct igb_ring *ring = &(adapter->rx_ring[i]);
		if (strlen(netdev->name) < (IFNAMSIZ - 5))
602
			sprintf(ring->name, "%s-rx-%d", netdev->name, i);
603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
		else
			memcpy(ring->name, netdev->name, IFNAMSIZ);
		err = request_irq(adapter->msix_entries[vector].vector,
				  &igb_msix_rx, 0, ring->name,
				  &(adapter->rx_ring[i]));
		if (err)
			goto out;
		ring->itr_register = E1000_EITR(0) + (vector << 2);
		ring->itr_val = adapter->itr;
		vector++;
	}

	err = request_irq(adapter->msix_entries[vector].vector,
			  &igb_msix_other, 0, netdev->name, netdev);
	if (err)
		goto out;

	igb_configure_msix(adapter);
	return 0;
out:
	return err;
}

static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
{
	if (adapter->msix_entries) {
		pci_disable_msix(adapter->pdev);
		kfree(adapter->msix_entries);
		adapter->msix_entries = NULL;
632
	} else if (adapter->flags & IGB_FLAG_HAS_MSI)
633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648
		pci_disable_msi(adapter->pdev);
	return;
}


/**
 * igb_set_interrupt_capability - set MSI or MSI-X if supported
 *
 * Attempt to configure interrupts using the best available
 * capabilities of the hardware and kernel.
 **/
static void igb_set_interrupt_capability(struct igb_adapter *adapter)
{
	int err;
	int numvecs, i;

649 650 651 652 653
	/* Number of supported queues. */
	/* Having more queues than CPUs doesn't make sense. */
	adapter->num_rx_queues = min_t(u32, IGB_MAX_RX_QUEUES, num_online_cpus());
	adapter->num_tx_queues = min_t(u32, IGB_MAX_TX_QUEUES, num_online_cpus());

654 655 656 657 658 659 660 661 662 663 664 665 666
	numvecs = adapter->num_tx_queues + adapter->num_rx_queues + 1;
	adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
					GFP_KERNEL);
	if (!adapter->msix_entries)
		goto msi_only;

	for (i = 0; i < numvecs; i++)
		adapter->msix_entries[i].entry = i;

	err = pci_enable_msix(adapter->pdev,
			      adapter->msix_entries,
			      numvecs);
	if (err == 0)
667
		goto out;
668 669 670 671 672

	igb_reset_interrupt_capability(adapter);

	/* If we can't do MSI-X, try MSI */
msi_only:
673 674 675 676 677 678 679 680 681 682 683 684 685 686 687
#ifdef CONFIG_PCI_IOV
	/* disable SR-IOV for non MSI-X configurations */
	if (adapter->vf_data) {
		struct e1000_hw *hw = &adapter->hw;
		/* disable iov and allow time for transactions to clear */
		pci_disable_sriov(adapter->pdev);
		msleep(500);

		kfree(adapter->vf_data);
		adapter->vf_data = NULL;
		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
		msleep(100);
		dev_info(&adapter->pdev->dev, "IOV Disabled\n");
	}
#endif
688
	adapter->num_rx_queues = 1;
689
	adapter->num_tx_queues = 1;
690
	if (!pci_enable_msi(adapter->pdev))
691
		adapter->flags |= IGB_FLAG_HAS_MSI;
692
out:
693
	/* Notify the stack of the (possibly) reduced Tx Queue count. */
694
	adapter->netdev->real_num_tx_queues = adapter->num_tx_queues;
695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711
	return;
}

/**
 * igb_request_irq - initialize interrupts
 *
 * Attempts to configure interrupts using the best available
 * capabilities of the hardware and kernel.
 **/
static int igb_request_irq(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	struct e1000_hw *hw = &adapter->hw;
	int err = 0;

	if (adapter->msix_entries) {
		err = igb_request_msix(adapter);
P
PJ Waskiewicz 已提交
712
		if (!err)
713 714 715 716
			goto request_done;
		/* fall back to MSI */
		igb_reset_interrupt_capability(adapter);
		if (!pci_enable_msi(adapter->pdev))
717
			adapter->flags |= IGB_FLAG_HAS_MSI;
718 719 720 721
		igb_free_all_tx_resources(adapter);
		igb_free_all_rx_resources(adapter);
		adapter->num_rx_queues = 1;
		igb_alloc_queues(adapter);
P
PJ Waskiewicz 已提交
722
	} else {
A
Alexander Duyck 已提交
723 724 725 726 727 728 729 730 731 732 733
		switch (hw->mac.type) {
		case e1000_82575:
			wr32(E1000_MSIXBM(0),
			     (E1000_EICR_RX_QUEUE0 | E1000_EIMS_OTHER));
			break;
		case e1000_82576:
			wr32(E1000_IVAR0, E1000_IVAR_VALID);
			break;
		default:
			break;
		}
734
	}
P
PJ Waskiewicz 已提交
735

736
	if (adapter->flags & IGB_FLAG_HAS_MSI) {
737 738 739 740 741 742
		err = request_irq(adapter->pdev->irq, &igb_intr_msi, 0,
				  netdev->name, netdev);
		if (!err)
			goto request_done;
		/* fall back to legacy interrupts */
		igb_reset_interrupt_capability(adapter);
743
		adapter->flags &= ~IGB_FLAG_HAS_MSI;
744 745 746 747 748
	}

	err = request_irq(adapter->pdev->irq, &igb_intr, IRQF_SHARED,
			  netdev->name, netdev);

A
Andy Gospodarek 已提交
749
	if (err)
750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786
		dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n",
			err);

request_done:
	return err;
}

static void igb_free_irq(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;

	if (adapter->msix_entries) {
		int vector = 0, i;

		for (i = 0; i < adapter->num_tx_queues; i++)
			free_irq(adapter->msix_entries[vector++].vector,
				&(adapter->tx_ring[i]));
		for (i = 0; i < adapter->num_rx_queues; i++)
			free_irq(adapter->msix_entries[vector++].vector,
				&(adapter->rx_ring[i]));

		free_irq(adapter->msix_entries[vector++].vector, netdev);
		return;
	}

	free_irq(adapter->pdev->irq, netdev);
}

/**
 * igb_irq_disable - Mask off interrupt generation on the NIC
 * @adapter: board private structure
 **/
static void igb_irq_disable(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

	if (adapter->msix_entries) {
P
PJ Waskiewicz 已提交
787
		wr32(E1000_EIAM, 0);
788 789 790
		wr32(E1000_EIMC, ~0);
		wr32(E1000_EIAC, 0);
	}
P
PJ Waskiewicz 已提交
791 792

	wr32(E1000_IAM, 0);
793 794 795 796 797 798 799 800 801 802 803 804 805 806
	wr32(E1000_IMC, ~0);
	wrfl();
	synchronize_irq(adapter->pdev->irq);
}

/**
 * igb_irq_enable - Enable default interrupt generation settings
 * @adapter: board private structure
 **/
static void igb_irq_enable(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

	if (adapter->msix_entries) {
P
PJ Waskiewicz 已提交
807 808 809
		wr32(E1000_EIAC, adapter->eims_enable_mask);
		wr32(E1000_EIAM, adapter->eims_enable_mask);
		wr32(E1000_EIMS, adapter->eims_enable_mask);
810 811 812 813
		if (adapter->vfs_allocated_count)
			wr32(E1000_MBVFIMR, 0xFF);
		wr32(E1000_IMS, (E1000_IMS_LSC | E1000_IMS_VMMB |
		                 E1000_IMS_DOUTSYNC));
P
PJ Waskiewicz 已提交
814 815 816 817
	} else {
		wr32(E1000_IMS, IMS_ENABLE_MASK);
		wr32(E1000_IAM, IMS_ENABLE_MASK);
	}
818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900
}

static void igb_update_mng_vlan(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	u16 vid = adapter->hw.mng_cookie.vlan_id;
	u16 old_vid = adapter->mng_vlan_id;
	if (adapter->vlgrp) {
		if (!vlan_group_get_device(adapter->vlgrp, vid)) {
			if (adapter->hw.mng_cookie.status &
				E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
				igb_vlan_rx_add_vid(netdev, vid);
				adapter->mng_vlan_id = vid;
			} else
				adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;

			if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
					(vid != old_vid) &&
			    !vlan_group_get_device(adapter->vlgrp, old_vid))
				igb_vlan_rx_kill_vid(netdev, old_vid);
		} else
			adapter->mng_vlan_id = vid;
	}
}

/**
 * igb_release_hw_control - release control of the h/w to f/w
 * @adapter: address of board private structure
 *
 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
 * For ASF and Pass Through versions of f/w this means that the
 * driver is no longer loaded.
 *
 **/
static void igb_release_hw_control(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl_ext;

	/* Let firmware take over control of h/w */
	ctrl_ext = rd32(E1000_CTRL_EXT);
	wr32(E1000_CTRL_EXT,
			ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
}


/**
 * igb_get_hw_control - get control of the h/w from f/w
 * @adapter: address of board private structure
 *
 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
 * For ASF and Pass Through versions of f/w this means that
 * the driver is loaded.
 *
 **/
static void igb_get_hw_control(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl_ext;

	/* Let firmware know the driver has taken over */
	ctrl_ext = rd32(E1000_CTRL_EXT);
	wr32(E1000_CTRL_EXT,
			ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
}

/**
 * igb_configure - configure the hardware for RX and TX
 * @adapter: private board structure
 **/
static void igb_configure(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	int i;

	igb_get_hw_control(adapter);
	igb_set_multi(netdev);

	igb_restore_vlan(adapter);

	igb_configure_tx(adapter);
	igb_setup_rctl(adapter);
	igb_configure_rx(adapter);
901 902 903

	igb_rx_fifo_flush_82575(&adapter->hw);

904
	/* call igb_desc_unused which always leaves
905 906 907 908
	 * at least 1 descriptor unused to make sure
	 * next_to_use != next_to_clean */
	for (i = 0; i < adapter->num_rx_queues; i++) {
		struct igb_ring *ring = &adapter->rx_ring[i];
909
		igb_alloc_rx_buffers_adv(ring, igb_desc_unused(ring));
910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931
	}


	adapter->tx_queue_len = netdev->tx_queue_len;
}


/**
 * igb_up - Open the interface and prepare it to handle traffic
 * @adapter: board private structure
 **/

int igb_up(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	int i;

	/* hardware has been reset, we need to reload some things */
	igb_configure(adapter);

	clear_bit(__IGB_DOWN, &adapter->state);

P
PJ Waskiewicz 已提交
932 933 934
	for (i = 0; i < adapter->num_rx_queues; i++)
		napi_enable(&adapter->rx_ring[i].napi);
	if (adapter->msix_entries)
935 936
		igb_configure_msix(adapter);

937
	igb_vmm_control(adapter);
938 939 940
	igb_set_rah_pool(hw, adapter->vfs_allocated_count, 0);
	igb_set_vmolr(hw, adapter->vfs_allocated_count);

941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965
	/* Clear any pending interrupts. */
	rd32(E1000_ICR);
	igb_irq_enable(adapter);

	/* Fire a link change interrupt to start the watchdog. */
	wr32(E1000_ICS, E1000_ICS_LSC);
	return 0;
}

void igb_down(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct net_device *netdev = adapter->netdev;
	u32 tctl, rctl;
	int i;

	/* signal that we're down so the interrupt handler does not
	 * reschedule our watchdog timer */
	set_bit(__IGB_DOWN, &adapter->state);

	/* disable receives in the hardware */
	rctl = rd32(E1000_RCTL);
	wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
	/* flush and sleep below */

966
	netif_tx_stop_all_queues(netdev);
967 968 969 970 971 972 973 974 975

	/* disable transmits in the hardware */
	tctl = rd32(E1000_TCTL);
	tctl &= ~E1000_TCTL_EN;
	wr32(E1000_TCTL, tctl);
	/* flush both disables and wait for them to finish */
	wrfl();
	msleep(10);

P
PJ Waskiewicz 已提交
976 977
	for (i = 0; i < adapter->num_rx_queues; i++)
		napi_disable(&adapter->rx_ring[i].napi);
978 979 980 981 982 983 984 985

	igb_irq_disable(adapter);

	del_timer_sync(&adapter->watchdog_timer);
	del_timer_sync(&adapter->phy_info_timer);

	netdev->tx_queue_len = adapter->tx_queue_len;
	netif_carrier_off(netdev);
986 987 988 989

	/* record the stats before reset*/
	igb_update_stats(adapter);

990 991 992
	adapter->link_speed = 0;
	adapter->link_duplex = 0;

993 994
	if (!pci_channel_offline(adapter->pdev))
		igb_reset(adapter);
995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
	igb_clean_all_tx_rings(adapter);
	igb_clean_all_rx_rings(adapter);
}

void igb_reinit_locked(struct igb_adapter *adapter)
{
	WARN_ON(in_interrupt());
	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
		msleep(1);
	igb_down(adapter);
	igb_up(adapter);
	clear_bit(__IGB_RESETTING, &adapter->state);
}

void igb_reset(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
A
Alexander Duyck 已提交
1012 1013
	struct e1000_mac_info *mac = &hw->mac;
	struct e1000_fc_info *fc = &hw->fc;
1014 1015 1016 1017 1018 1019
	u32 pba = 0, tx_space, min_tx_space, min_rx_space;
	u16 hwm;

	/* Repartition Pba for greater than 9k mtu
	 * To take effect CTRL.RST is required.
	 */
1020 1021
	switch (mac->type) {
	case e1000_82576:
A
Alexander Duyck 已提交
1022
		pba = E1000_PBA_64K;
1023 1024 1025 1026 1027
		break;
	case e1000_82575:
	default:
		pba = E1000_PBA_34K;
		break;
A
Alexander Duyck 已提交
1028
	}
1029

A
Alexander Duyck 已提交
1030 1031
	if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
	    (mac->type < e1000_82576)) {
1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
		/* adjust PBA for jumbo frames */
		wr32(E1000_PBA, pba);

		/* To maintain wire speed transmits, the Tx FIFO should be
		 * large enough to accommodate two full transmit packets,
		 * rounded up to the next 1KB and expressed in KB.  Likewise,
		 * the Rx FIFO should be large enough to accommodate at least
		 * one full receive packet and is similarly rounded up and
		 * expressed in KB. */
		pba = rd32(E1000_PBA);
		/* upper 16 bits has Tx packet buffer allocation size in KB */
		tx_space = pba >> 16;
		/* lower 16 bits has Rx packet buffer allocation size in KB */
		pba &= 0xffff;
		/* the tx fifo also stores 16 bytes of information about the tx
		 * but don't include ethernet FCS because hardware appends it */
		min_tx_space = (adapter->max_frame_size +
1049
				sizeof(union e1000_adv_tx_desc) -
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
				ETH_FCS_LEN) * 2;
		min_tx_space = ALIGN(min_tx_space, 1024);
		min_tx_space >>= 10;
		/* software strips receive CRC, so leave room for it */
		min_rx_space = adapter->max_frame_size;
		min_rx_space = ALIGN(min_rx_space, 1024);
		min_rx_space >>= 10;

		/* If current Tx allocation is less than the min Tx FIFO size,
		 * and the min Tx FIFO size is less than the current Rx FIFO
		 * allocation, take space away from current Rx allocation */
		if (tx_space < min_tx_space &&
		    ((min_tx_space - tx_space) < pba)) {
			pba = pba - (min_tx_space - tx_space);

			/* if short on rx space, rx wins and must trump tx
			 * adjustment */
			if (pba < min_rx_space)
				pba = min_rx_space;
		}
A
Alexander Duyck 已提交
1070
		wr32(E1000_PBA, pba);
1071 1072 1073 1074 1075 1076 1077 1078 1079
	}

	/* flow control settings */
	/* The high water mark must be low enough to fit one full frame
	 * (or the size used for early receive) above it in the Rx FIFO.
	 * Set it to the lower of:
	 * - 90% of the Rx FIFO size, or
	 * - the full Rx FIFO size minus one full frame */
	hwm = min(((pba << 10) * 9 / 10),
A
Alexander Duyck 已提交
1080
			((pba << 10) - 2 * adapter->max_frame_size));
1081

A
Alexander Duyck 已提交
1082 1083 1084 1085 1086 1087 1088
	if (mac->type < e1000_82576) {
		fc->high_water = hwm & 0xFFF8;	/* 8-byte granularity */
		fc->low_water = fc->high_water - 8;
	} else {
		fc->high_water = hwm & 0xFFF0;	/* 16-byte granularity */
		fc->low_water = fc->high_water - 16;
	}
1089 1090 1091 1092
	fc->pause_time = 0xFFFF;
	fc->send_xon = 1;
	fc->type = fc->original_type;

1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
	/* disable receive for all VFs and wait one second */
	if (adapter->vfs_allocated_count) {
		int i;
		for (i = 0 ; i < adapter->vfs_allocated_count; i++)
			adapter->vf_data[i].clear_to_send = false;

		/* ping all the active vfs to let them know we are going down */
			igb_ping_all_vfs(adapter);

		/* disable transmits and receives */
		wr32(E1000_VFRE, 0);
		wr32(E1000_VFTE, 0);
	}

1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
	/* Allow time for pending master requests to run */
	adapter->hw.mac.ops.reset_hw(&adapter->hw);
	wr32(E1000_WUC, 0);

	if (adapter->hw.mac.ops.init_hw(&adapter->hw))
		dev_err(&adapter->pdev->dev, "Hardware Error\n");

	igb_update_mng_vlan(adapter);

	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
	wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);

	igb_reset_adaptive(&adapter->hw);
1120
	igb_get_phy_info(&adapter->hw);
1121 1122
}

S
Stephen Hemminger 已提交
1123 1124 1125
static const struct net_device_ops igb_netdev_ops = {
	.ndo_open 		= igb_open,
	.ndo_stop		= igb_close,
1126
	.ndo_start_xmit		= igb_xmit_frame_adv,
S
Stephen Hemminger 已提交
1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
	.ndo_get_stats		= igb_get_stats,
	.ndo_set_multicast_list	= igb_set_multi,
	.ndo_set_mac_address	= igb_set_mac,
	.ndo_change_mtu		= igb_change_mtu,
	.ndo_do_ioctl		= igb_ioctl,
	.ndo_tx_timeout		= igb_tx_timeout,
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_vlan_rx_register	= igb_vlan_rx_register,
	.ndo_vlan_rx_add_vid	= igb_vlan_rx_add_vid,
	.ndo_vlan_rx_kill_vid	= igb_vlan_rx_kill_vid,
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller	= igb_netpoll,
#endif
};

1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
/**
 * igb_probe - Device Initialization Routine
 * @pdev: PCI device information struct
 * @ent: entry in igb_pci_tbl
 *
 * Returns 0 on success, negative on failure
 *
 * igb_probe initializes an adapter identified by a pci_dev structure.
 * The OS initialization, configuring of the adapter private structure,
 * and a hardware reset occur.
 **/
static int __devinit igb_probe(struct pci_dev *pdev,
			       const struct pci_device_id *ent)
{
	struct net_device *netdev;
	struct igb_adapter *adapter;
	struct e1000_hw *hw;
	const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
	unsigned long mmio_start, mmio_len;
1161
	int err, pci_using_dac;
1162
	u16 eeprom_data = 0;
1163 1164 1165
	u16 eeprom_apme_mask = IGB_EEPROM_APME;
	u32 part_num;

1166
	err = pci_enable_device_mem(pdev);
1167 1168 1169 1170
	if (err)
		return err;

	pci_using_dac = 0;
1171
	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
1172
	if (!err) {
1173
		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
1174 1175 1176
		if (!err)
			pci_using_dac = 1;
	} else {
1177
		err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
1178
		if (err) {
1179
			err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
1180 1181 1182 1183 1184 1185 1186 1187
			if (err) {
				dev_err(&pdev->dev, "No usable DMA "
					"configuration, aborting\n");
				goto err_dma;
			}
		}
	}

1188 1189 1190
	err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
	                                   IORESOURCE_MEM),
	                                   igb_driver_name);
1191 1192 1193
	if (err)
		goto err_pci_reg;

1194 1195 1196 1197 1198 1199
	err = pci_enable_pcie_error_reporting(pdev);
	if (err) {
		dev_err(&pdev->dev, "pci_enable_pcie_error_reporting failed "
		        "0x%x\n", err);
		/* non-fatal, continue */
	}
1200

1201
	pci_set_master(pdev);
1202
	pci_save_state(pdev);
1203 1204

	err = -ENOMEM;
1205 1206
	netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
	                           IGB_ABS_MAX_TX_QUEUES);
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
	if (!netdev)
		goto err_alloc_etherdev;

	SET_NETDEV_DEV(netdev, &pdev->dev);

	pci_set_drvdata(pdev, netdev);
	adapter = netdev_priv(netdev);
	adapter->netdev = netdev;
	adapter->pdev = pdev;
	hw = &adapter->hw;
	hw->back = adapter;
	adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;

	mmio_start = pci_resource_start(pdev, 0);
	mmio_len = pci_resource_len(pdev, 0);

	err = -EIO;
1224 1225
	hw->hw_addr = ioremap(mmio_start, mmio_len);
	if (!hw->hw_addr)
1226 1227
		goto err_ioremap;

S
Stephen Hemminger 已提交
1228
	netdev->netdev_ops = &igb_netdev_ops;
1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
	igb_set_ethtool_ops(netdev);
	netdev->watchdog_timeo = 5 * HZ;

	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);

	netdev->mem_start = mmio_start;
	netdev->mem_end = mmio_start + mmio_len;

	/* PCI config space info */
	hw->vendor_id = pdev->vendor;
	hw->device_id = pdev->device;
	hw->revision_id = pdev->revision;
	hw->subsystem_vendor_id = pdev->subsystem_vendor;
	hw->subsystem_device_id = pdev->subsystem_device;

	/* setup the private structure */
	hw->back = adapter;
	/* Copy the default MAC, PHY and NVM function pointers */
	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
	/* Initialize skew-specific constants */
	err = ei->get_invariants(hw);
	if (err)
1253
		goto err_sw_init;
1254

1255 1256 1257 1258 1259 1260 1261 1262 1263
#ifdef CONFIG_PCI_IOV
	/* since iov functionality isn't critical to base device function we
	 * can accept failure.  If it fails we don't allow iov to be enabled */
	if (hw->mac.type == e1000_82576) {
		/* 82576 supports a maximum of 7 VFs in addition to the PF */
		unsigned int num_vfs = (max_vfs > 7) ? 7 : max_vfs;
		int i;
		unsigned char mac_addr[ETH_ALEN];

1264
		if (num_vfs) {
1265 1266 1267
			adapter->vf_data = kcalloc(num_vfs,
						sizeof(struct vf_data_storage),
						GFP_KERNEL);
1268 1269 1270 1271
			if (!adapter->vf_data) {
				dev_err(&pdev->dev,
				        "Could not allocate VF private data - "
					"IOV enable failed\n");
1272
			} else {
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
				err = pci_enable_sriov(pdev, num_vfs);
				if (!err) {
					adapter->vfs_allocated_count = num_vfs;
					dev_info(&pdev->dev,
					         "%d vfs allocated\n",
					         num_vfs);
					for (i = 0;
					     i < adapter->vfs_allocated_count;
					     i++) {
						random_ether_addr(mac_addr);
						igb_set_vf_mac(adapter, i,
						               mac_addr);
					}
				} else {
					kfree(adapter->vf_data);
					adapter->vf_data = NULL;
				}
1290 1291 1292 1293 1294
			}
		}
	}

#endif
1295
	/* setup the private structure */
1296 1297 1298 1299 1300 1301
	err = igb_sw_init(adapter);
	if (err)
		goto err_sw_init;

	igb_get_bus_info_pcie(hw);

1302 1303 1304 1305 1306
	/* set flags */
	switch (hw->mac.type) {
	case e1000_82575:
		adapter->flags |= IGB_FLAG_NEED_CTX_IDX;
		break;
1307
	case e1000_82576:
1308 1309 1310 1311
	default:
		break;
	}

1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
	hw->phy.autoneg_wait_to_complete = false;
	hw->mac.adaptive_ifs = true;

	/* Copper options */
	if (hw->phy.media_type == e1000_media_type_copper) {
		hw->phy.mdix = AUTO_ALL_MODES;
		hw->phy.disable_polarity_correction = false;
		hw->phy.ms_type = e1000_ms_hw_default;
	}

	if (igb_check_reset_block(hw))
		dev_info(&pdev->dev,
			"PHY reset is blocked due to SOL/IDER session.\n");

	netdev->features = NETIF_F_SG |
1327
			   NETIF_F_IP_CSUM |
1328 1329 1330 1331
			   NETIF_F_HW_VLAN_TX |
			   NETIF_F_HW_VLAN_RX |
			   NETIF_F_HW_VLAN_FILTER;

1332
	netdev->features |= NETIF_F_IPV6_CSUM;
1333 1334
	netdev->features |= NETIF_F_TSO;
	netdev->features |= NETIF_F_TSO6;
1335

H
Herbert Xu 已提交
1336
	netdev->features |= NETIF_F_GRO;
1337

1338 1339
	netdev->vlan_features |= NETIF_F_TSO;
	netdev->vlan_features |= NETIF_F_TSO6;
1340
	netdev->vlan_features |= NETIF_F_IP_CSUM;
1341 1342
	netdev->vlan_features |= NETIF_F_SG;

1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371
	if (pci_using_dac)
		netdev->features |= NETIF_F_HIGHDMA;

	adapter->en_mng_pt = igb_enable_mng_pass_thru(&adapter->hw);

	/* before reading the NVM, reset the controller to put the device in a
	 * known good starting state */
	hw->mac.ops.reset_hw(hw);

	/* make sure the NVM is good */
	if (igb_validate_nvm_checksum(hw) < 0) {
		dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
		err = -EIO;
		goto err_eeprom;
	}

	/* copy the MAC address out of the NVM */
	if (hw->mac.ops.read_mac_addr(hw))
		dev_err(&pdev->dev, "NVM Read Error\n");

	memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
	memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);

	if (!is_valid_ether_addr(netdev->perm_addr)) {
		dev_err(&pdev->dev, "Invalid MAC Address\n");
		err = -EIO;
		goto err_eeprom;
	}

1372 1373 1374 1375
	setup_timer(&adapter->watchdog_timer, &igb_watchdog,
	            (unsigned long) adapter);
	setup_timer(&adapter->phy_info_timer, &igb_update_phy_info,
	            (unsigned long) adapter);
1376 1377 1378 1379

	INIT_WORK(&adapter->reset_task, igb_reset_task);
	INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);

1380
	/* Initialize link properties that are user-changeable */
1381 1382 1383 1384 1385 1386 1387
	adapter->fc_autoneg = true;
	hw->mac.autoneg = true;
	hw->phy.autoneg_advertised = 0x2f;

	hw->fc.original_type = e1000_fc_default;
	hw->fc.type = e1000_fc_default;

A
Alexander Duyck 已提交
1388
	adapter->itr_setting = IGB_DEFAULT_ITR;
1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
	adapter->itr = IGB_START_ITR;

	igb_validate_mdi_setting(hw);

	adapter->rx_csum = 1;

	/* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
	 * enable the ACPI Magic Packet filter
	 */

1399
	if (hw->bus.func == 0)
A
Alexander Duyck 已提交
1400
		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1401 1402
	else if (hw->bus.func == 1)
		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414

	if (eeprom_data & eeprom_apme_mask)
		adapter->eeprom_wol |= E1000_WUFC_MAG;

	/* now that we have the eeprom settings, apply the special cases where
	 * the eeprom may be wrong or the board simply won't support wake on
	 * lan on a particular port */
	switch (pdev->device) {
	case E1000_DEV_ID_82575GB_QUAD_COPPER:
		adapter->eeprom_wol = 0;
		break;
	case E1000_DEV_ID_82575EB_FIBER_SERDES:
A
Alexander Duyck 已提交
1415 1416
	case E1000_DEV_ID_82576_FIBER:
	case E1000_DEV_ID_82576_SERDES:
1417 1418 1419 1420 1421
		/* Wake events only supported on port A for dual fiber
		 * regardless of eeprom setting */
		if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
			adapter->eeprom_wol = 0;
		break;
1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
	case E1000_DEV_ID_82576_QUAD_COPPER:
		/* if quad port adapter, disable WoL on all but port A */
		if (global_quad_port_a != 0)
			adapter->eeprom_wol = 0;
		else
			adapter->flags |= IGB_FLAG_QUAD_PORT_A;
		/* Reset for multiple quad port adapters */
		if (++global_quad_port_a == 4)
			global_quad_port_a = 0;
		break;
1432 1433 1434 1435
	}

	/* initialize the wol settings based on the eeprom settings */
	adapter->wol = adapter->eeprom_wol;
1436
	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1437 1438 1439 1440 1441 1442 1443 1444 1445 1446

	/* reset the hardware with the new settings */
	igb_reset(adapter);

	/* let the f/w know that the h/w is now under the control of the
	 * driver. */
	igb_get_hw_control(adapter);

	/* tell the stack to leave us alone until igb_open() is called */
	netif_carrier_off(netdev);
1447
	netif_tx_stop_all_queues(netdev);
1448 1449 1450 1451 1452 1453

	strcpy(netdev->name, "eth%d");
	err = register_netdev(netdev);
	if (err)
		goto err_register;

1454
#ifdef CONFIG_IGB_DCA
1455
	if (dca_add_requester(&pdev->dev) == 0) {
1456
		adapter->flags |= IGB_FLAG_DCA_ENABLED;
J
Jeb Cramer 已提交
1457 1458 1459
		dev_info(&pdev->dev, "DCA enabled\n");
		/* Always use CB2 mode, difference is masked
		 * in the CB driver. */
A
Alexander Duyck 已提交
1460
		wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
J
Jeb Cramer 已提交
1461 1462 1463 1464
		igb_setup_dca(adapter);
	}
#endif

P
Patrick Ohly 已提交
1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494
	/*
	 * Initialize hardware timer: we keep it running just in case
	 * that some program needs it later on.
	 */
	memset(&adapter->cycles, 0, sizeof(adapter->cycles));
	adapter->cycles.read = igb_read_clock;
	adapter->cycles.mask = CLOCKSOURCE_MASK(64);
	adapter->cycles.mult = 1;
	adapter->cycles.shift = IGB_TSYNC_SHIFT;
	wr32(E1000_TIMINCA,
	     (1<<24) |
	     IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS * IGB_TSYNC_SCALE);
#if 0
	/*
	 * Avoid rollover while we initialize by resetting the time counter.
	 */
	wr32(E1000_SYSTIML, 0x00000000);
	wr32(E1000_SYSTIMH, 0x00000000);
#else
	/*
	 * Set registers so that rollover occurs soon to test this.
	 */
	wr32(E1000_SYSTIML, 0x00000000);
	wr32(E1000_SYSTIMH, 0xFF800000);
#endif
	wrfl();
	timecounter_init(&adapter->clock,
			 &adapter->cycles,
			 ktime_to_ns(ktime_get_real()));

1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506
	/*
	 * Synchronize our NIC clock against system wall clock. NIC
	 * time stamp reading requires ~3us per sample, each sample
	 * was pretty stable even under load => only require 10
	 * samples for each offset comparison.
	 */
	memset(&adapter->compare, 0, sizeof(adapter->compare));
	adapter->compare.source = &adapter->clock;
	adapter->compare.target = ktime_get_real;
	adapter->compare.num_samples = 10;
	timecompare_update(&adapter->compare, 0);

P
Patrick Ohly 已提交
1507 1508 1509 1510 1511 1512 1513 1514 1515 1516
#ifdef DEBUG
	{
		char buffer[160];
		printk(KERN_DEBUG
			"igb: %s: hw %p initialized timer\n",
			igb_get_time_str(adapter, buffer),
			&adapter->hw);
	}
#endif

1517 1518
	dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
	/* print bus type/speed/width info */
J
Johannes Berg 已提交
1519
	dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
1520 1521 1522
		 netdev->name,
		 ((hw->bus.speed == e1000_bus_speed_2500)
		  ? "2.5Gb/s" : "unknown"),
1523 1524 1525 1526
		 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
		  (hw->bus.width == e1000_bus_width_pcie_x2) ? "Width x2" :
		  (hw->bus.width == e1000_bus_width_pcie_x1) ? "Width x1" :
		   "unknown"),
J
Johannes Berg 已提交
1527
		 netdev->dev_addr);
1528 1529 1530 1531 1532 1533 1534 1535

	igb_read_part_num(hw, &part_num);
	dev_info(&pdev->dev, "%s: PBA No: %06x-%03x\n", netdev->name,
		(part_num >> 8), (part_num & 0xff));

	dev_info(&pdev->dev,
		"Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
		adapter->msix_entries ? "MSI-X" :
1536
		(adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
1537 1538 1539 1540 1541 1542 1543 1544
		adapter->num_rx_queues, adapter->num_tx_queues);

	return 0;

err_register:
	igb_release_hw_control(adapter);
err_eeprom:
	if (!igb_check_reset_block(hw))
1545
		igb_reset_phy(hw);
1546 1547 1548 1549

	if (hw->flash_address)
		iounmap(hw->flash_address);

A
Alexander Duyck 已提交
1550
	igb_free_queues(adapter);
1551 1552 1553 1554 1555
err_sw_init:
	iounmap(hw->hw_addr);
err_ioremap:
	free_netdev(netdev);
err_alloc_etherdev:
1556 1557
	pci_release_selected_regions(pdev, pci_select_bars(pdev,
	                             IORESOURCE_MEM));
1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576
err_pci_reg:
err_dma:
	pci_disable_device(pdev);
	return err;
}

/**
 * igb_remove - Device Removal Routine
 * @pdev: PCI device information struct
 *
 * igb_remove is called by the PCI subsystem to alert the driver
 * that it should release a PCI device.  The could be caused by a
 * Hot-Plug event, or because the driver is going to be removed from
 * memory.
 **/
static void __devexit igb_remove(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
J
Jeb Cramer 已提交
1577
	struct e1000_hw *hw = &adapter->hw;
1578
	int err;
1579 1580 1581 1582 1583 1584 1585 1586 1587

	/* flush_scheduled work may reschedule our watchdog task, so
	 * explicitly disable watchdog tasks from being rescheduled  */
	set_bit(__IGB_DOWN, &adapter->state);
	del_timer_sync(&adapter->watchdog_timer);
	del_timer_sync(&adapter->phy_info_timer);

	flush_scheduled_work();

1588
#ifdef CONFIG_IGB_DCA
1589
	if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
J
Jeb Cramer 已提交
1590 1591
		dev_info(&pdev->dev, "DCA disabled\n");
		dca_remove_requester(&pdev->dev);
1592
		adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
A
Alexander Duyck 已提交
1593
		wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
J
Jeb Cramer 已提交
1594 1595 1596
	}
#endif

1597 1598 1599 1600 1601 1602
	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
	 * would have already happened in close and is redundant. */
	igb_release_hw_control(adapter);

	unregister_netdev(netdev);

1603 1604
	if (!igb_check_reset_block(&adapter->hw))
		igb_reset_phy(&adapter->hw);
1605 1606 1607

	igb_reset_interrupt_capability(adapter);

A
Alexander Duyck 已提交
1608
	igb_free_queues(adapter);
1609

1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623
#ifdef CONFIG_PCI_IOV
	/* reclaim resources allocated to VFs */
	if (adapter->vf_data) {
		/* disable iov and allow time for transactions to clear */
		pci_disable_sriov(pdev);
		msleep(500);

		kfree(adapter->vf_data);
		adapter->vf_data = NULL;
		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
		msleep(100);
		dev_info(&pdev->dev, "IOV Disabled\n");
	}
#endif
1624 1625 1626
	iounmap(hw->hw_addr);
	if (hw->flash_address)
		iounmap(hw->flash_address);
1627 1628
	pci_release_selected_regions(pdev, pci_select_bars(pdev,
	                             IORESOURCE_MEM));
1629 1630 1631

	free_netdev(netdev);

1632 1633 1634 1635
	err = pci_disable_pcie_error_reporting(pdev);
	if (err)
		dev_err(&pdev->dev,
		        "pci_disable_pcie_error_reporting failed 0x%x\n", err);
1636

1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655
	pci_disable_device(pdev);
}

/**
 * igb_sw_init - Initialize general software structures (struct igb_adapter)
 * @adapter: board private structure to initialize
 *
 * igb_sw_init initializes the Adapter private data structure.
 * Fields are initialized based on PCI device information and
 * OS network device settings (MTU size).
 **/
static int __devinit igb_sw_init(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;

	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);

1656 1657
	adapter->tx_ring_count = IGB_DEFAULT_TXD;
	adapter->rx_ring_count = IGB_DEFAULT_RXD;
1658 1659 1660 1661 1662
	adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
	adapter->rx_ps_hdr_size = 0; /* disable packet split */
	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;

1663 1664
	/* This call may decrease the number of queues depending on
	 * interrupt mode. */
1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724
	igb_set_interrupt_capability(adapter);

	if (igb_alloc_queues(adapter)) {
		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
		return -ENOMEM;
	}

	/* Explicitly disable IRQ since the NIC can be in any state. */
	igb_irq_disable(adapter);

	set_bit(__IGB_DOWN, &adapter->state);
	return 0;
}

/**
 * igb_open - Called when a network interface is made active
 * @netdev: network interface device structure
 *
 * Returns 0 on success, negative value on failure
 *
 * The open entry point is called when a network interface is made
 * active by the system (IFF_UP).  At this point all resources needed
 * for transmit and receive operations are allocated, the interrupt
 * handler is registered with the OS, the watchdog timer is started,
 * and the stack is notified that the interface is ready.
 **/
static int igb_open(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	int err;
	int i;

	/* disallow open during test */
	if (test_bit(__IGB_TESTING, &adapter->state))
		return -EBUSY;

	/* allocate transmit descriptors */
	err = igb_setup_all_tx_resources(adapter);
	if (err)
		goto err_setup_tx;

	/* allocate receive descriptors */
	err = igb_setup_all_rx_resources(adapter);
	if (err)
		goto err_setup_rx;

	/* e1000_power_up_phy(adapter); */

	adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
	if ((adapter->hw.mng_cookie.status &
	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
		igb_update_mng_vlan(adapter);

	/* before we allocate an interrupt, we must be ready to handle it.
	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
	 * as soon as we call pci_request_irq, so we have to setup our
	 * clean_rx handler before we do so.  */
	igb_configure(adapter);

1725
	igb_vmm_control(adapter);
1726 1727 1728
	igb_set_rah_pool(hw, adapter->vfs_allocated_count, 0);
	igb_set_vmolr(hw, adapter->vfs_allocated_count);

1729 1730 1731 1732 1733 1734 1735
	err = igb_request_irq(adapter);
	if (err)
		goto err_req_irq;

	/* From here on the code is the same as igb_up() */
	clear_bit(__IGB_DOWN, &adapter->state);

P
PJ Waskiewicz 已提交
1736 1737
	for (i = 0; i < adapter->num_rx_queues; i++)
		napi_enable(&adapter->rx_ring[i].napi);
1738 1739 1740

	/* Clear any pending interrupts. */
	rd32(E1000_ICR);
P
PJ Waskiewicz 已提交
1741 1742 1743

	igb_irq_enable(adapter);

1744 1745
	netif_tx_start_all_queues(netdev);

1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816
	/* Fire a link status change interrupt to start the watchdog. */
	wr32(E1000_ICS, E1000_ICS_LSC);

	return 0;

err_req_irq:
	igb_release_hw_control(adapter);
	/* e1000_power_down_phy(adapter); */
	igb_free_all_rx_resources(adapter);
err_setup_rx:
	igb_free_all_tx_resources(adapter);
err_setup_tx:
	igb_reset(adapter);

	return err;
}

/**
 * igb_close - Disables a network interface
 * @netdev: network interface device structure
 *
 * Returns 0, this is not allowed to fail
 *
 * The close entry point is called when an interface is de-activated
 * by the OS.  The hardware is still under the driver's control, but
 * needs to be disabled.  A global MAC reset is issued to stop the
 * hardware, and all transmit and receive resources are freed.
 **/
static int igb_close(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);

	WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
	igb_down(adapter);

	igb_free_irq(adapter);

	igb_free_all_tx_resources(adapter);
	igb_free_all_rx_resources(adapter);

	/* kill manageability vlan ID if supported, but not if a vlan with
	 * the same ID is registered on the host OS (let 8021q kill it) */
	if ((adapter->hw.mng_cookie.status &
			  E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
	     !(adapter->vlgrp &&
	       vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
		igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);

	return 0;
}

/**
 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
 * @adapter: board private structure
 * @tx_ring: tx descriptor ring (for a specific queue) to setup
 *
 * Return 0 on success, negative on failure
 **/
int igb_setup_tx_resources(struct igb_adapter *adapter,
			   struct igb_ring *tx_ring)
{
	struct pci_dev *pdev = adapter->pdev;
	int size;

	size = sizeof(struct igb_buffer) * tx_ring->count;
	tx_ring->buffer_info = vmalloc(size);
	if (!tx_ring->buffer_info)
		goto err;
	memset(tx_ring->buffer_info, 0, size);

	/* round up to nearest 4K */
1817
	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847
	tx_ring->size = ALIGN(tx_ring->size, 4096);

	tx_ring->desc = pci_alloc_consistent(pdev, tx_ring->size,
					     &tx_ring->dma);

	if (!tx_ring->desc)
		goto err;

	tx_ring->adapter = adapter;
	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;
	return 0;

err:
	vfree(tx_ring->buffer_info);
	dev_err(&adapter->pdev->dev,
		"Unable to allocate memory for the transmit descriptor ring\n");
	return -ENOMEM;
}

/**
 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
 *				  (Descriptors) for all queues
 * @adapter: board private structure
 *
 * Return 0 on success, negative on failure
 **/
static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
{
	int i, err = 0;
1848
	int r_idx;
1849 1850 1851 1852 1853 1854 1855

	for (i = 0; i < adapter->num_tx_queues; i++) {
		err = igb_setup_tx_resources(adapter, &adapter->tx_ring[i]);
		if (err) {
			dev_err(&adapter->pdev->dev,
				"Allocation for Tx Queue %u failed\n", i);
			for (i--; i >= 0; i--)
1856
				igb_free_tx_resources(&adapter->tx_ring[i]);
1857 1858 1859 1860
			break;
		}
	}

1861 1862 1863
	for (i = 0; i < IGB_MAX_TX_QUEUES; i++) {
		r_idx = i % adapter->num_tx_queues;
		adapter->multi_tx_table[i] = &adapter->tx_ring[r_idx];
1864
	}
1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875
	return err;
}

/**
 * igb_configure_tx - Configure transmit Unit after Reset
 * @adapter: board private structure
 *
 * Configure the Tx unit of the MAC after a reset.
 **/
static void igb_configure_tx(struct igb_adapter *adapter)
{
A
Alexander Duyck 已提交
1876
	u64 tdba;
1877 1878 1879
	struct e1000_hw *hw = &adapter->hw;
	u32 tctl;
	u32 txdctl, txctrl;
1880
	int i, j;
1881 1882

	for (i = 0; i < adapter->num_tx_queues; i++) {
1883
		struct igb_ring *ring = &adapter->tx_ring[i];
1884 1885
		j = ring->reg_idx;
		wr32(E1000_TDLEN(j),
1886
		     ring->count * sizeof(union e1000_adv_tx_desc));
1887
		tdba = ring->dma;
1888
		wr32(E1000_TDBAL(j),
1889
		     tdba & 0x00000000ffffffffULL);
1890
		wr32(E1000_TDBAH(j), tdba >> 32);
1891

1892 1893
		ring->head = E1000_TDH(j);
		ring->tail = E1000_TDT(j);
1894 1895
		writel(0, hw->hw_addr + ring->tail);
		writel(0, hw->hw_addr + ring->head);
1896
		txdctl = rd32(E1000_TXDCTL(j));
1897
		txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1898
		wr32(E1000_TXDCTL(j), txdctl);
1899 1900 1901 1902 1903

		/* Turn off Relaxed Ordering on head write-backs.  The
		 * writebacks MUST be delivered in order or it will
		 * completely screw up our bookeeping.
		 */
1904
		txctrl = rd32(E1000_DCA_TXCTRL(j));
1905
		txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1906
		wr32(E1000_DCA_TXCTRL(j), txctrl);
1907 1908
	}

1909 1910 1911
	/* disable queue 0 to prevent tail bump w/o re-configuration */
	if (adapter->vfs_allocated_count)
		wr32(E1000_TXDCTL(0), 0);
1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991

	/* Program the Transmit Control Register */
	tctl = rd32(E1000_TCTL);
	tctl &= ~E1000_TCTL_CT;
	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);

	igb_config_collision_dist(hw);

	/* Setup Transmit Descriptor Settings for eop descriptor */
	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_RS;

	/* Enable transmits */
	tctl |= E1000_TCTL_EN;

	wr32(E1000_TCTL, tctl);
}

/**
 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
 * @adapter: board private structure
 * @rx_ring:    rx descriptor ring (for a specific queue) to setup
 *
 * Returns 0 on success, negative on failure
 **/
int igb_setup_rx_resources(struct igb_adapter *adapter,
			   struct igb_ring *rx_ring)
{
	struct pci_dev *pdev = adapter->pdev;
	int size, desc_len;

	size = sizeof(struct igb_buffer) * rx_ring->count;
	rx_ring->buffer_info = vmalloc(size);
	if (!rx_ring->buffer_info)
		goto err;
	memset(rx_ring->buffer_info, 0, size);

	desc_len = sizeof(union e1000_adv_rx_desc);

	/* Round up to nearest 4K */
	rx_ring->size = rx_ring->count * desc_len;
	rx_ring->size = ALIGN(rx_ring->size, 4096);

	rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
					     &rx_ring->dma);

	if (!rx_ring->desc)
		goto err;

	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;

	rx_ring->adapter = adapter;

	return 0;

err:
	vfree(rx_ring->buffer_info);
	dev_err(&adapter->pdev->dev, "Unable to allocate memory for "
		"the receive descriptor ring\n");
	return -ENOMEM;
}

/**
 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
 *				  (Descriptors) for all queues
 * @adapter: board private structure
 *
 * Return 0 on success, negative on failure
 **/
static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
{
	int i, err = 0;

	for (i = 0; i < adapter->num_rx_queues; i++) {
		err = igb_setup_rx_resources(adapter, &adapter->rx_ring[i]);
		if (err) {
			dev_err(&adapter->pdev->dev,
				"Allocation for Rx Queue %u failed\n", i);
			for (i--; i >= 0; i--)
1992
				igb_free_rx_resources(&adapter->rx_ring[i]);
1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008
			break;
		}
	}

	return err;
}

/**
 * igb_setup_rctl - configure the receive control registers
 * @adapter: Board private structure
 **/
static void igb_setup_rctl(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 rctl;
	u32 srrctl = 0;
2009
	int i, j;
2010 2011 2012 2013

	rctl = rd32(E1000_RCTL);

	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2014
	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
2015

2016
	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
2017
		(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2018

2019 2020 2021 2022
	/*
	 * enable stripping of CRC. It's unlikely this will break BMC
	 * redirection as it did with e1000. Newer features require
	 * that the HW strips the CRC.
2023
	 */
2024
	rctl |= E1000_RCTL_SECRC;
2025

2026
	/*
2027
	 * disable store bad packets and clear size bits.
2028
	 */
2029
	rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
2030

2031
	/* enable LPE when to prevent packets larger than max_frame_size */
2032
		rctl |= E1000_RCTL_LPE;
2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045

	/* Setup buffer sizes */
	switch (adapter->rx_buffer_len) {
	case IGB_RXBUFFER_256:
		rctl |= E1000_RCTL_SZ_256;
		break;
	case IGB_RXBUFFER_512:
		rctl |= E1000_RCTL_SZ_512;
		break;
	default:
		srrctl = ALIGN(adapter->rx_buffer_len, 1024)
		         >> E1000_SRRCTL_BSIZEPKT_SHIFT;
		break;
2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056
	}

	/* 82575 and greater support packet-split where the protocol
	 * header is placed in skb->data and the packet data is
	 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
	 * In the case of a non-split, skb->data is linearly filled,
	 * followed by the page buffers.  Therefore, skb->data is
	 * sized to hold the largest protocol header.
	 */
	/* allocations using alloc_page take too long for regular MTU
	 * so only enable packet split for jumbo frames */
2057
	if (adapter->netdev->mtu > ETH_DATA_LEN) {
2058
		adapter->rx_ps_hdr_size = IGB_RXBUFFER_128;
2059
		srrctl |= adapter->rx_ps_hdr_size <<
2060 2061 2062 2063 2064 2065 2066
			 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
		srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
	} else {
		adapter->rx_ps_hdr_size = 0;
		srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
	}

2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090
	/* Attention!!!  For SR-IOV PF driver operations you must enable
	 * queue drop for all VF and PF queues to prevent head of line blocking
	 * if an un-trusted VF does not provide descriptors to hardware.
	 */
	if (adapter->vfs_allocated_count) {
		u32 vmolr;

		j = adapter->rx_ring[0].reg_idx;

		/* set all queue drop enable bits */
		wr32(E1000_QDE, ALL_QUEUES);
		srrctl |= E1000_SRRCTL_DROP_EN;

		/* disable queue 0 to prevent tail write w/o re-config */
		wr32(E1000_RXDCTL(0), 0);

		vmolr = rd32(E1000_VMOLR(j));
		if (rctl & E1000_RCTL_LPE)
			vmolr |= E1000_VMOLR_LPE;
		if (adapter->num_rx_queues > 0)
			vmolr |= E1000_VMOLR_RSSE;
		wr32(E1000_VMOLR(j), vmolr);
	}

2091 2092 2093 2094
	for (i = 0; i < adapter->num_rx_queues; i++) {
		j = adapter->rx_ring[i].reg_idx;
		wr32(E1000_SRRCTL(j), srrctl);
	}
2095 2096 2097 2098

	wr32(E1000_RCTL, rctl);
}

2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146
/**
 * igb_rlpml_set - set maximum receive packet size
 * @adapter: board private structure
 *
 * Configure maximum receivable packet size.
 **/
static void igb_rlpml_set(struct igb_adapter *adapter)
{
	u32 max_frame_size = adapter->max_frame_size;
	struct e1000_hw *hw = &adapter->hw;
	u16 pf_id = adapter->vfs_allocated_count;

	if (adapter->vlgrp)
		max_frame_size += VLAN_TAG_SIZE;

	/* if vfs are enabled we set RLPML to the largest possible request
	 * size and set the VMOLR RLPML to the size we need */
	if (pf_id) {
		igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
		max_frame_size = MAX_STD_JUMBO_FRAME_SIZE + VLAN_TAG_SIZE;
	}

	wr32(E1000_RLPML, max_frame_size);
}

/**
 * igb_configure_vt_default_pool - Configure VT default pool
 * @adapter: board private structure
 *
 * Configure the default pool
 **/
static void igb_configure_vt_default_pool(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u16 pf_id = adapter->vfs_allocated_count;
	u32 vtctl;

	/* not in sr-iov mode - do nothing */
	if (!pf_id)
		return;

	vtctl = rd32(E1000_VT_CTL);
	vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
		   E1000_VT_CTL_DISABLE_DEF_POOL);
	vtctl |= pf_id << E1000_VT_CTL_DEFAULT_POOL_SHIFT;
	wr32(E1000_VT_CTL, vtctl);
}

2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158
/**
 * igb_configure_rx - Configure receive Unit after Reset
 * @adapter: board private structure
 *
 * Configure the Rx unit of the MAC after a reset.
 **/
static void igb_configure_rx(struct igb_adapter *adapter)
{
	u64 rdba;
	struct e1000_hw *hw = &adapter->hw;
	u32 rctl, rxcsum;
	u32 rxdctl;
2159
	int i;
2160 2161 2162 2163 2164 2165 2166 2167

	/* disable receives while setting up the descriptors */
	rctl = rd32(E1000_RCTL);
	wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
	wrfl();
	mdelay(10);

	if (adapter->itr_setting > 3)
2168
		wr32(E1000_ITR, adapter->itr);
2169 2170 2171 2172

	/* Setup the HW Rx Head and Tail Descriptor Pointers and
	 * the Base and Length of the Rx Descriptor Ring */
	for (i = 0; i < adapter->num_rx_queues; i++) {
2173
		struct igb_ring *ring = &adapter->rx_ring[i];
2174
		int j = ring->reg_idx;
2175
		rdba = ring->dma;
2176
		wr32(E1000_RDBAL(j),
2177
		     rdba & 0x00000000ffffffffULL);
2178 2179
		wr32(E1000_RDBAH(j), rdba >> 32);
		wr32(E1000_RDLEN(j),
2180
		     ring->count * sizeof(union e1000_adv_rx_desc));
2181

2182 2183
		ring->head = E1000_RDH(j);
		ring->tail = E1000_RDT(j);
2184 2185 2186
		writel(0, hw->hw_addr + ring->tail);
		writel(0, hw->hw_addr + ring->head);

2187
		rxdctl = rd32(E1000_RXDCTL(j));
2188 2189 2190 2191 2192
		rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
		rxdctl &= 0xFFF00000;
		rxdctl |= IGB_RX_PTHRESH;
		rxdctl |= IGB_RX_HTHRESH << 8;
		rxdctl |= IGB_RX_WTHRESH << 16;
2193
		wr32(E1000_RXDCTL(j), rxdctl);
2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206
	}

	if (adapter->num_rx_queues > 1) {
		u32 random[10];
		u32 mrqc;
		u32 j, shift;
		union e1000_reta {
			u32 dword;
			u8  bytes[4];
		} reta;

		get_random_bytes(&random[0], 40);

A
Alexander Duyck 已提交
2207 2208 2209 2210
		if (hw->mac.type >= e1000_82576)
			shift = 0;
		else
			shift = 6;
2211 2212
		for (j = 0; j < (32 * 4); j++) {
			reta.bytes[j & 3] =
2213
				adapter->rx_ring[(j % adapter->num_rx_queues)].reg_idx << shift;
2214 2215 2216 2217
			if ((j & 3) == 3)
				writel(reta.dword,
				       hw->hw_addr + E1000_RETA(0) + (j & ~3));
		}
2218 2219 2220 2221
		if (adapter->vfs_allocated_count)
			mrqc = E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
		else
			mrqc = E1000_MRQC_ENABLE_RSS_4Q;
2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245

		/* Fill out hash function seeds */
		for (j = 0; j < 10; j++)
			array_wr32(E1000_RSSRK(0), j, random[j]);

		mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
			 E1000_MRQC_RSS_FIELD_IPV4_TCP);
		mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
			 E1000_MRQC_RSS_FIELD_IPV6_TCP);
		mrqc |= (E1000_MRQC_RSS_FIELD_IPV4_UDP |
			 E1000_MRQC_RSS_FIELD_IPV6_UDP);
		mrqc |= (E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
			 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);


		wr32(E1000_MRQC, mrqc);

		/* Multiqueue and raw packet checksumming are mutually
		 * exclusive.  Note that this not the same as TCP/IP
		 * checksumming, which works fine. */
		rxcsum = rd32(E1000_RXCSUM);
		rxcsum |= E1000_RXCSUM_PCSD;
		wr32(E1000_RXCSUM, rxcsum);
	} else {
2246 2247 2248
		/* Enable multi-queue for sr-iov */
		if (adapter->vfs_allocated_count)
			wr32(E1000_MRQC, E1000_MRQC_ENABLE_VMDQ);
2249 2250
		/* Enable Receive Checksum Offload for TCP and UDP */
		rxcsum = rd32(E1000_RXCSUM);
2251 2252 2253 2254 2255
		if (adapter->rx_csum)
			rxcsum |= E1000_RXCSUM_TUOFL | E1000_RXCSUM_IPPCSE;
		else
			rxcsum &= ~(E1000_RXCSUM_TUOFL | E1000_RXCSUM_IPPCSE);

2256 2257 2258
		wr32(E1000_RXCSUM, rxcsum);
	}

2259 2260 2261 2262
	/* Set the default pool for the PF's first queue */
	igb_configure_vt_default_pool(adapter);

	igb_rlpml_set(adapter);
2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273

	/* Enable Receives */
	wr32(E1000_RCTL, rctl);
}

/**
 * igb_free_tx_resources - Free Tx Resources per Queue
 * @tx_ring: Tx descriptor ring for a specific queue
 *
 * Free all transmit software resources
 **/
2274
void igb_free_tx_resources(struct igb_ring *tx_ring)
2275
{
2276
	struct pci_dev *pdev = tx_ring->adapter->pdev;
2277

2278
	igb_clean_tx_ring(tx_ring);
2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298

	vfree(tx_ring->buffer_info);
	tx_ring->buffer_info = NULL;

	pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);

	tx_ring->desc = NULL;
}

/**
 * igb_free_all_tx_resources - Free Tx Resources for All Queues
 * @adapter: board private structure
 *
 * Free all transmit software resources
 **/
static void igb_free_all_tx_resources(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_tx_queues; i++)
2299
		igb_free_tx_resources(&adapter->tx_ring[i]);
2300 2301 2302 2303 2304
}

static void igb_unmap_and_free_tx_resource(struct igb_adapter *adapter,
					   struct igb_buffer *buffer_info)
{
2305
	buffer_info->dma = 0;
2306
	if (buffer_info->skb) {
2307 2308
		skb_dma_unmap(&adapter->pdev->dev, buffer_info->skb,
		              DMA_TO_DEVICE);
2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319
		dev_kfree_skb_any(buffer_info->skb);
		buffer_info->skb = NULL;
	}
	buffer_info->time_stamp = 0;
	/* buffer_info must be completely set up in the transmit path */
}

/**
 * igb_clean_tx_ring - Free Tx Buffers
 * @tx_ring: ring to be cleaned
 **/
2320
static void igb_clean_tx_ring(struct igb_ring *tx_ring)
2321
{
2322
	struct igb_adapter *adapter = tx_ring->adapter;
2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358
	struct igb_buffer *buffer_info;
	unsigned long size;
	unsigned int i;

	if (!tx_ring->buffer_info)
		return;
	/* Free all the Tx ring sk_buffs */

	for (i = 0; i < tx_ring->count; i++) {
		buffer_info = &tx_ring->buffer_info[i];
		igb_unmap_and_free_tx_resource(adapter, buffer_info);
	}

	size = sizeof(struct igb_buffer) * tx_ring->count;
	memset(tx_ring->buffer_info, 0, size);

	/* Zero out the descriptor ring */

	memset(tx_ring->desc, 0, tx_ring->size);

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;

	writel(0, adapter->hw.hw_addr + tx_ring->head);
	writel(0, adapter->hw.hw_addr + tx_ring->tail);
}

/**
 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
 * @adapter: board private structure
 **/
static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_tx_queues; i++)
2359
		igb_clean_tx_ring(&adapter->tx_ring[i]);
2360 2361 2362 2363 2364 2365 2366 2367
}

/**
 * igb_free_rx_resources - Free Rx Resources
 * @rx_ring: ring to clean the resources from
 *
 * Free all receive software resources
 **/
2368
void igb_free_rx_resources(struct igb_ring *rx_ring)
2369
{
2370
	struct pci_dev *pdev = rx_ring->adapter->pdev;
2371

2372
	igb_clean_rx_ring(rx_ring);
2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392

	vfree(rx_ring->buffer_info);
	rx_ring->buffer_info = NULL;

	pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);

	rx_ring->desc = NULL;
}

/**
 * igb_free_all_rx_resources - Free Rx Resources for All Queues
 * @adapter: board private structure
 *
 * Free all receive software resources
 **/
static void igb_free_all_rx_resources(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_rx_queues; i++)
2393
		igb_free_rx_resources(&adapter->rx_ring[i]);
2394 2395 2396 2397 2398 2399
}

/**
 * igb_clean_rx_ring - Free Rx Buffers per Queue
 * @rx_ring: ring to free buffers from
 **/
2400
static void igb_clean_rx_ring(struct igb_ring *rx_ring)
2401
{
2402
	struct igb_adapter *adapter = rx_ring->adapter;
2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429
	struct igb_buffer *buffer_info;
	struct pci_dev *pdev = adapter->pdev;
	unsigned long size;
	unsigned int i;

	if (!rx_ring->buffer_info)
		return;
	/* Free all the Rx ring sk_buffs */
	for (i = 0; i < rx_ring->count; i++) {
		buffer_info = &rx_ring->buffer_info[i];
		if (buffer_info->dma) {
			if (adapter->rx_ps_hdr_size)
				pci_unmap_single(pdev, buffer_info->dma,
						 adapter->rx_ps_hdr_size,
						 PCI_DMA_FROMDEVICE);
			else
				pci_unmap_single(pdev, buffer_info->dma,
						 adapter->rx_buffer_len,
						 PCI_DMA_FROMDEVICE);
			buffer_info->dma = 0;
		}

		if (buffer_info->skb) {
			dev_kfree_skb(buffer_info->skb);
			buffer_info->skb = NULL;
		}
		if (buffer_info->page) {
2430 2431 2432 2433
			if (buffer_info->page_dma)
				pci_unmap_page(pdev, buffer_info->page_dma,
					       PAGE_SIZE / 2,
					       PCI_DMA_FROMDEVICE);
2434 2435 2436
			put_page(buffer_info->page);
			buffer_info->page = NULL;
			buffer_info->page_dma = 0;
2437
			buffer_info->page_offset = 0;
2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462
		}
	}

	size = sizeof(struct igb_buffer) * rx_ring->count;
	memset(rx_ring->buffer_info, 0, size);

	/* Zero out the descriptor ring */
	memset(rx_ring->desc, 0, rx_ring->size);

	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;

	writel(0, adapter->hw.hw_addr + rx_ring->head);
	writel(0, adapter->hw.hw_addr + rx_ring->tail);
}

/**
 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
 * @adapter: board private structure
 **/
static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_rx_queues; i++)
2463
		igb_clean_rx_ring(&adapter->rx_ring[i]);
2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475
}

/**
 * igb_set_mac - Change the Ethernet Address of the NIC
 * @netdev: network interface device structure
 * @p: pointer to an address structure
 *
 * Returns 0 on success, negative on failure
 **/
static int igb_set_mac(struct net_device *netdev, void *p)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
2476
	struct e1000_hw *hw = &adapter->hw;
2477 2478 2479 2480 2481 2482
	struct sockaddr *addr = p;

	if (!is_valid_ether_addr(addr->sa_data))
		return -EADDRNOTAVAIL;

	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2483
	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
2484

2485
	hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
2486

2487 2488
	igb_set_rah_pool(hw, adapter->vfs_allocated_count, 0);

2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506
	return 0;
}

/**
 * igb_set_multi - Multicast and Promiscuous mode set
 * @netdev: network interface device structure
 *
 * The set_multi entry point is called whenever the multicast address
 * list or the network interface flags are updated.  This routine is
 * responsible for configuring the hardware for proper multicast,
 * promiscuous mode, and all-multi behavior.
 **/
static void igb_set_multi(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_mac_info *mac = &hw->mac;
	struct dev_mc_list *mc_ptr;
2507
	u8  *mta_list = NULL;
2508 2509 2510 2511 2512 2513 2514
	u32 rctl;
	int i;

	/* Check for Promiscuous and All Multicast modes */

	rctl = rd32(E1000_RCTL);

2515
	if (netdev->flags & IFF_PROMISC) {
2516
		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2517 2518 2519 2520 2521 2522 2523
		rctl &= ~E1000_RCTL_VFE;
	} else {
		if (netdev->flags & IFF_ALLMULTI) {
			rctl |= E1000_RCTL_MPE;
			rctl &= ~E1000_RCTL_UPE;
		} else
			rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2524
		rctl |= E1000_RCTL_VFE;
2525
	}
2526 2527
	wr32(E1000_RCTL, rctl);

2528 2529 2530 2531 2532 2533 2534
	if (netdev->mc_count) {
		mta_list = kzalloc(netdev->mc_count * 6, GFP_ATOMIC);
		if (!mta_list) {
			dev_err(&adapter->pdev->dev,
			        "failed to allocate multicast filter list\n");
			return;
		}
2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545
	}

	/* The shared function expects a packed array of only addresses. */
	mc_ptr = netdev->mc_list;

	for (i = 0; i < netdev->mc_count; i++) {
		if (!mc_ptr)
			break;
		memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr, ETH_ALEN);
		mc_ptr = mc_ptr->next;
	}
2546 2547 2548 2549 2550
	igb_update_mc_addr_list(hw, mta_list, i,
	                        adapter->vfs_allocated_count + 1,
	                        mac->rar_entry_count);

	igb_set_mc_list_pools(adapter, i, mac->rar_entry_count);
2551 2552
	igb_restore_vf_multicasts(adapter);

2553 2554 2555 2556 2557 2558 2559 2560
	kfree(mta_list);
}

/* Need to wait a few seconds after link up to get diagnostic information from
 * the phy */
static void igb_update_phy_info(unsigned long data)
{
	struct igb_adapter *adapter = (struct igb_adapter *) data;
2561
	igb_get_phy_info(&adapter->hw);
2562 2563
}

A
Alexander Duyck 已提交
2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603
/**
 * igb_has_link - check shared code for link and determine up/down
 * @adapter: pointer to driver private info
 **/
static bool igb_has_link(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	bool link_active = false;
	s32 ret_val = 0;

	/* get_link_status is set on LSC (link status) interrupt or
	 * rx sequence error interrupt.  get_link_status will stay
	 * false until the e1000_check_for_link establishes link
	 * for copper adapters ONLY
	 */
	switch (hw->phy.media_type) {
	case e1000_media_type_copper:
		if (hw->mac.get_link_status) {
			ret_val = hw->mac.ops.check_for_link(hw);
			link_active = !hw->mac.get_link_status;
		} else {
			link_active = true;
		}
		break;
	case e1000_media_type_fiber:
		ret_val = hw->mac.ops.check_for_link(hw);
		link_active = !!(rd32(E1000_STATUS) & E1000_STATUS_LU);
		break;
	case e1000_media_type_internal_serdes:
		ret_val = hw->mac.ops.check_for_link(hw);
		link_active = hw->mac.serdes_has_link;
		break;
	default:
	case e1000_media_type_unknown:
		break;
	}

	return link_active;
}

2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622
/**
 * igb_watchdog - Timer Call-back
 * @data: pointer to adapter cast into an unsigned long
 **/
static void igb_watchdog(unsigned long data)
{
	struct igb_adapter *adapter = (struct igb_adapter *)data;
	/* Do the rest outside of interrupt context */
	schedule_work(&adapter->watchdog_task);
}

static void igb_watchdog_task(struct work_struct *work)
{
	struct igb_adapter *adapter = container_of(work,
					struct igb_adapter, watchdog_task);
	struct e1000_hw *hw = &adapter->hw;
	struct net_device *netdev = adapter->netdev;
	struct igb_ring *tx_ring = adapter->tx_ring;
	u32 link;
2623 2624
	u32 eics = 0;
	int i;
2625

A
Alexander Duyck 已提交
2626 2627
	link = igb_has_link(adapter);
	if ((netif_carrier_ok(netdev)) && link)
2628 2629 2630 2631 2632 2633 2634 2635 2636 2637
		goto link_up;

	if (link) {
		if (!netif_carrier_ok(netdev)) {
			u32 ctrl;
			hw->mac.ops.get_speed_and_duplex(&adapter->hw,
						   &adapter->link_speed,
						   &adapter->link_duplex);

			ctrl = rd32(E1000_CTRL);
2638 2639
			/* Links status message must follow this format */
			printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s, "
2640
				 "Flow Control: %s\n",
2641
			         netdev->name,
2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665
				 adapter->link_speed,
				 adapter->link_duplex == FULL_DUPLEX ?
				 "Full Duplex" : "Half Duplex",
				 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
				 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
				 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
				 E1000_CTRL_TFCE) ? "TX" : "None")));

			/* tweak tx_queue_len according to speed/duplex and
			 * adjust the timeout factor */
			netdev->tx_queue_len = adapter->tx_queue_len;
			adapter->tx_timeout_factor = 1;
			switch (adapter->link_speed) {
			case SPEED_10:
				netdev->tx_queue_len = 10;
				adapter->tx_timeout_factor = 14;
				break;
			case SPEED_100:
				netdev->tx_queue_len = 100;
				/* maybe add some timeout factor ? */
				break;
			}

			netif_carrier_on(netdev);
2666
			netif_tx_wake_all_queues(netdev);
2667

2668 2669
			igb_ping_all_vfs(adapter);

2670
			/* link state has changed, schedule phy info update */
2671 2672 2673 2674 2675 2676 2677 2678
			if (!test_bit(__IGB_DOWN, &adapter->state))
				mod_timer(&adapter->phy_info_timer,
					  round_jiffies(jiffies + 2 * HZ));
		}
	} else {
		if (netif_carrier_ok(netdev)) {
			adapter->link_speed = 0;
			adapter->link_duplex = 0;
2679 2680 2681
			/* Links status message must follow this format */
			printk(KERN_INFO "igb: %s NIC Link is Down\n",
			       netdev->name);
2682
			netif_carrier_off(netdev);
2683
			netif_tx_stop_all_queues(netdev);
2684

2685 2686
			igb_ping_all_vfs(adapter);

2687
			/* link state has changed, schedule phy info update */
2688 2689 2690 2691 2692 2693 2694 2695 2696
			if (!test_bit(__IGB_DOWN, &adapter->state))
				mod_timer(&adapter->phy_info_timer,
					  round_jiffies(jiffies + 2 * HZ));
		}
	}

link_up:
	igb_update_stats(adapter);

2697
	hw->mac.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2698
	adapter->tpt_old = adapter->stats.tpt;
2699
	hw->mac.collision_delta = adapter->stats.colc - adapter->colc_old;
2700 2701 2702 2703 2704 2705 2706 2707 2708 2709
	adapter->colc_old = adapter->stats.colc;

	adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
	adapter->gorc_old = adapter->stats.gorc;
	adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
	adapter->gotc_old = adapter->stats.gotc;

	igb_update_adaptive(&adapter->hw);

	if (!netif_carrier_ok(netdev)) {
2710
		if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
2711 2712 2713 2714 2715 2716 2717 2718 2719 2720
			/* We've lost link, so the controller stops DMA,
			 * but we've got queued Tx work that's never going
			 * to get done, so reset controller to flush Tx.
			 * (Do the reset outside of interrupt context). */
			adapter->tx_timeout_count++;
			schedule_work(&adapter->reset_task);
		}
	}

	/* Cause software interrupt to ensure rx ring is cleaned */
2721 2722 2723 2724 2725 2726 2727
	if (adapter->msix_entries) {
		for (i = 0; i < adapter->num_rx_queues; i++)
			eics |= adapter->rx_ring[i].eims_value;
		wr32(E1000_EICS, eics);
	} else {
		wr32(E1000_ICS, E1000_ICS_RXDMT0);
	}
2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745

	/* Force detection of hung controller every watchdog period */
	tx_ring->detect_tx_hung = true;

	/* Reset the timer */
	if (!test_bit(__IGB_DOWN, &adapter->state))
		mod_timer(&adapter->watchdog_timer,
			  round_jiffies(jiffies + 2 * HZ));
}

enum latency_range {
	lowest_latency = 0,
	low_latency = 1,
	bulk_latency = 2,
	latency_invalid = 255
};


2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762
/**
 * igb_update_ring_itr - update the dynamic ITR value based on packet size
 *
 *      Stores a new ITR value based on strictly on packet size.  This
 *      algorithm is less sophisticated than that used in igb_update_itr,
 *      due to the difficulty of synchronizing statistics across multiple
 *      receive rings.  The divisors and thresholds used by this fuction
 *      were determined based on theoretical maximum wire speed and testing
 *      data, in order to minimize response time while increasing bulk
 *      throughput.
 *      This functionality is controlled by the InterruptThrottleRate module
 *      parameter (see igb_param.c)
 *      NOTE:  This function is called only when operating in a multiqueue
 *             receive environment.
 * @rx_ring: pointer to ring
 **/
static void igb_update_ring_itr(struct igb_ring *rx_ring)
2763
{
2764 2765 2766
	int new_val = rx_ring->itr_val;
	int avg_wire_size = 0;
	struct igb_adapter *adapter = rx_ring->adapter;
2767

2768 2769
	if (!rx_ring->total_packets)
		goto clear_counts; /* no packets, so don't do anything */
2770

2771 2772 2773 2774 2775 2776
	/* For non-gigabit speeds, just fix the interrupt rate at 4000
	 * ints/sec - ITR timer value of 120 ticks.
	 */
	if (adapter->link_speed != SPEED_1000) {
		new_val = 120;
		goto set_itr_val;
2777
	}
2778
	avg_wire_size = rx_ring->total_bytes / rx_ring->total_packets;
2779

2780 2781 2782 2783 2784
	/* Add 24 bytes to size to account for CRC, preamble, and gap */
	avg_wire_size += 24;

	/* Don't starve jumbo frames */
	avg_wire_size = min(avg_wire_size, 3000);
2785

2786 2787 2788 2789 2790
	/* Give a little boost to mid-size frames */
	if ((avg_wire_size > 300) && (avg_wire_size < 1200))
		new_val = avg_wire_size / 3;
	else
		new_val = avg_wire_size / 2;
2791

2792
set_itr_val:
2793 2794
	if (new_val != rx_ring->itr_val) {
		rx_ring->itr_val = new_val;
2795
		rx_ring->set_itr = 1;
2796
	}
2797 2798 2799
clear_counts:
	rx_ring->total_bytes = 0;
	rx_ring->total_packets = 0;
2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855
}

/**
 * igb_update_itr - update the dynamic ITR value based on statistics
 *      Stores a new ITR value based on packets and byte
 *      counts during the last interrupt.  The advantage of per interrupt
 *      computation is faster updates and more accurate ITR for the current
 *      traffic pattern.  Constants in this function were computed
 *      based on theoretical maximum wire speed and thresholds were set based
 *      on testing data as well as attempting to minimize response time
 *      while increasing bulk throughput.
 *      this functionality is controlled by the InterruptThrottleRate module
 *      parameter (see igb_param.c)
 *      NOTE:  These calculations are only valid when operating in a single-
 *             queue environment.
 * @adapter: pointer to adapter
 * @itr_setting: current adapter->itr
 * @packets: the number of packets during this measurement interval
 * @bytes: the number of bytes during this measurement interval
 **/
static unsigned int igb_update_itr(struct igb_adapter *adapter, u16 itr_setting,
				   int packets, int bytes)
{
	unsigned int retval = itr_setting;

	if (packets == 0)
		goto update_itr_done;

	switch (itr_setting) {
	case lowest_latency:
		/* handle TSO and jumbo frames */
		if (bytes/packets > 8000)
			retval = bulk_latency;
		else if ((packets < 5) && (bytes > 512))
			retval = low_latency;
		break;
	case low_latency:  /* 50 usec aka 20000 ints/s */
		if (bytes > 10000) {
			/* this if handles the TSO accounting */
			if (bytes/packets > 8000) {
				retval = bulk_latency;
			} else if ((packets < 10) || ((bytes/packets) > 1200)) {
				retval = bulk_latency;
			} else if ((packets > 35)) {
				retval = lowest_latency;
			}
		} else if (bytes/packets > 2000) {
			retval = bulk_latency;
		} else if (packets <= 2 && bytes < 512) {
			retval = lowest_latency;
		}
		break;
	case bulk_latency: /* 250 usec aka 4000 ints/s */
		if (bytes > 25000) {
			if (packets > 35)
				retval = low_latency;
2856
		} else if (bytes < 1500) {
2857 2858 2859 2860 2861 2862 2863 2864 2865
			retval = low_latency;
		}
		break;
	}

update_itr_done:
	return retval;
}

2866
static void igb_set_itr(struct igb_adapter *adapter)
2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882
{
	u16 current_itr;
	u32 new_itr = adapter->itr;

	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
	if (adapter->link_speed != SPEED_1000) {
		current_itr = 0;
		new_itr = 4000;
		goto set_itr_now;
	}

	adapter->rx_itr = igb_update_itr(adapter,
				    adapter->rx_itr,
				    adapter->rx_ring->total_packets,
				    adapter->rx_ring->total_bytes);

2883
	if (adapter->rx_ring->buddy) {
2884 2885 2886 2887 2888 2889 2890 2891 2892
		adapter->tx_itr = igb_update_itr(adapter,
					    adapter->tx_itr,
					    adapter->tx_ring->total_packets,
					    adapter->tx_ring->total_bytes);
		current_itr = max(adapter->rx_itr, adapter->tx_itr);
	} else {
		current_itr = adapter->rx_itr;
	}

2893
	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2894
	if (adapter->itr_setting == 3 && current_itr == lowest_latency)
2895 2896
		current_itr = low_latency;

2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912
	switch (current_itr) {
	/* counts and packets in update_itr are dependent on these numbers */
	case lowest_latency:
		new_itr = 70000;
		break;
	case low_latency:
		new_itr = 20000; /* aka hwitr = ~200 */
		break;
	case bulk_latency:
		new_itr = 4000;
		break;
	default:
		break;
	}

set_itr_now:
2913 2914 2915 2916 2917 2918 2919
	adapter->rx_ring->total_bytes = 0;
	adapter->rx_ring->total_packets = 0;
	if (adapter->rx_ring->buddy) {
		adapter->rx_ring->buddy->total_bytes = 0;
		adapter->rx_ring->buddy->total_packets = 0;
	}

2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933
	if (new_itr != adapter->itr) {
		/* this attempts to bias the interrupt rate towards Bulk
		 * by adding intermediate steps when interrupt rate is
		 * increasing */
		new_itr = new_itr > adapter->itr ?
			     min(adapter->itr + (new_itr >> 2), new_itr) :
			     new_itr;
		/* Don't write the value here; it resets the adapter's
		 * internal timer, and causes us to delay far longer than
		 * we should between interrupts.  Instead, we write the ITR
		 * value at the beginning of the next interrupt so the timing
		 * ends up being correct.
		 */
		adapter->itr = new_itr;
2934 2935
		adapter->rx_ring->itr_val = 1000000000 / (new_itr * 256);
		adapter->rx_ring->set_itr = 1;
2936 2937 2938 2939 2940 2941 2942 2943 2944 2945
	}

	return;
}


#define IGB_TX_FLAGS_CSUM		0x00000001
#define IGB_TX_FLAGS_VLAN		0x00000002
#define IGB_TX_FLAGS_TSO		0x00000004
#define IGB_TX_FLAGS_IPV4		0x00000008
2946
#define IGB_TX_FLAGS_TSTAMP             0x00000010
2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011
#define IGB_TX_FLAGS_VLAN_MASK	0xffff0000
#define IGB_TX_FLAGS_VLAN_SHIFT	16

static inline int igb_tso_adv(struct igb_adapter *adapter,
			      struct igb_ring *tx_ring,
			      struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
{
	struct e1000_adv_tx_context_desc *context_desc;
	unsigned int i;
	int err;
	struct igb_buffer *buffer_info;
	u32 info = 0, tu_cmd = 0;
	u32 mss_l4len_idx, l4len;
	*hdr_len = 0;

	if (skb_header_cloned(skb)) {
		err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
		if (err)
			return err;
	}

	l4len = tcp_hdrlen(skb);
	*hdr_len += l4len;

	if (skb->protocol == htons(ETH_P_IP)) {
		struct iphdr *iph = ip_hdr(skb);
		iph->tot_len = 0;
		iph->check = 0;
		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
							 iph->daddr, 0,
							 IPPROTO_TCP,
							 0);
	} else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
		ipv6_hdr(skb)->payload_len = 0;
		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
						       &ipv6_hdr(skb)->daddr,
						       0, IPPROTO_TCP, 0);
	}

	i = tx_ring->next_to_use;

	buffer_info = &tx_ring->buffer_info[i];
	context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
	/* VLAN MACLEN IPLEN */
	if (tx_flags & IGB_TX_FLAGS_VLAN)
		info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
	info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
	*hdr_len += skb_network_offset(skb);
	info |= skb_network_header_len(skb);
	*hdr_len += skb_network_header_len(skb);
	context_desc->vlan_macip_lens = cpu_to_le32(info);

	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
	tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);

	if (skb->protocol == htons(ETH_P_IP))
		tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
	tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;

	context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);

	/* MSS L4LEN IDX */
	mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
	mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);

3012
	/* For 82575, context index must be unique per ring. */
3013 3014
	if (adapter->flags & IGB_FLAG_NEED_CTX_IDX)
		mss_l4len_idx |= tx_ring->queue_index << 4;
3015 3016 3017 3018 3019

	context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
	context_desc->seqnum_seed = 0;

	buffer_info->time_stamp = jiffies;
A
Alexander Duyck 已提交
3020
	buffer_info->next_to_watch = i;
3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056
	buffer_info->dma = 0;
	i++;
	if (i == tx_ring->count)
		i = 0;

	tx_ring->next_to_use = i;

	return true;
}

static inline bool igb_tx_csum_adv(struct igb_adapter *adapter,
					struct igb_ring *tx_ring,
					struct sk_buff *skb, u32 tx_flags)
{
	struct e1000_adv_tx_context_desc *context_desc;
	unsigned int i;
	struct igb_buffer *buffer_info;
	u32 info = 0, tu_cmd = 0;

	if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
	    (tx_flags & IGB_TX_FLAGS_VLAN)) {
		i = tx_ring->next_to_use;
		buffer_info = &tx_ring->buffer_info[i];
		context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);

		if (tx_flags & IGB_TX_FLAGS_VLAN)
			info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
		info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
		if (skb->ip_summed == CHECKSUM_PARTIAL)
			info |= skb_network_header_len(skb);

		context_desc->vlan_macip_lens = cpu_to_le32(info);

		tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);

		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068
			__be16 protocol;

			if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
				const struct vlan_ethhdr *vhdr =
				          (const struct vlan_ethhdr*)skb->data;

				protocol = vhdr->h_vlan_encapsulated_proto;
			} else {
				protocol = skb->protocol;
			}

			switch (protocol) {
3069
			case cpu_to_be16(ETH_P_IP):
3070
				tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
3071 3072 3073
				if (ip_hdr(skb)->protocol == IPPROTO_TCP)
					tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
				break;
3074
			case cpu_to_be16(ETH_P_IPV6):
3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085
				/* XXX what about other V6 headers?? */
				if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
					tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
				break;
			default:
				if (unlikely(net_ratelimit()))
					dev_warn(&adapter->pdev->dev,
					    "partial checksum but proto=%x!\n",
					    skb->protocol);
				break;
			}
3086 3087 3088 3089
		}

		context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
		context_desc->seqnum_seed = 0;
3090 3091 3092
		if (adapter->flags & IGB_FLAG_NEED_CTX_IDX)
			context_desc->mss_l4len_idx =
				cpu_to_le32(tx_ring->queue_index << 4);
3093 3094
		else
			context_desc->mss_l4len_idx = 0;
3095 3096

		buffer_info->time_stamp = jiffies;
A
Alexander Duyck 已提交
3097
		buffer_info->next_to_watch = i;
3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113
		buffer_info->dma = 0;

		i++;
		if (i == tx_ring->count)
			i = 0;
		tx_ring->next_to_use = i;

		return true;
	}
	return false;
}

#define IGB_MAX_TXD_PWR	16
#define IGB_MAX_DATA_PER_TXD	(1<<IGB_MAX_TXD_PWR)

static inline int igb_tx_map_adv(struct igb_adapter *adapter,
A
Alexander Duyck 已提交
3114 3115
				 struct igb_ring *tx_ring, struct sk_buff *skb,
				 unsigned int first)
3116 3117 3118 3119 3120
{
	struct igb_buffer *buffer_info;
	unsigned int len = skb_headlen(skb);
	unsigned int count = 0, i;
	unsigned int f;
3121
	dma_addr_t *map;
3122 3123 3124

	i = tx_ring->next_to_use;

3125 3126 3127 3128 3129 3130 3131
	if (skb_dma_map(&adapter->pdev->dev, skb, DMA_TO_DEVICE)) {
		dev_err(&adapter->pdev->dev, "TX DMA map failed\n");
		return 0;
	}

	map = skb_shinfo(skb)->dma_maps;

3132 3133 3134 3135 3136
	buffer_info = &tx_ring->buffer_info[i];
	BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
	buffer_info->length = len;
	/* set time_stamp *before* dma to help avoid a possible race */
	buffer_info->time_stamp = jiffies;
A
Alexander Duyck 已提交
3137
	buffer_info->next_to_watch = i;
3138
	buffer_info->dma = map[count];
3139 3140 3141 3142 3143
	count++;

	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
		struct skb_frag_struct *frag;

3144 3145 3146 3147
		i++;
		if (i == tx_ring->count)
			i = 0;

3148 3149 3150 3151 3152 3153 3154
		frag = &skb_shinfo(skb)->frags[f];
		len = frag->size;

		buffer_info = &tx_ring->buffer_info[i];
		BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
		buffer_info->length = len;
		buffer_info->time_stamp = jiffies;
A
Alexander Duyck 已提交
3155
		buffer_info->next_to_watch = i;
3156
		buffer_info->dma = map[count];
3157 3158 3159 3160
		count++;
	}

	tx_ring->buffer_info[i].skb = skb;
A
Alexander Duyck 已提交
3161
	tx_ring->buffer_info[first].next_to_watch = i;
3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181

	return count;
}

static inline void igb_tx_queue_adv(struct igb_adapter *adapter,
				    struct igb_ring *tx_ring,
				    int tx_flags, int count, u32 paylen,
				    u8 hdr_len)
{
	union e1000_adv_tx_desc *tx_desc = NULL;
	struct igb_buffer *buffer_info;
	u32 olinfo_status = 0, cmd_type_len;
	unsigned int i;

	cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
			E1000_ADVTXD_DCMD_DEXT);

	if (tx_flags & IGB_TX_FLAGS_VLAN)
		cmd_type_len |= E1000_ADVTXD_DCMD_VLE;

3182 3183 3184
	if (tx_flags & IGB_TX_FLAGS_TSTAMP)
		cmd_type_len |= E1000_ADVTXD_MAC_TSTAMP;

3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198
	if (tx_flags & IGB_TX_FLAGS_TSO) {
		cmd_type_len |= E1000_ADVTXD_DCMD_TSE;

		/* insert tcp checksum */
		olinfo_status |= E1000_TXD_POPTS_TXSM << 8;

		/* insert ip checksum */
		if (tx_flags & IGB_TX_FLAGS_IPV4)
			olinfo_status |= E1000_TXD_POPTS_IXSM << 8;

	} else if (tx_flags & IGB_TX_FLAGS_CSUM) {
		olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
	}

3199 3200 3201
	if ((adapter->flags & IGB_FLAG_NEED_CTX_IDX) &&
	    (tx_flags & (IGB_TX_FLAGS_CSUM | IGB_TX_FLAGS_TSO |
			 IGB_TX_FLAGS_VLAN)))
3202
		olinfo_status |= tx_ring->queue_index << 4;
3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237

	olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);

	i = tx_ring->next_to_use;
	while (count--) {
		buffer_info = &tx_ring->buffer_info[i];
		tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
		tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
		tx_desc->read.cmd_type_len =
			cpu_to_le32(cmd_type_len | buffer_info->length);
		tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
		i++;
		if (i == tx_ring->count)
			i = 0;
	}

	tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
	/* Force memory writes to complete before letting h/w
	 * know there are new descriptors to fetch.  (Only
	 * applicable for weak-ordered memory model archs,
	 * such as IA-64). */
	wmb();

	tx_ring->next_to_use = i;
	writel(i, adapter->hw.hw_addr + tx_ring->tail);
	/* we need this if more than one processor can write to our tail
	 * at a time, it syncronizes IO on IA64/Altix systems */
	mmiowb();
}

static int __igb_maybe_stop_tx(struct net_device *netdev,
			       struct igb_ring *tx_ring, int size)
{
	struct igb_adapter *adapter = netdev_priv(netdev);

3238 3239
	netif_stop_subqueue(netdev, tx_ring->queue_index);

3240 3241 3242 3243 3244 3245 3246
	/* Herbert's original patch had:
	 *  smp_mb__after_netif_stop_queue();
	 * but since that doesn't exist yet, just open code it. */
	smp_mb();

	/* We need to check again in a case another CPU has just
	 * made room available. */
3247
	if (igb_desc_unused(tx_ring) < size)
3248 3249 3250
		return -EBUSY;

	/* A reprieve! */
3251
	netif_wake_subqueue(netdev, tx_ring->queue_index);
3252 3253 3254 3255 3256 3257 3258
	++adapter->restart_queue;
	return 0;
}

static int igb_maybe_stop_tx(struct net_device *netdev,
			     struct igb_ring *tx_ring, int size)
{
3259
	if (igb_desc_unused(tx_ring) >= size)
3260 3261 3262 3263 3264 3265 3266 3267 3268
		return 0;
	return __igb_maybe_stop_tx(netdev, tx_ring, size);
}

static int igb_xmit_frame_ring_adv(struct sk_buff *skb,
				   struct net_device *netdev,
				   struct igb_ring *tx_ring)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
A
Alexander Duyck 已提交
3269
	unsigned int first;
3270 3271
	unsigned int tx_flags = 0;
	u8 hdr_len = 0;
3272
	int count = 0;
3273
	int tso = 0;
3274
	union skb_shared_tx *shtx;
3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294

	if (test_bit(__IGB_DOWN, &adapter->state)) {
		dev_kfree_skb_any(skb);
		return NETDEV_TX_OK;
	}

	if (skb->len <= 0) {
		dev_kfree_skb_any(skb);
		return NETDEV_TX_OK;
	}

	/* need: 1 descriptor per page,
	 *       + 2 desc gap to keep tail from touching head,
	 *       + 1 desc for skb->data,
	 *       + 1 desc for context descriptor,
	 * otherwise try next time */
	if (igb_maybe_stop_tx(netdev, tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
		/* this is a hard error */
		return NETDEV_TX_BUSY;
	}
3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309

	/*
	 * TODO: check that there currently is no other packet with
	 * time stamping in the queue
	 *
	 * When doing time stamping, keep the connection to the socket
	 * a while longer: it is still needed by skb_hwtstamp_tx(),
	 * called either in igb_tx_hwtstamp() or by our caller when
	 * doing software time stamping.
	 */
	shtx = skb_tx(skb);
	if (unlikely(shtx->hardware)) {
		shtx->in_progress = 1;
		tx_flags |= IGB_TX_FLAGS_TSTAMP;
	}
3310 3311 3312 3313 3314 3315

	if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
		tx_flags |= IGB_TX_FLAGS_VLAN;
		tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
	}

3316 3317 3318
	if (skb->protocol == htons(ETH_P_IP))
		tx_flags |= IGB_TX_FLAGS_IPV4;

A
Alexander Duyck 已提交
3319
	first = tx_ring->next_to_use;
3320 3321 3322 3323 3324 3325 3326 3327 3328 3329
	tso = skb_is_gso(skb) ? igb_tso_adv(adapter, tx_ring, skb, tx_flags,
					      &hdr_len) : 0;

	if (tso < 0) {
		dev_kfree_skb_any(skb);
		return NETDEV_TX_OK;
	}

	if (tso)
		tx_flags |= IGB_TX_FLAGS_TSO;
3330 3331 3332
	else if (igb_tx_csum_adv(adapter, tx_ring, skb, tx_flags) &&
	         (skb->ip_summed == CHECKSUM_PARTIAL))
		tx_flags |= IGB_TX_FLAGS_CSUM;
3333

3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350
	/*
	 * count reflects descriptors mapped, if 0 then mapping error
	 * has occured and we need to rewind the descriptor queue
	 */
	count = igb_tx_map_adv(adapter, tx_ring, skb, first);

	if (count) {
		igb_tx_queue_adv(adapter, tx_ring, tx_flags, count,
			         skb->len, hdr_len);
		netdev->trans_start = jiffies;
		/* Make sure there is space in the ring for the next send. */
		igb_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 4);
	} else {
		dev_kfree_skb_any(skb);
		tx_ring->buffer_info[first].time_stamp = 0;
		tx_ring->next_to_use = first;
	}
3351 3352 3353 3354 3355 3356 3357

	return NETDEV_TX_OK;
}

static int igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
3358 3359 3360
	struct igb_ring *tx_ring;

	int r_idx = 0;
3361
	r_idx = skb->queue_mapping & (IGB_ABS_MAX_TX_QUEUES - 1);
3362
	tx_ring = adapter->multi_tx_table[r_idx];
3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382

	/* This goes back to the question of how to logically map a tx queue
	 * to a flow.  Right now, performance is impacted slightly negatively
	 * if using multiple tx queues.  If the stack breaks away from a
	 * single qdisc implementation, we can look at this again. */
	return (igb_xmit_frame_ring_adv(skb, netdev, tx_ring));
}

/**
 * igb_tx_timeout - Respond to a Tx Hang
 * @netdev: network interface device structure
 **/
static void igb_tx_timeout(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;

	/* Do the reset outside of interrupt context */
	adapter->tx_timeout_count++;
	schedule_work(&adapter->reset_task);
3383 3384
	wr32(E1000_EICS,
	     (adapter->eims_enable_mask & ~adapter->eims_other));
3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401
}

static void igb_reset_task(struct work_struct *work)
{
	struct igb_adapter *adapter;
	adapter = container_of(work, struct igb_adapter, reset_task);

	igb_reinit_locked(adapter);
}

/**
 * igb_get_stats - Get System Network Statistics
 * @netdev: network interface device structure
 *
 * Returns the address of the device statistics structure.
 * The statistics are actually updated from the timer callback.
 **/
3402
static struct net_device_stats *igb_get_stats(struct net_device *netdev)
3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434
{
	struct igb_adapter *adapter = netdev_priv(netdev);

	/* only return the current stats */
	return &adapter->net_stats;
}

/**
 * igb_change_mtu - Change the Maximum Transfer Unit
 * @netdev: network interface device structure
 * @new_mtu: new value for maximum frame size
 *
 * Returns 0 on success, negative on failure
 **/
static int igb_change_mtu(struct net_device *netdev, int new_mtu)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;

	if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) ||
	    (max_frame > MAX_JUMBO_FRAME_SIZE)) {
		dev_err(&adapter->pdev->dev, "Invalid MTU setting\n");
		return -EINVAL;
	}

	if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
		dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n");
		return -EINVAL;
	}

	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
		msleep(1);
3435

3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455
	/* igb_down has a dependency on max_frame_size */
	adapter->max_frame_size = max_frame;
	if (netif_running(netdev))
		igb_down(adapter);

	/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
	 * means we reserve 2 more, this pushes us to allocate from the next
	 * larger slab size.
	 * i.e. RXBUFFER_2048 --> size-4096 slab
	 */

	if (max_frame <= IGB_RXBUFFER_256)
		adapter->rx_buffer_len = IGB_RXBUFFER_256;
	else if (max_frame <= IGB_RXBUFFER_512)
		adapter->rx_buffer_len = IGB_RXBUFFER_512;
	else if (max_frame <= IGB_RXBUFFER_1024)
		adapter->rx_buffer_len = IGB_RXBUFFER_1024;
	else if (max_frame <= IGB_RXBUFFER_2048)
		adapter->rx_buffer_len = IGB_RXBUFFER_2048;
	else
3456 3457 3458 3459 3460
#if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
		adapter->rx_buffer_len = IGB_RXBUFFER_16384;
#else
		adapter->rx_buffer_len = PAGE_SIZE / 2;
#endif
3461 3462 3463 3464 3465 3466

	/* if sr-iov is enabled we need to force buffer size to 1K or larger */
	if (adapter->vfs_allocated_count &&
	    (adapter->rx_buffer_len < IGB_RXBUFFER_1024))
		adapter->rx_buffer_len = IGB_RXBUFFER_1024;

3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610
	/* adjust allocation if LPE protects us, and we aren't using SBP */
	if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
	     (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE))
		adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;

	dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
		 netdev->mtu, new_mtu);
	netdev->mtu = new_mtu;

	if (netif_running(netdev))
		igb_up(adapter);
	else
		igb_reset(adapter);

	clear_bit(__IGB_RESETTING, &adapter->state);

	return 0;
}

/**
 * igb_update_stats - Update the board statistics counters
 * @adapter: board private structure
 **/

void igb_update_stats(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct pci_dev *pdev = adapter->pdev;
	u16 phy_tmp;

#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF

	/*
	 * Prevent stats update while adapter is being reset, or if the pci
	 * connection is down.
	 */
	if (adapter->link_speed == 0)
		return;
	if (pci_channel_offline(pdev))
		return;

	adapter->stats.crcerrs += rd32(E1000_CRCERRS);
	adapter->stats.gprc += rd32(E1000_GPRC);
	adapter->stats.gorc += rd32(E1000_GORCL);
	rd32(E1000_GORCH); /* clear GORCL */
	adapter->stats.bprc += rd32(E1000_BPRC);
	adapter->stats.mprc += rd32(E1000_MPRC);
	adapter->stats.roc += rd32(E1000_ROC);

	adapter->stats.prc64 += rd32(E1000_PRC64);
	adapter->stats.prc127 += rd32(E1000_PRC127);
	adapter->stats.prc255 += rd32(E1000_PRC255);
	adapter->stats.prc511 += rd32(E1000_PRC511);
	adapter->stats.prc1023 += rd32(E1000_PRC1023);
	adapter->stats.prc1522 += rd32(E1000_PRC1522);
	adapter->stats.symerrs += rd32(E1000_SYMERRS);
	adapter->stats.sec += rd32(E1000_SEC);

	adapter->stats.mpc += rd32(E1000_MPC);
	adapter->stats.scc += rd32(E1000_SCC);
	adapter->stats.ecol += rd32(E1000_ECOL);
	adapter->stats.mcc += rd32(E1000_MCC);
	adapter->stats.latecol += rd32(E1000_LATECOL);
	adapter->stats.dc += rd32(E1000_DC);
	adapter->stats.rlec += rd32(E1000_RLEC);
	adapter->stats.xonrxc += rd32(E1000_XONRXC);
	adapter->stats.xontxc += rd32(E1000_XONTXC);
	adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
	adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
	adapter->stats.fcruc += rd32(E1000_FCRUC);
	adapter->stats.gptc += rd32(E1000_GPTC);
	adapter->stats.gotc += rd32(E1000_GOTCL);
	rd32(E1000_GOTCH); /* clear GOTCL */
	adapter->stats.rnbc += rd32(E1000_RNBC);
	adapter->stats.ruc += rd32(E1000_RUC);
	adapter->stats.rfc += rd32(E1000_RFC);
	adapter->stats.rjc += rd32(E1000_RJC);
	adapter->stats.tor += rd32(E1000_TORH);
	adapter->stats.tot += rd32(E1000_TOTH);
	adapter->stats.tpr += rd32(E1000_TPR);

	adapter->stats.ptc64 += rd32(E1000_PTC64);
	adapter->stats.ptc127 += rd32(E1000_PTC127);
	adapter->stats.ptc255 += rd32(E1000_PTC255);
	adapter->stats.ptc511 += rd32(E1000_PTC511);
	adapter->stats.ptc1023 += rd32(E1000_PTC1023);
	adapter->stats.ptc1522 += rd32(E1000_PTC1522);

	adapter->stats.mptc += rd32(E1000_MPTC);
	adapter->stats.bptc += rd32(E1000_BPTC);

	/* used for adaptive IFS */

	hw->mac.tx_packet_delta = rd32(E1000_TPT);
	adapter->stats.tpt += hw->mac.tx_packet_delta;
	hw->mac.collision_delta = rd32(E1000_COLC);
	adapter->stats.colc += hw->mac.collision_delta;

	adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
	adapter->stats.rxerrc += rd32(E1000_RXERRC);
	adapter->stats.tncrs += rd32(E1000_TNCRS);
	adapter->stats.tsctc += rd32(E1000_TSCTC);
	adapter->stats.tsctfc += rd32(E1000_TSCTFC);

	adapter->stats.iac += rd32(E1000_IAC);
	adapter->stats.icrxoc += rd32(E1000_ICRXOC);
	adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
	adapter->stats.icrxatc += rd32(E1000_ICRXATC);
	adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
	adapter->stats.ictxatc += rd32(E1000_ICTXATC);
	adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
	adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
	adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);

	/* Fill out the OS statistics structure */
	adapter->net_stats.multicast = adapter->stats.mprc;
	adapter->net_stats.collisions = adapter->stats.colc;

	/* Rx Errors */

	/* RLEC on some newer hardware can be incorrect so build
	* our own version based on RUC and ROC */
	adapter->net_stats.rx_errors = adapter->stats.rxerrc +
		adapter->stats.crcerrs + adapter->stats.algnerrc +
		adapter->stats.ruc + adapter->stats.roc +
		adapter->stats.cexterr;
	adapter->net_stats.rx_length_errors = adapter->stats.ruc +
					      adapter->stats.roc;
	adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
	adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
	adapter->net_stats.rx_missed_errors = adapter->stats.mpc;

	/* Tx Errors */
	adapter->net_stats.tx_errors = adapter->stats.ecol +
				       adapter->stats.latecol;
	adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
	adapter->net_stats.tx_window_errors = adapter->stats.latecol;
	adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;

	/* Tx Dropped needs to be maintained elsewhere */

	/* Phy Stats */
	if (hw->phy.media_type == e1000_media_type_copper) {
		if ((adapter->link_speed == SPEED_1000) &&
3611
		   (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627
			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
			adapter->phy_stats.idle_errors += phy_tmp;
		}
	}

	/* Management Stats */
	adapter->stats.mgptc += rd32(E1000_MGTPTC);
	adapter->stats.mgprc += rd32(E1000_MGTPRC);
	adapter->stats.mgpdc += rd32(E1000_MGTPDC);
}

static irqreturn_t igb_msix_other(int irq, void *data)
{
	struct net_device *netdev = data;
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
P
PJ Waskiewicz 已提交
3628
	u32 icr = rd32(E1000_ICR);
3629

P
PJ Waskiewicz 已提交
3630
	/* reading ICR causes bit 31 of EICR to be cleared */
3631 3632 3633 3634 3635

	if(icr & E1000_ICR_DOUTSYNC) {
		/* HW is reporting DMA is out of sync */
		adapter->stats.doosync++;
	}
3636

3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648
	/* Check for a mailbox event */
	if (icr & E1000_ICR_VMMB)
		igb_msg_task(adapter);

	if (icr & E1000_ICR_LSC) {
		hw->mac.get_link_status = 1;
		/* guard against interrupt when we're going down */
		if (!test_bit(__IGB_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

	wr32(E1000_IMS, E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_VMMB);
P
PJ Waskiewicz 已提交
3649
	wr32(E1000_EIMS, adapter->eims_other);
3650 3651 3652 3653 3654 3655 3656 3657 3658 3659

	return IRQ_HANDLED;
}

static irqreturn_t igb_msix_tx(int irq, void *data)
{
	struct igb_ring *tx_ring = data;
	struct igb_adapter *adapter = tx_ring->adapter;
	struct e1000_hw *hw = &adapter->hw;

3660
#ifdef CONFIG_IGB_DCA
3661
	if (adapter->flags & IGB_FLAG_DCA_ENABLED)
J
Jeb Cramer 已提交
3662 3663
		igb_update_tx_dca(tx_ring);
#endif
3664

3665 3666
	tx_ring->total_bytes = 0;
	tx_ring->total_packets = 0;
3667 3668 3669

	/* auto mask will automatically reenable the interrupt when we write
	 * EICS */
3670
	if (!igb_clean_tx_irq(tx_ring))
3671 3672
		/* Ring was not completely cleaned, so fire another interrupt */
		wr32(E1000_EICS, tx_ring->eims_value);
3673
	else
3674
		wr32(E1000_EIMS, tx_ring->eims_value);
3675

3676 3677 3678
	return IRQ_HANDLED;
}

3679 3680 3681 3682 3683 3684
static void igb_write_itr(struct igb_ring *ring)
{
	struct e1000_hw *hw = &ring->adapter->hw;
	if ((ring->adapter->itr_setting & 3) && ring->set_itr) {
		switch (hw->mac.type) {
		case e1000_82576:
3685
			wr32(ring->itr_register, ring->itr_val |
3686 3687 3688
			     0x80000000);
			break;
		default:
3689
			wr32(ring->itr_register, ring->itr_val |
3690 3691 3692 3693 3694 3695 3696
			     (ring->itr_val << 16));
			break;
		}
		ring->set_itr = 0;
	}
}

3697 3698 3699 3700
static irqreturn_t igb_msix_rx(int irq, void *data)
{
	struct igb_ring *rx_ring = data;

P
PJ Waskiewicz 已提交
3701 3702 3703
	/* Write the ITR value calculated at the end of the
	 * previous interrupt.
	 */
3704

3705
	igb_write_itr(rx_ring);
3706

3707 3708
	if (napi_schedule_prep(&rx_ring->napi))
		__napi_schedule(&rx_ring->napi);
P
PJ Waskiewicz 已提交
3709

3710
#ifdef CONFIG_IGB_DCA
3711
	if (rx_ring->adapter->flags & IGB_FLAG_DCA_ENABLED)
J
Jeb Cramer 已提交
3712 3713 3714 3715 3716
		igb_update_rx_dca(rx_ring);
#endif
		return IRQ_HANDLED;
}

3717
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
3718 3719 3720 3721 3722 3723
static void igb_update_rx_dca(struct igb_ring *rx_ring)
{
	u32 dca_rxctrl;
	struct igb_adapter *adapter = rx_ring->adapter;
	struct e1000_hw *hw = &adapter->hw;
	int cpu = get_cpu();
3724
	int q = rx_ring->reg_idx;
J
Jeb Cramer 已提交
3725 3726 3727

	if (rx_ring->cpu != cpu) {
		dca_rxctrl = rd32(E1000_DCA_RXCTRL(q));
A
Alexander Duyck 已提交
3728 3729
		if (hw->mac.type == e1000_82576) {
			dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576;
M
Maciej Sosnowski 已提交
3730
			dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
A
Alexander Duyck 已提交
3731 3732 3733
			              E1000_DCA_RXCTRL_CPUID_SHIFT;
		} else {
			dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK;
M
Maciej Sosnowski 已提交
3734
			dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
A
Alexander Duyck 已提交
3735
		}
J
Jeb Cramer 已提交
3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750
		dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN;
		dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN;
		dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN;
		wr32(E1000_DCA_RXCTRL(q), dca_rxctrl);
		rx_ring->cpu = cpu;
	}
	put_cpu();
}

static void igb_update_tx_dca(struct igb_ring *tx_ring)
{
	u32 dca_txctrl;
	struct igb_adapter *adapter = tx_ring->adapter;
	struct e1000_hw *hw = &adapter->hw;
	int cpu = get_cpu();
3751
	int q = tx_ring->reg_idx;
J
Jeb Cramer 已提交
3752 3753 3754

	if (tx_ring->cpu != cpu) {
		dca_txctrl = rd32(E1000_DCA_TXCTRL(q));
A
Alexander Duyck 已提交
3755 3756
		if (hw->mac.type == e1000_82576) {
			dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576;
M
Maciej Sosnowski 已提交
3757
			dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
A
Alexander Duyck 已提交
3758 3759 3760
			              E1000_DCA_TXCTRL_CPUID_SHIFT;
		} else {
			dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK;
M
Maciej Sosnowski 已提交
3761
			dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
A
Alexander Duyck 已提交
3762
		}
J
Jeb Cramer 已提交
3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773
		dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN;
		wr32(E1000_DCA_TXCTRL(q), dca_txctrl);
		tx_ring->cpu = cpu;
	}
	put_cpu();
}

static void igb_setup_dca(struct igb_adapter *adapter)
{
	int i;

3774
	if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
J
Jeb Cramer 已提交
3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796
		return;

	for (i = 0; i < adapter->num_tx_queues; i++) {
		adapter->tx_ring[i].cpu = -1;
		igb_update_tx_dca(&adapter->tx_ring[i]);
	}
	for (i = 0; i < adapter->num_rx_queues; i++) {
		adapter->rx_ring[i].cpu = -1;
		igb_update_rx_dca(&adapter->rx_ring[i]);
	}
}

static int __igb_notify_dca(struct device *dev, void *data)
{
	struct net_device *netdev = dev_get_drvdata(dev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	unsigned long event = *(unsigned long *)data;

	switch (event) {
	case DCA_PROVIDER_ADD:
		/* if already enabled, don't do it again */
3797
		if (adapter->flags & IGB_FLAG_DCA_ENABLED)
J
Jeb Cramer 已提交
3798 3799 3800
			break;
		/* Always use CB2 mode, difference is masked
		 * in the CB driver. */
A
Alexander Duyck 已提交
3801
		wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
J
Jeb Cramer 已提交
3802
		if (dca_add_requester(dev) == 0) {
3803
			adapter->flags |= IGB_FLAG_DCA_ENABLED;
J
Jeb Cramer 已提交
3804 3805 3806 3807 3808 3809
			dev_info(&adapter->pdev->dev, "DCA enabled\n");
			igb_setup_dca(adapter);
			break;
		}
		/* Fall Through since DCA is disabled. */
	case DCA_PROVIDER_REMOVE:
3810
		if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
J
Jeb Cramer 已提交
3811 3812 3813 3814
			/* without this a class_device is left
 			 * hanging around in the sysfs model */
			dca_remove_requester(dev);
			dev_info(&adapter->pdev->dev, "DCA disabled\n");
3815
			adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
A
Alexander Duyck 已提交
3816
			wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
J
Jeb Cramer 已提交
3817 3818 3819
		}
		break;
	}
3820

J
Jeb Cramer 已提交
3821
	return 0;
3822 3823
}

J
Jeb Cramer 已提交
3824 3825 3826 3827 3828 3829 3830 3831 3832 3833
static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
                          void *p)
{
	int ret_val;

	ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
	                                 __igb_notify_dca);

	return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
}
3834
#endif /* CONFIG_IGB_DCA */
3835

3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886
static void igb_ping_all_vfs(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ping;
	int i;

	for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
		ping = E1000_PF_CONTROL_MSG;
		if (adapter->vf_data[i].clear_to_send)
			ping |= E1000_VT_MSGTYPE_CTS;
		igb_write_mbx(hw, &ping, 1, i);
	}
}

static int igb_set_vf_multicasts(struct igb_adapter *adapter,
				  u32 *msgbuf, u32 vf)
{
	int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
	u16 *hash_list = (u16 *)&msgbuf[1];
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
	int i;

	/* only up to 30 hash values supported */
	if (n > 30)
		n = 30;

	/* salt away the number of multi cast addresses assigned
	 * to this VF for later use to restore when the PF multi cast
	 * list changes
	 */
	vf_data->num_vf_mc_hashes = n;

	/* VFs are limited to using the MTA hash table for their multicast
	 * addresses */
	for (i = 0; i < n; i++)
		vf_data->vf_mc_hashes[i] = hash_list[i];;

	/* Flush and reset the mta with the new values */
	igb_set_multi(adapter->netdev);

	return 0;
}

static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct vf_data_storage *vf_data;
	int i, j;

	for (i = 0; i < adapter->vfs_allocated_count; i++) {
		vf_data = &adapter->vf_data[i];
3887
		for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953
			igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
	}
}

static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 pool_mask, reg, vid;
	int i;

	pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);

	/* Find the vlan filter for this id */
	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
		reg = rd32(E1000_VLVF(i));

		/* remove the vf from the pool */
		reg &= ~pool_mask;

		/* if pool is empty then remove entry from vfta */
		if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
		    (reg & E1000_VLVF_VLANID_ENABLE)) {
			reg = 0;
			vid = reg & E1000_VLVF_VLANID_MASK;
			igb_vfta_set(hw, vid, false);
		}

		wr32(E1000_VLVF(i), reg);
	}
}

static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 reg, i;

	/* It is an error to call this function when VFs are not enabled */
	if (!adapter->vfs_allocated_count)
		return -1;

	/* Find the vlan filter for this id */
	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
		reg = rd32(E1000_VLVF(i));
		if ((reg & E1000_VLVF_VLANID_ENABLE) &&
		    vid == (reg & E1000_VLVF_VLANID_MASK))
			break;
	}

	if (add) {
		if (i == E1000_VLVF_ARRAY_SIZE) {
			/* Did not find a matching VLAN ID entry that was
			 * enabled.  Search for a free filter entry, i.e.
			 * one without the enable bit set
			 */
			for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
				reg = rd32(E1000_VLVF(i));
				if (!(reg & E1000_VLVF_VLANID_ENABLE))
					break;
			}
		}
		if (i < E1000_VLVF_ARRAY_SIZE) {
			/* Found an enabled/available entry */
			reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);

			/* if !enabled we need to set this up in vfta */
			if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
A
Alexander Duyck 已提交
3954 3955 3956 3957 3958
				/* add VID to filter table, if bit already set
				 * PF must have added it outside of table */
				if (igb_vfta_set(hw, vid, true))
					reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT +
						adapter->vfs_allocated_count);
3959 3960
				reg |= E1000_VLVF_VLANID_ENABLE;
			}
A
Alexander Duyck 已提交
3961 3962
			reg &= ~E1000_VLVF_VLANID_MASK;
			reg |= vid;
3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151

			wr32(E1000_VLVF(i), reg);
			return 0;
		}
	} else {
		if (i < E1000_VLVF_ARRAY_SIZE) {
			/* remove vf from the pool */
			reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
			/* if pool is empty then remove entry from vfta */
			if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
				reg = 0;
				igb_vfta_set(hw, vid, false);
			}
			wr32(E1000_VLVF(i), reg);
			return 0;
		}
	}
	return -1;
}

static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
{
	int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
	int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);

	return igb_vlvf_set(adapter, vid, add, vf);
}

static inline void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;

	/* disable mailbox functionality for vf */
	adapter->vf_data[vf].clear_to_send = false;

	/* reset offloads to defaults */
	igb_set_vmolr(hw, vf);

	/* reset vlans for device */
	igb_clear_vf_vfta(adapter, vf);

	/* reset multicast table array for vf */
	adapter->vf_data[vf].num_vf_mc_hashes = 0;

	/* Flush and reset the mta with the new values */
	igb_set_multi(adapter->netdev);
}

static inline void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
	u32 reg, msgbuf[3];
	u8 *addr = (u8 *)(&msgbuf[1]);

	/* process all the same items cleared in a function level reset */
	igb_vf_reset_event(adapter, vf);

	/* set vf mac address */
	igb_rar_set(hw, vf_mac, vf + 1);
	igb_set_rah_pool(hw, vf, vf + 1);

	/* enable transmit and receive for vf */
	reg = rd32(E1000_VFTE);
	wr32(E1000_VFTE, reg | (1 << vf));
	reg = rd32(E1000_VFRE);
	wr32(E1000_VFRE, reg | (1 << vf));

	/* enable mailbox functionality for vf */
	adapter->vf_data[vf].clear_to_send = true;

	/* reply to reset with ack and vf mac address */
	msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
	memcpy(addr, vf_mac, 6);
	igb_write_mbx(hw, msgbuf, 3, vf);
}

static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
{
		unsigned char *addr = (char *)&msg[1];
		int err = -1;

		if (is_valid_ether_addr(addr))
			err = igb_set_vf_mac(adapter, vf, addr);

		return err;

}

static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 msg = E1000_VT_MSGTYPE_NACK;

	/* if device isn't clear to send it shouldn't be reading either */
	if (!adapter->vf_data[vf].clear_to_send)
		igb_write_mbx(hw, &msg, 1, vf);
}


static void igb_msg_task(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vf;

	for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
		/* process any reset requests */
		if (!igb_check_for_rst(hw, vf)) {
			adapter->vf_data[vf].clear_to_send = false;
			igb_vf_reset_event(adapter, vf);
		}

		/* process any messages pending */
		if (!igb_check_for_msg(hw, vf))
			igb_rcv_msg_from_vf(adapter, vf);

		/* process any acks */
		if (!igb_check_for_ack(hw, vf))
			igb_rcv_ack_from_vf(adapter, vf);

	}
}

static int igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
{
	u32 mbx_size = E1000_VFMAILBOX_SIZE;
	u32 msgbuf[mbx_size];
	struct e1000_hw *hw = &adapter->hw;
	s32 retval;

	retval = igb_read_mbx(hw, msgbuf, mbx_size, vf);

	if (retval)
		dev_err(&adapter->pdev->dev,
		        "Error receiving message from VF\n");

	/* this is a message we already processed, do nothing */
	if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
		return retval;

	/*
	 * until the vf completes a reset it should not be
	 * allowed to start any configuration.
	 */

	if (msgbuf[0] == E1000_VF_RESET) {
		igb_vf_reset_msg(adapter, vf);

		return retval;
	}

	if (!adapter->vf_data[vf].clear_to_send) {
		msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
		igb_write_mbx(hw, msgbuf, 1, vf);
		return retval;
	}

	switch ((msgbuf[0] & 0xFFFF)) {
	case E1000_VF_SET_MAC_ADDR:
		retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
		break;
	case E1000_VF_SET_MULTICAST:
		retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
		break;
	case E1000_VF_SET_LPE:
		retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
		break;
	case E1000_VF_SET_VLAN:
		retval = igb_set_vf_vlan(adapter, msgbuf, vf);
		break;
	default:
		dev_err(&adapter->pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
		retval = -1;
		break;
	}

	/* notify the VF of the results of what it sent us */
	if (retval)
		msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
	else
		msgbuf[0] |= E1000_VT_MSGTYPE_ACK;

	msgbuf[0] |= E1000_VT_MSGTYPE_CTS;

	igb_write_mbx(hw, msgbuf, 1, vf);

	return retval;
}

4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164
/**
 * igb_intr_msi - Interrupt Handler
 * @irq: interrupt number
 * @data: pointer to a network interface device structure
 **/
static irqreturn_t igb_intr_msi(int irq, void *data)
{
	struct net_device *netdev = data;
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	/* read ICR disables interrupts using IAM */
	u32 icr = rd32(E1000_ICR);

4165
	igb_write_itr(adapter->rx_ring);
4166

4167 4168 4169 4170 4171
	if(icr & E1000_ICR_DOUTSYNC) {
		/* HW is reporting DMA is out of sync */
		adapter->stats.doosync++;
	}

4172 4173 4174 4175 4176 4177
	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
		hw->mac.get_link_status = 1;
		if (!test_bit(__IGB_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

4178
	napi_schedule(&adapter->rx_ring[0].napi);
4179 4180 4181 4182 4183

	return IRQ_HANDLED;
}

/**
4184
 * igb_intr - Legacy Interrupt Handler
4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198
 * @irq: interrupt number
 * @data: pointer to a network interface device structure
 **/
static irqreturn_t igb_intr(int irq, void *data)
{
	struct net_device *netdev = data;
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
	 * need for the IMC write */
	u32 icr = rd32(E1000_ICR);
	if (!icr)
		return IRQ_NONE;  /* Not our interrupt */

4199
	igb_write_itr(adapter->rx_ring);
4200 4201 4202 4203 4204 4205

	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
	 * not set, then the adapter didn't send an interrupt */
	if (!(icr & E1000_ICR_INT_ASSERTED))
		return IRQ_NONE;

4206 4207 4208 4209 4210
	if(icr & E1000_ICR_DOUTSYNC) {
		/* HW is reporting DMA is out of sync */
		adapter->stats.doosync++;
	}

4211 4212 4213 4214 4215 4216 4217
	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
		hw->mac.get_link_status = 1;
		/* guard against interrupt when we're going down */
		if (!test_bit(__IGB_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

4218
	napi_schedule(&adapter->rx_ring[0].napi);
4219 4220 4221 4222

	return IRQ_HANDLED;
}

4223
static inline void igb_rx_irq_enable(struct igb_ring *rx_ring)
4224
{
4225
	struct igb_adapter *adapter = rx_ring->adapter;
4226
	struct e1000_hw *hw = &adapter->hw;
4227

4228 4229
	if (adapter->itr_setting & 3) {
		if (adapter->num_rx_queues == 1)
4230
			igb_set_itr(adapter);
4231 4232
		else
			igb_update_ring_itr(rx_ring);
4233 4234
	}

4235 4236 4237 4238 4239 4240
	if (!test_bit(__IGB_DOWN, &adapter->state)) {
		if (adapter->msix_entries)
			wr32(E1000_EIMS, rx_ring->eims_value);
		else
			igb_irq_enable(adapter);
	}
4241 4242
}

4243 4244 4245 4246 4247 4248
/**
 * igb_poll - NAPI Rx polling callback
 * @napi: napi polling structure
 * @budget: count of how many packets we should handle
 **/
static int igb_poll(struct napi_struct *napi, int budget)
4249 4250 4251 4252
{
	struct igb_ring *rx_ring = container_of(napi, struct igb_ring, napi);
	int work_done = 0;

4253
#ifdef CONFIG_IGB_DCA
4254
	if (rx_ring->adapter->flags & IGB_FLAG_DCA_ENABLED)
J
Jeb Cramer 已提交
4255 4256
		igb_update_rx_dca(rx_ring);
#endif
4257
	igb_clean_rx_irq_adv(rx_ring, &work_done, budget);
4258

4259 4260
	if (rx_ring->buddy) {
#ifdef CONFIG_IGB_DCA
4261
		if (rx_ring->adapter->flags & IGB_FLAG_DCA_ENABLED)
4262 4263 4264 4265 4266 4267
			igb_update_tx_dca(rx_ring->buddy);
#endif
		if (!igb_clean_tx_irq(rx_ring->buddy))
			work_done = budget;
	}

4268
	/* If not enough Rx work done, exit the polling mode */
4269
	if (work_done < budget) {
4270
		napi_complete(napi);
4271
		igb_rx_irq_enable(rx_ring);
4272 4273
	}

4274
	return work_done;
4275
}
A
Al Viro 已提交
4276

4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310
/**
 * igb_hwtstamp - utility function which checks for TX time stamp
 * @adapter: board private structure
 * @skb: packet that was just sent
 *
 * If we were asked to do hardware stamping and such a time stamp is
 * available, then it must have been for this skb here because we only
 * allow only one such packet into the queue.
 */
static void igb_tx_hwtstamp(struct igb_adapter *adapter, struct sk_buff *skb)
{
	union skb_shared_tx *shtx = skb_tx(skb);
	struct e1000_hw *hw = &adapter->hw;

	if (unlikely(shtx->hardware)) {
		u32 valid = rd32(E1000_TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID;
		if (valid) {
			u64 regval = rd32(E1000_TXSTMPL);
			u64 ns;
			struct skb_shared_hwtstamps shhwtstamps;

			memset(&shhwtstamps, 0, sizeof(shhwtstamps));
			regval |= (u64)rd32(E1000_TXSTMPH) << 32;
			ns = timecounter_cyc2time(&adapter->clock,
						  regval);
			timecompare_update(&adapter->compare, ns);
			shhwtstamps.hwtstamp = ns_to_ktime(ns);
			shhwtstamps.syststamp =
				timecompare_transform(&adapter->compare, ns);
			skb_tstamp_tx(skb, &shhwtstamps);
		}
	}
}

4311 4312 4313 4314 4315
/**
 * igb_clean_tx_irq - Reclaim resources after transmit completes
 * @adapter: board private structure
 * returns true if ring is completely cleaned
 **/
4316
static bool igb_clean_tx_irq(struct igb_ring *tx_ring)
4317
{
4318 4319
	struct igb_adapter *adapter = tx_ring->adapter;
	struct net_device *netdev = adapter->netdev;
A
Alexander Duyck 已提交
4320
	struct e1000_hw *hw = &adapter->hw;
4321 4322
	struct igb_buffer *buffer_info;
	struct sk_buff *skb;
A
Alexander Duyck 已提交
4323
	union e1000_adv_tx_desc *tx_desc, *eop_desc;
4324
	unsigned int total_bytes = 0, total_packets = 0;
A
Alexander Duyck 已提交
4325 4326
	unsigned int i, eop, count = 0;
	bool cleaned = false;
4327 4328

	i = tx_ring->next_to_clean;
A
Alexander Duyck 已提交
4329 4330 4331 4332 4333 4334 4335
	eop = tx_ring->buffer_info[i].next_to_watch;
	eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);

	while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) &&
	       (count < tx_ring->count)) {
		for (cleaned = false; !cleaned; count++) {
			tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
4336
			buffer_info = &tx_ring->buffer_info[i];
A
Alexander Duyck 已提交
4337
			cleaned = (i == eop);
4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348
			skb = buffer_info->skb;

			if (skb) {
				unsigned int segs, bytecount;
				/* gso_segs is currently only valid for tcp */
				segs = skb_shinfo(skb)->gso_segs ?: 1;
				/* multiply data chunks by size of headers */
				bytecount = ((segs - 1) * skb_headlen(skb)) +
					    skb->len;
				total_packets += segs;
				total_bytes += bytecount;
4349 4350

				igb_tx_hwtstamp(adapter, skb);
4351 4352 4353
			}

			igb_unmap_and_free_tx_resource(adapter, buffer_info);
A
Alexander Duyck 已提交
4354
			tx_desc->wb.status = 0;
4355 4356 4357 4358 4359

			i++;
			if (i == tx_ring->count)
				i = 0;
		}
A
Alexander Duyck 已提交
4360 4361 4362 4363
		eop = tx_ring->buffer_info[i].next_to_watch;
		eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
	}

4364 4365
	tx_ring->next_to_clean = i;

4366
	if (unlikely(count &&
4367
		     netif_carrier_ok(netdev) &&
4368
		     igb_desc_unused(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
4369 4370 4371 4372
		/* Make sure that anybody stopping the queue after this
		 * sees the new next_to_clean.
		 */
		smp_mb();
4373 4374 4375 4376 4377
		if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) &&
		    !(test_bit(__IGB_DOWN, &adapter->state))) {
			netif_wake_subqueue(netdev, tx_ring->queue_index);
			++adapter->restart_queue;
		}
4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392
	}

	if (tx_ring->detect_tx_hung) {
		/* Detect a transmit hang in hardware, this serializes the
		 * check with the clearing of time_stamp and movement of i */
		tx_ring->detect_tx_hung = false;
		if (tx_ring->buffer_info[i].time_stamp &&
		    time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
			       (adapter->tx_timeout_factor * HZ))
		    && !(rd32(E1000_STATUS) &
			 E1000_STATUS_TXOFF)) {

			/* detected Tx unit hang */
			dev_err(&adapter->pdev->dev,
				"Detected Tx Unit Hang\n"
A
Alexander Duyck 已提交
4393
				"  Tx Queue             <%d>\n"
4394 4395 4396 4397 4398 4399
				"  TDH                  <%x>\n"
				"  TDT                  <%x>\n"
				"  next_to_use          <%x>\n"
				"  next_to_clean        <%x>\n"
				"buffer_info[next_to_clean]\n"
				"  time_stamp           <%lx>\n"
A
Alexander Duyck 已提交
4400
				"  next_to_watch        <%x>\n"
4401 4402
				"  jiffies              <%lx>\n"
				"  desc.status          <%x>\n",
A
Alexander Duyck 已提交
4403
				tx_ring->queue_index,
4404 4405 4406 4407 4408
				readl(adapter->hw.hw_addr + tx_ring->head),
				readl(adapter->hw.hw_addr + tx_ring->tail),
				tx_ring->next_to_use,
				tx_ring->next_to_clean,
				tx_ring->buffer_info[i].time_stamp,
A
Alexander Duyck 已提交
4409
				eop,
4410
				jiffies,
A
Alexander Duyck 已提交
4411
				eop_desc->wb.status);
4412
			netif_stop_subqueue(netdev, tx_ring->queue_index);
4413 4414 4415 4416
		}
	}
	tx_ring->total_bytes += total_bytes;
	tx_ring->total_packets += total_packets;
4417 4418
	tx_ring->tx_stats.bytes += total_bytes;
	tx_ring->tx_stats.packets += total_packets;
4419 4420
	adapter->net_stats.tx_bytes += total_bytes;
	adapter->net_stats.tx_packets += total_packets;
A
Alexander Duyck 已提交
4421
	return (count < tx_ring->count);
4422 4423 4424 4425
}

/**
 * igb_receive_skb - helper function to handle rx indications
4426
 * @ring: pointer to receive ring receving this packet
4427
 * @status: descriptor status field as written by hardware
4428
 * @rx_desc: receive descriptor containing vlan and type information.
4429 4430
 * @skb: pointer to sk_buff to be indicated to stack
 **/
4431 4432 4433 4434 4435 4436 4437
static void igb_receive_skb(struct igb_ring *ring, u8 status,
                            union e1000_adv_rx_desc * rx_desc,
                            struct sk_buff *skb)
{
	struct igb_adapter * adapter = ring->adapter;
	bool vlan_extracted = (adapter->vlgrp && (status & E1000_RXD_STAT_VP));

4438
	skb_record_rx_queue(skb, ring->queue_index);
H
Herbert Xu 已提交
4439
	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4440
		if (vlan_extracted)
H
Herbert Xu 已提交
4441 4442 4443
			vlan_gro_receive(&ring->napi, adapter->vlgrp,
			                 le16_to_cpu(rx_desc->wb.upper.vlan),
			                 skb);
4444
		else
H
Herbert Xu 已提交
4445
			napi_gro_receive(&ring->napi, skb);
4446 4447 4448 4449 4450 4451 4452
	} else {
		if (vlan_extracted)
			vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
			                  le16_to_cpu(rx_desc->wb.upper.vlan));
		else
			netif_receive_skb(skb);
	}
4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476
}

static inline void igb_rx_checksum_adv(struct igb_adapter *adapter,
				       u32 status_err, struct sk_buff *skb)
{
	skb->ip_summed = CHECKSUM_NONE;

	/* Ignore Checksum bit is set or checksum is disabled through ethtool */
	if ((status_err & E1000_RXD_STAT_IXSM) || !adapter->rx_csum)
		return;
	/* TCP/UDP checksum error bit is set */
	if (status_err &
	    (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
		/* let the stack verify checksum errors */
		adapter->hw_csum_err++;
		return;
	}
	/* It must be a TCP or UDP packet with a valid checksum */
	if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
		skb->ip_summed = CHECKSUM_UNNECESSARY;

	adapter->hw_csum_good++;
}

4477 4478
static bool igb_clean_rx_irq_adv(struct igb_ring *rx_ring,
				 int *work_done, int budget)
4479
{
4480
	struct igb_adapter *adapter = rx_ring->adapter;
4481
	struct net_device *netdev = adapter->netdev;
4482
	struct e1000_hw *hw = &adapter->hw;
4483 4484 4485 4486 4487 4488 4489
	struct pci_dev *pdev = adapter->pdev;
	union e1000_adv_rx_desc *rx_desc , *next_rxd;
	struct igb_buffer *buffer_info , *next_buffer;
	struct sk_buff *skb;
	bool cleaned = false;
	int cleaned_count = 0;
	unsigned int total_bytes = 0, total_packets = 0;
4490 4491
	unsigned int i;
	u32 length, hlen, staterr;
4492 4493

	i = rx_ring->next_to_clean;
4494
	buffer_info = &rx_ring->buffer_info[i];
4495 4496 4497 4498 4499 4500 4501 4502
	rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);

	while (staterr & E1000_RXD_STAT_DD) {
		if (*work_done >= budget)
			break;
		(*work_done)++;

4503 4504 4505 4506 4507 4508 4509 4510 4511 4512
		skb = buffer_info->skb;
		prefetch(skb->data - NET_IP_ALIGN);
		buffer_info->skb = NULL;

		i++;
		if (i == rx_ring->count)
			i = 0;
		next_rxd = E1000_RX_DESC_ADV(*rx_ring, i);
		prefetch(next_rxd);
		next_buffer = &rx_ring->buffer_info[i];
4513 4514 4515 4516 4517

		length = le16_to_cpu(rx_desc->wb.upper.length);
		cleaned = true;
		cleaned_count++;

4518 4519 4520 4521 4522 4523 4524
		if (!adapter->rx_ps_hdr_size) {
			pci_unmap_single(pdev, buffer_info->dma,
					 adapter->rx_buffer_len +
					   NET_IP_ALIGN,
					 PCI_DMA_FROMDEVICE);
			skb_put(skb, length);
			goto send_up;
4525 4526
		}

4527 4528 4529 4530 4531 4532 4533 4534 4535 4536
		/* HW will not DMA in data larger than the given buffer, even
		 * if it parses the (NFS, of course) header to be larger.  In
		 * that case, it fills the header buffer and spills the rest
		 * into the page.
		 */
		hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
		  E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
		if (hlen > adapter->rx_ps_hdr_size)
			hlen = adapter->rx_ps_hdr_size;

4537 4538
		if (!skb_shinfo(skb)->nr_frags) {
			pci_unmap_single(pdev, buffer_info->dma,
4539
					 adapter->rx_ps_hdr_size + NET_IP_ALIGN,
4540 4541 4542 4543 4544
					 PCI_DMA_FROMDEVICE);
			skb_put(skb, hlen);
		}

		if (length) {
4545
			pci_unmap_page(pdev, buffer_info->page_dma,
4546
				       PAGE_SIZE / 2, PCI_DMA_FROMDEVICE);
4547
			buffer_info->page_dma = 0;
4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558

			skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags++,
						buffer_info->page,
						buffer_info->page_offset,
						length);

			if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
			    (page_count(buffer_info->page) != 1))
				buffer_info->page = NULL;
			else
				get_page(buffer_info->page);
4559 4560 4561 4562

			skb->len += length;
			skb->data_len += length;

4563
			skb->truesize += length;
4564 4565
		}

4566
		if (!(staterr & E1000_RXD_STAT_EOP)) {
4567 4568 4569 4570
			buffer_info->skb = next_buffer->skb;
			buffer_info->dma = next_buffer->dma;
			next_buffer->skb = skb;
			next_buffer->dma = 0;
4571 4572
			goto next_desc;
		}
4573
send_up:
4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614
		/*
		 * If this bit is set, then the RX registers contain
		 * the time stamp. No other packet will be time
		 * stamped until we read these registers, so read the
		 * registers to make them available again. Because
		 * only one packet can be time stamped at a time, we
		 * know that the register values must belong to this
		 * one here and therefore we don't need to compare
		 * any of the additional attributes stored for it.
		 *
		 * If nothing went wrong, then it should have a
		 * skb_shared_tx that we can turn into a
		 * skb_shared_hwtstamps.
		 *
		 * TODO: can time stamping be triggered (thus locking
		 * the registers) without the packet reaching this point
		 * here? In that case RX time stamping would get stuck.
		 *
		 * TODO: in "time stamp all packets" mode this bit is
		 * not set. Need a global flag for this mode and then
		 * always read the registers. Cannot be done without
		 * a race condition.
		 */
		if (unlikely(staterr & E1000_RXD_STAT_TS)) {
			u64 regval;
			u64 ns;
			struct skb_shared_hwtstamps *shhwtstamps =
				skb_hwtstamps(skb);

			WARN(!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID),
			     "igb: no RX time stamp available for time stamped packet");
			regval = rd32(E1000_RXSTMPL);
			regval |= (u64)rd32(E1000_RXSTMPH) << 32;
			ns = timecounter_cyc2time(&adapter->clock, regval);
			timecompare_update(&adapter->compare, ns);
			memset(shhwtstamps, 0, sizeof(*shhwtstamps));
			shhwtstamps->hwtstamp = ns_to_ktime(ns);
			shhwtstamps->syststamp =
				timecompare_transform(&adapter->compare, ns);
		}

4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626
		if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
			dev_kfree_skb_irq(skb);
			goto next_desc;
		}

		total_bytes += skb->len;
		total_packets++;

		igb_rx_checksum_adv(adapter, staterr, skb);

		skb->protocol = eth_type_trans(skb, netdev);

4627
		igb_receive_skb(rx_ring, staterr, rx_desc, skb);
4628 4629 4630 4631 4632 4633

next_desc:
		rx_desc->wb.upper.status_error = 0;

		/* return some buffers to hardware, one at a time is too slow */
		if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
4634
			igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
4635 4636 4637 4638 4639 4640 4641 4642
			cleaned_count = 0;
		}

		/* use prefetched values */
		rx_desc = next_rxd;
		buffer_info = next_buffer;
		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
	}
4643

4644
	rx_ring->next_to_clean = i;
4645
	cleaned_count = igb_desc_unused(rx_ring);
4646 4647

	if (cleaned_count)
4648
		igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662

	rx_ring->total_packets += total_packets;
	rx_ring->total_bytes += total_bytes;
	rx_ring->rx_stats.packets += total_packets;
	rx_ring->rx_stats.bytes += total_bytes;
	adapter->net_stats.rx_bytes += total_bytes;
	adapter->net_stats.rx_packets += total_packets;
	return cleaned;
}

/**
 * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split
 * @adapter: address of board private structure
 **/
4663
static void igb_alloc_rx_buffers_adv(struct igb_ring *rx_ring,
4664 4665
				     int cleaned_count)
{
4666
	struct igb_adapter *adapter = rx_ring->adapter;
4667 4668 4669 4670 4671 4672
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;
	union e1000_adv_rx_desc *rx_desc;
	struct igb_buffer *buffer_info;
	struct sk_buff *skb;
	unsigned int i;
4673
	int bufsz;
4674 4675 4676 4677

	i = rx_ring->next_to_use;
	buffer_info = &rx_ring->buffer_info[i];

4678 4679 4680 4681 4682 4683
	if (adapter->rx_ps_hdr_size)
		bufsz = adapter->rx_ps_hdr_size;
	else
		bufsz = adapter->rx_buffer_len;
	bufsz += NET_IP_ALIGN;

4684 4685 4686
	while (cleaned_count--) {
		rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);

4687
		if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
4688
			if (!buffer_info->page) {
4689 4690 4691 4692 4693 4694 4695 4696
				buffer_info->page = alloc_page(GFP_ATOMIC);
				if (!buffer_info->page) {
					adapter->alloc_rx_buff_failed++;
					goto no_buffers;
				}
				buffer_info->page_offset = 0;
			} else {
				buffer_info->page_offset ^= PAGE_SIZE / 2;
4697 4698
			}
			buffer_info->page_dma =
4699
				pci_map_page(pdev, buffer_info->page,
4700 4701
					     buffer_info->page_offset,
					     PAGE_SIZE / 2,
4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778
					     PCI_DMA_FROMDEVICE);
		}

		if (!buffer_info->skb) {
			skb = netdev_alloc_skb(netdev, bufsz);
			if (!skb) {
				adapter->alloc_rx_buff_failed++;
				goto no_buffers;
			}

			/* Make buffer alignment 2 beyond a 16 byte boundary
			 * this will result in a 16 byte aligned IP header after
			 * the 14 byte MAC header is removed
			 */
			skb_reserve(skb, NET_IP_ALIGN);

			buffer_info->skb = skb;
			buffer_info->dma = pci_map_single(pdev, skb->data,
							  bufsz,
							  PCI_DMA_FROMDEVICE);
		}
		/* Refresh the desc even if buffer_addrs didn't change because
		 * each write-back erases this info. */
		if (adapter->rx_ps_hdr_size) {
			rx_desc->read.pkt_addr =
			     cpu_to_le64(buffer_info->page_dma);
			rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
		} else {
			rx_desc->read.pkt_addr =
			     cpu_to_le64(buffer_info->dma);
			rx_desc->read.hdr_addr = 0;
		}

		i++;
		if (i == rx_ring->count)
			i = 0;
		buffer_info = &rx_ring->buffer_info[i];
	}

no_buffers:
	if (rx_ring->next_to_use != i) {
		rx_ring->next_to_use = i;
		if (i == 0)
			i = (rx_ring->count - 1);
		else
			i--;

		/* Force memory writes to complete before letting h/w
		 * know there are new descriptors to fetch.  (Only
		 * applicable for weak-ordered memory model archs,
		 * such as IA-64). */
		wmb();
		writel(i, adapter->hw.hw_addr + rx_ring->tail);
	}
}

/**
 * igb_mii_ioctl -
 * @netdev:
 * @ifreq:
 * @cmd:
 **/
static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct mii_ioctl_data *data = if_mii(ifr);

	if (adapter->hw.phy.media_type != e1000_media_type_copper)
		return -EOPNOTSUPP;

	switch (cmd) {
	case SIOCGMIIPHY:
		data->phy_id = adapter->hw.phy.addr;
		break;
	case SIOCGMIIREG:
		if (!capable(CAP_NET_ADMIN))
			return -EPERM;
4779 4780
		if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
		                     &data->val_out))
4781 4782 4783 4784 4785 4786 4787 4788 4789
			return -EIO;
		break;
	case SIOCSMIIREG:
	default:
		return -EOPNOTSUPP;
	}
	return 0;
}

4790 4791 4792 4793 4794 4795
/**
 * igb_hwtstamp_ioctl - control hardware time stamping
 * @netdev:
 * @ifreq:
 * @cmd:
 *
4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807
 * Outgoing time stamping can be enabled and disabled. Play nice and
 * disable it when requested, although it shouldn't case any overhead
 * when no packet needs it. At most one packet in the queue may be
 * marked for time stamping, otherwise it would be impossible to tell
 * for sure to which packet the hardware time stamp belongs.
 *
 * Incoming time stamping has to be configured via the hardware
 * filters. Not all combinations are supported, in particular event
 * type has to be specified. Matching the kind of event packet is
 * not supported, with the exception of "all V2 events regardless of
 * level 2 or 4".
 *
4808 4809 4810 4811
 **/
static int igb_hwtstamp_ioctl(struct net_device *netdev,
			      struct ifreq *ifr, int cmd)
{
4812 4813
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
4814
	struct hwtstamp_config config;
4815 4816 4817 4818 4819 4820 4821 4822
	u32 tsync_tx_ctl_bit = E1000_TSYNCTXCTL_ENABLED;
	u32 tsync_rx_ctl_bit = E1000_TSYNCRXCTL_ENABLED;
	u32 tsync_rx_ctl_type = 0;
	u32 tsync_rx_cfg = 0;
	int is_l4 = 0;
	int is_l2 = 0;
	short port = 319; /* PTP */
	u32 regval;
4823 4824 4825 4826 4827 4828 4829 4830

	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
		return -EFAULT;

	/* reserved for future extensions */
	if (config.flags)
		return -EINVAL;

4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941
	switch (config.tx_type) {
	case HWTSTAMP_TX_OFF:
		tsync_tx_ctl_bit = 0;
		break;
	case HWTSTAMP_TX_ON:
		tsync_tx_ctl_bit = E1000_TSYNCTXCTL_ENABLED;
		break;
	default:
		return -ERANGE;
	}

	switch (config.rx_filter) {
	case HWTSTAMP_FILTER_NONE:
		tsync_rx_ctl_bit = 0;
		break;
	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
	case HWTSTAMP_FILTER_ALL:
		/*
		 * register TSYNCRXCFG must be set, therefore it is not
		 * possible to time stamp both Sync and Delay_Req messages
		 * => fall back to time stamping all packets
		 */
		tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_ALL;
		config.rx_filter = HWTSTAMP_FILTER_ALL;
		break;
	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
		tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_L4_V1;
		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
		is_l4 = 1;
		break;
	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
		tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_L4_V1;
		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
		is_l4 = 1;
		break;
	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
		tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_SYNC_MESSAGE;
		is_l2 = 1;
		is_l4 = 1;
		config.rx_filter = HWTSTAMP_FILTER_SOME;
		break;
	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
		tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_DELAY_REQ_MESSAGE;
		is_l2 = 1;
		is_l4 = 1;
		config.rx_filter = HWTSTAMP_FILTER_SOME;
		break;
	case HWTSTAMP_FILTER_PTP_V2_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
		tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_EVENT_V2;
		config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
		is_l2 = 1;
		break;
	default:
		return -ERANGE;
	}

	/* enable/disable TX */
	regval = rd32(E1000_TSYNCTXCTL);
	regval = (regval & ~E1000_TSYNCTXCTL_ENABLED) | tsync_tx_ctl_bit;
	wr32(E1000_TSYNCTXCTL, regval);

	/* enable/disable RX, define which PTP packets are time stamped */
	regval = rd32(E1000_TSYNCRXCTL);
	regval = (regval & ~E1000_TSYNCRXCTL_ENABLED) | tsync_rx_ctl_bit;
	regval = (regval & ~0xE) | tsync_rx_ctl_type;
	wr32(E1000_TSYNCRXCTL, regval);
	wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);

	/*
	 * Ethertype Filter Queue Filter[0][15:0] = 0x88F7
	 *                                          (Ethertype to filter on)
	 * Ethertype Filter Queue Filter[0][26] = 0x1 (Enable filter)
	 * Ethertype Filter Queue Filter[0][30] = 0x1 (Enable Timestamping)
	 */
	wr32(E1000_ETQF0, is_l2 ? 0x440088f7 : 0);

	/* L4 Queue Filter[0]: only filter by source and destination port */
	wr32(E1000_SPQF0, htons(port));
	wr32(E1000_IMIREXT(0), is_l4 ?
	     ((1<<12) | (1<<19) /* bypass size and control flags */) : 0);
	wr32(E1000_IMIR(0), is_l4 ?
	     (htons(port)
	      | (0<<16) /* immediate interrupt disabled */
	      | 0 /* (1<<17) bit cleared: do not bypass
		     destination port check */)
		: 0);
	wr32(E1000_FTQF0, is_l4 ?
	     (0x11 /* UDP */
	      | (1<<15) /* VF not compared */
	      | (1<<27) /* Enable Timestamping */
	      | (7<<28) /* only source port filter enabled,
			   source/target address and protocol
			   masked */)
	     : ((1<<15) | (15<<28) /* all mask bits set = filter not
				      enabled */));

	wrfl();

	adapter->hwtstamp_config = config;

	/* clear TX/RX time stamp registers, just to be sure */
	regval = rd32(E1000_TXSTMPH);
	regval = rd32(E1000_RXSTMPH);
4942

4943 4944
	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
		-EFAULT : 0;
4945 4946
}

4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959
/**
 * igb_ioctl -
 * @netdev:
 * @ifreq:
 * @cmd:
 **/
static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
	switch (cmd) {
	case SIOCGMIIPHY:
	case SIOCGMIIREG:
	case SIOCSMIIREG:
		return igb_mii_ioctl(netdev, ifr, cmd);
4960 4961
	case SIOCSHWTSTAMP:
		return igb_hwtstamp_ioctl(netdev, ifr, cmd);
4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999
	default:
		return -EOPNOTSUPP;
	}
}

static void igb_vlan_rx_register(struct net_device *netdev,
				 struct vlan_group *grp)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl, rctl;

	igb_irq_disable(adapter);
	adapter->vlgrp = grp;

	if (grp) {
		/* enable VLAN tag insert/strip */
		ctrl = rd32(E1000_CTRL);
		ctrl |= E1000_CTRL_VME;
		wr32(E1000_CTRL, ctrl);

		/* enable VLAN receive filtering */
		rctl = rd32(E1000_RCTL);
		rctl &= ~E1000_RCTL_CFIEN;
		wr32(E1000_RCTL, rctl);
		igb_update_mng_vlan(adapter);
	} else {
		/* disable VLAN tag insert/strip */
		ctrl = rd32(E1000_CTRL);
		ctrl &= ~E1000_CTRL_VME;
		wr32(E1000_CTRL, ctrl);

		if (adapter->mng_vlan_id != (u16)IGB_MNG_VLAN_NONE) {
			igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
			adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
		}
	}

5000 5001
	igb_rlpml_set(adapter);

5002 5003 5004 5005 5006 5007 5008 5009
	if (!test_bit(__IGB_DOWN, &adapter->state))
		igb_irq_enable(adapter);
}

static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
5010
	int pf_id = adapter->vfs_allocated_count;
5011

5012
	if ((hw->mng_cookie.status &
5013 5014 5015
	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
	    (vid == adapter->mng_vlan_id))
		return;
5016 5017 5018 5019 5020 5021

	/* add vid to vlvf if sr-iov is enabled,
	 * if that fails add directly to filter table */
	if (igb_vlvf_set(adapter, vid, true, pf_id))
		igb_vfta_set(hw, vid, true);

5022 5023 5024 5025 5026 5027
}

static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
5028
	int pf_id = adapter->vfs_allocated_count;
5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043

	igb_irq_disable(adapter);
	vlan_group_set_device(adapter->vlgrp, vid, NULL);

	if (!test_bit(__IGB_DOWN, &adapter->state))
		igb_irq_enable(adapter);

	if ((adapter->hw.mng_cookie.status &
	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
	    (vid == adapter->mng_vlan_id)) {
		/* release control to f/w */
		igb_release_hw_control(adapter);
		return;
	}

5044 5045 5046 5047
	/* remove vid from vlvf if sr-iov is enabled,
	 * if not in vlvf remove from vfta */
	if (igb_vlvf_set(adapter, vid, false, pf_id))
		igb_vfta_set(hw, vid, false);
5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103
}

static void igb_restore_vlan(struct igb_adapter *adapter)
{
	igb_vlan_rx_register(adapter->netdev, adapter->vlgrp);

	if (adapter->vlgrp) {
		u16 vid;
		for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
			if (!vlan_group_get_device(adapter->vlgrp, vid))
				continue;
			igb_vlan_rx_add_vid(adapter->netdev, vid);
		}
	}
}

int igb_set_spd_dplx(struct igb_adapter *adapter, u16 spddplx)
{
	struct e1000_mac_info *mac = &adapter->hw.mac;

	mac->autoneg = 0;

	/* Fiber NICs only allow 1000 gbps Full duplex */
	if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
		spddplx != (SPEED_1000 + DUPLEX_FULL)) {
		dev_err(&adapter->pdev->dev,
			"Unsupported Speed/Duplex configuration\n");
		return -EINVAL;
	}

	switch (spddplx) {
	case SPEED_10 + DUPLEX_HALF:
		mac->forced_speed_duplex = ADVERTISE_10_HALF;
		break;
	case SPEED_10 + DUPLEX_FULL:
		mac->forced_speed_duplex = ADVERTISE_10_FULL;
		break;
	case SPEED_100 + DUPLEX_HALF:
		mac->forced_speed_duplex = ADVERTISE_100_HALF;
		break;
	case SPEED_100 + DUPLEX_FULL:
		mac->forced_speed_duplex = ADVERTISE_100_FULL;
		break;
	case SPEED_1000 + DUPLEX_FULL:
		mac->autoneg = 1;
		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
		break;
	case SPEED_1000 + DUPLEX_HALF: /* not supported */
	default:
		dev_err(&adapter->pdev->dev,
			"Unsupported Speed/Duplex configuration\n");
		return -EINVAL;
	}
	return 0;
}

5104
static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake)
5105 5106 5107 5108
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
A
Alexander Duyck 已提交
5109
	u32 ctrl, rctl, status;
5110 5111 5112 5113 5114 5115 5116
	u32 wufc = adapter->wol;
#ifdef CONFIG_PM
	int retval = 0;
#endif

	netif_device_detach(netdev);

A
Alexander Duyck 已提交
5117 5118 5119 5120 5121 5122
	if (netif_running(netdev))
		igb_close(netdev);

	igb_reset_interrupt_capability(adapter);

	igb_free_queues(adapter);
5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162

#ifdef CONFIG_PM
	retval = pci_save_state(pdev);
	if (retval)
		return retval;
#endif

	status = rd32(E1000_STATUS);
	if (status & E1000_STATUS_LU)
		wufc &= ~E1000_WUFC_LNKC;

	if (wufc) {
		igb_setup_rctl(adapter);
		igb_set_multi(netdev);

		/* turn on all-multi mode if wake on multicast is enabled */
		if (wufc & E1000_WUFC_MC) {
			rctl = rd32(E1000_RCTL);
			rctl |= E1000_RCTL_MPE;
			wr32(E1000_RCTL, rctl);
		}

		ctrl = rd32(E1000_CTRL);
		/* advertise wake from D3Cold */
		#define E1000_CTRL_ADVD3WUC 0x00100000
		/* phy power management enable */
		#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
		ctrl |= E1000_CTRL_ADVD3WUC;
		wr32(E1000_CTRL, ctrl);

		/* Allow time for pending master requests to run */
		igb_disable_pcie_master(&adapter->hw);

		wr32(E1000_WUC, E1000_WUC_PME_EN);
		wr32(E1000_WUFC, wufc);
	} else {
		wr32(E1000_WUC, 0);
		wr32(E1000_WUFC, 0);
	}

5163 5164
	*enable_wake = wufc || adapter->en_mng_pt;
	if (!*enable_wake)
A
Alexander Duyck 已提交
5165
		igb_shutdown_fiber_serdes_link_82575(hw);
5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176

	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
	 * would have already happened in close and is redundant. */
	igb_release_hw_control(adapter);

	pci_disable_device(pdev);

	return 0;
}

#ifdef CONFIG_PM
5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195
static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
{
	int retval;
	bool wake;

	retval = __igb_shutdown(pdev, &wake);
	if (retval)
		return retval;

	if (wake) {
		pci_prepare_to_sleep(pdev);
	} else {
		pci_wake_from_d3(pdev, false);
		pci_set_power_state(pdev, PCI_D3hot);
	}

	return 0;
}

5196 5197 5198 5199 5200 5201 5202 5203 5204
static int igb_resume(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 err;

	pci_set_power_state(pdev, PCI_D0);
	pci_restore_state(pdev);
T
Taku Izumi 已提交
5205

5206
	err = pci_enable_device_mem(pdev);
5207 5208 5209 5210 5211 5212 5213 5214 5215 5216
	if (err) {
		dev_err(&pdev->dev,
			"igb: Cannot enable PCI device from suspend\n");
		return err;
	}
	pci_set_master(pdev);

	pci_enable_wake(pdev, PCI_D3hot, 0);
	pci_enable_wake(pdev, PCI_D3cold, 0);

A
Alexander Duyck 已提交
5217 5218 5219 5220 5221
	igb_set_interrupt_capability(adapter);

	if (igb_alloc_queues(adapter)) {
		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
		return -ENOMEM;
5222 5223 5224 5225 5226
	}

	/* e1000_power_up_phy(adapter); */

	igb_reset(adapter);
5227 5228 5229 5230 5231

	/* let the f/w know that the h/w is now under the control of the
	 * driver. */
	igb_get_hw_control(adapter);

5232 5233
	wr32(E1000_WUS, ~0);

A
Alexander Duyck 已提交
5234 5235 5236 5237 5238
	if (netif_running(netdev)) {
		err = igb_open(netdev);
		if (err)
			return err;
	}
5239 5240 5241 5242 5243 5244 5245 5246 5247

	netif_device_attach(netdev);

	return 0;
}
#endif

static void igb_shutdown(struct pci_dev *pdev)
{
5248 5249 5250 5251 5252 5253 5254 5255
	bool wake;

	__igb_shutdown(pdev, &wake);

	if (system_state == SYSTEM_POWER_OFF) {
		pci_wake_from_d3(pdev, wake);
		pci_set_power_state(pdev, PCI_D3hot);
	}
5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266
}

#ifdef CONFIG_NET_POLL_CONTROLLER
/*
 * Polling 'interrupt' - used by things like netconsole to send skbs
 * without having to re-enable interrupts. It's not called while
 * the interrupt routine is executing.
 */
static void igb_netpoll(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
5267
	struct e1000_hw *hw = &adapter->hw;
5268 5269
	int i;

5270 5271 5272 5273 5274
	if (!adapter->msix_entries) {
		igb_irq_disable(adapter);
		napi_schedule(&adapter->rx_ring[0].napi);
		return;
	}
5275

5276 5277 5278 5279 5280 5281
	for (i = 0; i < adapter->num_tx_queues; i++) {
		struct igb_ring *tx_ring = &adapter->tx_ring[i];
		wr32(E1000_EIMC, tx_ring->eims_value);
		igb_clean_tx_irq(tx_ring);
		wr32(E1000_EIMS, tx_ring->eims_value);
	}
5282

5283 5284 5285 5286 5287
	for (i = 0; i < adapter->num_rx_queues; i++) {
		struct igb_ring *rx_ring = &adapter->rx_ring[i];
		wr32(E1000_EIMC, rx_ring->eims_value);
		napi_schedule(&rx_ring->napi);
	}
5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326
}
#endif /* CONFIG_NET_POLL_CONTROLLER */

/**
 * igb_io_error_detected - called when PCI error is detected
 * @pdev: Pointer to PCI device
 * @state: The current pci connection state
 *
 * This function is called after a PCI bus error affecting
 * this device has been detected.
 */
static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
					      pci_channel_state_t state)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);

	netif_device_detach(netdev);

	if (netif_running(netdev))
		igb_down(adapter);
	pci_disable_device(pdev);

	/* Request a slot slot reset. */
	return PCI_ERS_RESULT_NEED_RESET;
}

/**
 * igb_io_slot_reset - called after the pci bus has been reset.
 * @pdev: Pointer to PCI device
 *
 * Restart the card from scratch, as if from a cold-boot. Implementation
 * resembles the first-half of the igb_resume routine.
 */
static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
5327
	pci_ers_result_t result;
T
Taku Izumi 已提交
5328
	int err;
5329

5330
	if (pci_enable_device_mem(pdev)) {
5331 5332
		dev_err(&pdev->dev,
			"Cannot re-enable PCI device after reset.\n");
5333 5334 5335 5336
		result = PCI_ERS_RESULT_DISCONNECT;
	} else {
		pci_set_master(pdev);
		pci_restore_state(pdev);
5337

5338 5339
		pci_enable_wake(pdev, PCI_D3hot, 0);
		pci_enable_wake(pdev, PCI_D3cold, 0);
5340

5341 5342 5343 5344
		igb_reset(adapter);
		wr32(E1000_WUS, ~0);
		result = PCI_ERS_RESULT_RECOVERED;
	}
5345

5346 5347 5348 5349 5350 5351
	err = pci_cleanup_aer_uncorrect_error_status(pdev);
	if (err) {
		dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
		        "failed 0x%0x\n", err);
		/* non-fatal, continue */
	}
5352 5353

	return result;
5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382
}

/**
 * igb_io_resume - called when traffic can start flowing again.
 * @pdev: Pointer to PCI device
 *
 * This callback is called when the error recovery driver tells us that
 * its OK to resume normal operation. Implementation resembles the
 * second-half of the igb_resume routine.
 */
static void igb_io_resume(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);

	if (netif_running(netdev)) {
		if (igb_up(adapter)) {
			dev_err(&pdev->dev, "igb_up failed after reset\n");
			return;
		}
	}

	netif_device_attach(netdev);

	/* let the f/w know that the h/w is now under the control of the
	 * driver. */
	igb_get_hw_control(adapter);
}

5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395
static inline void igb_set_vmolr(struct e1000_hw *hw, int vfn)
{
	u32 reg_data;

	reg_data = rd32(E1000_VMOLR(vfn));
	reg_data |= E1000_VMOLR_BAM |	 /* Accept broadcast */
	            E1000_VMOLR_ROPE |   /* Accept packets matched in UTA */
	            E1000_VMOLR_ROMPE |  /* Accept packets matched in MTA */
	            E1000_VMOLR_AUPE |   /* Accept untagged packets */
	            E1000_VMOLR_STRVLAN; /* Strip vlan tags */
	wr32(E1000_VMOLR(vfn), reg_data);
}

5396 5397
static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
                                 int vfn)
5398 5399 5400 5401 5402 5403 5404 5405
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vmolr;

	vmolr = rd32(E1000_VMOLR(vfn));
	vmolr &= ~E1000_VMOLR_RLPML_MASK;
	vmolr |= size | E1000_VMOLR_LPE;
	wr32(E1000_VMOLR(vfn), vmolr);
5406 5407

	return 0;
5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432
}

static inline void igb_set_rah_pool(struct e1000_hw *hw, int pool, int entry)
{
	u32 reg_data;

	reg_data = rd32(E1000_RAH(entry));
	reg_data &= ~E1000_RAH_POOL_MASK;
	reg_data |= E1000_RAH_POOL_1 << pool;;
	wr32(E1000_RAH(entry), reg_data);
}

static void igb_set_mc_list_pools(struct igb_adapter *adapter,
				  int entry_count, u16 total_rar_filters)
{
	struct e1000_hw *hw = &adapter->hw;
	int i = adapter->vfs_allocated_count + 1;

	if ((i + entry_count) < total_rar_filters)
		total_rar_filters = i + entry_count;

	for (; i < total_rar_filters; i++)
		igb_set_rah_pool(hw, adapter->vfs_allocated_count, i);
}

5433 5434 5435 5436 5437 5438 5439 5440
static int igb_set_vf_mac(struct igb_adapter *adapter,
                          int vf, unsigned char *mac_addr)
{
	struct e1000_hw *hw = &adapter->hw;
	int rar_entry = vf + 1; /* VF MAC addresses start at entry 1 */

	igb_rar_set(hw, mac_addr, rar_entry);

5441
	memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465

	igb_set_rah_pool(hw, vf, rar_entry);

	return 0;
}

static void igb_vmm_control(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 reg_data;

	if (!adapter->vfs_allocated_count)
		return;

	/* VF's need PF reset indication before they
	 * can send/receive mail */
	reg_data = rd32(E1000_CTRL_EXT);
	reg_data |= E1000_CTRL_EXT_PFRSTD;
	wr32(E1000_CTRL_EXT, reg_data);

	igb_vmdq_set_loopback_pf(hw, true);
	igb_vmdq_set_replication_pf(hw, true);
}

5466
/* igb_main.c */