reg.c 60.9 KB
Newer Older
1 2 3 4
/*
 * Copyright 2002-2005, Instant802 Networks, Inc.
 * Copyright 2005-2006, Devicescape Software, Inc.
 * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
5
 * Copyright 2008	Luis R. Rodriguez <lrodriguz@atheros.com>
6 7 8 9 10 11
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

12 13
/**
 * DOC: Wireless regulatory infrastructure
14 15 16 17 18 19
 *
 * The usual implementation is for a driver to read a device EEPROM to
 * determine which regulatory domain it should be operating under, then
 * looking up the allowable channels in a driver-local table and finally
 * registering those channels in the wiphy structure.
 *
20 21 22 23 24 25 26 27 28 29 30 31 32 33
 * Another set of compliance enforcement is for drivers to use their
 * own compliance limits which can be stored on the EEPROM. The host
 * driver or firmware may ensure these are used.
 *
 * In addition to all this we provide an extra layer of regulatory
 * conformance. For drivers which do not have any regulatory
 * information CRDA provides the complete regulatory solution.
 * For others it provides a community effort on further restrictions
 * to enhance compliance.
 *
 * Note: When number of rules --> infinity we will not be able to
 * index on alpha2 any more, instead we'll probably have to
 * rely on some SHA1 checksum of the regdomain for example.
 *
34 35
 */
#include <linux/kernel.h>
36 37 38 39 40
#include <linux/list.h>
#include <linux/random.h>
#include <linux/nl80211.h>
#include <linux/platform_device.h>
#include <net/cfg80211.h>
41
#include "core.h"
42
#include "reg.h"
43
#include "nl80211.h"
44

45
/* Receipt of information from last regulatory request */
46
static struct regulatory_request *last_request;
47

48 49
/* To trigger userspace events */
static struct platform_device *reg_pdev;
50

51 52
/*
 * Central wireless core regulatory domains, we only need two,
53
 * the current one and a world regulatory domain in case we have no
54 55
 * information to give us an alpha2
 */
56
const struct ieee80211_regdomain *cfg80211_regdomain;
57

58 59
/*
 * We use this as a place for the rd structure built from the
60
 * last parsed country IE to rest until CRDA gets back to us with
61 62
 * what it thinks should apply for the same country
 */
63 64
static const struct ieee80211_regdomain *country_ie_regdomain;

65 66 67 68 69 70 71 72 73 74
/*
 * Protects static reg.c components:
 *     - cfg80211_world_regdom
 *     - cfg80211_regdom
 *     - country_ie_regdomain
 *     - last_request
 */
DEFINE_MUTEX(reg_mutex);
#define assert_reg_lock() WARN_ON(!mutex_is_locked(&reg_mutex))

75
/* Used to queue up regulatory hints */
76 77 78
static LIST_HEAD(reg_requests_list);
static spinlock_t reg_requests_lock;

79 80 81 82 83 84 85 86 87 88 89 90
/* Used to queue up beacon hints for review */
static LIST_HEAD(reg_pending_beacons);
static spinlock_t reg_pending_beacons_lock;

/* Used to keep track of processed beacon hints */
static LIST_HEAD(reg_beacon_list);

struct reg_beacon {
	struct list_head list;
	struct ieee80211_channel chan;
};

91 92
/* We keep a static world regulatory domain in case of the absence of CRDA */
static const struct ieee80211_regdomain world_regdom = {
93
	.n_reg_rules = 5,
94 95
	.alpha2 =  "00",
	.reg_rules = {
96 97
		/* IEEE 802.11b/g, channels 1..11 */
		REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
98 99 100
		/* IEEE 802.11b/g, channels 12..13. No HT40
		 * channel fits here. */
		REG_RULE(2467-10, 2472+10, 20, 6, 20,
101 102
			NL80211_RRF_PASSIVE_SCAN |
			NL80211_RRF_NO_IBSS),
103 104 105 106 107 108 109
		/* IEEE 802.11 channel 14 - Only JP enables
		 * this and for 802.11b only */
		REG_RULE(2484-10, 2484+10, 20, 6, 20,
			NL80211_RRF_PASSIVE_SCAN |
			NL80211_RRF_NO_IBSS |
			NL80211_RRF_NO_OFDM),
		/* IEEE 802.11a, channel 36..48 */
110
		REG_RULE(5180-10, 5240+10, 40, 6, 20,
111 112
                        NL80211_RRF_PASSIVE_SCAN |
                        NL80211_RRF_NO_IBSS),
113 114 115 116

		/* NB: 5260 MHz - 5700 MHz requies DFS */

		/* IEEE 802.11a, channel 149..165 */
117
		REG_RULE(5745-10, 5825+10, 40, 6, 20,
118 119
			NL80211_RRF_PASSIVE_SCAN |
			NL80211_RRF_NO_IBSS),
120 121 122
	}
};

123 124
static const struct ieee80211_regdomain *cfg80211_world_regdom =
	&world_regdom;
125

126 127
static char *ieee80211_regdom = "00";

128 129 130
module_param(ieee80211_regdom, charp, 0444);
MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");

131
#ifdef CONFIG_WIRELESS_OLD_REGULATORY
132 133
/*
 * We assume 40 MHz bandwidth for the old regulatory work.
134
 * We make emphasis we are using the exact same frequencies
135 136
 * as before
 */
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174

static const struct ieee80211_regdomain us_regdom = {
	.n_reg_rules = 6,
	.alpha2 =  "US",
	.reg_rules = {
		/* IEEE 802.11b/g, channels 1..11 */
		REG_RULE(2412-10, 2462+10, 40, 6, 27, 0),
		/* IEEE 802.11a, channel 36 */
		REG_RULE(5180-10, 5180+10, 40, 6, 23, 0),
		/* IEEE 802.11a, channel 40 */
		REG_RULE(5200-10, 5200+10, 40, 6, 23, 0),
		/* IEEE 802.11a, channel 44 */
		REG_RULE(5220-10, 5220+10, 40, 6, 23, 0),
		/* IEEE 802.11a, channels 48..64 */
		REG_RULE(5240-10, 5320+10, 40, 6, 23, 0),
		/* IEEE 802.11a, channels 149..165, outdoor */
		REG_RULE(5745-10, 5825+10, 40, 6, 30, 0),
	}
};

static const struct ieee80211_regdomain jp_regdom = {
	.n_reg_rules = 3,
	.alpha2 =  "JP",
	.reg_rules = {
		/* IEEE 802.11b/g, channels 1..14 */
		REG_RULE(2412-10, 2484+10, 40, 6, 20, 0),
		/* IEEE 802.11a, channels 34..48 */
		REG_RULE(5170-10, 5240+10, 40, 6, 20,
			NL80211_RRF_PASSIVE_SCAN),
		/* IEEE 802.11a, channels 52..64 */
		REG_RULE(5260-10, 5320+10, 40, 6, 20,
			NL80211_RRF_NO_IBSS |
			NL80211_RRF_DFS),
	}
};

static const struct ieee80211_regdomain eu_regdom = {
	.n_reg_rules = 6,
175 176 177 178
	/*
	 * This alpha2 is bogus, we leave it here just for stupid
	 * backward compatibility
	 */
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
	.alpha2 =  "EU",
	.reg_rules = {
		/* IEEE 802.11b/g, channels 1..13 */
		REG_RULE(2412-10, 2472+10, 40, 6, 20, 0),
		/* IEEE 802.11a, channel 36 */
		REG_RULE(5180-10, 5180+10, 40, 6, 23,
			NL80211_RRF_PASSIVE_SCAN),
		/* IEEE 802.11a, channel 40 */
		REG_RULE(5200-10, 5200+10, 40, 6, 23,
			NL80211_RRF_PASSIVE_SCAN),
		/* IEEE 802.11a, channel 44 */
		REG_RULE(5220-10, 5220+10, 40, 6, 23,
			NL80211_RRF_PASSIVE_SCAN),
		/* IEEE 802.11a, channels 48..64 */
		REG_RULE(5240-10, 5320+10, 40, 6, 20,
			NL80211_RRF_NO_IBSS |
			NL80211_RRF_DFS),
		/* IEEE 802.11a, channels 100..140 */
		REG_RULE(5500-10, 5700+10, 40, 6, 30,
			NL80211_RRF_NO_IBSS |
			NL80211_RRF_DFS),
	}
};

static const struct ieee80211_regdomain *static_regdom(char *alpha2)
{
	if (alpha2[0] == 'U' && alpha2[1] == 'S')
		return &us_regdom;
	if (alpha2[0] == 'J' && alpha2[1] == 'P')
		return &jp_regdom;
	if (alpha2[0] == 'E' && alpha2[1] == 'U')
		return &eu_regdom;
	/* Default, as per the old rules */
	return &us_regdom;
}

215
static bool is_old_static_regdom(const struct ieee80211_regdomain *rd)
216 217 218 219 220
{
	if (rd == &us_regdom || rd == &jp_regdom || rd == &eu_regdom)
		return true;
	return false;
}
221 222
#else
static inline bool is_old_static_regdom(const struct ieee80211_regdomain *rd)
223
{
224
	return false;
225
}
226 227
#endif

228 229
static void reset_regdomains(void)
{
230 231 232 233 234 235 236 237 238 239 240 241
	/* avoid freeing static information or freeing something twice */
	if (cfg80211_regdomain == cfg80211_world_regdom)
		cfg80211_regdomain = NULL;
	if (cfg80211_world_regdom == &world_regdom)
		cfg80211_world_regdom = NULL;
	if (cfg80211_regdomain == &world_regdom)
		cfg80211_regdomain = NULL;
	if (is_old_static_regdom(cfg80211_regdomain))
		cfg80211_regdomain = NULL;

	kfree(cfg80211_regdomain);
	kfree(cfg80211_world_regdom);
242

243
	cfg80211_world_regdom = &world_regdom;
244 245 246
	cfg80211_regdomain = NULL;
}

247 248 249 250
/*
 * Dynamic world regulatory domain requested by the wireless
 * core upon initialization
 */
251
static void update_world_regdomain(const struct ieee80211_regdomain *rd)
252
{
253
	BUG_ON(!last_request);
254 255 256 257 258 259 260

	reset_regdomains();

	cfg80211_world_regdom = rd;
	cfg80211_regdomain = rd;
}

261
bool is_world_regdom(const char *alpha2)
262 263 264 265 266 267 268
{
	if (!alpha2)
		return false;
	if (alpha2[0] == '0' && alpha2[1] == '0')
		return true;
	return false;
}
269

270
static bool is_alpha2_set(const char *alpha2)
271 272 273 274 275 276 277
{
	if (!alpha2)
		return false;
	if (alpha2[0] != 0 && alpha2[1] != 0)
		return true;
	return false;
}
278

279 280 281 282 283 284 285
static bool is_alpha_upper(char letter)
{
	/* ASCII A - Z */
	if (letter >= 65 && letter <= 90)
		return true;
	return false;
}
286

287
static bool is_unknown_alpha2(const char *alpha2)
288 289 290
{
	if (!alpha2)
		return false;
291 292 293 294
	/*
	 * Special case where regulatory domain was built by driver
	 * but a specific alpha2 cannot be determined
	 */
295 296 297 298
	if (alpha2[0] == '9' && alpha2[1] == '9')
		return true;
	return false;
}
299

300 301 302 303
static bool is_intersected_alpha2(const char *alpha2)
{
	if (!alpha2)
		return false;
304 305
	/*
	 * Special case where regulatory domain is the
306
	 * result of an intersection between two regulatory domain
307 308
	 * structures
	 */
309 310 311 312 313
	if (alpha2[0] == '9' && alpha2[1] == '8')
		return true;
	return false;
}

314
static bool is_an_alpha2(const char *alpha2)
315 316 317 318 319 320 321
{
	if (!alpha2)
		return false;
	if (is_alpha_upper(alpha2[0]) && is_alpha_upper(alpha2[1]))
		return true;
	return false;
}
322

323
static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
324 325 326 327 328 329 330 331 332
{
	if (!alpha2_x || !alpha2_y)
		return false;
	if (alpha2_x[0] == alpha2_y[0] &&
		alpha2_x[1] == alpha2_y[1])
		return true;
	return false;
}

333
static bool regdom_changes(const char *alpha2)
334
{
335 336
	assert_cfg80211_lock();

337 338 339 340 341 342 343
	if (!cfg80211_regdomain)
		return true;
	if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
		return false;
	return true;
}

344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
/**
 * country_ie_integrity_changes - tells us if the country IE has changed
 * @checksum: checksum of country IE of fields we are interested in
 *
 * If the country IE has not changed you can ignore it safely. This is
 * useful to determine if two devices are seeing two different country IEs
 * even on the same alpha2. Note that this will return false if no IE has
 * been set on the wireless core yet.
 */
static bool country_ie_integrity_changes(u32 checksum)
{
	/* If no IE has been set then the checksum doesn't change */
	if (unlikely(!last_request->country_ie_checksum))
		return false;
	if (unlikely(last_request->country_ie_checksum != checksum))
		return true;
	return false;
}

363 364 365 366
/*
 * This lets us keep regulatory code which is updated on a regulatory
 * basis in userspace.
 */
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
static int call_crda(const char *alpha2)
{
	char country_env[9 + 2] = "COUNTRY=";
	char *envp[] = {
		country_env,
		NULL
	};

	if (!is_world_regdom((char *) alpha2))
		printk(KERN_INFO "cfg80211: Calling CRDA for country: %c%c\n",
			alpha2[0], alpha2[1]);
	else
		printk(KERN_INFO "cfg80211: Calling CRDA to update world "
			"regulatory domain\n");

	country_env[8] = alpha2[0];
	country_env[9] = alpha2[1];

	return kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, envp);
}

/* Used by nl80211 before kmalloc'ing our regulatory domain */
389
bool reg_is_valid_request(const char *alpha2)
390
{
391 392
	assert_cfg80211_lock();

393 394 395 396
	if (!last_request)
		return false;

	return alpha2_equal(last_request->alpha2, alpha2);
397
}
398

399
/* Sanity check on a regulatory rule */
400
static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
401
{
402
	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
403 404
	u32 freq_diff;

405
	if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
406 407 408 409 410 411 412
		return false;

	if (freq_range->start_freq_khz > freq_range->end_freq_khz)
		return false;

	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;

413 414
	if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
			freq_range->max_bandwidth_khz > freq_diff)
415 416 417 418 419
		return false;

	return true;
}

420
static bool is_valid_rd(const struct ieee80211_regdomain *rd)
421
{
422
	const struct ieee80211_reg_rule *reg_rule = NULL;
423
	unsigned int i;
424

425 426
	if (!rd->n_reg_rules)
		return false;
427

428 429 430
	if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
		return false;

431 432 433 434 435 436 437
	for (i = 0; i < rd->n_reg_rules; i++) {
		reg_rule = &rd->reg_rules[i];
		if (!is_valid_reg_rule(reg_rule))
			return false;
	}

	return true;
438 439
}

440 441 442
static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
			    u32 center_freq_khz,
			    u32 bw_khz)
443
{
444 445 446 447 448 449 450 451 452 453
	u32 start_freq_khz, end_freq_khz;

	start_freq_khz = center_freq_khz - (bw_khz/2);
	end_freq_khz = center_freq_khz + (bw_khz/2);

	if (start_freq_khz >= freq_range->start_freq_khz &&
	    end_freq_khz <= freq_range->end_freq_khz)
		return true;

	return false;
454
}
455

456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
/**
 * freq_in_rule_band - tells us if a frequency is in a frequency band
 * @freq_range: frequency rule we want to query
 * @freq_khz: frequency we are inquiring about
 *
 * This lets us know if a specific frequency rule is or is not relevant to
 * a specific frequency's band. Bands are device specific and artificial
 * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
 * safe for now to assume that a frequency rule should not be part of a
 * frequency's band if the start freq or end freq are off by more than 2 GHz.
 * This resolution can be lowered and should be considered as we add
 * regulatory rule support for other "bands".
 **/
static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
	u32 freq_khz)
{
#define ONE_GHZ_IN_KHZ	1000000
	if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
		return true;
	if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
		return true;
	return false;
#undef ONE_GHZ_IN_KHZ
}

481 482
/*
 * Converts a country IE to a regulatory domain. A regulatory domain
483 484
 * structure has a lot of information which the IE doesn't yet have,
 * so for the other values we use upper max values as we will intersect
485 486
 * with our userspace regulatory agent to get lower bounds.
 */
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
static struct ieee80211_regdomain *country_ie_2_rd(
				u8 *country_ie,
				u8 country_ie_len,
				u32 *checksum)
{
	struct ieee80211_regdomain *rd = NULL;
	unsigned int i = 0;
	char alpha2[2];
	u32 flags = 0;
	u32 num_rules = 0, size_of_regd = 0;
	u8 *triplets_start = NULL;
	u8 len_at_triplet = 0;
	/* the last channel we have registered in a subband (triplet) */
	int last_sub_max_channel = 0;

	*checksum = 0xDEADBEEF;

	/* Country IE requirements */
	BUG_ON(country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN ||
		country_ie_len & 0x01);

	alpha2[0] = country_ie[0];
	alpha2[1] = country_ie[1];

	/*
	 * Third octet can be:
	 *    'I' - Indoor
	 *    'O' - Outdoor
	 *
	 *  anything else we assume is no restrictions
	 */
	if (country_ie[2] == 'I')
		flags = NL80211_RRF_NO_OUTDOOR;
	else if (country_ie[2] == 'O')
		flags = NL80211_RRF_NO_INDOOR;

	country_ie += 3;
	country_ie_len -= 3;

	triplets_start = country_ie;
	len_at_triplet = country_ie_len;

	*checksum ^= ((flags ^ alpha2[0] ^ alpha2[1]) << 8);

531 532
	/*
	 * We need to build a reg rule for each triplet, but first we must
533
	 * calculate the number of reg rules we will need. We will need one
534 535
	 * for each channel subband
	 */
536
	while (country_ie_len >= 3) {
537
		int end_channel = 0;
538 539 540 541 542 543 544 545 546 547 548
		struct ieee80211_country_ie_triplet *triplet =
			(struct ieee80211_country_ie_triplet *) country_ie;
		int cur_sub_max_channel = 0, cur_channel = 0;

		if (triplet->ext.reg_extension_id >=
				IEEE80211_COUNTRY_EXTENSION_ID) {
			country_ie += 3;
			country_ie_len -= 3;
			continue;
		}

549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
		/* 2 GHz */
		if (triplet->chans.first_channel <= 14)
			end_channel = triplet->chans.first_channel +
				triplet->chans.num_channels;
		else
			/*
			 * 5 GHz -- For example in country IEs if the first
			 * channel given is 36 and the number of channels is 4
			 * then the individual channel numbers defined for the
			 * 5 GHz PHY by these parameters are: 36, 40, 44, and 48
			 * and not 36, 37, 38, 39.
			 *
			 * See: http://tinyurl.com/11d-clarification
			 */
			end_channel =  triplet->chans.first_channel +
				(4 * (triplet->chans.num_channels - 1));

566
		cur_channel = triplet->chans.first_channel;
567
		cur_sub_max_channel = end_channel;
568 569 570 571 572

		/* Basic sanity check */
		if (cur_sub_max_channel < cur_channel)
			return NULL;

573 574
		/*
		 * Do not allow overlapping channels. Also channels
575
		 * passed in each subband must be monotonically
576 577
		 * increasing
		 */
578 579 580 581 582 583 584
		if (last_sub_max_channel) {
			if (cur_channel <= last_sub_max_channel)
				return NULL;
			if (cur_sub_max_channel <= last_sub_max_channel)
				return NULL;
		}

585 586
		/*
		 * When dot11RegulatoryClassesRequired is supported
587 588
		 * we can throw ext triplets as part of this soup,
		 * for now we don't care when those change as we
589 590
		 * don't support them
		 */
591 592 593 594 595 596 597 598 599 600
		*checksum ^= ((cur_channel ^ cur_sub_max_channel) << 8) |
		  ((cur_sub_max_channel ^ cur_sub_max_channel) << 16) |
		  ((triplet->chans.max_power ^ cur_sub_max_channel) << 24);

		last_sub_max_channel = cur_sub_max_channel;

		country_ie += 3;
		country_ie_len -= 3;
		num_rules++;

601 602 603 604
		/*
		 * Note: this is not a IEEE requirement but
		 * simply a memory requirement
		 */
605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
		if (num_rules > NL80211_MAX_SUPP_REG_RULES)
			return NULL;
	}

	country_ie = triplets_start;
	country_ie_len = len_at_triplet;

	size_of_regd = sizeof(struct ieee80211_regdomain) +
		(num_rules * sizeof(struct ieee80211_reg_rule));

	rd = kzalloc(size_of_regd, GFP_KERNEL);
	if (!rd)
		return NULL;

	rd->n_reg_rules = num_rules;
	rd->alpha2[0] = alpha2[0];
	rd->alpha2[1] = alpha2[1];

	/* This time around we fill in the rd */
	while (country_ie_len >= 3) {
625
		int end_channel = 0;
626 627 628 629 630 631
		struct ieee80211_country_ie_triplet *triplet =
			(struct ieee80211_country_ie_triplet *) country_ie;
		struct ieee80211_reg_rule *reg_rule = NULL;
		struct ieee80211_freq_range *freq_range = NULL;
		struct ieee80211_power_rule *power_rule = NULL;

632 633 634 635
		/*
		 * Must parse if dot11RegulatoryClassesRequired is true,
		 * we don't support this yet
		 */
636 637 638 639 640 641 642 643 644 645 646 647 648
		if (triplet->ext.reg_extension_id >=
				IEEE80211_COUNTRY_EXTENSION_ID) {
			country_ie += 3;
			country_ie_len -= 3;
			continue;
		}

		reg_rule = &rd->reg_rules[i];
		freq_range = &reg_rule->freq_range;
		power_rule = &reg_rule->power_rule;

		reg_rule->flags = flags;

649 650 651 652 653 654 655 656
		/* 2 GHz */
		if (triplet->chans.first_channel <= 14)
			end_channel = triplet->chans.first_channel +
				triplet->chans.num_channels;
		else
			end_channel =  triplet->chans.first_channel +
				(4 * (triplet->chans.num_channels - 1));

657 658
		/*
		 * The +10 is since the regulatory domain expects
659 660
		 * the actual band edge, not the center of freq for
		 * its start and end freqs, assuming 20 MHz bandwidth on
661 662
		 * the channels passed
		 */
663 664 665 666 667
		freq_range->start_freq_khz =
			MHZ_TO_KHZ(ieee80211_channel_to_frequency(
				triplet->chans.first_channel) - 10);
		freq_range->end_freq_khz =
			MHZ_TO_KHZ(ieee80211_channel_to_frequency(
668
				end_channel) + 10);
669

670 671 672 673 674
		/*
		 * These are large arbitrary values we use to intersect later.
		 * Increment this if we ever support >= 40 MHz channels
		 * in IEEE 802.11
		 */
675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
		freq_range->max_bandwidth_khz = MHZ_TO_KHZ(40);
		power_rule->max_antenna_gain = DBI_TO_MBI(100);
		power_rule->max_eirp = DBM_TO_MBM(100);

		country_ie += 3;
		country_ie_len -= 3;
		i++;

		BUG_ON(i > NL80211_MAX_SUPP_REG_RULES);
	}

	return rd;
}


690 691 692 693
/*
 * Helper for regdom_intersect(), this does the real
 * mathematical intersection fun
 */
694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770
static int reg_rules_intersect(
	const struct ieee80211_reg_rule *rule1,
	const struct ieee80211_reg_rule *rule2,
	struct ieee80211_reg_rule *intersected_rule)
{
	const struct ieee80211_freq_range *freq_range1, *freq_range2;
	struct ieee80211_freq_range *freq_range;
	const struct ieee80211_power_rule *power_rule1, *power_rule2;
	struct ieee80211_power_rule *power_rule;
	u32 freq_diff;

	freq_range1 = &rule1->freq_range;
	freq_range2 = &rule2->freq_range;
	freq_range = &intersected_rule->freq_range;

	power_rule1 = &rule1->power_rule;
	power_rule2 = &rule2->power_rule;
	power_rule = &intersected_rule->power_rule;

	freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
		freq_range2->start_freq_khz);
	freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
		freq_range2->end_freq_khz);
	freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
		freq_range2->max_bandwidth_khz);

	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
	if (freq_range->max_bandwidth_khz > freq_diff)
		freq_range->max_bandwidth_khz = freq_diff;

	power_rule->max_eirp = min(power_rule1->max_eirp,
		power_rule2->max_eirp);
	power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
		power_rule2->max_antenna_gain);

	intersected_rule->flags = (rule1->flags | rule2->flags);

	if (!is_valid_reg_rule(intersected_rule))
		return -EINVAL;

	return 0;
}

/**
 * regdom_intersect - do the intersection between two regulatory domains
 * @rd1: first regulatory domain
 * @rd2: second regulatory domain
 *
 * Use this function to get the intersection between two regulatory domains.
 * Once completed we will mark the alpha2 for the rd as intersected, "98",
 * as no one single alpha2 can represent this regulatory domain.
 *
 * Returns a pointer to the regulatory domain structure which will hold the
 * resulting intersection of rules between rd1 and rd2. We will
 * kzalloc() this structure for you.
 */
static struct ieee80211_regdomain *regdom_intersect(
	const struct ieee80211_regdomain *rd1,
	const struct ieee80211_regdomain *rd2)
{
	int r, size_of_regd;
	unsigned int x, y;
	unsigned int num_rules = 0, rule_idx = 0;
	const struct ieee80211_reg_rule *rule1, *rule2;
	struct ieee80211_reg_rule *intersected_rule;
	struct ieee80211_regdomain *rd;
	/* This is just a dummy holder to help us count */
	struct ieee80211_reg_rule irule;

	/* Uses the stack temporarily for counter arithmetic */
	intersected_rule = &irule;

	memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));

	if (!rd1 || !rd2)
		return NULL;

771 772
	/*
	 * First we get a count of the rules we'll need, then we actually
773 774 775
	 * build them. This is to so we can malloc() and free() a
	 * regdomain once. The reason we use reg_rules_intersect() here
	 * is it will return -EINVAL if the rule computed makes no sense.
776 777
	 * All rules that do check out OK are valid.
	 */
778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804

	for (x = 0; x < rd1->n_reg_rules; x++) {
		rule1 = &rd1->reg_rules[x];
		for (y = 0; y < rd2->n_reg_rules; y++) {
			rule2 = &rd2->reg_rules[y];
			if (!reg_rules_intersect(rule1, rule2,
					intersected_rule))
				num_rules++;
			memset(intersected_rule, 0,
					sizeof(struct ieee80211_reg_rule));
		}
	}

	if (!num_rules)
		return NULL;

	size_of_regd = sizeof(struct ieee80211_regdomain) +
		((num_rules + 1) * sizeof(struct ieee80211_reg_rule));

	rd = kzalloc(size_of_regd, GFP_KERNEL);
	if (!rd)
		return NULL;

	for (x = 0; x < rd1->n_reg_rules; x++) {
		rule1 = &rd1->reg_rules[x];
		for (y = 0; y < rd2->n_reg_rules; y++) {
			rule2 = &rd2->reg_rules[y];
805 806
			/*
			 * This time around instead of using the stack lets
807
			 * write to the target rule directly saving ourselves
808 809
			 * a memcpy()
			 */
810 811 812
			intersected_rule = &rd->reg_rules[rule_idx];
			r = reg_rules_intersect(rule1, rule2,
				intersected_rule);
813 814 815 816
			/*
			 * No need to memset here the intersected rule here as
			 * we're not using the stack anymore
			 */
817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834
			if (r)
				continue;
			rule_idx++;
		}
	}

	if (rule_idx != num_rules) {
		kfree(rd);
		return NULL;
	}

	rd->n_reg_rules = num_rules;
	rd->alpha2[0] = '9';
	rd->alpha2[1] = '8';

	return rd;
}

835 836 837 838
/*
 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
 * want to just have the channel structure use these
 */
839 840 841 842 843 844 845 846 847 848 849 850
static u32 map_regdom_flags(u32 rd_flags)
{
	u32 channel_flags = 0;
	if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
		channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
	if (rd_flags & NL80211_RRF_NO_IBSS)
		channel_flags |= IEEE80211_CHAN_NO_IBSS;
	if (rd_flags & NL80211_RRF_DFS)
		channel_flags |= IEEE80211_CHAN_RADAR;
	return channel_flags;
}

851 852
static int freq_reg_info_regd(struct wiphy *wiphy,
			      u32 center_freq,
853
			      u32 desired_bw_khz,
854 855
			      const struct ieee80211_reg_rule **reg_rule,
			      const struct ieee80211_regdomain *custom_regd)
856 857
{
	int i;
858
	bool band_rule_found = false;
859
	const struct ieee80211_regdomain *regd;
860 861 862 863
	bool bw_fits = false;

	if (!desired_bw_khz)
		desired_bw_khz = MHZ_TO_KHZ(20);
864

865
	regd = custom_regd ? custom_regd : cfg80211_regdomain;
866

867 868 869 870
	/*
	 * Follow the driver's regulatory domain, if present, unless a country
	 * IE has been processed or a user wants to help complaince further
	 */
871 872
	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
	    last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
873 874 875 876
	    wiphy->regd)
		regd = wiphy->regd;

	if (!regd)
877 878
		return -EINVAL;

879
	for (i = 0; i < regd->n_reg_rules; i++) {
880 881 882 883
		const struct ieee80211_reg_rule *rr;
		const struct ieee80211_freq_range *fr = NULL;
		const struct ieee80211_power_rule *pr = NULL;

884
		rr = &regd->reg_rules[i];
885 886
		fr = &rr->freq_range;
		pr = &rr->power_rule;
887

888 889
		/*
		 * We only need to know if one frequency rule was
890
		 * was in center_freq's band, that's enough, so lets
891 892
		 * not overwrite it once found
		 */
893 894 895
		if (!band_rule_found)
			band_rule_found = freq_in_rule_band(fr, center_freq);

896 897 898
		bw_fits = reg_does_bw_fit(fr,
					  center_freq,
					  desired_bw_khz);
899

900
		if (band_rule_found && bw_fits) {
901
			*reg_rule = rr;
902
			return 0;
903 904 905
		}
	}

906 907 908
	if (!band_rule_found)
		return -ERANGE;

909
	return -EINVAL;
910
}
911
EXPORT_SYMBOL(freq_reg_info);
912

913 914 915 916
int freq_reg_info(struct wiphy *wiphy,
		  u32 center_freq,
		  u32 desired_bw_khz,
		  const struct ieee80211_reg_rule **reg_rule)
917
{
918
	assert_cfg80211_lock();
919 920 921 922 923
	return freq_reg_info_regd(wiphy,
				  center_freq,
				  desired_bw_khz,
				  reg_rule,
				  NULL);
924
}
925

926 927 928 929 930 931 932 933 934
/*
 * Note that right now we assume the desired channel bandwidth
 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
 * per channel, the primary and the extension channel). To support
 * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
 * new ieee80211_channel.target_bw and re run the regulatory check
 * on the wiphy with the target_bw specified. Then we can simply use
 * that below for the desired_bw_khz below.
 */
935 936
static void handle_channel(struct wiphy *wiphy, enum ieee80211_band band,
			   unsigned int chan_idx)
937 938
{
	int r;
939 940
	u32 flags, bw_flags = 0;
	u32 desired_bw_khz = MHZ_TO_KHZ(20);
941 942
	const struct ieee80211_reg_rule *reg_rule = NULL;
	const struct ieee80211_power_rule *power_rule = NULL;
943
	const struct ieee80211_freq_range *freq_range = NULL;
944 945
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *chan;
946
	struct wiphy *request_wiphy = NULL;
947

948 949
	assert_cfg80211_lock();

950 951
	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

952 953 954 955 956
	sband = wiphy->bands[band];
	BUG_ON(chan_idx >= sband->n_channels);
	chan = &sband->channels[chan_idx];

	flags = chan->orig_flags;
957

958 959 960 961
	r = freq_reg_info(wiphy,
			  MHZ_TO_KHZ(chan->center_freq),
			  desired_bw_khz,
			  &reg_rule);
962 963

	if (r) {
964 965
		/*
		 * This means no regulatory rule was found in the country IE
966 967 968 969 970 971 972 973 974 975
		 * with a frequency range on the center_freq's band, since
		 * IEEE-802.11 allows for a country IE to have a subset of the
		 * regulatory information provided in a country we ignore
		 * disabling the channel unless at least one reg rule was
		 * found on the center_freq's band. For details see this
		 * clarification:
		 *
		 * http://tinyurl.com/11d-clarification
		 */
		if (r == -ERANGE &&
976 977
		    last_request->initiator ==
		    NL80211_REGDOM_SET_BY_COUNTRY_IE) {
978 979 980 981 982 983 984
#ifdef CONFIG_CFG80211_REG_DEBUG
			printk(KERN_DEBUG "cfg80211: Leaving channel %d MHz "
				"intact on %s - no rule found in band on "
				"Country IE\n",
				chan->center_freq, wiphy_name(wiphy));
#endif
		} else {
985 986 987 988
		/*
		 * In this case we know the country IE has at least one reg rule
		 * for the band so we respect its band definitions
		 */
989
#ifdef CONFIG_CFG80211_REG_DEBUG
990 991
			if (last_request->initiator ==
			    NL80211_REGDOM_SET_BY_COUNTRY_IE)
992 993 994 995 996 997 998 999
				printk(KERN_DEBUG "cfg80211: Disabling "
					"channel %d MHz on %s due to "
					"Country IE\n",
					chan->center_freq, wiphy_name(wiphy));
#endif
			flags |= IEEE80211_CHAN_DISABLED;
			chan->flags = flags;
		}
1000 1001 1002
		return;
	}

1003
	power_rule = &reg_rule->power_rule;
1004 1005 1006 1007
	freq_range = &reg_rule->freq_range;

	if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
		bw_flags = IEEE80211_CHAN_NO_HT40;
1008

1009
	if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1010 1011
	    request_wiphy && request_wiphy == wiphy &&
	    request_wiphy->strict_regulatory) {
1012 1013
		/*
		 * This gaurantees the driver's requested regulatory domain
1014
		 * will always be used as a base for further regulatory
1015 1016
		 * settings
		 */
1017
		chan->flags = chan->orig_flags =
1018
			map_regdom_flags(reg_rule->flags) | bw_flags;
1019 1020 1021 1022 1023 1024 1025
		chan->max_antenna_gain = chan->orig_mag =
			(int) MBI_TO_DBI(power_rule->max_antenna_gain);
		chan->max_power = chan->orig_mpwr =
			(int) MBM_TO_DBM(power_rule->max_eirp);
		return;
	}

1026
	chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1027
	chan->max_antenna_gain = min(chan->orig_mag,
1028
		(int) MBI_TO_DBI(power_rule->max_antenna_gain));
1029
	if (chan->orig_mpwr)
1030 1031
		chan->max_power = min(chan->orig_mpwr,
			(int) MBM_TO_DBM(power_rule->max_eirp));
1032
	else
1033
		chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1034 1035
}

1036
static void handle_band(struct wiphy *wiphy, enum ieee80211_band band)
1037
{
1038 1039 1040 1041 1042
	unsigned int i;
	struct ieee80211_supported_band *sband;

	BUG_ON(!wiphy->bands[band]);
	sband = wiphy->bands[band];
1043 1044

	for (i = 0; i < sband->n_channels; i++)
1045
		handle_channel(wiphy, band, i);
1046 1047
}

1048 1049
static bool ignore_reg_update(struct wiphy *wiphy,
			      enum nl80211_reg_initiator initiator)
1050 1051 1052
{
	if (!last_request)
		return true;
1053
	if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1054
		  wiphy->custom_regulatory)
1055
		return true;
1056 1057 1058 1059
	/*
	 * wiphy->regd will be set once the device has its own
	 * desired regulatory domain set
	 */
1060 1061
	if (wiphy->strict_regulatory && !wiphy->regd &&
	    !is_world_regdom(last_request->alpha2))
1062 1063 1064 1065
		return true;
	return false;
}

1066
static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1067
{
1068
	struct cfg80211_registered_device *rdev;
1069

1070 1071
	list_for_each_entry(rdev, &cfg80211_rdev_list, list)
		wiphy_update_regulatory(&rdev->wiphy, initiator);
1072 1073
}

1074 1075 1076 1077 1078 1079
static void handle_reg_beacon(struct wiphy *wiphy,
			      unsigned int chan_idx,
			      struct reg_beacon *reg_beacon)
{
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *chan;
1080 1081
	bool channel_changed = false;
	struct ieee80211_channel chan_before;
1082 1083 1084 1085 1086 1087 1088 1089 1090

	assert_cfg80211_lock();

	sband = wiphy->bands[reg_beacon->chan.band];
	chan = &sband->channels[chan_idx];

	if (likely(chan->center_freq != reg_beacon->chan.center_freq))
		return;

1091 1092 1093 1094 1095
	if (chan->beacon_found)
		return;

	chan->beacon_found = true;

1096 1097 1098
	if (wiphy->disable_beacon_hints)
		return;

1099 1100 1101
	chan_before.center_freq = chan->center_freq;
	chan_before.flags = chan->flags;

1102
	if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
1103
		chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
1104
		channel_changed = true;
1105 1106
	}

1107
	if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
1108
		chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
1109
		channel_changed = true;
1110 1111
	}

1112 1113
	if (channel_changed)
		nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
}

/*
 * Called when a scan on a wiphy finds a beacon on
 * new channel
 */
static void wiphy_update_new_beacon(struct wiphy *wiphy,
				    struct reg_beacon *reg_beacon)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;

	assert_cfg80211_lock();

	if (!wiphy->bands[reg_beacon->chan.band])
		return;

	sband = wiphy->bands[reg_beacon->chan.band];

	for (i = 0; i < sband->n_channels; i++)
		handle_reg_beacon(wiphy, i, reg_beacon);
}

/*
 * Called upon reg changes or a new wiphy is added
 */
static void wiphy_update_beacon_reg(struct wiphy *wiphy)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;
	struct reg_beacon *reg_beacon;

	assert_cfg80211_lock();

	if (list_empty(&reg_beacon_list))
		return;

	list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
		if (!wiphy->bands[reg_beacon->chan.band])
			continue;
		sband = wiphy->bands[reg_beacon->chan.band];
		for (i = 0; i < sband->n_channels; i++)
			handle_reg_beacon(wiphy, i, reg_beacon);
	}
}

static bool reg_is_world_roaming(struct wiphy *wiphy)
{
	if (is_world_regdom(cfg80211_regdomain->alpha2) ||
	    (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
		return true;
1165 1166
	if (last_request &&
	    last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1167 1168 1169 1170 1171 1172 1173 1174
	    wiphy->custom_regulatory)
		return true;
	return false;
}

/* Reap the advantages of previously found beacons */
static void reg_process_beacons(struct wiphy *wiphy)
{
1175 1176 1177 1178 1179 1180
	/*
	 * Means we are just firing up cfg80211, so no beacons would
	 * have been processed yet.
	 */
	if (!last_request)
		return;
1181 1182 1183 1184 1185
	if (!reg_is_world_roaming(wiphy))
		return;
	wiphy_update_beacon_reg(wiphy);
}

1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
static bool is_ht40_not_allowed(struct ieee80211_channel *chan)
{
	if (!chan)
		return true;
	if (chan->flags & IEEE80211_CHAN_DISABLED)
		return true;
	/* This would happen when regulatory rules disallow HT40 completely */
	if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40)))
		return true;
	return false;
}

static void reg_process_ht_flags_channel(struct wiphy *wiphy,
					 enum ieee80211_band band,
					 unsigned int chan_idx)
{
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *channel;
	struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
	unsigned int i;

	assert_cfg80211_lock();

	sband = wiphy->bands[band];
	BUG_ON(chan_idx >= sband->n_channels);
	channel = &sband->channels[chan_idx];

	if (is_ht40_not_allowed(channel)) {
		channel->flags |= IEEE80211_CHAN_NO_HT40;
		return;
	}

	/*
	 * We need to ensure the extension channels exist to
	 * be able to use HT40- or HT40+, this finds them (or not)
	 */
	for (i = 0; i < sband->n_channels; i++) {
		struct ieee80211_channel *c = &sband->channels[i];
		if (c->center_freq == (channel->center_freq - 20))
			channel_before = c;
		if (c->center_freq == (channel->center_freq + 20))
			channel_after = c;
	}

	/*
	 * Please note that this assumes target bandwidth is 20 MHz,
	 * if that ever changes we also need to change the below logic
	 * to include that as well.
	 */
	if (is_ht40_not_allowed(channel_before))
1236
		channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1237
	else
1238
		channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1239 1240

	if (is_ht40_not_allowed(channel_after))
1241
		channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1242
	else
1243
		channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
}

static void reg_process_ht_flags_band(struct wiphy *wiphy,
				      enum ieee80211_band band)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;

	BUG_ON(!wiphy->bands[band]);
	sband = wiphy->bands[band];

	for (i = 0; i < sband->n_channels; i++)
		reg_process_ht_flags_channel(wiphy, band, i);
}

static void reg_process_ht_flags(struct wiphy *wiphy)
{
	enum ieee80211_band band;

	if (!wiphy)
		return;

	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
		if (wiphy->bands[band])
			reg_process_ht_flags_band(wiphy, band);
	}

}

1273 1274
void wiphy_update_regulatory(struct wiphy *wiphy,
			     enum nl80211_reg_initiator initiator)
1275 1276
{
	enum ieee80211_band band;
1277

1278
	if (ignore_reg_update(wiphy, initiator))
1279
		goto out;
1280
	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1281
		if (wiphy->bands[band])
1282
			handle_band(wiphy, band);
1283
	}
1284 1285
out:
	reg_process_beacons(wiphy);
1286
	reg_process_ht_flags(wiphy);
1287
	if (wiphy->reg_notifier)
1288
		wiphy->reg_notifier(wiphy, last_request);
1289 1290
}

1291 1292 1293 1294 1295 1296
static void handle_channel_custom(struct wiphy *wiphy,
				  enum ieee80211_band band,
				  unsigned int chan_idx,
				  const struct ieee80211_regdomain *regd)
{
	int r;
1297 1298
	u32 desired_bw_khz = MHZ_TO_KHZ(20);
	u32 bw_flags = 0;
1299 1300
	const struct ieee80211_reg_rule *reg_rule = NULL;
	const struct ieee80211_power_rule *power_rule = NULL;
1301
	const struct ieee80211_freq_range *freq_range = NULL;
1302 1303 1304
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *chan;

1305
	assert_reg_lock();
1306

1307 1308 1309 1310
	sband = wiphy->bands[band];
	BUG_ON(chan_idx >= sband->n_channels);
	chan = &sband->channels[chan_idx];

1311 1312 1313 1314 1315
	r = freq_reg_info_regd(wiphy,
			       MHZ_TO_KHZ(chan->center_freq),
			       desired_bw_khz,
			       &reg_rule,
			       regd);
1316 1317 1318 1319 1320 1321 1322

	if (r) {
		chan->flags = IEEE80211_CHAN_DISABLED;
		return;
	}

	power_rule = &reg_rule->power_rule;
1323 1324 1325 1326
	freq_range = &reg_rule->freq_range;

	if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
		bw_flags = IEEE80211_CHAN_NO_HT40;
1327

1328
	chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
	chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
	chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
}

static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
			       const struct ieee80211_regdomain *regd)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;

	BUG_ON(!wiphy->bands[band]);
	sband = wiphy->bands[band];

	for (i = 0; i < sband->n_channels; i++)
		handle_channel_custom(wiphy, band, i, regd);
}

/* Used by drivers prior to wiphy registration */
void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
				   const struct ieee80211_regdomain *regd)
{
	enum ieee80211_band band;
1351
	unsigned int bands_set = 0;
1352

1353
	mutex_lock(&reg_mutex);
1354
	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1355 1356 1357 1358
		if (!wiphy->bands[band])
			continue;
		handle_band_custom(wiphy, band, regd);
		bands_set++;
1359
	}
1360
	mutex_unlock(&reg_mutex);
1361 1362 1363 1364 1365 1366

	/*
	 * no point in calling this if it won't have any effect
	 * on your device's supportd bands.
	 */
	WARN_ON(!bands_set);
1367
}
1368 1369
EXPORT_SYMBOL(wiphy_apply_custom_regulatory);

1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
			 const struct ieee80211_regdomain *src_regd)
{
	struct ieee80211_regdomain *regd;
	int size_of_regd = 0;
	unsigned int i;

	size_of_regd = sizeof(struct ieee80211_regdomain) +
	  ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));

	regd = kzalloc(size_of_regd, GFP_KERNEL);
	if (!regd)
		return -ENOMEM;

	memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));

	for (i = 0; i < src_regd->n_reg_rules; i++)
		memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
			sizeof(struct ieee80211_reg_rule));

	*dst_regd = regd;
	return 0;
}
1393

1394 1395 1396 1397
/*
 * Return value which can be used by ignore_request() to indicate
 * it has been determined we should intersect two regulatory domains
 */
1398 1399
#define REG_INTERSECT	1

1400 1401
/* This has the logic which determines when a new request
 * should be ignored. */
1402 1403
static int ignore_request(struct wiphy *wiphy,
			  struct regulatory_request *pending_request)
1404
{
1405
	struct wiphy *last_wiphy = NULL;
1406 1407 1408

	assert_cfg80211_lock();

1409 1410 1411 1412
	/* All initial requests are respected */
	if (!last_request)
		return 0;

1413
	switch (pending_request->initiator) {
1414
	case NL80211_REGDOM_SET_BY_CORE:
1415
		return -EINVAL;
1416
	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1417 1418 1419

		last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

1420
		if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1421
			return -EINVAL;
1422 1423
		if (last_request->initiator ==
		    NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1424
			if (last_wiphy != wiphy) {
1425 1426 1427 1428 1429 1430
				/*
				 * Two cards with two APs claiming different
				 * different Country IE alpha2s. We could
				 * intersect them, but that seems unlikely
				 * to be correct. Reject second one for now.
				 */
1431
				if (regdom_changes(pending_request->alpha2))
1432 1433 1434
					return -EOPNOTSUPP;
				return -EALREADY;
			}
1435 1436 1437 1438
			/*
			 * Two consecutive Country IE hints on the same wiphy.
			 * This should be picked up early by the driver/stack
			 */
1439
			if (WARN_ON(regdom_changes(pending_request->alpha2)))
1440 1441 1442
				return 0;
			return -EALREADY;
		}
1443
		return REG_INTERSECT;
1444 1445
	case NL80211_REGDOM_SET_BY_DRIVER:
		if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1446 1447
			if (is_old_static_regdom(cfg80211_regdomain))
				return 0;
1448
			if (regdom_changes(pending_request->alpha2))
1449
				return 0;
1450
			return -EALREADY;
1451
		}
1452 1453 1454 1455 1456 1457

		/*
		 * This would happen if you unplug and plug your card
		 * back in or if you add a new device for which the previously
		 * loaded card also agrees on the regulatory domain.
		 */
1458
		if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1459
		    !regdom_changes(pending_request->alpha2))
1460 1461
			return -EALREADY;

1462
		return REG_INTERSECT;
1463 1464
	case NL80211_REGDOM_SET_BY_USER:
		if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1465
			return REG_INTERSECT;
1466 1467 1468 1469
		/*
		 * If the user knows better the user should set the regdom
		 * to their country before the IE is picked up
		 */
1470
		if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1471 1472
			  last_request->intersect)
			return -EOPNOTSUPP;
1473 1474 1475 1476
		/*
		 * Process user requests only after previous user/driver/core
		 * requests have been processed
		 */
1477 1478 1479
		if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
		    last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
		    last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1480
			if (regdom_changes(last_request->alpha2))
1481 1482 1483
				return -EAGAIN;
		}

1484
		if (!is_old_static_regdom(cfg80211_regdomain) &&
1485
		    !regdom_changes(pending_request->alpha2))
1486 1487
			return -EALREADY;

1488 1489 1490 1491 1492 1493
		return 0;
	}

	return -EINVAL;
}

1494 1495 1496 1497
/**
 * __regulatory_hint - hint to the wireless core a regulatory domain
 * @wiphy: if the hint comes from country information from an AP, this
 *	is required to be set to the wiphy that received the information
1498
 * @pending_request: the regulatory request currently being processed
1499 1500
 *
 * The Wireless subsystem can use this function to hint to the wireless core
1501
 * what it believes should be the current regulatory domain.
1502 1503 1504 1505
 *
 * Returns zero if all went fine, %-EALREADY if a regulatory domain had
 * already been set or other standard error codes.
 *
1506
 * Caller must hold &cfg80211_mutex and &reg_mutex
1507
 */
1508 1509
static int __regulatory_hint(struct wiphy *wiphy,
			     struct regulatory_request *pending_request)
1510
{
1511
	bool intersect = false;
1512 1513
	int r = 0;

1514 1515
	assert_cfg80211_lock();

1516
	r = ignore_request(wiphy, pending_request);
1517

1518
	if (r == REG_INTERSECT) {
1519 1520
		if (pending_request->initiator ==
		    NL80211_REGDOM_SET_BY_DRIVER) {
1521
			r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1522 1523
			if (r) {
				kfree(pending_request);
1524
				return r;
1525
			}
1526
		}
1527
		intersect = true;
1528
	} else if (r) {
1529 1530
		/*
		 * If the regulatory domain being requested by the
1531
		 * driver has already been set just copy it to the
1532 1533
		 * wiphy
		 */
1534
		if (r == -EALREADY &&
1535 1536
		    pending_request->initiator ==
		    NL80211_REGDOM_SET_BY_DRIVER) {
1537
			r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1538 1539
			if (r) {
				kfree(pending_request);
1540
				return r;
1541
			}
1542 1543 1544
			r = -EALREADY;
			goto new_request;
		}
1545
		kfree(pending_request);
1546
		return r;
1547
	}
1548

1549
new_request:
1550
	kfree(last_request);
1551

1552 1553
	last_request = pending_request;
	last_request->intersect = intersect;
1554

1555
	pending_request = NULL;
1556 1557

	/* When r == REG_INTERSECT we do need to call CRDA */
1558 1559 1560 1561 1562 1563 1564 1565
	if (r < 0) {
		/*
		 * Since CRDA will not be called in this case as we already
		 * have applied the requested regulatory domain before we just
		 * inform userspace we have processed the request
		 */
		if (r == -EALREADY)
			nl80211_send_reg_change_event(last_request);
1566
		return r;
1567
	}
1568

1569
	return call_crda(last_request->alpha2);
1570 1571
}

1572
/* This processes *all* regulatory hints */
1573
static void reg_process_hint(struct regulatory_request *reg_request)
1574 1575 1576 1577 1578 1579 1580
{
	int r = 0;
	struct wiphy *wiphy = NULL;

	BUG_ON(!reg_request->alpha2);

	mutex_lock(&cfg80211_mutex);
1581
	mutex_lock(&reg_mutex);
1582 1583 1584 1585

	if (wiphy_idx_valid(reg_request->wiphy_idx))
		wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);

1586
	if (reg_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1587
	    !wiphy) {
1588
		kfree(reg_request);
1589 1590 1591
		goto out;
	}

1592
	r = __regulatory_hint(wiphy, reg_request);
1593 1594 1595 1596
	/* This is required so that the orig_* parameters are saved */
	if (r == -EALREADY && wiphy && wiphy->strict_regulatory)
		wiphy_update_regulatory(wiphy, reg_request->initiator);
out:
1597
	mutex_unlock(&reg_mutex);
1598 1599 1600
	mutex_unlock(&cfg80211_mutex);
}

1601
/* Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* */
1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612
static void reg_process_pending_hints(void)
	{
	struct regulatory_request *reg_request;

	spin_lock(&reg_requests_lock);
	while (!list_empty(&reg_requests_list)) {
		reg_request = list_first_entry(&reg_requests_list,
					       struct regulatory_request,
					       list);
		list_del_init(&reg_request->list);

1613 1614
		spin_unlock(&reg_requests_lock);
		reg_process_hint(reg_request);
1615 1616 1617 1618 1619
		spin_lock(&reg_requests_lock);
	}
	spin_unlock(&reg_requests_lock);
}

1620 1621 1622
/* Processes beacon hints -- this has nothing to do with country IEs */
static void reg_process_pending_beacon_hints(void)
{
1623
	struct cfg80211_registered_device *rdev;
1624 1625
	struct reg_beacon *pending_beacon, *tmp;

1626 1627 1628 1629
	/*
	 * No need to hold the reg_mutex here as we just touch wiphys
	 * and do not read or access regulatory variables.
	 */
1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645
	mutex_lock(&cfg80211_mutex);

	/* This goes through the _pending_ beacon list */
	spin_lock_bh(&reg_pending_beacons_lock);

	if (list_empty(&reg_pending_beacons)) {
		spin_unlock_bh(&reg_pending_beacons_lock);
		goto out;
	}

	list_for_each_entry_safe(pending_beacon, tmp,
				 &reg_pending_beacons, list) {

		list_del_init(&pending_beacon->list);

		/* Applies the beacon hint to current wiphys */
1646 1647
		list_for_each_entry(rdev, &cfg80211_rdev_list, list)
			wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1648 1649 1650 1651 1652 1653 1654 1655 1656 1657

		/* Remembers the beacon hint for new wiphys or reg changes */
		list_add_tail(&pending_beacon->list, &reg_beacon_list);
	}

	spin_unlock_bh(&reg_pending_beacons_lock);
out:
	mutex_unlock(&cfg80211_mutex);
}

1658 1659 1660
static void reg_todo(struct work_struct *work)
{
	reg_process_pending_hints();
1661
	reg_process_pending_beacon_hints();
1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675
}

static DECLARE_WORK(reg_work, reg_todo);

static void queue_regulatory_request(struct regulatory_request *request)
{
	spin_lock(&reg_requests_lock);
	list_add_tail(&request->list, &reg_requests_list);
	spin_unlock(&reg_requests_lock);

	schedule_work(&reg_work);
}

/* Core regulatory hint -- happens once during cfg80211_init() */
1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688
static int regulatory_hint_core(const char *alpha2)
{
	struct regulatory_request *request;

	BUG_ON(last_request);

	request = kzalloc(sizeof(struct regulatory_request),
			  GFP_KERNEL);
	if (!request)
		return -ENOMEM;

	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
1689
	request->initiator = NL80211_REGDOM_SET_BY_CORE;
1690

1691
	queue_regulatory_request(request);
1692

1693 1694 1695 1696 1697 1698 1699
	/*
	 * This ensures last_request is populated once modules
	 * come swinging in and calling regulatory hints and
	 * wiphy_apply_custom_regulatory().
	 */
	flush_scheduled_work();

1700
	return 0;
1701 1702
}

1703 1704
/* User hints */
int regulatory_hint_user(const char *alpha2)
1705
{
1706 1707
	struct regulatory_request *request;

1708
	BUG_ON(!alpha2);
1709

1710 1711 1712 1713 1714 1715 1716
	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
	if (!request)
		return -ENOMEM;

	request->wiphy_idx = WIPHY_IDX_STALE;
	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
1717
	request->initiator = NL80211_REGDOM_SET_BY_USER,
1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742

	queue_regulatory_request(request);

	return 0;
}

/* Driver hints */
int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
{
	struct regulatory_request *request;

	BUG_ON(!alpha2);
	BUG_ON(!wiphy);

	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
	if (!request)
		return -ENOMEM;

	request->wiphy_idx = get_wiphy_idx(wiphy);

	/* Must have registered wiphy first */
	BUG_ON(!wiphy_idx_valid(request->wiphy_idx));

	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
1743
	request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1744 1745 1746 1747

	queue_regulatory_request(request);

	return 0;
1748 1749 1750
}
EXPORT_SYMBOL(regulatory_hint);

1751
/* Caller must hold reg_mutex */
1752 1753 1754
static bool reg_same_country_ie_hint(struct wiphy *wiphy,
			u32 country_ie_checksum)
{
1755 1756
	struct wiphy *request_wiphy;

1757
	assert_reg_lock();
1758

1759 1760 1761 1762
	if (unlikely(last_request->initiator !=
	    NL80211_REGDOM_SET_BY_COUNTRY_IE))
		return false;

1763 1764 1765
	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

	if (!request_wiphy)
1766
		return false;
1767 1768

	if (likely(request_wiphy != wiphy))
1769
		return !country_ie_integrity_changes(country_ie_checksum);
1770 1771
	/*
	 * We should not have let these through at this point, they
1772
	 * should have been picked up earlier by the first alpha2 check
1773 1774
	 * on the device
	 */
1775 1776 1777 1778 1779
	if (WARN_ON(!country_ie_integrity_changes(country_ie_checksum)))
		return true;
	return false;
}

1780 1781 1782 1783
/*
 * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
 * therefore cannot iterate over the rdev list here.
 */
1784 1785 1786 1787 1788 1789 1790 1791
void regulatory_hint_11d(struct wiphy *wiphy,
			u8 *country_ie,
			u8 country_ie_len)
{
	struct ieee80211_regdomain *rd = NULL;
	char alpha2[2];
	u32 checksum = 0;
	enum environment_cap env = ENVIRON_ANY;
1792
	struct regulatory_request *request;
1793

1794
	mutex_lock(&reg_mutex);
1795

1796 1797
	if (unlikely(!last_request))
		goto out;
1798

1799 1800 1801 1802 1803 1804 1805
	/* IE len must be evenly divisible by 2 */
	if (country_ie_len & 0x01)
		goto out;

	if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
		goto out;

1806 1807
	/*
	 * Pending country IE processing, this can happen after we
1808
	 * call CRDA and wait for a response if a beacon was received before
1809 1810
	 * we were able to process the last regulatory_hint_11d() call
	 */
1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821
	if (country_ie_regdomain)
		goto out;

	alpha2[0] = country_ie[0];
	alpha2[1] = country_ie[1];

	if (country_ie[2] == 'I')
		env = ENVIRON_INDOOR;
	else if (country_ie[2] == 'O')
		env = ENVIRON_OUTDOOR;

1822
	/*
1823
	 * We will run this only upon a successful connection on cfg80211.
1824 1825
	 * We leave conflict resolution to the workqueue, where can hold
	 * cfg80211_mutex.
1826
	 */
1827 1828
	if (likely(last_request->initiator ==
	    NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1829 1830
	    wiphy_idx_valid(last_request->wiphy_idx)))
		goto out;
1831 1832 1833 1834 1835

	rd = country_ie_2_rd(country_ie, country_ie_len, &checksum);
	if (!rd)
		goto out;

1836 1837
	/*
	 * This will not happen right now but we leave it here for the
1838 1839
	 * the future when we want to add suspend/resume support and having
	 * the user move to another country after doing so, or having the user
1840 1841 1842 1843 1844 1845
	 * move to another AP. Right now we just trust the first AP.
	 *
	 * If we hit this before we add this support we want to be informed of
	 * it as it would indicate a mistake in the current design
	 */
	if (WARN_ON(reg_same_country_ie_hint(wiphy, checksum)))
1846
		goto free_rd_out;
1847

1848 1849 1850 1851
	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
	if (!request)
		goto free_rd_out;

1852 1853 1854 1855
	/*
	 * We keep this around for when CRDA comes back with a response so
	 * we can intersect with that
	 */
1856 1857
	country_ie_regdomain = rd;

1858 1859 1860
	request->wiphy_idx = get_wiphy_idx(wiphy);
	request->alpha2[0] = rd->alpha2[0];
	request->alpha2[1] = rd->alpha2[1];
1861
	request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1862 1863 1864
	request->country_ie_checksum = checksum;
	request->country_ie_env = env;

1865
	mutex_unlock(&reg_mutex);
1866

1867 1868 1869
	queue_regulatory_request(request);

	return;
1870 1871 1872

free_rd_out:
	kfree(rd);
1873
out:
1874
	mutex_unlock(&reg_mutex);
1875
}
1876

1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925
static bool freq_is_chan_12_13_14(u16 freq)
{
	if (freq == ieee80211_channel_to_frequency(12) ||
	    freq == ieee80211_channel_to_frequency(13) ||
	    freq == ieee80211_channel_to_frequency(14))
		return true;
	return false;
}

int regulatory_hint_found_beacon(struct wiphy *wiphy,
				 struct ieee80211_channel *beacon_chan,
				 gfp_t gfp)
{
	struct reg_beacon *reg_beacon;

	if (likely((beacon_chan->beacon_found ||
	    (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
	    (beacon_chan->band == IEEE80211_BAND_2GHZ &&
	     !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
		return 0;

	reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
	if (!reg_beacon)
		return -ENOMEM;

#ifdef CONFIG_CFG80211_REG_DEBUG
	printk(KERN_DEBUG "cfg80211: Found new beacon on "
		"frequency: %d MHz (Ch %d) on %s\n",
		beacon_chan->center_freq,
		ieee80211_frequency_to_channel(beacon_chan->center_freq),
		wiphy_name(wiphy));
#endif
	memcpy(&reg_beacon->chan, beacon_chan,
		sizeof(struct ieee80211_channel));


	/*
	 * Since we can be called from BH or and non-BH context
	 * we must use spin_lock_bh()
	 */
	spin_lock_bh(&reg_pending_beacons_lock);
	list_add_tail(&reg_beacon->list, &reg_pending_beacons);
	spin_unlock_bh(&reg_pending_beacons_lock);

	schedule_work(&reg_work);

	return 0;
}

1926
static void print_rd_rules(const struct ieee80211_regdomain *rd)
1927 1928
{
	unsigned int i;
1929 1930 1931
	const struct ieee80211_reg_rule *reg_rule = NULL;
	const struct ieee80211_freq_range *freq_range = NULL;
	const struct ieee80211_power_rule *power_rule = NULL;
1932 1933 1934 1935 1936 1937 1938 1939 1940

	printk(KERN_INFO "\t(start_freq - end_freq @ bandwidth), "
		"(max_antenna_gain, max_eirp)\n");

	for (i = 0; i < rd->n_reg_rules; i++) {
		reg_rule = &rd->reg_rules[i];
		freq_range = &reg_rule->freq_range;
		power_rule = &reg_rule->power_rule;

1941 1942 1943 1944
		/*
		 * There may not be documentation for max antenna gain
		 * in certain regions
		 */
1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962
		if (power_rule->max_antenna_gain)
			printk(KERN_INFO "\t(%d KHz - %d KHz @ %d KHz), "
				"(%d mBi, %d mBm)\n",
				freq_range->start_freq_khz,
				freq_range->end_freq_khz,
				freq_range->max_bandwidth_khz,
				power_rule->max_antenna_gain,
				power_rule->max_eirp);
		else
			printk(KERN_INFO "\t(%d KHz - %d KHz @ %d KHz), "
				"(N/A, %d mBm)\n",
				freq_range->start_freq_khz,
				freq_range->end_freq_khz,
				freq_range->max_bandwidth_khz,
				power_rule->max_eirp);
	}
}

1963
static void print_regdomain(const struct ieee80211_regdomain *rd)
1964 1965
{

1966 1967
	if (is_intersected_alpha2(rd->alpha2)) {

1968 1969
		if (last_request->initiator ==
		    NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1970 1971
			struct cfg80211_registered_device *rdev;
			rdev = cfg80211_rdev_by_wiphy_idx(
1972
				last_request->wiphy_idx);
1973
			if (rdev) {
1974 1975
				printk(KERN_INFO "cfg80211: Current regulatory "
					"domain updated by AP to: %c%c\n",
1976 1977
					rdev->country_ie_alpha2[0],
					rdev->country_ie_alpha2[1]);
1978 1979 1980 1981 1982
			} else
				printk(KERN_INFO "cfg80211: Current regulatory "
					"domain intersected: \n");
		} else
				printk(KERN_INFO "cfg80211: Current regulatory "
1983
					"domain intersected: \n");
1984
	} else if (is_world_regdom(rd->alpha2))
1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
		printk(KERN_INFO "cfg80211: World regulatory "
			"domain updated:\n");
	else {
		if (is_unknown_alpha2(rd->alpha2))
			printk(KERN_INFO "cfg80211: Regulatory domain "
				"changed to driver built-in settings "
				"(unknown country)\n");
		else
			printk(KERN_INFO "cfg80211: Regulatory domain "
				"changed to country: %c%c\n",
				rd->alpha2[0], rd->alpha2[1]);
	}
	print_rd_rules(rd);
}

2000
static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2001 2002 2003 2004 2005 2006
{
	printk(KERN_INFO "cfg80211: Regulatory domain: %c%c\n",
		rd->alpha2[0], rd->alpha2[1]);
	print_rd_rules(rd);
}

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
#ifdef CONFIG_CFG80211_REG_DEBUG
static void reg_country_ie_process_debug(
	const struct ieee80211_regdomain *rd,
	const struct ieee80211_regdomain *country_ie_regdomain,
	const struct ieee80211_regdomain *intersected_rd)
{
	printk(KERN_DEBUG "cfg80211: Received country IE:\n");
	print_regdomain_info(country_ie_regdomain);
	printk(KERN_DEBUG "cfg80211: CRDA thinks this should applied:\n");
	print_regdomain_info(rd);
	if (intersected_rd) {
		printk(KERN_DEBUG "cfg80211: We intersect both of these "
			"and get:\n");
2020
		print_regdomain_info(intersected_rd);
2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033
		return;
	}
	printk(KERN_DEBUG "cfg80211: Intersection between both failed\n");
}
#else
static inline void reg_country_ie_process_debug(
	const struct ieee80211_regdomain *rd,
	const struct ieee80211_regdomain *country_ie_regdomain,
	const struct ieee80211_regdomain *intersected_rd)
{
}
#endif

2034
/* Takes ownership of rd only if it doesn't fail */
2035
static int __set_regdom(const struct ieee80211_regdomain *rd)
2036
{
2037
	const struct ieee80211_regdomain *intersected_rd = NULL;
2038
	struct cfg80211_registered_device *rdev = NULL;
2039
	struct wiphy *request_wiphy;
2040 2041 2042
	/* Some basic sanity checks first */

	if (is_world_regdom(rd->alpha2)) {
2043
		if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2044 2045 2046 2047 2048 2049 2050 2051 2052
			return -EINVAL;
		update_world_regdomain(rd);
		return 0;
	}

	if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
			!is_unknown_alpha2(rd->alpha2))
		return -EINVAL;

2053
	if (!last_request)
2054 2055
		return -EINVAL;

2056 2057
	/*
	 * Lets only bother proceeding on the same alpha2 if the current
2058
	 * rd is non static (it means CRDA was present and was used last)
2059 2060
	 * and the pending request came in from a country IE
	 */
2061
	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2062 2063 2064 2065
		/*
		 * If someone else asked us to change the rd lets only bother
		 * checking if the alpha2 changes if CRDA was already called
		 */
2066
		if (!is_old_static_regdom(cfg80211_regdomain) &&
2067
		    !regdom_changes(rd->alpha2))
2068 2069 2070
			return -EINVAL;
	}

2071 2072
	/*
	 * Now lets set the regulatory domain, update all driver channels
2073 2074
	 * and finally inform them of what we have done, in case they want
	 * to review or adjust their own settings based on their own
2075 2076
	 * internal EEPROM data
	 */
2077

2078
	if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2079 2080
		return -EINVAL;

2081 2082 2083 2084 2085
	if (!is_valid_rd(rd)) {
		printk(KERN_ERR "cfg80211: Invalid "
			"regulatory domain detected:\n");
		print_regdomain_info(rd);
		return -EINVAL;
2086 2087
	}

2088 2089
	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

2090
	if (!last_request->intersect) {
2091 2092
		int r;

2093
		if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
2094 2095 2096 2097 2098
			reset_regdomains();
			cfg80211_regdomain = rd;
			return 0;
		}

2099 2100 2101 2102
		/*
		 * For a driver hint, lets copy the regulatory domain the
		 * driver wanted to the wiphy to deal with conflicts
		 */
2103

2104 2105 2106 2107 2108 2109
		/*
		 * Userspace could have sent two replies with only
		 * one kernel request.
		 */
		if (request_wiphy->regd)
			return -EALREADY;
2110

2111
		r = reg_copy_regd(&request_wiphy->regd, rd);
2112 2113 2114
		if (r)
			return r;

2115 2116 2117 2118 2119 2120 2121
		reset_regdomains();
		cfg80211_regdomain = rd;
		return 0;
	}

	/* Intersection requires a bit more work */

2122
	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2123

2124 2125 2126
		intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
		if (!intersected_rd)
			return -EINVAL;
2127

2128 2129
		/*
		 * We can trash what CRDA provided now.
2130
		 * However if a driver requested this specific regulatory
2131 2132
		 * domain we keep it for its private use
		 */
2133
		if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
2134
			request_wiphy->regd = rd;
2135 2136 2137
		else
			kfree(rd);

2138 2139 2140 2141 2142 2143
		rd = NULL;

		reset_regdomains();
		cfg80211_regdomain = intersected_rd;

		return 0;
2144 2145
	}

2146 2147 2148 2149 2150
	/*
	 * Country IE requests are handled a bit differently, we intersect
	 * the country IE rd with what CRDA believes that country should have
	 */

2151 2152 2153 2154 2155 2156 2157
	/*
	 * Userspace could have sent two replies with only
	 * one kernel request. By the second reply we would have
	 * already processed and consumed the country_ie_regdomain.
	 */
	if (!country_ie_regdomain)
		return -EALREADY;
2158
	BUG_ON(rd == country_ie_regdomain);
2159

2160 2161 2162 2163
	/*
	 * Intersect what CRDA returned and our what we
	 * had built from the Country IE received
	 */
2164

2165
	intersected_rd = regdom_intersect(rd, country_ie_regdomain);
2166

2167 2168 2169
	reg_country_ie_process_debug(rd,
				     country_ie_regdomain,
				     intersected_rd);
2170

2171 2172
	kfree(country_ie_regdomain);
	country_ie_regdomain = NULL;
2173 2174 2175 2176

	if (!intersected_rd)
		return -EINVAL;

2177
	rdev = wiphy_to_dev(request_wiphy);
2178

2179 2180 2181
	rdev->country_ie_alpha2[0] = rd->alpha2[0];
	rdev->country_ie_alpha2[1] = rd->alpha2[1];
	rdev->env = last_request->country_ie_env;
2182 2183 2184 2185 2186 2187

	BUG_ON(intersected_rd == rd);

	kfree(rd);
	rd = NULL;

2188
	reset_regdomains();
2189
	cfg80211_regdomain = intersected_rd;
2190 2191 2192 2193 2194

	return 0;
}


2195 2196
/*
 * Use this call to set the current regulatory domain. Conflicts with
2197
 * multiple drivers can be ironed out later. Caller must've already
2198 2199
 * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
 */
2200
int set_regdom(const struct ieee80211_regdomain *rd)
2201 2202 2203
{
	int r;

2204 2205
	assert_cfg80211_lock();

2206 2207
	mutex_lock(&reg_mutex);

2208 2209
	/* Note that this doesn't update the wiphys, this is done below */
	r = __set_regdom(rd);
2210 2211
	if (r) {
		kfree(rd);
2212
		mutex_unlock(&reg_mutex);
2213
		return r;
2214
	}
2215 2216

	/* This would make this whole thing pointless */
2217 2218
	if (!last_request->intersect)
		BUG_ON(rd != cfg80211_regdomain);
2219 2220

	/* update all wiphys now with the new established regulatory domain */
2221
	update_all_wiphy_regulatory(last_request->initiator);
2222

2223
	print_regdomain(cfg80211_regdomain);
2224

2225 2226
	nl80211_send_reg_change_event(last_request);

2227 2228
	mutex_unlock(&reg_mutex);

2229 2230 2231
	return r;
}

2232
/* Caller must hold cfg80211_mutex */
2233 2234
void reg_device_remove(struct wiphy *wiphy)
{
2235
	struct wiphy *request_wiphy = NULL;
2236

2237 2238
	assert_cfg80211_lock();

2239 2240
	mutex_lock(&reg_mutex);

2241 2242
	kfree(wiphy->regd);

2243 2244
	if (last_request)
		request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2245

2246
	if (!request_wiphy || request_wiphy != wiphy)
2247
		goto out;
2248

2249
	last_request->wiphy_idx = WIPHY_IDX_STALE;
2250
	last_request->country_ie_env = ENVIRON_ANY;
2251 2252
out:
	mutex_unlock(&reg_mutex);
2253 2254
}

2255 2256
int regulatory_init(void)
{
2257
	int err = 0;
2258

2259 2260 2261
	reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
	if (IS_ERR(reg_pdev))
		return PTR_ERR(reg_pdev);
2262

2263
	spin_lock_init(&reg_requests_lock);
2264
	spin_lock_init(&reg_pending_beacons_lock);
2265

2266
#ifdef CONFIG_WIRELESS_OLD_REGULATORY
2267
	cfg80211_regdomain = static_regdom(ieee80211_regdom);
2268

2269
	printk(KERN_INFO "cfg80211: Using static regulatory domain info\n");
2270 2271
	print_regdomain_info(cfg80211_regdomain);
#else
2272
	cfg80211_regdomain = cfg80211_world_regdom;
2273

2274
#endif
2275 2276
	/* We always try to get an update for the static regdomain */
	err = regulatory_hint_core(cfg80211_regdomain->alpha2);
2277
	if (err) {
2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291
		if (err == -ENOMEM)
			return err;
		/*
		 * N.B. kobject_uevent_env() can fail mainly for when we're out
		 * memory which is handled and propagated appropriately above
		 * but it can also fail during a netlink_broadcast() or during
		 * early boot for call_usermodehelper(). For now treat these
		 * errors as non-fatal.
		 */
		printk(KERN_ERR "cfg80211: kobject_uevent_env() was unable "
			"to call CRDA during init");
#ifdef CONFIG_CFG80211_REG_DEBUG
		/* We want to find out exactly why when debugging */
		WARN_ON(err);
2292
#endif
2293
	}
2294

2295 2296 2297 2298 2299 2300 2301
	/*
	 * Finally, if the user set the module parameter treat it
	 * as a user hint.
	 */
	if (!is_world_regdom(ieee80211_regdom))
		regulatory_hint_user(ieee80211_regdom);

2302 2303 2304 2305 2306
	return 0;
}

void regulatory_exit(void)
{
2307
	struct regulatory_request *reg_request, *tmp;
2308
	struct reg_beacon *reg_beacon, *btmp;
2309 2310 2311

	cancel_work_sync(&reg_work);

2312
	mutex_lock(&cfg80211_mutex);
2313
	mutex_lock(&reg_mutex);
2314

2315
	reset_regdomains();
2316

2317 2318 2319
	kfree(country_ie_regdomain);
	country_ie_regdomain = NULL;

2320 2321
	kfree(last_request);

2322
	platform_device_unregister(reg_pdev);
2323

2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341
	spin_lock_bh(&reg_pending_beacons_lock);
	if (!list_empty(&reg_pending_beacons)) {
		list_for_each_entry_safe(reg_beacon, btmp,
					 &reg_pending_beacons, list) {
			list_del(&reg_beacon->list);
			kfree(reg_beacon);
		}
	}
	spin_unlock_bh(&reg_pending_beacons_lock);

	if (!list_empty(&reg_beacon_list)) {
		list_for_each_entry_safe(reg_beacon, btmp,
					 &reg_beacon_list, list) {
			list_del(&reg_beacon->list);
			kfree(reg_beacon);
		}
	}

2342 2343 2344 2345 2346 2347 2348 2349 2350 2351
	spin_lock(&reg_requests_lock);
	if (!list_empty(&reg_requests_list)) {
		list_for_each_entry_safe(reg_request, tmp,
					 &reg_requests_list, list) {
			list_del(&reg_request->list);
			kfree(reg_request);
		}
	}
	spin_unlock(&reg_requests_lock);

2352
	mutex_unlock(&reg_mutex);
2353
	mutex_unlock(&cfg80211_mutex);
2354
}