s3c-hsotg.c 93.7 KB
Newer Older
1 2
/**
 * linux/drivers/usb/gadget/s3c-hsotg.c
3 4 5
 *
 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
 *		http://www.samsung.com
6 7 8 9 10 11 12 13 14 15 16
 *
 * Copyright 2008 Openmoko, Inc.
 * Copyright 2008 Simtec Electronics
 *      Ben Dooks <ben@simtec.co.uk>
 *      http://armlinux.simtec.co.uk/
 *
 * S3C USB2.0 High-speed / OtG driver
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
17
 */
18 19 20 21 22 23 24 25 26 27 28

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
#include <linux/platform_device.h>
#include <linux/dma-mapping.h>
#include <linux/debugfs.h>
#include <linux/seq_file.h>
#include <linux/delay.h>
#include <linux/io.h>
29
#include <linux/slab.h>
30
#include <linux/clk.h>
31
#include <linux/regulator/consumer.h>
32
#include <linux/of_platform.h>
33 34 35

#include <linux/usb/ch9.h>
#include <linux/usb/gadget.h>
36
#include <linux/usb/phy.h>
37
#include <linux/platform_data/s3c-hsotg.h>
38 39 40

#include <mach/map.h>

41
#include "s3c-hsotg.h"
42

43 44 45 46 47
static const char * const s3c_hsotg_supply_names[] = {
	"vusb_d",		/* digital USB supply, 1.2V */
	"vusb_a",		/* analog USB supply, 1.1V */
};

48 49
/*
 * EP0_MPS_LIMIT
50 51
 *
 * Unfortunately there seems to be a limit of the amount of data that can
L
Lucas De Marchi 已提交
52 53
 * be transferred by IN transactions on EP0. This is either 127 bytes or 3
 * packets (which practically means 1 packet and 63 bytes of data) when the
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
 * MPS is set to 64.
 *
 * This means if we are wanting to move >127 bytes of data, we need to
 * split the transactions up, but just doing one packet at a time does
 * not work (this may be an implicit DATA0 PID on first packet of the
 * transaction) and doing 2 packets is outside the controller's limits.
 *
 * If we try to lower the MPS size for EP0, then no transfers work properly
 * for EP0, and the system will fail basic enumeration. As no cause for this
 * has currently been found, we cannot support any large IN transfers for
 * EP0.
 */
#define EP0_MPS_LIMIT	64

struct s3c_hsotg;
struct s3c_hsotg_req;

/**
 * struct s3c_hsotg_ep - driver endpoint definition.
 * @ep: The gadget layer representation of the endpoint.
 * @name: The driver generated name for the endpoint.
 * @queue: Queue of requests for this endpoint.
 * @parent: Reference back to the parent device structure.
 * @req: The current request that the endpoint is processing. This is
 *       used to indicate an request has been loaded onto the endpoint
 *       and has yet to be completed (maybe due to data move, or simply
 *	 awaiting an ack from the core all the data has been completed).
 * @debugfs: File entry for debugfs file for this endpoint.
 * @lock: State lock to protect contents of endpoint.
 * @dir_in: Set to true if this endpoint is of the IN direction, which
 *	    means that it is sending data to the Host.
 * @index: The index for the endpoint registers.
86
 * @mc: Multi Count - number of transactions per microframe
87
 * @interval - Interval for periodic endpoints
88 89 90
 * @name: The name array passed to the USB core.
 * @halted: Set if the endpoint has been halted.
 * @periodic: Set if this is a periodic ep, such as Interrupt
91
 * @isochronous: Set if this is a isochronous ep
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
 * @sent_zlp: Set if we've sent a zero-length packet.
 * @total_data: The total number of data bytes done.
 * @fifo_size: The size of the FIFO (for periodic IN endpoints)
 * @fifo_load: The amount of data loaded into the FIFO (periodic IN)
 * @last_load: The offset of data for the last start of request.
 * @size_loaded: The last loaded size for DxEPTSIZE for periodic IN
 *
 * This is the driver's state for each registered enpoint, allowing it
 * to keep track of transactions that need doing. Each endpoint has a
 * lock to protect the state, to try and avoid using an overall lock
 * for the host controller as much as possible.
 *
 * For periodic IN endpoints, we have fifo_size and fifo_load to try
 * and keep track of the amount of data in the periodic FIFO for each
 * of these as we don't have a status register that tells us how much
107 108 109
 * is in each of them. (note, this may actually be useless information
 * as in shared-fifo mode periodic in acts like a single-frame packet
 * buffer than a fifo)
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
 */
struct s3c_hsotg_ep {
	struct usb_ep		ep;
	struct list_head	queue;
	struct s3c_hsotg	*parent;
	struct s3c_hsotg_req	*req;
	struct dentry		*debugfs;


	unsigned long		total_data;
	unsigned int		size_loaded;
	unsigned int		last_load;
	unsigned int		fifo_load;
	unsigned short		fifo_size;

	unsigned char		dir_in;
	unsigned char		index;
127
	unsigned char		mc;
128
	unsigned char		interval;
129 130 131

	unsigned int		halted:1;
	unsigned int		periodic:1;
132
	unsigned int		isochronous:1;
133 134 135 136 137 138 139 140 141
	unsigned int		sent_zlp:1;

	char			name[10];
};

/**
 * struct s3c_hsotg - driver state.
 * @dev: The parent device supplied to the probe function
 * @driver: USB gadget driver
142 143 144
 * @phy: The otg phy transceiver structure for phy control.
 * @plat: The platform specific configuration data. This can be removed once
 * all SoCs support usb transceiver.
145 146
 * @regs: The memory area mapped for accessing registers.
 * @irq: The IRQ number we are using
147
 * @supplies: Definition of USB power supplies
148
 * @dedicated_fifos: Set if the hardware has dedicated IN-EP fifos.
149
 * @num_of_eps: Number of available EPs (excluding EP0)
150 151 152 153 154 155 156
 * @debug_root: root directrory for debugfs.
 * @debug_file: main status file for debugfs.
 * @debug_fifo: FIFO status file for debugfs.
 * @ep0_reply: Request used for ep0 reply.
 * @ep0_buff: Buffer for EP0 reply data, if needed.
 * @ctrl_buff: Buffer for EP0 control requests.
 * @ctrl_req: Request for EP0 control packets.
157
 * @setup: NAK management for EP0 SETUP
158
 * @last_rst: Time of last reset
159 160 161 162 163
 * @eps: The endpoints being supplied to the gadget framework
 */
struct s3c_hsotg {
	struct device		 *dev;
	struct usb_gadget_driver *driver;
164
	struct usb_phy		*phy;
165 166
	struct s3c_hsotg_plat	 *plat;

167 168
	spinlock_t              lock;

169 170
	void __iomem		*regs;
	int			irq;
171
	struct clk		*clk;
172

173 174
	struct regulator_bulk_data supplies[ARRAY_SIZE(s3c_hsotg_supply_names)];

175
	unsigned int		dedicated_fifos:1;
176
	unsigned char           num_of_eps;
177

178 179 180 181 182 183 184 185 186 187
	struct dentry		*debug_root;
	struct dentry		*debug_file;
	struct dentry		*debug_fifo;

	struct usb_request	*ep0_reply;
	struct usb_request	*ctrl_req;
	u8			ep0_buff[8];
	u8			ctrl_buff[8];

	struct usb_gadget	gadget;
188
	unsigned int		setup;
189
	unsigned long           last_rst;
190
	struct s3c_hsotg_ep	*eps;
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
};

/**
 * struct s3c_hsotg_req - data transfer request
 * @req: The USB gadget request
 * @queue: The list of requests for the endpoint this is queued for.
 * @in_progress: Has already had size/packets written to core
 * @mapped: DMA buffer for this request has been mapped via dma_map_single().
 */
struct s3c_hsotg_req {
	struct usb_request	req;
	struct list_head	queue;
	unsigned char		in_progress;
	unsigned char		mapped;
};

/* conversion functions */
static inline struct s3c_hsotg_req *our_req(struct usb_request *req)
{
	return container_of(req, struct s3c_hsotg_req, req);
}

static inline struct s3c_hsotg_ep *our_ep(struct usb_ep *ep)
{
	return container_of(ep, struct s3c_hsotg_ep, ep);
}

static inline struct s3c_hsotg *to_hsotg(struct usb_gadget *gadget)
{
	return container_of(gadget, struct s3c_hsotg, gadget);
}

static inline void __orr32(void __iomem *ptr, u32 val)
{
	writel(readl(ptr) | val, ptr);
}

static inline void __bic32(void __iomem *ptr, u32 val)
{
	writel(readl(ptr) & ~val, ptr);
}

/* forward decleration of functions */
static void s3c_hsotg_dump(struct s3c_hsotg *hsotg);

/**
 * using_dma - return the DMA status of the driver.
 * @hsotg: The driver state.
 *
 * Return true if we're using DMA.
 *
 * Currently, we have the DMA support code worked into everywhere
 * that needs it, but the AMBA DMA implementation in the hardware can
 * only DMA from 32bit aligned addresses. This means that gadgets such
 * as the CDC Ethernet cannot work as they often pass packets which are
 * not 32bit aligned.
 *
 * Unfortunately the choice to use DMA or not is global to the controller
 * and seems to be only settable when the controller is being put through
 * a core reset. This means we either need to fix the gadgets to take
 * account of DMA alignment, or add bounce buffers (yuerk).
 *
 * Until this issue is sorted out, we always return 'false'.
 */
static inline bool using_dma(struct s3c_hsotg *hsotg)
{
	return false;	/* support is not complete */
}

/**
 * s3c_hsotg_en_gsint - enable one or more of the general interrupt
 * @hsotg: The device state
 * @ints: A bitmask of the interrupts to enable
 */
static void s3c_hsotg_en_gsint(struct s3c_hsotg *hsotg, u32 ints)
{
267
	u32 gsintmsk = readl(hsotg->regs + GINTMSK);
268 269 270 271 272 273
	u32 new_gsintmsk;

	new_gsintmsk = gsintmsk | ints;

	if (new_gsintmsk != gsintmsk) {
		dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
274
		writel(new_gsintmsk, hsotg->regs + GINTMSK);
275 276 277 278 279 280 281 282 283 284
	}
}

/**
 * s3c_hsotg_disable_gsint - disable one or more of the general interrupt
 * @hsotg: The device state
 * @ints: A bitmask of the interrupts to enable
 */
static void s3c_hsotg_disable_gsint(struct s3c_hsotg *hsotg, u32 ints)
{
285
	u32 gsintmsk = readl(hsotg->regs + GINTMSK);
286 287 288 289 290
	u32 new_gsintmsk;

	new_gsintmsk = gsintmsk & ~ints;

	if (new_gsintmsk != gsintmsk)
291
		writel(new_gsintmsk, hsotg->regs + GINTMSK);
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
}

/**
 * s3c_hsotg_ctrl_epint - enable/disable an endpoint irq
 * @hsotg: The device state
 * @ep: The endpoint index
 * @dir_in: True if direction is in.
 * @en: The enable value, true to enable
 *
 * Set or clear the mask for an individual endpoint's interrupt
 * request.
 */
static void s3c_hsotg_ctrl_epint(struct s3c_hsotg *hsotg,
				 unsigned int ep, unsigned int dir_in,
				 unsigned int en)
{
	unsigned long flags;
	u32 bit = 1 << ep;
	u32 daint;

	if (!dir_in)
		bit <<= 16;

	local_irq_save(flags);
316
	daint = readl(hsotg->regs + DAINTMSK);
317 318 319 320
	if (en)
		daint |= bit;
	else
		daint &= ~bit;
321
	writel(daint, hsotg->regs + DAINTMSK);
322 323 324 325 326 327 328 329 330
	local_irq_restore(flags);
}

/**
 * s3c_hsotg_init_fifo - initialise non-periodic FIFOs
 * @hsotg: The device instance.
 */
static void s3c_hsotg_init_fifo(struct s3c_hsotg *hsotg)
{
331 332 333
	unsigned int ep;
	unsigned int addr;
	unsigned int size;
334
	int timeout;
335 336
	u32 val;

337
	/* set FIFO sizes to 2048/1024 */
338

339 340 341 342
	writel(2048, hsotg->regs + GRXFSIZ);
	writel(GNPTXFSIZ_NPTxFStAddr(2048) |
	       GNPTXFSIZ_NPTxFDep(1024),
	       hsotg->regs + GNPTXFSIZ);
343

344 345
	/*
	 * arange all the rest of the TX FIFOs, as some versions of this
346 347
	 * block have overlapping default addresses. This also ensures
	 * that if the settings have been changed, then they are set to
348 349
	 * known values.
	 */
350 351 352 353 354

	/* start at the end of the GNPTXFSIZ, rounded up */
	addr = 2048 + 1024;
	size = 768;

355 356 357 358
	/*
	 * currently we allocate TX FIFOs for all possible endpoints,
	 * and assume that they are all the same size.
	 */
359

360
	for (ep = 1; ep <= 15; ep++) {
361
		val = addr;
362
		val |= size << DPTXFSIZn_DPTxFSize_SHIFT;
363 364
		addr += size;

365
		writel(val, hsotg->regs + DPTXFSIZn(ep));
366
	}
367

368 369 370 371
	/*
	 * according to p428 of the design guide, we need to ensure that
	 * all fifos are flushed before continuing
	 */
372

373 374
	writel(GRSTCTL_TxFNum(0x10) | GRSTCTL_TxFFlsh |
	       GRSTCTL_RxFFlsh, hsotg->regs + GRSTCTL);
375 376 377 378

	/* wait until the fifos are both flushed */
	timeout = 100;
	while (1) {
379
		val = readl(hsotg->regs + GRSTCTL);
380

381
		if ((val & (GRSTCTL_TxFFlsh | GRSTCTL_RxFFlsh)) == 0)
382 383 384 385 386 387 388 389 390 391 392 393
			break;

		if (--timeout == 0) {
			dev_err(hsotg->dev,
				"%s: timeout flushing fifos (GRSTCTL=%08x)\n",
				__func__, val);
		}

		udelay(1);
	}

	dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
394 395 396 397 398 399 400 401
}

/**
 * @ep: USB endpoint to allocate request for.
 * @flags: Allocation flags
 *
 * Allocate a new USB request structure appropriate for the specified endpoint
 */
402 403
static struct usb_request *s3c_hsotg_ep_alloc_request(struct usb_ep *ep,
						      gfp_t flags)
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
{
	struct s3c_hsotg_req *req;

	req = kzalloc(sizeof(struct s3c_hsotg_req), flags);
	if (!req)
		return NULL;

	INIT_LIST_HEAD(&req->queue);

	return &req->req;
}

/**
 * is_ep_periodic - return true if the endpoint is in periodic mode.
 * @hs_ep: The endpoint to query.
 *
 * Returns true if the endpoint is in periodic mode, meaning it is being
 * used for an Interrupt or ISO transfer.
 */
static inline int is_ep_periodic(struct s3c_hsotg_ep *hs_ep)
{
	return hs_ep->periodic;
}

/**
 * s3c_hsotg_unmap_dma - unmap the DMA memory being used for the request
 * @hsotg: The device state.
 * @hs_ep: The endpoint for the request
 * @hs_req: The request being processed.
 *
 * This is the reverse of s3c_hsotg_map_dma(), called for the completion
 * of a request to ensure the buffer is ready for access by the caller.
436
 */
437 438 439 440 441 442 443 444 445 446
static void s3c_hsotg_unmap_dma(struct s3c_hsotg *hsotg,
				struct s3c_hsotg_ep *hs_ep,
				struct s3c_hsotg_req *hs_req)
{
	struct usb_request *req = &hs_req->req;

	/* ignore this if we're not moving any data */
	if (hs_req->req.length == 0)
		return;

447
	usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in);
448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
}

/**
 * s3c_hsotg_write_fifo - write packet Data to the TxFIFO
 * @hsotg: The controller state.
 * @hs_ep: The endpoint we're going to write for.
 * @hs_req: The request to write data for.
 *
 * This is called when the TxFIFO has some space in it to hold a new
 * transmission and we have something to give it. The actual setup of
 * the data size is done elsewhere, so all we have to do is to actually
 * write the data.
 *
 * The return value is zero if there is more space (or nothing was done)
 * otherwise -ENOSPC is returned if the FIFO space was used up.
 *
 * This routine is only needed for PIO
465
 */
466 467 468 469 470
static int s3c_hsotg_write_fifo(struct s3c_hsotg *hsotg,
				struct s3c_hsotg_ep *hs_ep,
				struct s3c_hsotg_req *hs_req)
{
	bool periodic = is_ep_periodic(hs_ep);
471
	u32 gnptxsts = readl(hsotg->regs + GNPTXSTS);
472 473 474 475 476
	int buf_pos = hs_req->req.actual;
	int to_write = hs_ep->size_loaded;
	void *data;
	int can_write;
	int pkt_round;
477
	int max_transfer;
478 479 480 481 482 483 484

	to_write -= (buf_pos - hs_ep->last_load);

	/* if there's nothing to write, get out early */
	if (to_write == 0)
		return 0;

485
	if (periodic && !hsotg->dedicated_fifos) {
486
		u32 epsize = readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
487 488 489
		int size_left;
		int size_done;

490 491 492 493
		/*
		 * work out how much data was loaded so we can calculate
		 * how much data is left in the fifo.
		 */
494

495
		size_left = DxEPTSIZ_XferSize_GET(epsize);
496

497 498
		/*
		 * if shared fifo, we cannot write anything until the
499 500 501
		 * previous data has been completely sent.
		 */
		if (hs_ep->fifo_load != 0) {
502
			s3c_hsotg_en_gsint(hsotg, GINTSTS_PTxFEmp);
503 504 505
			return -ENOSPC;
		}

506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
		dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
			__func__, size_left,
			hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);

		/* how much of the data has moved */
		size_done = hs_ep->size_loaded - size_left;

		/* how much data is left in the fifo */
		can_write = hs_ep->fifo_load - size_done;
		dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
			__func__, can_write);

		can_write = hs_ep->fifo_size - can_write;
		dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
			__func__, can_write);

		if (can_write <= 0) {
523
			s3c_hsotg_en_gsint(hsotg, GINTSTS_PTxFEmp);
524 525
			return -ENOSPC;
		}
526
	} else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
527
		can_write = readl(hsotg->regs + DTXFSTS(hs_ep->index));
528 529 530

		can_write &= 0xffff;
		can_write *= 4;
531
	} else {
532
		if (GNPTXSTS_NPTxQSpcAvail_GET(gnptxsts) == 0) {
533 534 535 536
			dev_dbg(hsotg->dev,
				"%s: no queue slots available (0x%08x)\n",
				__func__, gnptxsts);

537
			s3c_hsotg_en_gsint(hsotg, GINTSTS_NPTxFEmp);
538 539 540
			return -ENOSPC;
		}

541
		can_write = GNPTXSTS_NPTxFSpcAvail_GET(gnptxsts);
542
		can_write *= 4;	/* fifo size is in 32bit quantities. */
543 544
	}

545 546 547 548
	max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;

	dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
		 __func__, gnptxsts, can_write, to_write, max_transfer);
549

550 551
	/*
	 * limit to 512 bytes of data, it seems at least on the non-periodic
552 553 554 555 556 557
	 * FIFO, requests of >512 cause the endpoint to get stuck with a
	 * fragment of the end of the transfer in it.
	 */
	if (can_write > 512)
		can_write = 512;

558 559
	/*
	 * limit the write to one max-packet size worth of data, but allow
560
	 * the transfer to return that it did not run out of fifo space
561 562
	 * doing it.
	 */
563 564
	if (to_write > max_transfer) {
		to_write = max_transfer;
565

566 567 568 569 570
		/* it's needed only when we do not use dedicated fifos */
		if (!hsotg->dedicated_fifos)
			s3c_hsotg_en_gsint(hsotg,
					   periodic ? GINTSTS_PTxFEmp :
					   GINTSTS_NPTxFEmp);
571 572
	}

573 574 575 576
	/* see if we can write data */

	if (to_write > can_write) {
		to_write = can_write;
577
		pkt_round = to_write % max_transfer;
578

579 580
		/*
		 * Round the write down to an
581 582 583 584 585 586 587 588 589
		 * exact number of packets.
		 *
		 * Note, we do not currently check to see if we can ever
		 * write a full packet or not to the FIFO.
		 */

		if (pkt_round)
			to_write -= pkt_round;

590 591 592 593
		/*
		 * enable correct FIFO interrupt to alert us when there
		 * is more room left.
		 */
594

595 596 597 598 599
		/* it's needed only when we do not use dedicated fifos */
		if (!hsotg->dedicated_fifos)
			s3c_hsotg_en_gsint(hsotg,
					   periodic ? GINTSTS_PTxFEmp :
					   GINTSTS_NPTxFEmp);
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616
	}

	dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
		 to_write, hs_req->req.length, can_write, buf_pos);

	if (to_write <= 0)
		return -ENOSPC;

	hs_req->req.actual = buf_pos + to_write;
	hs_ep->total_data += to_write;

	if (periodic)
		hs_ep->fifo_load += to_write;

	to_write = DIV_ROUND_UP(to_write, 4);
	data = hs_req->req.buf + buf_pos;

617
	writesl(hsotg->regs + EPFIFO(hs_ep->index), data, to_write);
618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635

	return (to_write >= can_write) ? -ENOSPC : 0;
}

/**
 * get_ep_limit - get the maximum data legnth for this endpoint
 * @hs_ep: The endpoint
 *
 * Return the maximum data that can be queued in one go on a given endpoint
 * so that transfers that are too long can be split.
 */
static unsigned get_ep_limit(struct s3c_hsotg_ep *hs_ep)
{
	int index = hs_ep->index;
	unsigned maxsize;
	unsigned maxpkt;

	if (index != 0) {
636 637
		maxsize = DxEPTSIZ_XferSize_LIMIT + 1;
		maxpkt = DxEPTSIZ_PktCnt_LIMIT + 1;
638
	} else {
639
		maxsize = 64+64;
640
		if (hs_ep->dir_in)
641
			maxpkt = DIEPTSIZ0_PktCnt_LIMIT + 1;
642
		else
643 644 645 646 647 648 649
			maxpkt = 2;
	}

	/* we made the constant loading easier above by using +1 */
	maxpkt--;
	maxsize--;

650 651 652 653
	/*
	 * constrain by packet count if maxpkts*pktsize is greater
	 * than the length register size.
	 */
654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699

	if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
		maxsize = maxpkt * hs_ep->ep.maxpacket;

	return maxsize;
}

/**
 * s3c_hsotg_start_req - start a USB request from an endpoint's queue
 * @hsotg: The controller state.
 * @hs_ep: The endpoint to process a request for
 * @hs_req: The request to start.
 * @continuing: True if we are doing more for the current request.
 *
 * Start the given request running by setting the endpoint registers
 * appropriately, and writing any data to the FIFOs.
 */
static void s3c_hsotg_start_req(struct s3c_hsotg *hsotg,
				struct s3c_hsotg_ep *hs_ep,
				struct s3c_hsotg_req *hs_req,
				bool continuing)
{
	struct usb_request *ureq = &hs_req->req;
	int index = hs_ep->index;
	int dir_in = hs_ep->dir_in;
	u32 epctrl_reg;
	u32 epsize_reg;
	u32 epsize;
	u32 ctrl;
	unsigned length;
	unsigned packets;
	unsigned maxreq;

	if (index != 0) {
		if (hs_ep->req && !continuing) {
			dev_err(hsotg->dev, "%s: active request\n", __func__);
			WARN_ON(1);
			return;
		} else if (hs_ep->req != hs_req && continuing) {
			dev_err(hsotg->dev,
				"%s: continue different req\n", __func__);
			WARN_ON(1);
			return;
		}
	}

700 701
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
	epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
702 703 704 705 706

	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
		__func__, readl(hsotg->regs + epctrl_reg), index,
		hs_ep->dir_in ? "in" : "out");

707 708 709
	/* If endpoint is stalled, we will restart request later */
	ctrl = readl(hsotg->regs + epctrl_reg);

710
	if (ctrl & DxEPCTL_Stall) {
711 712 713 714
		dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
		return;
	}

715
	length = ureq->length - ureq->actual;
716 717
	dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
		ureq->length, ureq->actual);
718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742
	if (0)
		dev_dbg(hsotg->dev,
			"REQ buf %p len %d dma 0x%08x noi=%d zp=%d snok=%d\n",
			ureq->buf, length, ureq->dma,
			ureq->no_interrupt, ureq->zero, ureq->short_not_ok);

	maxreq = get_ep_limit(hs_ep);
	if (length > maxreq) {
		int round = maxreq % hs_ep->ep.maxpacket;

		dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
			__func__, length, maxreq, round);

		/* round down to multiple of packets */
		if (round)
			maxreq -= round;

		length = maxreq;
	}

	if (length)
		packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
	else
		packets = 1;	/* send one packet if length is zero. */

743 744 745 746 747
	if (hs_ep->isochronous && length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
		dev_err(hsotg->dev, "req length > maxpacket*mc\n");
		return;
	}

748
	if (dir_in && index != 0)
749 750 751 752
		if (hs_ep->isochronous)
			epsize = DxEPTSIZ_MC(packets);
		else
			epsize = DxEPTSIZ_MC(1);
753 754 755 756
	else
		epsize = 0;

	if (index != 0 && ureq->zero) {
757 758 759 760
		/*
		 * test for the packets being exactly right for the
		 * transfer
		 */
761 762 763 764 765

		if (length == (packets * hs_ep->ep.maxpacket))
			packets++;
	}

766 767
	epsize |= DxEPTSIZ_PktCnt(packets);
	epsize |= DxEPTSIZ_XferSize(length);
768 769 770 771 772 773 774 775 776 777

	dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
		__func__, packets, length, ureq->length, epsize, epsize_reg);

	/* store the request as the current one we're doing */
	hs_ep->req = hs_req;

	/* write size / packets */
	writel(epsize, hsotg->regs + epsize_reg);

778
	if (using_dma(hsotg) && !continuing) {
779 780
		unsigned int dma_reg;

781 782 783 784
		/*
		 * write DMA address to control register, buffer already
		 * synced by s3c_hsotg_ep_queue().
		 */
785

786
		dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
787 788 789 790 791 792
		writel(ureq->dma, hsotg->regs + dma_reg);

		dev_dbg(hsotg->dev, "%s: 0x%08x => 0x%08x\n",
			__func__, ureq->dma, dma_reg);
	}

793 794
	ctrl |= DxEPCTL_EPEna;	/* ensure ep enabled */
	ctrl |= DxEPCTL_USBActEp;
795 796 797 798 799 800 801

	dev_dbg(hsotg->dev, "setup req:%d\n", hsotg->setup);

	/* For Setup request do not clear NAK */
	if (hsotg->setup && index == 0)
		hsotg->setup = 0;
	else
802
		ctrl |= DxEPCTL_CNAK;	/* clear NAK set by core */
803

804 805 806 807

	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
	writel(ctrl, hsotg->regs + epctrl_reg);

808 809
	/*
	 * set these, it seems that DMA support increments past the end
810
	 * of the packet buffer so we need to calculate the length from
811 812
	 * this information.
	 */
813 814 815 816 817 818 819 820 821 822
	hs_ep->size_loaded = length;
	hs_ep->last_load = ureq->actual;

	if (dir_in && !using_dma(hsotg)) {
		/* set these anyway, we may need them for non-periodic in */
		hs_ep->fifo_load = 0;

		s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
	}

823 824 825 826
	/*
	 * clear the INTknTXFEmpMsk when we start request, more as a aide
	 * to debugging to see what is going on.
	 */
827
	if (dir_in)
828 829
		writel(DIEPMSK_INTknTXFEmpMsk,
		       hsotg->regs + DIEPINT(index));
830

831 832 833 834
	/*
	 * Note, trying to clear the NAK here causes problems with transmit
	 * on the S3C6400 ending up with the TXFIFO becoming full.
	 */
835 836

	/* check ep is enabled */
837
	if (!(readl(hsotg->regs + epctrl_reg) & DxEPCTL_EPEna))
838 839 840 841 842 843
		dev_warn(hsotg->dev,
			 "ep%d: failed to become enabled (DxEPCTL=0x%08x)?\n",
			 index, readl(hsotg->regs + epctrl_reg));

	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n",
		__func__, readl(hsotg->regs + epctrl_reg));
844 845 846

	/* enable ep interrupts */
	s3c_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
847 848 849 850 851 852 853 854 855 856 857 858 859
}

/**
 * s3c_hsotg_map_dma - map the DMA memory being used for the request
 * @hsotg: The device state.
 * @hs_ep: The endpoint the request is on.
 * @req: The request being processed.
 *
 * We've been asked to queue a request, so ensure that the memory buffer
 * is correctly setup for DMA. If we've been passed an extant DMA address
 * then ensure the buffer has been synced to memory. If our buffer has no
 * DMA memory, then we map the memory and mark our request to allow us to
 * cleanup on completion.
860
 */
861 862 863 864 865
static int s3c_hsotg_map_dma(struct s3c_hsotg *hsotg,
			     struct s3c_hsotg_ep *hs_ep,
			     struct usb_request *req)
{
	struct s3c_hsotg_req *hs_req = our_req(req);
866
	int ret;
867 868 869 870 871

	/* if the length is zero, ignore the DMA data */
	if (hs_req->req.length == 0)
		return 0;

872 873 874
	ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
	if (ret)
		goto dma_error;
875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917

	return 0;

dma_error:
	dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
		__func__, req->buf, req->length);

	return -EIO;
}

static int s3c_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
			      gfp_t gfp_flags)
{
	struct s3c_hsotg_req *hs_req = our_req(req);
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
	struct s3c_hsotg *hs = hs_ep->parent;
	bool first;

	dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
		ep->name, req, req->length, req->buf, req->no_interrupt,
		req->zero, req->short_not_ok);

	/* initialise status of the request */
	INIT_LIST_HEAD(&hs_req->queue);
	req->actual = 0;
	req->status = -EINPROGRESS;

	/* if we're using DMA, sync the buffers as necessary */
	if (using_dma(hs)) {
		int ret = s3c_hsotg_map_dma(hs, hs_ep, req);
		if (ret)
			return ret;
	}

	first = list_empty(&hs_ep->queue);
	list_add_tail(&hs_req->queue, &hs_ep->queue);

	if (first)
		s3c_hsotg_start_req(hs, hs_ep, hs_req, false);

	return 0;
}

918 919 920 921 922 923 924 925 926 927 928 929 930 931 932
static int s3c_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
			      gfp_t gfp_flags)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
	struct s3c_hsotg *hs = hs_ep->parent;
	unsigned long flags = 0;
	int ret = 0;

	spin_lock_irqsave(&hs->lock, flags);
	ret = s3c_hsotg_ep_queue(ep, req, gfp_flags);
	spin_unlock_irqrestore(&hs->lock, flags);

	return ret;
}

933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966
static void s3c_hsotg_ep_free_request(struct usb_ep *ep,
				      struct usb_request *req)
{
	struct s3c_hsotg_req *hs_req = our_req(req);

	kfree(hs_req);
}

/**
 * s3c_hsotg_complete_oursetup - setup completion callback
 * @ep: The endpoint the request was on.
 * @req: The request completed.
 *
 * Called on completion of any requests the driver itself
 * submitted that need cleaning up.
 */
static void s3c_hsotg_complete_oursetup(struct usb_ep *ep,
					struct usb_request *req)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
	struct s3c_hsotg *hsotg = hs_ep->parent;

	dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);

	s3c_hsotg_ep_free_request(ep, req);
}

/**
 * ep_from_windex - convert control wIndex value to endpoint
 * @hsotg: The driver state.
 * @windex: The control request wIndex field (in host order).
 *
 * Convert the given wIndex into a pointer to an driver endpoint
 * structure, or return NULL if it is not a valid endpoint.
967
 */
968 969 970 971 972 973 974 975 976 977
static struct s3c_hsotg_ep *ep_from_windex(struct s3c_hsotg *hsotg,
					   u32 windex)
{
	struct s3c_hsotg_ep *ep = &hsotg->eps[windex & 0x7F];
	int dir = (windex & USB_DIR_IN) ? 1 : 0;
	int idx = windex & 0x7F;

	if (windex >= 0x100)
		return NULL;

978
	if (idx > hsotg->num_of_eps)
979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
		return NULL;

	if (idx && ep->dir_in != dir)
		return NULL;

	return ep;
}

/**
 * s3c_hsotg_send_reply - send reply to control request
 * @hsotg: The device state
 * @ep: Endpoint 0
 * @buff: Buffer for request
 * @length: Length of reply.
 *
 * Create a request and queue it on the given endpoint. This is useful as
 * an internal method of sending replies to certain control requests, etc.
 */
static int s3c_hsotg_send_reply(struct s3c_hsotg *hsotg,
				struct s3c_hsotg_ep *ep,
				void *buff,
				int length)
{
	struct usb_request *req;
	int ret;

	dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);

	req = s3c_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
	hsotg->ep0_reply = req;
	if (!req) {
		dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
		return -ENOMEM;
	}

	req->buf = hsotg->ep0_buff;
	req->length = length;
	req->zero = 1; /* always do zero-length final transfer */
	req->complete = s3c_hsotg_complete_oursetup;

	if (length)
		memcpy(req->buf, buff, length);
	else
		ep->sent_zlp = 1;

	ret = s3c_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
	if (ret) {
		dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
		return ret;
	}

	return 0;
}

/**
 * s3c_hsotg_process_req_status - process request GET_STATUS
 * @hsotg: The device state
 * @ctrl: USB control request
 */
static int s3c_hsotg_process_req_status(struct s3c_hsotg *hsotg,
					struct usb_ctrlrequest *ctrl)
{
	struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
	struct s3c_hsotg_ep *ep;
	__le16 reply;
	int ret;

	dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);

	if (!ep0->dir_in) {
		dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
		return -EINVAL;
	}

	switch (ctrl->bRequestType & USB_RECIP_MASK) {
	case USB_RECIP_DEVICE:
		reply = cpu_to_le16(0); /* bit 0 => self powered,
					 * bit 1 => remote wakeup */
		break;

	case USB_RECIP_INTERFACE:
		/* currently, the data result should be zero */
		reply = cpu_to_le16(0);
		break;

	case USB_RECIP_ENDPOINT:
		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
		if (!ep)
			return -ENOENT;

		reply = cpu_to_le16(ep->halted ? 1 : 0);
		break;

	default:
		return 0;
	}

	if (le16_to_cpu(ctrl->wLength) != 2)
		return -EINVAL;

	ret = s3c_hsotg_send_reply(hsotg, ep0, &reply, 2);
	if (ret) {
		dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
		return ret;
	}

	return 1;
}

static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value);

1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
/**
 * get_ep_head - return the first request on the endpoint
 * @hs_ep: The controller endpoint to get
 *
 * Get the first request on the endpoint.
 */
static struct s3c_hsotg_req *get_ep_head(struct s3c_hsotg_ep *hs_ep)
{
	if (list_empty(&hs_ep->queue))
		return NULL;

	return list_first_entry(&hs_ep->queue, struct s3c_hsotg_req, queue);
}

1104 1105 1106 1107 1108 1109 1110 1111
/**
 * s3c_hsotg_process_req_featire - process request {SET,CLEAR}_FEATURE
 * @hsotg: The device state
 * @ctrl: USB control request
 */
static int s3c_hsotg_process_req_feature(struct s3c_hsotg *hsotg,
					 struct usb_ctrlrequest *ctrl)
{
1112
	struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
1113 1114
	struct s3c_hsotg_req *hs_req;
	bool restart;
1115 1116
	bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
	struct s3c_hsotg_ep *ep;
1117
	int ret;
1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132

	dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
		__func__, set ? "SET" : "CLEAR");

	if (ctrl->bRequestType == USB_RECIP_ENDPOINT) {
		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
		if (!ep) {
			dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
				__func__, le16_to_cpu(ctrl->wIndex));
			return -ENOENT;
		}

		switch (le16_to_cpu(ctrl->wValue)) {
		case USB_ENDPOINT_HALT:
			s3c_hsotg_ep_sethalt(&ep->ep, set);
1133 1134 1135 1136 1137 1138 1139

			ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
			if (ret) {
				dev_err(hsotg->dev,
					"%s: failed to send reply\n", __func__);
				return ret;
			}
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162

			if (!set) {
				/*
				 * If we have request in progress,
				 * then complete it
				 */
				if (ep->req) {
					hs_req = ep->req;
					ep->req = NULL;
					list_del_init(&hs_req->queue);
					hs_req->req.complete(&ep->ep,
							     &hs_req->req);
				}

				/* If we have pending request, then start it */
				restart = !list_empty(&ep->queue);
				if (restart) {
					hs_req = get_ep_head(ep);
					s3c_hsotg_start_req(hsotg, ep,
							    hs_req, false);
				}
			}

1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
			break;

		default:
			return -ENOENT;
		}
	} else
		return -ENOENT;  /* currently only deal with endpoint */

	return 1;
}

1174 1175
static void s3c_hsotg_enqueue_setup(struct s3c_hsotg *hsotg);

1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
/**
 * s3c_hsotg_process_control - process a control request
 * @hsotg: The device state
 * @ctrl: The control request received
 *
 * The controller has received the SETUP phase of a control request, and
 * needs to work out what to do next (and whether to pass it on to the
 * gadget driver).
 */
static void s3c_hsotg_process_control(struct s3c_hsotg *hsotg,
				      struct usb_ctrlrequest *ctrl)
{
	struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
	int ret = 0;
	u32 dcfg;

	ep0->sent_zlp = 0;

	dev_dbg(hsotg->dev, "ctrl Req=%02x, Type=%02x, V=%04x, L=%04x\n",
		 ctrl->bRequest, ctrl->bRequestType,
		 ctrl->wValue, ctrl->wLength);

1198 1199 1200 1201
	/*
	 * record the direction of the request, for later use when enquing
	 * packets onto EP0.
	 */
1202 1203 1204 1205

	ep0->dir_in = (ctrl->bRequestType & USB_DIR_IN) ? 1 : 0;
	dev_dbg(hsotg->dev, "ctrl: dir_in=%d\n", ep0->dir_in);

1206 1207 1208 1209
	/*
	 * if we've no data with this request, then the last part of the
	 * transaction is going to implicitly be IN.
	 */
1210 1211 1212 1213 1214 1215
	if (ctrl->wLength == 0)
		ep0->dir_in = 1;

	if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
		switch (ctrl->bRequest) {
		case USB_REQ_SET_ADDRESS:
1216 1217 1218 1219
			dcfg = readl(hsotg->regs + DCFG);
			dcfg &= ~DCFG_DevAddr_MASK;
			dcfg |= ctrl->wValue << DCFG_DevAddr_SHIFT;
			writel(dcfg, hsotg->regs + DCFG);
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244

			dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);

			ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
			return;

		case USB_REQ_GET_STATUS:
			ret = s3c_hsotg_process_req_status(hsotg, ctrl);
			break;

		case USB_REQ_CLEAR_FEATURE:
		case USB_REQ_SET_FEATURE:
			ret = s3c_hsotg_process_req_feature(hsotg, ctrl);
			break;
		}
	}

	/* as a fallback, try delivering it to the driver to deal with */

	if (ret == 0 && hsotg->driver) {
		ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
		if (ret < 0)
			dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
	}

1245 1246
	/*
	 * the request is either unhandlable, or is not formatted correctly
1247 1248 1249 1250 1251 1252 1253 1254
	 * so respond with a STALL for the status stage to indicate failure.
	 */

	if (ret < 0) {
		u32 reg;
		u32 ctrl;

		dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
1255
		reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;
1256

1257
		/*
1258
		 * DxEPCTL_Stall will be cleared by EP once it has
1259 1260
		 * taken effect, so no need to clear later.
		 */
1261 1262

		ctrl = readl(hsotg->regs + reg);
1263 1264
		ctrl |= DxEPCTL_Stall;
		ctrl |= DxEPCTL_CNAK;
1265 1266 1267
		writel(ctrl, hsotg->regs + reg);

		dev_dbg(hsotg->dev,
L
Lucas De Marchi 已提交
1268
			"written DxEPCTL=0x%08x to %08x (DxEPCTL=0x%08x)\n",
1269 1270
			ctrl, reg, readl(hsotg->regs + reg));

1271 1272 1273 1274
		/*
		 * don't believe we need to anything more to get the EP
		 * to reply with a STALL packet
		 */
1275 1276 1277 1278 1279 1280

		 /*
		  * complete won't be called, so we enqueue
		  * setup request here
		  */
		 s3c_hsotg_enqueue_setup(hsotg);
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338
	}
}

/**
 * s3c_hsotg_complete_setup - completion of a setup transfer
 * @ep: The endpoint the request was on.
 * @req: The request completed.
 *
 * Called on completion of any requests the driver itself submitted for
 * EP0 setup packets
 */
static void s3c_hsotg_complete_setup(struct usb_ep *ep,
				     struct usb_request *req)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
	struct s3c_hsotg *hsotg = hs_ep->parent;

	if (req->status < 0) {
		dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
		return;
	}

	if (req->actual == 0)
		s3c_hsotg_enqueue_setup(hsotg);
	else
		s3c_hsotg_process_control(hsotg, req->buf);
}

/**
 * s3c_hsotg_enqueue_setup - start a request for EP0 packets
 * @hsotg: The device state.
 *
 * Enqueue a request on EP0 if necessary to received any SETUP packets
 * received from the host.
 */
static void s3c_hsotg_enqueue_setup(struct s3c_hsotg *hsotg)
{
	struct usb_request *req = hsotg->ctrl_req;
	struct s3c_hsotg_req *hs_req = our_req(req);
	int ret;

	dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);

	req->zero = 0;
	req->length = 8;
	req->buf = hsotg->ctrl_buff;
	req->complete = s3c_hsotg_complete_setup;

	if (!list_empty(&hs_req->queue)) {
		dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
		return;
	}

	hsotg->eps[0].dir_in = 0;

	ret = s3c_hsotg_ep_queue(&hsotg->eps[0].ep, req, GFP_ATOMIC);
	if (ret < 0) {
		dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
1339 1340 1341 1342
		/*
		 * Don't think there's much we can do other than watch the
		 * driver fail.
		 */
1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357
	}
}

/**
 * s3c_hsotg_complete_request - complete a request given to us
 * @hsotg: The device state.
 * @hs_ep: The endpoint the request was on.
 * @hs_req: The request to complete.
 * @result: The result code (0 => Ok, otherwise errno)
 *
 * The given request has finished, so call the necessary completion
 * if it has one and then look to see if we can start a new request
 * on the endpoint.
 *
 * Note, expects the ep to already be locked as appropriate.
1358
 */
1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
static void s3c_hsotg_complete_request(struct s3c_hsotg *hsotg,
				       struct s3c_hsotg_ep *hs_ep,
				       struct s3c_hsotg_req *hs_req,
				       int result)
{
	bool restart;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
		return;
	}

	dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
		hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);

1374 1375 1376 1377
	/*
	 * only replace the status if we've not already set an error
	 * from a previous transaction
	 */
1378 1379 1380 1381 1382 1383 1384 1385 1386 1387

	if (hs_req->req.status == -EINPROGRESS)
		hs_req->req.status = result;

	hs_ep->req = NULL;
	list_del_init(&hs_req->queue);

	if (using_dma(hsotg))
		s3c_hsotg_unmap_dma(hsotg, hs_ep, hs_req);

1388 1389 1390 1391
	/*
	 * call the complete request with the locks off, just in case the
	 * request tries to queue more work for this endpoint.
	 */
1392 1393

	if (hs_req->req.complete) {
1394
		spin_unlock(&hsotg->lock);
1395
		hs_req->req.complete(&hs_ep->ep, &hs_req->req);
1396
		spin_lock(&hsotg->lock);
1397 1398
	}

1399 1400
	/*
	 * Look to see if there is anything else to do. Note, the completion
1401
	 * of the previous request may have caused a new request to be started
1402 1403
	 * so be careful when doing this.
	 */
1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427

	if (!hs_ep->req && result >= 0) {
		restart = !list_empty(&hs_ep->queue);
		if (restart) {
			hs_req = get_ep_head(hs_ep);
			s3c_hsotg_start_req(hsotg, hs_ep, hs_req, false);
		}
	}
}

/**
 * s3c_hsotg_rx_data - receive data from the FIFO for an endpoint
 * @hsotg: The device state.
 * @ep_idx: The endpoint index for the data
 * @size: The size of data in the fifo, in bytes
 *
 * The FIFO status shows there is data to read from the FIFO for a given
 * endpoint, so sort out whether we need to read the data into a request
 * that has been made for that endpoint.
 */
static void s3c_hsotg_rx_data(struct s3c_hsotg *hsotg, int ep_idx, int size)
{
	struct s3c_hsotg_ep *hs_ep = &hsotg->eps[ep_idx];
	struct s3c_hsotg_req *hs_req = hs_ep->req;
1428
	void __iomem *fifo = hsotg->regs + EPFIFO(ep_idx);
1429 1430 1431 1432
	int to_read;
	int max_req;
	int read_ptr;

1433

1434
	if (!hs_req) {
1435
		u32 epctl = readl(hsotg->regs + DOEPCTL(ep_idx));
1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452
		int ptr;

		dev_warn(hsotg->dev,
			 "%s: FIFO %d bytes on ep%d but no req (DxEPCTl=0x%08x)\n",
			 __func__, size, ep_idx, epctl);

		/* dump the data from the FIFO, we've nothing we can do */
		for (ptr = 0; ptr < size; ptr += 4)
			(void)readl(fifo);

		return;
	}

	to_read = size;
	read_ptr = hs_req->req.actual;
	max_req = hs_req->req.length - read_ptr;

1453 1454 1455
	dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
		__func__, to_read, max_req, read_ptr, hs_req->req.length);

1456
	if (to_read > max_req) {
1457 1458
		/*
		 * more data appeared than we where willing
1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469
		 * to deal with in this request.
		 */

		/* currently we don't deal this */
		WARN_ON_ONCE(1);
	}

	hs_ep->total_data += to_read;
	hs_req->req.actual += to_read;
	to_read = DIV_ROUND_UP(to_read, 4);

1470 1471 1472 1473
	/*
	 * note, we might over-write the buffer end by 3 bytes depending on
	 * alignment of the data.
	 */
1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
	readsl(fifo, hs_req->req.buf + read_ptr, to_read);
}

/**
 * s3c_hsotg_send_zlp - send zero-length packet on control endpoint
 * @hsotg: The device instance
 * @req: The request currently on this endpoint
 *
 * Generate a zero-length IN packet request for terminating a SETUP
 * transaction.
 *
 * Note, since we don't write any data to the TxFIFO, then it is
L
Lucas De Marchi 已提交
1486
 * currently believed that we do not need to wait for any space in
1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
 * the TxFIFO.
 */
static void s3c_hsotg_send_zlp(struct s3c_hsotg *hsotg,
			       struct s3c_hsotg_req *req)
{
	u32 ctrl;

	if (!req) {
		dev_warn(hsotg->dev, "%s: no request?\n", __func__);
		return;
	}

	if (req->req.length == 0) {
		hsotg->eps[0].sent_zlp = 1;
		s3c_hsotg_enqueue_setup(hsotg);
		return;
	}

	hsotg->eps[0].dir_in = 1;
	hsotg->eps[0].sent_zlp = 1;

	dev_dbg(hsotg->dev, "sending zero-length packet\n");

	/* issue a zero-sized packet to terminate this */
1511 1512
	writel(DxEPTSIZ_MC(1) | DxEPTSIZ_PktCnt(1) |
	       DxEPTSIZ_XferSize(0), hsotg->regs + DIEPTSIZ(0));
1513

1514 1515 1516 1517 1518
	ctrl = readl(hsotg->regs + DIEPCTL0);
	ctrl |= DxEPCTL_CNAK;  /* clear NAK set by core */
	ctrl |= DxEPCTL_EPEna; /* ensure ep enabled */
	ctrl |= DxEPCTL_USBActEp;
	writel(ctrl, hsotg->regs + DIEPCTL0);
1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529
}

/**
 * s3c_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
 * @hsotg: The device instance
 * @epnum: The endpoint received from
 * @was_setup: Set if processing a SetupDone event.
 *
 * The RXFIFO has delivered an OutDone event, which means that the data
 * transfer for an OUT endpoint has been completed, either by a short
 * packet or by the finish of a transfer.
1530
 */
1531 1532 1533
static void s3c_hsotg_handle_outdone(struct s3c_hsotg *hsotg,
				     int epnum, bool was_setup)
{
1534
	u32 epsize = readl(hsotg->regs + DOEPTSIZ(epnum));
1535 1536 1537
	struct s3c_hsotg_ep *hs_ep = &hsotg->eps[epnum];
	struct s3c_hsotg_req *hs_req = hs_ep->req;
	struct usb_request *req = &hs_req->req;
1538
	unsigned size_left = DxEPTSIZ_XferSize_GET(epsize);
1539 1540 1541 1542 1543 1544 1545 1546 1547 1548
	int result = 0;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
		return;
	}

	if (using_dma(hsotg)) {
		unsigned size_done;

1549 1550
		/*
		 * Calculate the size of the transfer by checking how much
1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563
		 * is left in the endpoint size register and then working it
		 * out from the amount we loaded for the transfer.
		 *
		 * We need to do this as DMA pointers are always 32bit aligned
		 * so may overshoot/undershoot the transfer.
		 */

		size_done = hs_ep->size_loaded - size_left;
		size_done += hs_ep->last_load;

		req->actual = size_done;
	}

1564 1565 1566 1567
	/* if there is more request to do, schedule new transfer */
	if (req->actual < req->length && size_left == 0) {
		s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
		return;
1568 1569 1570 1571 1572 1573
	} else if (epnum == 0) {
		/*
		 * After was_setup = 1 =>
		 * set CNAK for non Setup requests
		 */
		hsotg->setup = was_setup ? 0 : 1;
1574 1575
	}

1576 1577 1578 1579
	if (req->actual < req->length && req->short_not_ok) {
		dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
			__func__, req->actual, req->length);

1580 1581 1582 1583
		/*
		 * todo - what should we return here? there's no one else
		 * even bothering to check the status.
		 */
1584 1585 1586
	}

	if (epnum == 0) {
1587 1588 1589 1590
		/*
		 * Condition req->complete != s3c_hsotg_complete_setup says:
		 * send ZLP when we have an asynchronous request from gadget
		 */
1591 1592 1593 1594
		if (!was_setup && req->complete != s3c_hsotg_complete_setup)
			s3c_hsotg_send_zlp(hsotg, hs_req);
	}

1595
	s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
1596 1597 1598 1599 1600 1601 1602
}

/**
 * s3c_hsotg_read_frameno - read current frame number
 * @hsotg: The device instance
 *
 * Return the current frame number
1603
 */
1604 1605 1606 1607
static u32 s3c_hsotg_read_frameno(struct s3c_hsotg *hsotg)
{
	u32 dsts;

1608 1609 1610
	dsts = readl(hsotg->regs + DSTS);
	dsts &= DSTS_SOFFN_MASK;
	dsts >>= DSTS_SOFFN_SHIFT;
1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622

	return dsts;
}

/**
 * s3c_hsotg_handle_rx - RX FIFO has data
 * @hsotg: The device instance
 *
 * The IRQ handler has detected that the RX FIFO has some data in it
 * that requires processing, so find out what is in there and do the
 * appropriate read.
 *
L
Lucas De Marchi 已提交
1623
 * The RXFIFO is a true FIFO, the packets coming out are still in packet
1624 1625 1626 1627 1628 1629 1630
 * chunks, so if you have x packets received on an endpoint you'll get x
 * FIFO events delivered, each with a packet's worth of data in it.
 *
 * When using DMA, we should not be processing events from the RXFIFO
 * as the actual data should be sent to the memory directly and we turn
 * on the completion interrupts to get notifications of transfer completion.
 */
1631
static void s3c_hsotg_handle_rx(struct s3c_hsotg *hsotg)
1632
{
1633
	u32 grxstsr = readl(hsotg->regs + GRXSTSP);
1634 1635 1636 1637
	u32 epnum, status, size;

	WARN_ON(using_dma(hsotg));

1638 1639
	epnum = grxstsr & GRXSTS_EPNum_MASK;
	status = grxstsr & GRXSTS_PktSts_MASK;
1640

1641 1642
	size = grxstsr & GRXSTS_ByteCnt_MASK;
	size >>= GRXSTS_ByteCnt_SHIFT;
1643 1644 1645 1646 1647

	if (1)
		dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
			__func__, grxstsr, size, epnum);

1648
#define __status(x) ((x) >> GRXSTS_PktSts_SHIFT)
1649

1650 1651
	switch (status >> GRXSTS_PktSts_SHIFT) {
	case __status(GRXSTS_PktSts_GlobalOutNAK):
1652 1653 1654
		dev_dbg(hsotg->dev, "GlobalOutNAK\n");
		break;

1655
	case __status(GRXSTS_PktSts_OutDone):
1656 1657 1658 1659 1660 1661 1662
		dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
			s3c_hsotg_read_frameno(hsotg));

		if (!using_dma(hsotg))
			s3c_hsotg_handle_outdone(hsotg, epnum, false);
		break;

1663
	case __status(GRXSTS_PktSts_SetupDone):
1664 1665 1666
		dev_dbg(hsotg->dev,
			"SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
			s3c_hsotg_read_frameno(hsotg),
1667
			readl(hsotg->regs + DOEPCTL(0)));
1668 1669 1670 1671

		s3c_hsotg_handle_outdone(hsotg, epnum, true);
		break;

1672
	case __status(GRXSTS_PktSts_OutRX):
1673 1674 1675
		s3c_hsotg_rx_data(hsotg, epnum, size);
		break;

1676
	case __status(GRXSTS_PktSts_SetupRX):
1677 1678 1679
		dev_dbg(hsotg->dev,
			"SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
			s3c_hsotg_read_frameno(hsotg),
1680
			readl(hsotg->regs + DOEPCTL(0)));
1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696

		s3c_hsotg_rx_data(hsotg, epnum, size);
		break;

	default:
		dev_warn(hsotg->dev, "%s: unknown status %08x\n",
			 __func__, grxstsr);

		s3c_hsotg_dump(hsotg);
		break;
	}
}

/**
 * s3c_hsotg_ep0_mps - turn max packet size into register setting
 * @mps: The maximum packet size in bytes.
1697
 */
1698 1699 1700 1701
static u32 s3c_hsotg_ep0_mps(unsigned int mps)
{
	switch (mps) {
	case 64:
1702
		return D0EPCTL_MPS_64;
1703
	case 32:
1704
		return D0EPCTL_MPS_32;
1705
	case 16:
1706
		return D0EPCTL_MPS_16;
1707
	case 8:
1708
		return D0EPCTL_MPS_8;
1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730
	}

	/* bad max packet size, warn and return invalid result */
	WARN_ON(1);
	return (u32)-1;
}

/**
 * s3c_hsotg_set_ep_maxpacket - set endpoint's max-packet field
 * @hsotg: The driver state.
 * @ep: The index number of the endpoint
 * @mps: The maximum packet size in bytes
 *
 * Configure the maximum packet size for the given endpoint, updating
 * the hardware control registers to reflect this.
 */
static void s3c_hsotg_set_ep_maxpacket(struct s3c_hsotg *hsotg,
				       unsigned int ep, unsigned int mps)
{
	struct s3c_hsotg_ep *hs_ep = &hsotg->eps[ep];
	void __iomem *regs = hsotg->regs;
	u32 mpsval;
1731
	u32 mcval;
1732 1733 1734 1735 1736 1737 1738
	u32 reg;

	if (ep == 0) {
		/* EP0 is a special case */
		mpsval = s3c_hsotg_ep0_mps(mps);
		if (mpsval > 3)
			goto bad_mps;
1739
		hs_ep->ep.maxpacket = mps;
1740
		hs_ep->mc = 1;
1741
	} else {
1742 1743
		mpsval = mps & DxEPCTL_MPS_MASK;
		if (mpsval > 1024)
1744
			goto bad_mps;
1745 1746 1747 1748
		mcval = ((mps >> 11) & 0x3) + 1;
		hs_ep->mc = mcval;
		if (mcval > 3)
			goto bad_mps;
1749
		hs_ep->ep.maxpacket = mpsval;
1750 1751
	}

1752 1753 1754 1755
	/*
	 * update both the in and out endpoint controldir_ registers, even
	 * if one of the directions may not be in use.
	 */
1756

1757 1758
	reg = readl(regs + DIEPCTL(ep));
	reg &= ~DxEPCTL_MPS_MASK;
1759
	reg |= mpsval;
1760
	writel(reg, regs + DIEPCTL(ep));
1761

1762
	if (ep) {
1763 1764
		reg = readl(regs + DOEPCTL(ep));
		reg &= ~DxEPCTL_MPS_MASK;
1765
		reg |= mpsval;
1766
		writel(reg, regs + DOEPCTL(ep));
1767
	}
1768 1769 1770 1771 1772 1773 1774

	return;

bad_mps:
	dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
}

1775 1776 1777 1778 1779 1780 1781 1782 1783 1784
/**
 * s3c_hsotg_txfifo_flush - flush Tx FIFO
 * @hsotg: The driver state
 * @idx: The index for the endpoint (0..15)
 */
static void s3c_hsotg_txfifo_flush(struct s3c_hsotg *hsotg, unsigned int idx)
{
	int timeout;
	int val;

1785 1786
	writel(GRSTCTL_TxFNum(idx) | GRSTCTL_TxFFlsh,
		hsotg->regs + GRSTCTL);
1787 1788 1789 1790 1791

	/* wait until the fifo is flushed */
	timeout = 100;

	while (1) {
1792
		val = readl(hsotg->regs + GRSTCTL);
1793

1794
		if ((val & (GRSTCTL_TxFFlsh)) == 0)
1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805
			break;

		if (--timeout == 0) {
			dev_err(hsotg->dev,
				"%s: timeout flushing fifo (GRSTCTL=%08x)\n",
				__func__, val);
		}

		udelay(1);
	}
}
1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819

/**
 * s3c_hsotg_trytx - check to see if anything needs transmitting
 * @hsotg: The driver state
 * @hs_ep: The driver endpoint to check.
 *
 * Check to see if there is a request that has data to send, and if so
 * make an attempt to write data into the FIFO.
 */
static int s3c_hsotg_trytx(struct s3c_hsotg *hsotg,
			   struct s3c_hsotg_ep *hs_ep)
{
	struct s3c_hsotg_req *hs_req = hs_ep->req;

1820 1821 1822 1823 1824 1825 1826 1827
	if (!hs_ep->dir_in || !hs_req) {
		/**
		 * if request is not enqueued, we disable interrupts
		 * for endpoints, excepting ep0
		 */
		if (hs_ep->index != 0)
			s3c_hsotg_ctrl_epint(hsotg, hs_ep->index,
					     hs_ep->dir_in, 0);
1828
		return 0;
1829
	}
1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851

	if (hs_req->req.actual < hs_req->req.length) {
		dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
			hs_ep->index);
		return s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
	}

	return 0;
}

/**
 * s3c_hsotg_complete_in - complete IN transfer
 * @hsotg: The device state.
 * @hs_ep: The endpoint that has just completed.
 *
 * An IN transfer has been completed, update the transfer's state and then
 * call the relevant completion routines.
 */
static void s3c_hsotg_complete_in(struct s3c_hsotg *hsotg,
				  struct s3c_hsotg_ep *hs_ep)
{
	struct s3c_hsotg_req *hs_req = hs_ep->req;
1852
	u32 epsize = readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
1853 1854 1855 1856 1857 1858 1859
	int size_left, size_done;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "XferCompl but no req\n");
		return;
	}

1860 1861 1862
	/* Finish ZLP handling for IN EP0 transactions */
	if (hsotg->eps[0].sent_zlp) {
		dev_dbg(hsotg->dev, "zlp packet received\n");
1863
		s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1864 1865 1866
		return;
	}

1867 1868
	/*
	 * Calculate the size of the transfer by checking how much is left
1869 1870 1871 1872 1873 1874 1875 1876
	 * in the endpoint size register and then working it out from
	 * the amount we loaded for the transfer.
	 *
	 * We do this even for DMA, as the transfer may have incremented
	 * past the end of the buffer (DMA transfers are always 32bit
	 * aligned).
	 */

1877
	size_left = DxEPTSIZ_XferSize_GET(epsize);
1878 1879 1880 1881 1882 1883 1884 1885 1886

	size_done = hs_ep->size_loaded - size_left;
	size_done += hs_ep->last_load;

	if (hs_req->req.actual != size_done)
		dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
			__func__, hs_req->req.actual, size_done);

	hs_req->req.actual = size_done;
1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905
	dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
		hs_req->req.length, hs_req->req.actual, hs_req->req.zero);

	/*
	 * Check if dealing with Maximum Packet Size(MPS) IN transfer at EP0
	 * When sent data is a multiple MPS size (e.g. 64B ,128B ,192B
	 * ,256B ... ), after last MPS sized packet send IN ZLP packet to
	 * inform the host that no more data is available.
	 * The state of req.zero member is checked to be sure that the value to
	 * send is smaller than wValue expected from host.
	 * Check req.length to NOT send another ZLP when the current one is
	 * under completion (the one for which this completion has been called).
	 */
	if (hs_req->req.length && hs_ep->index == 0 && hs_req->req.zero &&
	    hs_req->req.length == hs_req->req.actual &&
	    !(hs_req->req.length % hs_ep->ep.maxpacket)) {

		dev_dbg(hsotg->dev, "ep0 zlp IN packet sent\n");
		s3c_hsotg_send_zlp(hsotg, hs_req);
1906

1907 1908
		return;
	}
1909 1910 1911 1912 1913

	if (!size_left && hs_req->req.actual < hs_req->req.length) {
		dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
		s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
	} else
1914
		s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1915 1916 1917 1918 1919 1920 1921 1922 1923
}

/**
 * s3c_hsotg_epint - handle an in/out endpoint interrupt
 * @hsotg: The driver state
 * @idx: The index for the endpoint (0..15)
 * @dir_in: Set if this is an IN endpoint
 *
 * Process and clear any interrupt pending for an individual endpoint
1924
 */
1925 1926 1927 1928
static void s3c_hsotg_epint(struct s3c_hsotg *hsotg, unsigned int idx,
			    int dir_in)
{
	struct s3c_hsotg_ep *hs_ep = &hsotg->eps[idx];
1929 1930 1931
	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
	u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
1932
	u32 ints;
1933
	u32 ctrl;
1934 1935

	ints = readl(hsotg->regs + epint_reg);
1936
	ctrl = readl(hsotg->regs + epctl_reg);
1937

1938 1939 1940
	/* Clear endpoint interrupts */
	writel(ints, hsotg->regs + epint_reg);

1941 1942 1943
	dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
		__func__, idx, dir_in ? "in" : "out", ints);

1944
	if (ints & DxEPINT_XferCompl) {
1945 1946 1947 1948 1949 1950 1951 1952
		if (hs_ep->isochronous && hs_ep->interval == 1) {
			if (ctrl & DxEPCTL_EOFrNum)
				ctrl |= DxEPCTL_SetEvenFr;
			else
				ctrl |= DxEPCTL_SetOddFr;
			writel(ctrl, hsotg->regs + epctl_reg);
		}

1953 1954 1955 1956 1957
		dev_dbg(hsotg->dev,
			"%s: XferCompl: DxEPCTL=0x%08x, DxEPTSIZ=%08x\n",
			__func__, readl(hsotg->regs + epctl_reg),
			readl(hsotg->regs + epsiz_reg));

1958 1959 1960 1961
		/*
		 * we get OutDone from the FIFO, so we only need to look
		 * at completing IN requests here
		 */
1962 1963 1964
		if (dir_in) {
			s3c_hsotg_complete_in(hsotg, hs_ep);

1965
			if (idx == 0 && !hs_ep->req)
1966 1967
				s3c_hsotg_enqueue_setup(hsotg);
		} else if (using_dma(hsotg)) {
1968 1969 1970 1971
			/*
			 * We're using DMA, we need to fire an OutDone here
			 * as we ignore the RXFIFO.
			 */
1972 1973 1974 1975 1976

			s3c_hsotg_handle_outdone(hsotg, idx, false);
		}
	}

1977
	if (ints & DxEPINT_EPDisbld) {
1978 1979
		dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);

1980 1981 1982 1983 1984
		if (dir_in) {
			int epctl = readl(hsotg->regs + epctl_reg);

			s3c_hsotg_txfifo_flush(hsotg, idx);

1985 1986 1987
			if ((epctl & DxEPCTL_Stall) &&
				(epctl & DxEPCTL_EPType_Bulk)) {
				int dctl = readl(hsotg->regs + DCTL);
1988

1989 1990
				dctl |= DCTL_CGNPInNAK;
				writel(dctl, hsotg->regs + DCTL);
1991 1992 1993 1994
			}
		}
	}

1995
	if (ints & DxEPINT_AHBErr)
1996 1997
		dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);

1998
	if (ints & DxEPINT_Setup) {  /* Setup or Timeout */
1999 2000 2001
		dev_dbg(hsotg->dev, "%s: Setup/Timeout\n",  __func__);

		if (using_dma(hsotg) && idx == 0) {
2002 2003
			/*
			 * this is the notification we've received a
2004 2005
			 * setup packet. In non-DMA mode we'd get this
			 * from the RXFIFO, instead we need to process
2006 2007
			 * the setup here.
			 */
2008 2009 2010 2011 2012 2013 2014 2015

			if (dir_in)
				WARN_ON_ONCE(1);
			else
				s3c_hsotg_handle_outdone(hsotg, 0, true);
		}
	}

2016
	if (ints & DxEPINT_Back2BackSetup)
2017 2018
		dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);

2019
	if (dir_in && !hs_ep->isochronous) {
2020
		/* not sure if this is important, but we'll clear it anyway */
2021
		if (ints & DIEPMSK_INTknTXFEmpMsk) {
2022 2023 2024 2025 2026
			dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
				__func__, idx);
		}

		/* this probably means something bad is happening */
2027
		if (ints & DIEPMSK_INTknEPMisMsk) {
2028 2029 2030
			dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
				 __func__, idx);
		}
2031 2032 2033

		/* FIFO has space or is empty (see GAHBCFG) */
		if (hsotg->dedicated_fifos &&
2034
		    ints & DIEPMSK_TxFIFOEmpty) {
2035 2036
			dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
				__func__, idx);
2037 2038
			if (!using_dma(hsotg))
				s3c_hsotg_trytx(hsotg, hs_ep);
2039
		}
2040 2041 2042 2043 2044 2045 2046 2047 2048
	}
}

/**
 * s3c_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
 * @hsotg: The device state.
 *
 * Handle updating the device settings after the enumeration phase has
 * been completed.
2049
 */
2050 2051
static void s3c_hsotg_irq_enumdone(struct s3c_hsotg *hsotg)
{
2052
	u32 dsts = readl(hsotg->regs + DSTS);
2053 2054
	int ep0_mps = 0, ep_mps;

2055 2056
	/*
	 * This should signal the finish of the enumeration phase
2057
	 * of the USB handshaking, so we should now know what rate
2058 2059
	 * we connected at.
	 */
2060 2061 2062

	dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);

2063 2064
	/*
	 * note, since we're limited by the size of transfer on EP0, and
2065
	 * it seems IN transfers must be a even number of packets we do
2066 2067
	 * not advertise a 64byte MPS on EP0.
	 */
2068 2069

	/* catch both EnumSpd_FS and EnumSpd_FS48 */
2070 2071 2072
	switch (dsts & DSTS_EnumSpd_MASK) {
	case DSTS_EnumSpd_FS:
	case DSTS_EnumSpd_FS48:
2073 2074 2075 2076 2077
		hsotg->gadget.speed = USB_SPEED_FULL;
		ep0_mps = EP0_MPS_LIMIT;
		ep_mps = 64;
		break;

2078
	case DSTS_EnumSpd_HS:
2079 2080 2081 2082 2083
		hsotg->gadget.speed = USB_SPEED_HIGH;
		ep0_mps = EP0_MPS_LIMIT;
		ep_mps = 512;
		break;

2084
	case DSTS_EnumSpd_LS:
2085
		hsotg->gadget.speed = USB_SPEED_LOW;
2086 2087
		/*
		 * note, we don't actually support LS in this driver at the
2088 2089 2090 2091 2092
		 * moment, and the documentation seems to imply that it isn't
		 * supported by the PHYs on some of the devices.
		 */
		break;
	}
2093 2094
	dev_info(hsotg->dev, "new device is %s\n",
		 usb_speed_string(hsotg->gadget.speed));
2095

2096 2097 2098 2099
	/*
	 * we should now know the maximum packet size for an
	 * endpoint, so set the endpoints to a default value.
	 */
2100 2101 2102 2103

	if (ep0_mps) {
		int i;
		s3c_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps);
2104
		for (i = 1; i < hsotg->num_of_eps; i++)
2105 2106 2107 2108 2109 2110 2111 2112
			s3c_hsotg_set_ep_maxpacket(hsotg, i, ep_mps);
	}

	/* ensure after enumeration our EP0 is active */

	s3c_hsotg_enqueue_setup(hsotg);

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2113 2114
		readl(hsotg->regs + DIEPCTL0),
		readl(hsotg->regs + DOEPCTL0));
2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133
}

/**
 * kill_all_requests - remove all requests from the endpoint's queue
 * @hsotg: The device state.
 * @ep: The endpoint the requests may be on.
 * @result: The result code to use.
 * @force: Force removal of any current requests
 *
 * Go through the requests on the given endpoint and mark them
 * completed with the given result code.
 */
static void kill_all_requests(struct s3c_hsotg *hsotg,
			      struct s3c_hsotg_ep *ep,
			      int result, bool force)
{
	struct s3c_hsotg_req *req, *treq;

	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
2134 2135 2136 2137
		/*
		 * currently, we can't do much about an already
		 * running request on an in endpoint
		 */
2138 2139 2140 2141 2142 2143 2144 2145 2146 2147

		if (ep->req == req && ep->dir_in && !force)
			continue;

		s3c_hsotg_complete_request(hsotg, ep, req,
					   result);
	}
}

#define call_gadget(_hs, _entry) \
2148
do { \
2149
	if ((_hs)->gadget.speed != USB_SPEED_UNKNOWN &&	\
2150 2151 2152 2153
	    (_hs)->driver && (_hs)->driver->_entry) { \
		spin_unlock(&_hs->lock); \
		(_hs)->driver->_entry(&(_hs)->gadget); \
		spin_lock(&_hs->lock); \
2154 2155
	} \
} while (0)
2156 2157

/**
2158
 * s3c_hsotg_disconnect - disconnect service
2159 2160
 * @hsotg: The device state.
 *
2161 2162 2163
 * The device has been disconnected. Remove all current
 * transactions and signal the gadget driver that this
 * has happened.
2164
 */
2165
static void s3c_hsotg_disconnect(struct s3c_hsotg *hsotg)
2166 2167 2168
{
	unsigned ep;

2169
	for (ep = 0; ep < hsotg->num_of_eps; ep++)
2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186
		kill_all_requests(hsotg, &hsotg->eps[ep], -ESHUTDOWN, true);

	call_gadget(hsotg, disconnect);
}

/**
 * s3c_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
 * @hsotg: The device state:
 * @periodic: True if this is a periodic FIFO interrupt
 */
static void s3c_hsotg_irq_fifoempty(struct s3c_hsotg *hsotg, bool periodic)
{
	struct s3c_hsotg_ep *ep;
	int epno, ret;

	/* look through for any more data to transmit */

2187
	for (epno = 0; epno < hsotg->num_of_eps; epno++) {
2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203
		ep = &hsotg->eps[epno];

		if (!ep->dir_in)
			continue;

		if ((periodic && !ep->periodic) ||
		    (!periodic && ep->periodic))
			continue;

		ret = s3c_hsotg_trytx(hsotg, ep);
		if (ret < 0)
			break;
	}
}

/* IRQ flags which will trigger a retry around the IRQ loop */
2204 2205 2206
#define IRQ_RETRY_MASK (GINTSTS_NPTxFEmp | \
			GINTSTS_PTxFEmp |  \
			GINTSTS_RxFLvl)
2207

2208 2209 2210 2211 2212
/**
 * s3c_hsotg_corereset - issue softreset to the core
 * @hsotg: The device state
 *
 * Issue a soft reset to the core, and await the core finishing it.
2213
 */
2214 2215 2216 2217 2218 2219 2220 2221
static int s3c_hsotg_corereset(struct s3c_hsotg *hsotg)
{
	int timeout;
	u32 grstctl;

	dev_dbg(hsotg->dev, "resetting core\n");

	/* issue soft reset */
2222
	writel(GRSTCTL_CSftRst, hsotg->regs + GRSTCTL);
2223

2224
	timeout = 10000;
2225
	do {
2226 2227
		grstctl = readl(hsotg->regs + GRSTCTL);
	} while ((grstctl & GRSTCTL_CSftRst) && timeout-- > 0);
2228

2229
	if (grstctl & GRSTCTL_CSftRst) {
2230 2231 2232 2233
		dev_err(hsotg->dev, "Failed to get CSftRst asserted\n");
		return -EINVAL;
	}

2234
	timeout = 10000;
2235 2236

	while (1) {
2237
		u32 grstctl = readl(hsotg->regs + GRSTCTL);
2238 2239 2240 2241 2242 2243 2244 2245

		if (timeout-- < 0) {
			dev_info(hsotg->dev,
				 "%s: reset failed, GRSTCTL=%08x\n",
				 __func__, grstctl);
			return -ETIMEDOUT;
		}

2246
		if (!(grstctl & GRSTCTL_AHBIdle))
2247 2248 2249 2250 2251 2252 2253 2254 2255
			continue;

		break;		/* reset done */
	}

	dev_dbg(hsotg->dev, "reset successful\n");
	return 0;
}

2256 2257 2258 2259 2260 2261
/**
 * s3c_hsotg_core_init - issue softreset to the core
 * @hsotg: The device state
 *
 * Issue a soft reset to the core, and await the core finishing it.
 */
2262 2263 2264 2265 2266 2267 2268 2269 2270 2271
static void s3c_hsotg_core_init(struct s3c_hsotg *hsotg)
{
	s3c_hsotg_corereset(hsotg);

	/*
	 * we must now enable ep0 ready for host detection and then
	 * set configuration.
	 */

	/* set the PLL on, remove the HNP/SRP and set the PHY */
2272 2273
	writel(GUSBCFG_PHYIf16 | GUSBCFG_TOutCal(7) |
	       (0x5 << 10), hsotg->regs + GUSBCFG);
2274 2275 2276

	s3c_hsotg_init_fifo(hsotg);

2277
	__orr32(hsotg->regs + DCTL, DCTL_SftDiscon);
2278

2279
	writel(1 << 18 | DCFG_DevSpd_HS,  hsotg->regs + DCFG);
2280 2281

	/* Clear any pending OTG interrupts */
2282
	writel(0xffffffff, hsotg->regs + GOTGINT);
2283 2284

	/* Clear any pending interrupts */
2285
	writel(0xffffffff, hsotg->regs + GINTSTS);
2286

2287 2288 2289 2290 2291 2292
	writel(GINTSTS_ErlySusp | GINTSTS_SessReqInt |
	       GINTSTS_GOUTNakEff | GINTSTS_GINNakEff |
	       GINTSTS_ConIDStsChng | GINTSTS_USBRst |
	       GINTSTS_EnumDone | GINTSTS_OTGInt |
	       GINTSTS_USBSusp | GINTSTS_WkUpInt,
	       hsotg->regs + GINTMSK);
2293 2294

	if (using_dma(hsotg))
2295 2296 2297
		writel(GAHBCFG_GlblIntrEn | GAHBCFG_DMAEn |
		       GAHBCFG_HBstLen_Incr4,
		       hsotg->regs + GAHBCFG);
2298
	else
2299
		writel(GAHBCFG_GlblIntrEn, hsotg->regs + GAHBCFG);
2300 2301 2302 2303 2304 2305 2306

	/*
	 * Enabling INTknTXFEmpMsk here seems to be a big mistake, we end
	 * up being flooded with interrupts if the host is polling the
	 * endpoint to try and read data.
	 */

2307 2308 2309 2310 2311
	writel(((hsotg->dedicated_fifos) ? DIEPMSK_TxFIFOEmpty : 0) |
	       DIEPMSK_EPDisbldMsk | DIEPMSK_XferComplMsk |
	       DIEPMSK_TimeOUTMsk | DIEPMSK_AHBErrMsk |
	       DIEPMSK_INTknEPMisMsk,
	       hsotg->regs + DIEPMSK);
2312 2313 2314 2315 2316

	/*
	 * don't need XferCompl, we get that from RXFIFO in slave mode. In
	 * DMA mode we may need this.
	 */
2317 2318 2319 2320 2321
	writel((using_dma(hsotg) ? (DIEPMSK_XferComplMsk |
				    DIEPMSK_TimeOUTMsk) : 0) |
	       DOEPMSK_EPDisbldMsk | DOEPMSK_AHBErrMsk |
	       DOEPMSK_SetupMsk,
	       hsotg->regs + DOEPMSK);
2322

2323
	writel(0, hsotg->regs + DAINTMSK);
2324 2325

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2326 2327
		readl(hsotg->regs + DIEPCTL0),
		readl(hsotg->regs + DOEPCTL0));
2328 2329

	/* enable in and out endpoint interrupts */
2330
	s3c_hsotg_en_gsint(hsotg, GINTSTS_OEPInt | GINTSTS_IEPInt);
2331 2332 2333 2334 2335 2336 2337

	/*
	 * Enable the RXFIFO when in slave mode, as this is how we collect
	 * the data. In DMA mode, we get events from the FIFO but also
	 * things we cannot process, so do not use it.
	 */
	if (!using_dma(hsotg))
2338
		s3c_hsotg_en_gsint(hsotg, GINTSTS_RxFLvl);
2339 2340 2341 2342 2343

	/* Enable interrupts for EP0 in and out */
	s3c_hsotg_ctrl_epint(hsotg, 0, 0, 1);
	s3c_hsotg_ctrl_epint(hsotg, 0, 1, 1);

2344
	__orr32(hsotg->regs + DCTL, DCTL_PWROnPrgDone);
2345
	udelay(10);  /* see openiboot */
2346
	__bic32(hsotg->regs + DCTL, DCTL_PWROnPrgDone);
2347

2348
	dev_dbg(hsotg->dev, "DCTL=0x%08x\n", readl(hsotg->regs + DCTL));
2349 2350

	/*
2351
	 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
2352 2353 2354 2355
	 * writing to the EPCTL register..
	 */

	/* set to read 1 8byte packet */
2356 2357
	writel(DxEPTSIZ_MC(1) | DxEPTSIZ_PktCnt(1) |
	       DxEPTSIZ_XferSize(8), hsotg->regs + DOEPTSIZ0);
2358 2359

	writel(s3c_hsotg_ep0_mps(hsotg->eps[0].ep.maxpacket) |
2360 2361 2362
	       DxEPCTL_CNAK | DxEPCTL_EPEna |
	       DxEPCTL_USBActEp,
	       hsotg->regs + DOEPCTL0);
2363 2364 2365

	/* enable, but don't activate EP0in */
	writel(s3c_hsotg_ep0_mps(hsotg->eps[0].ep.maxpacket) |
2366
	       DxEPCTL_USBActEp, hsotg->regs + DIEPCTL0);
2367 2368 2369 2370

	s3c_hsotg_enqueue_setup(hsotg);

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2371 2372
		readl(hsotg->regs + DIEPCTL0),
		readl(hsotg->regs + DOEPCTL0));
2373 2374

	/* clear global NAKs */
2375 2376
	writel(DCTL_CGOUTNak | DCTL_CGNPInNAK,
	       hsotg->regs + DCTL);
2377 2378 2379 2380 2381

	/* must be at-least 3ms to allow bus to see disconnect */
	mdelay(3);

	/* remove the soft-disconnect and let's go */
2382
	__bic32(hsotg->regs + DCTL, DCTL_SftDiscon);
2383 2384
}

2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396
/**
 * s3c_hsotg_irq - handle device interrupt
 * @irq: The IRQ number triggered
 * @pw: The pw value when registered the handler.
 */
static irqreturn_t s3c_hsotg_irq(int irq, void *pw)
{
	struct s3c_hsotg *hsotg = pw;
	int retry_count = 8;
	u32 gintsts;
	u32 gintmsk;

2397
	spin_lock(&hsotg->lock);
2398
irq_retry:
2399 2400
	gintsts = readl(hsotg->regs + GINTSTS);
	gintmsk = readl(hsotg->regs + GINTMSK);
2401 2402 2403 2404 2405 2406

	dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
		__func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);

	gintsts &= gintmsk;

2407 2408
	if (gintsts & GINTSTS_OTGInt) {
		u32 otgint = readl(hsotg->regs + GOTGINT);
2409 2410 2411

		dev_info(hsotg->dev, "OTGInt: %08x\n", otgint);

2412
		writel(otgint, hsotg->regs + GOTGINT);
2413 2414
	}

2415
	if (gintsts & GINTSTS_SessReqInt) {
2416
		dev_dbg(hsotg->dev, "%s: SessReqInt\n", __func__);
2417
		writel(GINTSTS_SessReqInt, hsotg->regs + GINTSTS);
2418 2419
	}

2420 2421
	if (gintsts & GINTSTS_EnumDone) {
		writel(GINTSTS_EnumDone, hsotg->regs + GINTSTS);
2422 2423

		s3c_hsotg_irq_enumdone(hsotg);
2424 2425
	}

2426
	if (gintsts & GINTSTS_ConIDStsChng) {
2427
		dev_dbg(hsotg->dev, "ConIDStsChg (DSTS=0x%08x, GOTCTL=%08x)\n",
2428 2429
			readl(hsotg->regs + DSTS),
			readl(hsotg->regs + GOTGCTL));
2430

2431
		writel(GINTSTS_ConIDStsChng, hsotg->regs + GINTSTS);
2432 2433
	}

2434 2435 2436 2437
	if (gintsts & (GINTSTS_OEPInt | GINTSTS_IEPInt)) {
		u32 daint = readl(hsotg->regs + DAINT);
		u32 daint_out = daint >> DAINT_OutEP_SHIFT;
		u32 daint_in = daint & ~(daint_out << DAINT_OutEP_SHIFT);
2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452
		int ep;

		dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);

		for (ep = 0; ep < 15 && daint_out; ep++, daint_out >>= 1) {
			if (daint_out & 1)
				s3c_hsotg_epint(hsotg, ep, 0);
		}

		for (ep = 0; ep < 15 && daint_in; ep++, daint_in >>= 1) {
			if (daint_in & 1)
				s3c_hsotg_epint(hsotg, ep, 1);
		}
	}

2453
	if (gintsts & GINTSTS_USBRst) {
2454

2455
		u32 usb_status = readl(hsotg->regs + GOTGCTL);
2456

2457 2458
		dev_info(hsotg->dev, "%s: USBRst\n", __func__);
		dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
2459
			readl(hsotg->regs + GNPTXSTS));
2460

2461
		writel(GINTSTS_USBRst, hsotg->regs + GINTSTS);
2462

2463
		if (usb_status & GOTGCTL_BSESVLD) {
2464 2465
			if (time_after(jiffies, hsotg->last_rst +
				       msecs_to_jiffies(200))) {
2466

2467 2468
				kill_all_requests(hsotg, &hsotg->eps[0],
							  -ECONNRESET, true);
2469

2470 2471 2472 2473
				s3c_hsotg_core_init(hsotg);
				hsotg->last_rst = jiffies;
			}
		}
2474 2475 2476 2477
	}

	/* check both FIFOs */

2478
	if (gintsts & GINTSTS_NPTxFEmp) {
2479 2480
		dev_dbg(hsotg->dev, "NPTxFEmp\n");

2481 2482
		/*
		 * Disable the interrupt to stop it happening again
2483
		 * unless one of these endpoint routines decides that
2484 2485
		 * it needs re-enabling
		 */
2486

2487
		s3c_hsotg_disable_gsint(hsotg, GINTSTS_NPTxFEmp);
2488 2489 2490
		s3c_hsotg_irq_fifoempty(hsotg, false);
	}

2491
	if (gintsts & GINTSTS_PTxFEmp) {
2492 2493
		dev_dbg(hsotg->dev, "PTxFEmp\n");

2494
		/* See note in GINTSTS_NPTxFEmp */
2495

2496
		s3c_hsotg_disable_gsint(hsotg, GINTSTS_PTxFEmp);
2497 2498 2499
		s3c_hsotg_irq_fifoempty(hsotg, true);
	}

2500
	if (gintsts & GINTSTS_RxFLvl) {
2501 2502
		/*
		 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
2503
		 * we need to retry s3c_hsotg_handle_rx if this is still
2504 2505
		 * set.
		 */
2506 2507 2508 2509

		s3c_hsotg_handle_rx(hsotg);
	}

2510
	if (gintsts & GINTSTS_ModeMis) {
2511
		dev_warn(hsotg->dev, "warning, mode mismatch triggered\n");
2512
		writel(GINTSTS_ModeMis, hsotg->regs + GINTSTS);
2513 2514
	}

2515 2516 2517
	if (gintsts & GINTSTS_USBSusp) {
		dev_info(hsotg->dev, "GINTSTS_USBSusp\n");
		writel(GINTSTS_USBSusp, hsotg->regs + GINTSTS);
2518 2519

		call_gadget(hsotg, suspend);
2520
		s3c_hsotg_disconnect(hsotg);
2521 2522
	}

2523 2524 2525
	if (gintsts & GINTSTS_WkUpInt) {
		dev_info(hsotg->dev, "GINTSTS_WkUpIn\n");
		writel(GINTSTS_WkUpInt, hsotg->regs + GINTSTS);
2526 2527 2528 2529

		call_gadget(hsotg, resume);
	}

2530 2531 2532
	if (gintsts & GINTSTS_ErlySusp) {
		dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
		writel(GINTSTS_ErlySusp, hsotg->regs + GINTSTS);
2533 2534
	}

2535 2536
	/*
	 * these next two seem to crop-up occasionally causing the core
2537
	 * to shutdown the USB transfer, so try clearing them and logging
2538 2539
	 * the occurrence.
	 */
2540

2541
	if (gintsts & GINTSTS_GOUTNakEff) {
2542 2543
		dev_info(hsotg->dev, "GOUTNakEff triggered\n");

2544
		writel(DCTL_CGOUTNak, hsotg->regs + DCTL);
2545 2546

		s3c_hsotg_dump(hsotg);
2547 2548
	}

2549
	if (gintsts & GINTSTS_GINNakEff) {
2550 2551
		dev_info(hsotg->dev, "GINNakEff triggered\n");

2552
		writel(DCTL_CGNPInNAK, hsotg->regs + DCTL);
2553 2554

		s3c_hsotg_dump(hsotg);
2555 2556
	}

2557 2558 2559 2560
	/*
	 * if we've had fifo events, we should try and go around the
	 * loop again to see if there's any point in returning yet.
	 */
2561 2562 2563 2564

	if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
			goto irq_retry;

2565 2566
	spin_unlock(&hsotg->lock);

2567 2568 2569 2570 2571 2572 2573 2574 2575
	return IRQ_HANDLED;
}

/**
 * s3c_hsotg_ep_enable - enable the given endpoint
 * @ep: The USB endpint to configure
 * @desc: The USB endpoint descriptor to configure with.
 *
 * This is called from the USB gadget code's usb_ep_enable().
2576
 */
2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587
static int s3c_hsotg_ep_enable(struct usb_ep *ep,
			       const struct usb_endpoint_descriptor *desc)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
	struct s3c_hsotg *hsotg = hs_ep->parent;
	unsigned long flags;
	int index = hs_ep->index;
	u32 epctrl_reg;
	u32 epctrl;
	u32 mps;
	int dir_in;
2588
	int ret = 0;
2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603

	dev_dbg(hsotg->dev,
		"%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
		__func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
		desc->wMaxPacketSize, desc->bInterval);

	/* not to be called for EP0 */
	WARN_ON(index == 0);

	dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
	if (dir_in != hs_ep->dir_in) {
		dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
		return -EINVAL;
	}

2604
	mps = usb_endpoint_maxp(desc);
2605 2606 2607

	/* note, we handle this here instead of s3c_hsotg_set_ep_maxpacket */

2608
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
2609 2610 2611 2612 2613
	epctrl = readl(hsotg->regs + epctrl_reg);

	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
		__func__, epctrl, epctrl_reg);

2614
	spin_lock_irqsave(&hsotg->lock, flags);
2615

2616 2617
	epctrl &= ~(DxEPCTL_EPType_MASK | DxEPCTL_MPS_MASK);
	epctrl |= DxEPCTL_MPS(mps);
2618

2619 2620 2621 2622
	/*
	 * mark the endpoint as active, otherwise the core may ignore
	 * transactions entirely for this endpoint
	 */
2623
	epctrl |= DxEPCTL_USBActEp;
2624

2625 2626
	/*
	 * set the NAK status on the endpoint, otherwise we might try and
2627 2628 2629 2630 2631
	 * do something with data that we've yet got a request to process
	 * since the RXFIFO will take data for an endpoint even if the
	 * size register hasn't been set.
	 */

2632
	epctrl |= DxEPCTL_SNAK;
2633 2634

	/* update the endpoint state */
2635
	s3c_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps);
2636 2637

	/* default, set to non-periodic */
2638
	hs_ep->isochronous = 0;
2639
	hs_ep->periodic = 0;
2640
	hs_ep->interval = desc->bInterval;
2641

2642 2643 2644
	if (hs_ep->interval > 1 && hs_ep->mc > 1)
		dev_err(hsotg->dev, "MC > 1 when interval is not 1\n");

2645 2646
	switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
	case USB_ENDPOINT_XFER_ISOC:
2647 2648 2649 2650 2651 2652
		epctrl |= DxEPCTL_EPType_Iso;
		epctrl |= DxEPCTL_SetEvenFr;
		hs_ep->isochronous = 1;
		if (dir_in)
			hs_ep->periodic = 1;
		break;
2653 2654

	case USB_ENDPOINT_XFER_BULK:
2655
		epctrl |= DxEPCTL_EPType_Bulk;
2656 2657 2658 2659
		break;

	case USB_ENDPOINT_XFER_INT:
		if (dir_in) {
2660 2661
			/*
			 * Allocate our TxFNum by simply using the index
2662 2663
			 * of the endpoint for the moment. We could do
			 * something better if the host indicates how
2664 2665
			 * many FIFOs we are expecting to use.
			 */
2666 2667

			hs_ep->periodic = 1;
2668
			epctrl |= DxEPCTL_TxFNum(index);
2669 2670
		}

2671
		epctrl |= DxEPCTL_EPType_Intterupt;
2672 2673 2674
		break;

	case USB_ENDPOINT_XFER_CONTROL:
2675
		epctrl |= DxEPCTL_EPType_Control;
2676 2677 2678
		break;
	}

2679 2680
	/*
	 * if the hardware has dedicated fifos, we must give each IN EP
2681 2682 2683
	 * a unique tx-fifo even if it is non-periodic.
	 */
	if (dir_in && hsotg->dedicated_fifos)
2684
		epctrl |= DxEPCTL_TxFNum(index);
2685

2686 2687
	/* for non control endpoints, set PID to D0 */
	if (index)
2688
		epctrl |= DxEPCTL_SetD0PID;
2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699

	dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
		__func__, epctrl);

	writel(epctrl, hsotg->regs + epctrl_reg);
	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
		__func__, readl(hsotg->regs + epctrl_reg));

	/* enable the endpoint interrupt */
	s3c_hsotg_ctrl_epint(hsotg, index, dir_in, 1);

2700
	spin_unlock_irqrestore(&hsotg->lock, flags);
2701
	return ret;
2702 2703
}

2704 2705 2706 2707
/**
 * s3c_hsotg_ep_disable - disable given endpoint
 * @ep: The endpoint to disable.
 */
2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724
static int s3c_hsotg_ep_disable(struct usb_ep *ep)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
	struct s3c_hsotg *hsotg = hs_ep->parent;
	int dir_in = hs_ep->dir_in;
	int index = hs_ep->index;
	unsigned long flags;
	u32 epctrl_reg;
	u32 ctrl;

	dev_info(hsotg->dev, "%s(ep %p)\n", __func__, ep);

	if (ep == &hsotg->eps[0].ep) {
		dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
		return -EINVAL;
	}

2725
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
2726

2727
	spin_lock_irqsave(&hsotg->lock, flags);
2728 2729 2730 2731 2732
	/* terminate all requests with shutdown */
	kill_all_requests(hsotg, hs_ep, -ESHUTDOWN, false);


	ctrl = readl(hsotg->regs + epctrl_reg);
2733 2734 2735
	ctrl &= ~DxEPCTL_EPEna;
	ctrl &= ~DxEPCTL_USBActEp;
	ctrl |= DxEPCTL_SNAK;
2736 2737 2738 2739 2740 2741 2742

	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
	writel(ctrl, hsotg->regs + epctrl_reg);

	/* disable endpoint interrupts */
	s3c_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);

2743
	spin_unlock_irqrestore(&hsotg->lock, flags);
2744 2745 2746 2747 2748 2749 2750
	return 0;
}

/**
 * on_list - check request is on the given endpoint
 * @ep: The endpoint to check.
 * @test: The request to test if it is on the endpoint.
2751
 */
2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763
static bool on_list(struct s3c_hsotg_ep *ep, struct s3c_hsotg_req *test)
{
	struct s3c_hsotg_req *req, *treq;

	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
		if (req == test)
			return true;
	}

	return false;
}

2764 2765 2766 2767 2768
/**
 * s3c_hsotg_ep_dequeue - dequeue given endpoint
 * @ep: The endpoint to dequeue.
 * @req: The request to be removed from a queue.
 */
2769 2770 2771 2772 2773 2774 2775 2776 2777
static int s3c_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
{
	struct s3c_hsotg_req *hs_req = our_req(req);
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
	struct s3c_hsotg *hs = hs_ep->parent;
	unsigned long flags;

	dev_info(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);

2778
	spin_lock_irqsave(&hs->lock, flags);
2779 2780

	if (!on_list(hs_ep, hs_req)) {
2781
		spin_unlock_irqrestore(&hs->lock, flags);
2782 2783 2784 2785
		return -EINVAL;
	}

	s3c_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
2786
	spin_unlock_irqrestore(&hs->lock, flags);
2787 2788 2789 2790

	return 0;
}

2791 2792 2793 2794 2795
/**
 * s3c_hsotg_ep_sethalt - set halt on a given endpoint
 * @ep: The endpoint to set halt.
 * @value: Set or unset the halt.
 */
2796 2797 2798 2799 2800 2801 2802
static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
	struct s3c_hsotg *hs = hs_ep->parent;
	int index = hs_ep->index;
	u32 epreg;
	u32 epctl;
2803
	u32 xfertype;
2804 2805 2806 2807 2808

	dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);

	/* write both IN and OUT control registers */

2809
	epreg = DIEPCTL(index);
2810 2811
	epctl = readl(hs->regs + epreg);

2812
	if (value) {
2813 2814 2815
		epctl |= DxEPCTL_Stall + DxEPCTL_SNAK;
		if (epctl & DxEPCTL_EPEna)
			epctl |= DxEPCTL_EPDis;
2816
	} else {
2817 2818 2819 2820 2821
		epctl &= ~DxEPCTL_Stall;
		xfertype = epctl & DxEPCTL_EPType_MASK;
		if (xfertype == DxEPCTL_EPType_Bulk ||
			xfertype == DxEPCTL_EPType_Intterupt)
				epctl |= DxEPCTL_SetD0PID;
2822
	}
2823 2824 2825

	writel(epctl, hs->regs + epreg);

2826
	epreg = DOEPCTL(index);
2827 2828 2829
	epctl = readl(hs->regs + epreg);

	if (value)
2830
		epctl |= DxEPCTL_Stall;
2831
	else {
2832 2833 2834 2835 2836
		epctl &= ~DxEPCTL_Stall;
		xfertype = epctl & DxEPCTL_EPType_MASK;
		if (xfertype == DxEPCTL_EPType_Bulk ||
			xfertype == DxEPCTL_EPType_Intterupt)
				epctl |= DxEPCTL_SetD0PID;
2837
	}
2838 2839 2840 2841 2842 2843

	writel(epctl, hs->regs + epreg);

	return 0;
}

2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862
/**
 * s3c_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
 * @ep: The endpoint to set halt.
 * @value: Set or unset the halt.
 */
static int s3c_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
	struct s3c_hsotg *hs = hs_ep->parent;
	unsigned long flags = 0;
	int ret = 0;

	spin_lock_irqsave(&hs->lock, flags);
	ret = s3c_hsotg_ep_sethalt(ep, value);
	spin_unlock_irqrestore(&hs->lock, flags);

	return ret;
}

2863 2864 2865 2866 2867
static struct usb_ep_ops s3c_hsotg_ep_ops = {
	.enable		= s3c_hsotg_ep_enable,
	.disable	= s3c_hsotg_ep_disable,
	.alloc_request	= s3c_hsotg_ep_alloc_request,
	.free_request	= s3c_hsotg_ep_free_request,
2868
	.queue		= s3c_hsotg_ep_queue_lock,
2869
	.dequeue	= s3c_hsotg_ep_dequeue,
2870
	.set_halt	= s3c_hsotg_ep_sethalt_lock,
L
Lucas De Marchi 已提交
2871
	/* note, don't believe we have any call for the fifo routines */
2872 2873
};

2874 2875
/**
 * s3c_hsotg_phy_enable - enable platform phy dev
2876
 * @hsotg: The driver state
2877 2878 2879 2880 2881 2882 2883 2884 2885
 *
 * A wrapper for platform code responsible for controlling
 * low-level USB code
 */
static void s3c_hsotg_phy_enable(struct s3c_hsotg *hsotg)
{
	struct platform_device *pdev = to_platform_device(hsotg->dev);

	dev_dbg(hsotg->dev, "pdev 0x%p\n", pdev);
2886 2887 2888 2889

	if (hsotg->phy)
		usb_phy_init(hsotg->phy);
	else if (hsotg->plat->phy_init)
2890 2891 2892 2893 2894
		hsotg->plat->phy_init(pdev, hsotg->plat->phy_type);
}

/**
 * s3c_hsotg_phy_disable - disable platform phy dev
2895
 * @hsotg: The driver state
2896 2897 2898 2899 2900 2901 2902 2903
 *
 * A wrapper for platform code responsible for controlling
 * low-level USB code
 */
static void s3c_hsotg_phy_disable(struct s3c_hsotg *hsotg)
{
	struct platform_device *pdev = to_platform_device(hsotg->dev);

2904 2905 2906
	if (hsotg->phy)
		usb_phy_shutdown(hsotg->phy);
	else if (hsotg->plat->phy_exit)
2907 2908 2909
		hsotg->plat->phy_exit(pdev, hsotg->plat->phy_type);
}

2910 2911 2912 2913
/**
 * s3c_hsotg_init - initalize the usb core
 * @hsotg: The driver state
 */
2914 2915 2916 2917
static void s3c_hsotg_init(struct s3c_hsotg *hsotg)
{
	/* unmask subset of endpoint interrupts */

2918 2919 2920
	writel(DIEPMSK_TimeOUTMsk | DIEPMSK_AHBErrMsk |
	       DIEPMSK_EPDisbldMsk | DIEPMSK_XferComplMsk,
	       hsotg->regs + DIEPMSK);
2921

2922 2923 2924
	writel(DOEPMSK_SetupMsk | DOEPMSK_AHBErrMsk |
	       DOEPMSK_EPDisbldMsk | DOEPMSK_XferComplMsk,
	       hsotg->regs + DOEPMSK);
2925

2926
	writel(0, hsotg->regs + DAINTMSK);
2927 2928

	/* Be in disconnected state until gadget is registered */
2929
	__orr32(hsotg->regs + DCTL, DCTL_SftDiscon);
2930 2931 2932

	if (0) {
		/* post global nak until we're ready */
2933 2934
		writel(DCTL_SGNPInNAK | DCTL_SGOUTNak,
		       hsotg->regs + DCTL);
2935 2936 2937 2938 2939
	}

	/* setup fifos */

	dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
2940 2941
		readl(hsotg->regs + GRXFSIZ),
		readl(hsotg->regs + GNPTXFSIZ));
2942 2943 2944 2945

	s3c_hsotg_init_fifo(hsotg);

	/* set the PLL on, remove the HNP/SRP and set the PHY */
2946 2947
	writel(GUSBCFG_PHYIf16 | GUSBCFG_TOutCal(7) | (0x5 << 10),
	       hsotg->regs + GUSBCFG);
2948

2949 2950
	writel(using_dma(hsotg) ? GAHBCFG_DMAEn : 0x0,
	       hsotg->regs + GAHBCFG);
2951 2952
}

2953 2954 2955 2956 2957 2958 2959 2960
/**
 * s3c_hsotg_udc_start - prepare the udc for work
 * @gadget: The usb gadget state
 * @driver: The usb gadget driver
 *
 * Perform initialization to prepare udc device and driver
 * to work.
 */
2961 2962
static int s3c_hsotg_udc_start(struct usb_gadget *gadget,
			   struct usb_gadget_driver *driver)
2963
{
2964
	struct s3c_hsotg *hsotg = to_hsotg(gadget);
2965 2966 2967
	int ret;

	if (!hsotg) {
2968
		pr_err("%s: called with no device\n", __func__);
2969 2970 2971 2972 2973 2974 2975 2976
		return -ENODEV;
	}

	if (!driver) {
		dev_err(hsotg->dev, "%s: no driver\n", __func__);
		return -EINVAL;
	}

2977
	if (driver->max_speed < USB_SPEED_FULL)
2978 2979
		dev_err(hsotg->dev, "%s: bad speed\n", __func__);

2980
	if (!driver->setup) {
2981 2982 2983 2984 2985 2986 2987 2988
		dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
		return -EINVAL;
	}

	WARN_ON(hsotg->driver);

	driver->driver.bus = NULL;
	hsotg->driver = driver;
2989
	hsotg->gadget.dev.of_node = hsotg->dev->of_node;
2990 2991
	hsotg->gadget.speed = USB_SPEED_UNKNOWN;

2992 2993
	ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
				    hsotg->supplies);
2994
	if (ret) {
2995
		dev_err(hsotg->dev, "failed to enable supplies: %d\n", ret);
2996 2997 2998
		goto err;
	}

2999
	hsotg->last_rst = jiffies;
3000 3001 3002 3003 3004 3005 3006 3007
	dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
	return 0;

err:
	hsotg->driver = NULL;
	return ret;
}

3008 3009 3010 3011 3012 3013 3014
/**
 * s3c_hsotg_udc_stop - stop the udc
 * @gadget: The usb gadget state
 * @driver: The usb gadget driver
 *
 * Stop udc hw block and stay tunned for future transmissions
 */
3015 3016
static int s3c_hsotg_udc_stop(struct usb_gadget *gadget,
			  struct usb_gadget_driver *driver)
3017
{
3018
	struct s3c_hsotg *hsotg = to_hsotg(gadget);
3019
	unsigned long flags = 0;
3020 3021 3022 3023 3024 3025
	int ep;

	if (!hsotg)
		return -ENODEV;

	/* all endpoints should be shutdown */
3026
	for (ep = 0; ep < hsotg->num_of_eps; ep++)
3027 3028
		s3c_hsotg_ep_disable(&hsotg->eps[ep].ep);

3029 3030
	spin_lock_irqsave(&hsotg->lock, flags);

3031
	s3c_hsotg_phy_disable(hsotg);
3032

3033 3034 3035
	if (!driver)
		hsotg->driver = NULL;

3036 3037
	hsotg->gadget.speed = USB_SPEED_UNKNOWN;

3038 3039
	spin_unlock_irqrestore(&hsotg->lock, flags);

3040
	regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies), hsotg->supplies);
3041 3042 3043 3044

	return 0;
}

3045 3046 3047 3048 3049 3050
/**
 * s3c_hsotg_gadget_getframe - read the frame number
 * @gadget: The usb gadget state
 *
 * Read the {micro} frame number
 */
3051 3052 3053 3054 3055
static int s3c_hsotg_gadget_getframe(struct usb_gadget *gadget)
{
	return s3c_hsotg_read_frameno(to_hsotg(gadget));
}

3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084
/**
 * s3c_hsotg_pullup - connect/disconnect the USB PHY
 * @gadget: The usb gadget state
 * @is_on: Current state of the USB PHY
 *
 * Connect/Disconnect the USB PHY pullup
 */
static int s3c_hsotg_pullup(struct usb_gadget *gadget, int is_on)
{
	struct s3c_hsotg *hsotg = to_hsotg(gadget);
	unsigned long flags = 0;

	dev_dbg(hsotg->dev, "%s: is_in: %d\n", __func__, is_on);

	spin_lock_irqsave(&hsotg->lock, flags);
	if (is_on) {
		s3c_hsotg_phy_enable(hsotg);
		s3c_hsotg_core_init(hsotg);
	} else {
		s3c_hsotg_disconnect(hsotg);
		s3c_hsotg_phy_disable(hsotg);
	}

	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
	spin_unlock_irqrestore(&hsotg->lock, flags);

	return 0;
}

3085
static const struct usb_gadget_ops s3c_hsotg_gadget_ops = {
3086
	.get_frame	= s3c_hsotg_gadget_getframe,
3087 3088
	.udc_start		= s3c_hsotg_udc_start,
	.udc_stop		= s3c_hsotg_udc_stop,
3089
	.pullup                 = s3c_hsotg_pullup,
3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101
};

/**
 * s3c_hsotg_initep - initialise a single endpoint
 * @hsotg: The device state.
 * @hs_ep: The endpoint to be initialised.
 * @epnum: The endpoint number
 *
 * Initialise the given endpoint (as part of the probe and device state
 * creation) to give to the gadget driver. Setup the endpoint name, any
 * direction information and other state that may be required.
 */
B
Bill Pemberton 已提交
3102
static void s3c_hsotg_initep(struct s3c_hsotg *hsotg,
3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130
				       struct s3c_hsotg_ep *hs_ep,
				       int epnum)
{
	u32 ptxfifo;
	char *dir;

	if (epnum == 0)
		dir = "";
	else if ((epnum % 2) == 0) {
		dir = "out";
	} else {
		dir = "in";
		hs_ep->dir_in = 1;
	}

	hs_ep->index = epnum;

	snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);

	INIT_LIST_HEAD(&hs_ep->queue);
	INIT_LIST_HEAD(&hs_ep->ep.ep_list);

	/* add to the list of endpoints known by the gadget driver */
	if (epnum)
		list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);

	hs_ep->parent = hsotg;
	hs_ep->ep.name = hs_ep->name;
3131
	hs_ep->ep.maxpacket = epnum ? 1024 : EP0_MPS_LIMIT;
3132 3133
	hs_ep->ep.ops = &s3c_hsotg_ep_ops;

3134 3135
	/*
	 * Read the FIFO size for the Periodic TX FIFO, even if we're
3136 3137 3138 3139
	 * an OUT endpoint, we may as well do this if in future the
	 * code is changed to make each endpoint's direction changeable.
	 */

3140 3141
	ptxfifo = readl(hsotg->regs + DPTXFSIZn(epnum));
	hs_ep->fifo_size = DPTXFSIZn_DPTxFSize_GET(ptxfifo) * 4;
3142

3143 3144
	/*
	 * if we're using dma, we need to set the next-endpoint pointer
3145 3146 3147 3148
	 * to be something valid.
	 */

	if (using_dma(hsotg)) {
3149 3150 3151
		u32 next = DxEPCTL_NextEp((epnum + 1) % 15);
		writel(next, hsotg->regs + DIEPCTL(epnum));
		writel(next, hsotg->regs + DOEPCTL(epnum));
3152 3153 3154
	}
}

3155 3156 3157 3158 3159 3160 3161
/**
 * s3c_hsotg_hw_cfg - read HW configuration registers
 * @param: The device state
 *
 * Read the USB core HW configuration registers
 */
static void s3c_hsotg_hw_cfg(struct s3c_hsotg *hsotg)
3162
{
3163 3164
	u32 cfg2, cfg4;
	/* check hardware configuration */
3165

3166 3167
	cfg2 = readl(hsotg->regs + 0x48);
	hsotg->num_of_eps = (cfg2 >> 10) & 0xF;
3168

3169
	dev_info(hsotg->dev, "EPs:%d\n", hsotg->num_of_eps);
3170 3171 3172 3173 3174 3175

	cfg4 = readl(hsotg->regs + 0x50);
	hsotg->dedicated_fifos = (cfg4 >> 25) & 1;

	dev_info(hsotg->dev, "%s fifos\n",
		 hsotg->dedicated_fifos ? "dedicated" : "shared");
3176 3177
}

3178 3179 3180 3181
/**
 * s3c_hsotg_dump - dump state of the udc
 * @param: The device state
 */
3182 3183
static void s3c_hsotg_dump(struct s3c_hsotg *hsotg)
{
M
Mark Brown 已提交
3184
#ifdef DEBUG
3185 3186 3187 3188 3189 3190
	struct device *dev = hsotg->dev;
	void __iomem *regs = hsotg->regs;
	u32 val;
	int idx;

	dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
3191 3192
		 readl(regs + DCFG), readl(regs + DCTL),
		 readl(regs + DIEPMSK));
3193 3194

	dev_info(dev, "GAHBCFG=0x%08x, 0x44=0x%08x\n",
3195
		 readl(regs + GAHBCFG), readl(regs + 0x44));
3196 3197

	dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
3198
		 readl(regs + GRXFSIZ), readl(regs + GNPTXFSIZ));
3199 3200 3201 3202

	/* show periodic fifo settings */

	for (idx = 1; idx <= 15; idx++) {
3203
		val = readl(regs + DPTXFSIZn(idx));
3204
		dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
3205 3206
			 val >> DPTXFSIZn_DPTxFSize_SHIFT,
			 val & DPTXFSIZn_DPTxFStAddr_MASK);
3207 3208 3209 3210 3211
	}

	for (idx = 0; idx < 15; idx++) {
		dev_info(dev,
			 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
3212 3213 3214
			 readl(regs + DIEPCTL(idx)),
			 readl(regs + DIEPTSIZ(idx)),
			 readl(regs + DIEPDMA(idx)));
3215

3216
		val = readl(regs + DOEPCTL(idx));
3217 3218
		dev_info(dev,
			 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
3219 3220 3221
			 idx, readl(regs + DOEPCTL(idx)),
			 readl(regs + DOEPTSIZ(idx)),
			 readl(regs + DOEPDMA(idx)));
3222 3223 3224 3225

	}

	dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
3226
		 readl(regs + DVBUSDIS), readl(regs + DVBUSPULSE));
M
Mark Brown 已提交
3227
#endif
3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245
}

/**
 * state_show - debugfs: show overall driver and device state.
 * @seq: The seq file to write to.
 * @v: Unused parameter.
 *
 * This debugfs entry shows the overall state of the hardware and
 * some general information about each of the endpoints available
 * to the system.
 */
static int state_show(struct seq_file *seq, void *v)
{
	struct s3c_hsotg *hsotg = seq->private;
	void __iomem *regs = hsotg->regs;
	int idx;

	seq_printf(seq, "DCFG=0x%08x, DCTL=0x%08x, DSTS=0x%08x\n",
3246 3247 3248
		 readl(regs + DCFG),
		 readl(regs + DCTL),
		 readl(regs + DSTS));
3249 3250

	seq_printf(seq, "DIEPMSK=0x%08x, DOEPMASK=0x%08x\n",
3251
		   readl(regs + DIEPMSK), readl(regs + DOEPMSK));
3252 3253

	seq_printf(seq, "GINTMSK=0x%08x, GINTSTS=0x%08x\n",
3254 3255
		   readl(regs + GINTMSK),
		   readl(regs + GINTSTS));
3256 3257

	seq_printf(seq, "DAINTMSK=0x%08x, DAINT=0x%08x\n",
3258 3259
		   readl(regs + DAINTMSK),
		   readl(regs + DAINT));
3260 3261

	seq_printf(seq, "GNPTXSTS=0x%08x, GRXSTSR=%08x\n",
3262 3263
		   readl(regs + GNPTXSTS),
		   readl(regs + GRXSTSR));
3264

3265
	seq_puts(seq, "\nEndpoint status:\n");
3266 3267 3268 3269

	for (idx = 0; idx < 15; idx++) {
		u32 in, out;

3270 3271
		in = readl(regs + DIEPCTL(idx));
		out = readl(regs + DOEPCTL(idx));
3272 3273 3274 3275

		seq_printf(seq, "ep%d: DIEPCTL=0x%08x, DOEPCTL=0x%08x",
			   idx, in, out);

3276 3277
		in = readl(regs + DIEPTSIZ(idx));
		out = readl(regs + DOEPTSIZ(idx));
3278 3279 3280 3281

		seq_printf(seq, ", DIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x",
			   in, out);

3282
		seq_puts(seq, "\n");
3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307
	}

	return 0;
}

static int state_open(struct inode *inode, struct file *file)
{
	return single_open(file, state_show, inode->i_private);
}

static const struct file_operations state_fops = {
	.owner		= THIS_MODULE,
	.open		= state_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

/**
 * fifo_show - debugfs: show the fifo information
 * @seq: The seq_file to write data to.
 * @v: Unused parameter.
 *
 * Show the FIFO information for the overall fifo and all the
 * periodic transmission FIFOs.
3308
 */
3309 3310 3311 3312 3313 3314 3315
static int fifo_show(struct seq_file *seq, void *v)
{
	struct s3c_hsotg *hsotg = seq->private;
	void __iomem *regs = hsotg->regs;
	u32 val;
	int idx;

3316
	seq_puts(seq, "Non-periodic FIFOs:\n");
3317
	seq_printf(seq, "RXFIFO: Size %d\n", readl(regs + GRXFSIZ));
3318

3319
	val = readl(regs + GNPTXFSIZ);
3320
	seq_printf(seq, "NPTXFIFO: Size %d, Start 0x%08x\n",
3321 3322
		   val >> GNPTXFSIZ_NPTxFDep_SHIFT,
		   val & GNPTXFSIZ_NPTxFStAddr_MASK);
3323

3324
	seq_puts(seq, "\nPeriodic TXFIFOs:\n");
3325 3326

	for (idx = 1; idx <= 15; idx++) {
3327
		val = readl(regs + DPTXFSIZn(idx));
3328 3329

		seq_printf(seq, "\tDPTXFIFO%2d: Size %d, Start 0x%08x\n", idx,
3330 3331
			   val >> DPTXFSIZn_DPTxFSize_SHIFT,
			   val & DPTXFSIZn_DPTxFStAddr_MASK);
3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362
	}

	return 0;
}

static int fifo_open(struct inode *inode, struct file *file)
{
	return single_open(file, fifo_show, inode->i_private);
}

static const struct file_operations fifo_fops = {
	.owner		= THIS_MODULE,
	.open		= fifo_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};


static const char *decode_direction(int is_in)
{
	return is_in ? "in" : "out";
}

/**
 * ep_show - debugfs: show the state of an endpoint.
 * @seq: The seq_file to write data to.
 * @v: Unused parameter.
 *
 * This debugfs entry shows the state of the given endpoint (one is
 * registered for each available).
3363
 */
3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379
static int ep_show(struct seq_file *seq, void *v)
{
	struct s3c_hsotg_ep *ep = seq->private;
	struct s3c_hsotg *hsotg = ep->parent;
	struct s3c_hsotg_req *req;
	void __iomem *regs = hsotg->regs;
	int index = ep->index;
	int show_limit = 15;
	unsigned long flags;

	seq_printf(seq, "Endpoint index %d, named %s,  dir %s:\n",
		   ep->index, ep->ep.name, decode_direction(ep->dir_in));

	/* first show the register state */

	seq_printf(seq, "\tDIEPCTL=0x%08x, DOEPCTL=0x%08x\n",
3380 3381
		   readl(regs + DIEPCTL(index)),
		   readl(regs + DOEPCTL(index)));
3382 3383

	seq_printf(seq, "\tDIEPDMA=0x%08x, DOEPDMA=0x%08x\n",
3384 3385
		   readl(regs + DIEPDMA(index)),
		   readl(regs + DOEPDMA(index)));
3386 3387

	seq_printf(seq, "\tDIEPINT=0x%08x, DOEPINT=0x%08x\n",
3388 3389
		   readl(regs + DIEPINT(index)),
		   readl(regs + DOEPINT(index)));
3390 3391

	seq_printf(seq, "\tDIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x\n",
3392 3393
		   readl(regs + DIEPTSIZ(index)),
		   readl(regs + DOEPTSIZ(index)));
3394

3395
	seq_puts(seq, "\n");
3396 3397 3398 3399 3400 3401
	seq_printf(seq, "mps %d\n", ep->ep.maxpacket);
	seq_printf(seq, "total_data=%ld\n", ep->total_data);

	seq_printf(seq, "request list (%p,%p):\n",
		   ep->queue.next, ep->queue.prev);

3402
	spin_lock_irqsave(&hsotg->lock, flags);
3403 3404 3405

	list_for_each_entry(req, &ep->queue, queue) {
		if (--show_limit < 0) {
3406
			seq_puts(seq, "not showing more requests...\n");
3407 3408 3409 3410 3411 3412 3413 3414 3415 3416
			break;
		}

		seq_printf(seq, "%c req %p: %d bytes @%p, ",
			   req == ep->req ? '*' : ' ',
			   req, req->req.length, req->req.buf);
		seq_printf(seq, "%d done, res %d\n",
			   req->req.actual, req->req.status);
	}

3417
	spin_unlock_irqrestore(&hsotg->lock, flags);
3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442

	return 0;
}

static int ep_open(struct inode *inode, struct file *file)
{
	return single_open(file, ep_show, inode->i_private);
}

static const struct file_operations ep_fops = {
	.owner		= THIS_MODULE,
	.open		= ep_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

/**
 * s3c_hsotg_create_debug - create debugfs directory and files
 * @hsotg: The driver state
 *
 * Create the debugfs files to allow the user to get information
 * about the state of the system. The directory name is created
 * with the same name as the device itself, in case we end up
 * with multiple blocks in future systems.
3443
 */
B
Bill Pemberton 已提交
3444
static void s3c_hsotg_create_debug(struct s3c_hsotg *hsotg)
3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471
{
	struct dentry *root;
	unsigned epidx;

	root = debugfs_create_dir(dev_name(hsotg->dev), NULL);
	hsotg->debug_root = root;
	if (IS_ERR(root)) {
		dev_err(hsotg->dev, "cannot create debug root\n");
		return;
	}

	/* create general state file */

	hsotg->debug_file = debugfs_create_file("state", 0444, root,
						hsotg, &state_fops);

	if (IS_ERR(hsotg->debug_file))
		dev_err(hsotg->dev, "%s: failed to create state\n", __func__);

	hsotg->debug_fifo = debugfs_create_file("fifo", 0444, root,
						hsotg, &fifo_fops);

	if (IS_ERR(hsotg->debug_fifo))
		dev_err(hsotg->dev, "%s: failed to create fifo\n", __func__);

	/* create one file for each endpoint */

3472
	for (epidx = 0; epidx < hsotg->num_of_eps; epidx++) {
3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488
		struct s3c_hsotg_ep *ep = &hsotg->eps[epidx];

		ep->debugfs = debugfs_create_file(ep->name, 0444,
						  root, ep, &ep_fops);

		if (IS_ERR(ep->debugfs))
			dev_err(hsotg->dev, "failed to create %s debug file\n",
				ep->name);
	}
}

/**
 * s3c_hsotg_delete_debug - cleanup debugfs entries
 * @hsotg: The driver state
 *
 * Cleanup (remove) the debugfs files for use on module exit.
3489
 */
B
Bill Pemberton 已提交
3490
static void s3c_hsotg_delete_debug(struct s3c_hsotg *hsotg)
3491 3492 3493
{
	unsigned epidx;

3494
	for (epidx = 0; epidx < hsotg->num_of_eps; epidx++) {
3495 3496 3497 3498 3499 3500 3501 3502 3503
		struct s3c_hsotg_ep *ep = &hsotg->eps[epidx];
		debugfs_remove(ep->debugfs);
	}

	debugfs_remove(hsotg->debug_file);
	debugfs_remove(hsotg->debug_fifo);
	debugfs_remove(hsotg->debug_root);
}

3504 3505 3506 3507
/**
 * s3c_hsotg_probe - probe function for hsotg driver
 * @pdev: The platform information for the driver
 */
3508

B
Bill Pemberton 已提交
3509
static int s3c_hsotg_probe(struct platform_device *pdev)
3510
{
J
Jingoo Han 已提交
3511
	struct s3c_hsotg_plat *plat = dev_get_platdata(&pdev->dev);
3512
	struct usb_phy *phy;
3513
	struct device *dev = &pdev->dev;
3514
	struct s3c_hsotg_ep *eps;
3515 3516 3517 3518
	struct s3c_hsotg *hsotg;
	struct resource *res;
	int epnum;
	int ret;
3519
	int i;
3520

3521
	hsotg = devm_kzalloc(&pdev->dev, sizeof(struct s3c_hsotg), GFP_KERNEL);
3522 3523 3524 3525 3526
	if (!hsotg) {
		dev_err(dev, "cannot get memory\n");
		return -ENOMEM;
	}

3527
	phy = devm_usb_get_phy(dev, USB_PHY_TYPE_USB2);
3528
	if (IS_ERR(phy)) {
3529
		/* Fallback for pdata */
J
Jingoo Han 已提交
3530
		plat = dev_get_platdata(&pdev->dev);
3531 3532 3533 3534 3535 3536 3537 3538 3539 3540
		if (!plat) {
			dev_err(&pdev->dev, "no platform data or transceiver defined\n");
			return -EPROBE_DEFER;
		} else {
			hsotg->plat = plat;
		}
	} else {
		hsotg->phy = phy;
	}

3541 3542
	hsotg->dev = dev;

3543
	hsotg->clk = devm_clk_get(&pdev->dev, "otg");
3544 3545
	if (IS_ERR(hsotg->clk)) {
		dev_err(dev, "cannot get otg clock\n");
3546
		return PTR_ERR(hsotg->clk);
3547 3548
	}

3549 3550 3551 3552
	platform_set_drvdata(pdev, hsotg);

	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);

3553 3554 3555
	hsotg->regs = devm_ioremap_resource(&pdev->dev, res);
	if (IS_ERR(hsotg->regs)) {
		ret = PTR_ERR(hsotg->regs);
3556
		goto err_clk;
3557 3558 3559 3560 3561
	}

	ret = platform_get_irq(pdev, 0);
	if (ret < 0) {
		dev_err(dev, "cannot find IRQ\n");
3562
		goto err_clk;
3563 3564
	}

3565 3566
	spin_lock_init(&hsotg->lock);

3567 3568
	hsotg->irq = ret;

3569 3570
	ret = devm_request_irq(&pdev->dev, hsotg->irq, s3c_hsotg_irq, 0,
				dev_name(dev), hsotg);
3571 3572
	if (ret < 0) {
		dev_err(dev, "cannot claim IRQ\n");
3573
		goto err_clk;
3574 3575 3576 3577
	}

	dev_info(dev, "regs %p, irq %d\n", hsotg->regs, hsotg->irq);

3578
	hsotg->gadget.max_speed = USB_SPEED_HIGH;
3579 3580 3581 3582 3583
	hsotg->gadget.ops = &s3c_hsotg_gadget_ops;
	hsotg->gadget.name = dev_name(dev);

	/* reset the system */

3584
	clk_prepare_enable(hsotg->clk);
3585

3586 3587 3588 3589 3590
	/* regulators */

	for (i = 0; i < ARRAY_SIZE(hsotg->supplies); i++)
		hsotg->supplies[i].supply = s3c_hsotg_supply_names[i];

3591
	ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(hsotg->supplies),
3592 3593 3594
				 hsotg->supplies);
	if (ret) {
		dev_err(dev, "failed to request supplies: %d\n", ret);
3595
		goto err_clk;
3596 3597 3598 3599 3600 3601 3602 3603 3604 3605
	}

	ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
				    hsotg->supplies);

	if (ret) {
		dev_err(hsotg->dev, "failed to enable supplies: %d\n", ret);
		goto err_supplies;
	}

3606 3607
	/* usb phy enable */
	s3c_hsotg_phy_enable(hsotg);
3608 3609 3610

	s3c_hsotg_corereset(hsotg);
	s3c_hsotg_init(hsotg);
3611 3612 3613 3614 3615 3616
	s3c_hsotg_hw_cfg(hsotg);

	/* hsotg->num_of_eps holds number of EPs other than ep0 */

	if (hsotg->num_of_eps == 0) {
		dev_err(dev, "wrong number of EPs (zero)\n");
3617
		ret = -EINVAL;
3618 3619 3620 3621 3622 3623 3624
		goto err_supplies;
	}

	eps = kcalloc(hsotg->num_of_eps + 1, sizeof(struct s3c_hsotg_ep),
		      GFP_KERNEL);
	if (!eps) {
		dev_err(dev, "cannot get memory\n");
3625
		ret = -ENOMEM;
3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641
		goto err_supplies;
	}

	hsotg->eps = eps;

	/* setup endpoint information */

	INIT_LIST_HEAD(&hsotg->gadget.ep_list);
	hsotg->gadget.ep0 = &hsotg->eps[0].ep;

	/* allocate EP0 request */

	hsotg->ctrl_req = s3c_hsotg_ep_alloc_request(&hsotg->eps[0].ep,
						     GFP_KERNEL);
	if (!hsotg->ctrl_req) {
		dev_err(dev, "failed to allocate ctrl req\n");
3642
		ret = -ENOMEM;
3643 3644
		goto err_ep_mem;
	}
3645 3646

	/* initialise the endpoints now the core has been initialised */
3647
	for (epnum = 0; epnum < hsotg->num_of_eps; epnum++)
3648 3649
		s3c_hsotg_initep(hsotg, &hsotg->eps[epnum], epnum);

3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660
	/* disable power and clock */

	ret = regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies),
				    hsotg->supplies);
	if (ret) {
		dev_err(hsotg->dev, "failed to disable supplies: %d\n", ret);
		goto err_ep_mem;
	}

	s3c_hsotg_phy_disable(hsotg);

3661 3662
	ret = usb_add_gadget_udc(&pdev->dev, &hsotg->gadget);
	if (ret)
3663
		goto err_ep_mem;
3664

3665 3666 3667 3668 3669 3670
	s3c_hsotg_create_debug(hsotg);

	s3c_hsotg_dump(hsotg);

	return 0;

3671
err_ep_mem:
3672
	kfree(eps);
3673
err_supplies:
3674
	s3c_hsotg_phy_disable(hsotg);
3675
err_clk:
3676
	clk_disable_unprepare(hsotg->clk);
3677

3678 3679 3680
	return ret;
}

3681 3682 3683 3684
/**
 * s3c_hsotg_remove - remove function for hsotg driver
 * @pdev: The platform information for the driver
 */
B
Bill Pemberton 已提交
3685
static int s3c_hsotg_remove(struct platform_device *pdev)
3686 3687 3688
{
	struct s3c_hsotg *hsotg = platform_get_drvdata(pdev);

3689 3690
	usb_del_gadget_udc(&hsotg->gadget);

3691 3692
	s3c_hsotg_delete_debug(hsotg);

3693 3694 3695 3696
	if (hsotg->driver) {
		/* should have been done already by driver model core */
		usb_gadget_unregister_driver(hsotg->driver);
	}
3697

3698
	s3c_hsotg_phy_disable(hsotg);
3699
	clk_disable_unprepare(hsotg->clk);
3700

3701 3702 3703 3704 3705 3706 3707 3708
	return 0;
}

#if 1
#define s3c_hsotg_suspend NULL
#define s3c_hsotg_resume NULL
#endif

3709 3710 3711 3712 3713 3714 3715 3716
#ifdef CONFIG_OF
static const struct of_device_id s3c_hsotg_of_ids[] = {
	{ .compatible = "samsung,s3c6400-hsotg", },
	{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, s3c_hsotg_of_ids);
#endif

3717 3718 3719 3720
static struct platform_driver s3c_hsotg_driver = {
	.driver		= {
		.name	= "s3c-hsotg",
		.owner	= THIS_MODULE,
3721
		.of_match_table = of_match_ptr(s3c_hsotg_of_ids),
3722 3723
	},
	.probe		= s3c_hsotg_probe,
B
Bill Pemberton 已提交
3724
	.remove		= s3c_hsotg_remove,
3725 3726 3727 3728
	.suspend	= s3c_hsotg_suspend,
	.resume		= s3c_hsotg_resume,
};

3729
module_platform_driver(s3c_hsotg_driver);
3730 3731 3732 3733 3734

MODULE_DESCRIPTION("Samsung S3C USB High-speed/OtG device");
MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:s3c-hsotg");