s3c-hsotg.c 93.2 KB
Newer Older
1 2
/**
 * linux/drivers/usb/gadget/s3c-hsotg.c
3 4 5
 *
 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
 *		http://www.samsung.com
6 7 8 9 10 11 12 13 14 15 16
 *
 * Copyright 2008 Openmoko, Inc.
 * Copyright 2008 Simtec Electronics
 *      Ben Dooks <ben@simtec.co.uk>
 *      http://armlinux.simtec.co.uk/
 *
 * S3C USB2.0 High-speed / OtG driver
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
17
 */
18 19 20 21 22 23 24 25 26 27 28

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
#include <linux/platform_device.h>
#include <linux/dma-mapping.h>
#include <linux/debugfs.h>
#include <linux/seq_file.h>
#include <linux/delay.h>
#include <linux/io.h>
29
#include <linux/slab.h>
30
#include <linux/clk.h>
31
#include <linux/regulator/consumer.h>
32 33 34

#include <linux/usb/ch9.h>
#include <linux/usb/gadget.h>
35
#include <linux/platform_data/s3c-hsotg.h>
36 37 38

#include <mach/map.h>

39
#include "s3c-hsotg.h"
40 41 42

#define DMA_ADDR_INVALID (~((dma_addr_t)0))

43 44 45 46 47
static const char * const s3c_hsotg_supply_names[] = {
	"vusb_d",		/* digital USB supply, 1.2V */
	"vusb_a",		/* analog USB supply, 1.1V */
};

48 49
/*
 * EP0_MPS_LIMIT
50 51
 *
 * Unfortunately there seems to be a limit of the amount of data that can
L
Lucas De Marchi 已提交
52 53
 * be transferred by IN transactions on EP0. This is either 127 bytes or 3
 * packets (which practically means 1 packet and 63 bytes of data) when the
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
 * MPS is set to 64.
 *
 * This means if we are wanting to move >127 bytes of data, we need to
 * split the transactions up, but just doing one packet at a time does
 * not work (this may be an implicit DATA0 PID on first packet of the
 * transaction) and doing 2 packets is outside the controller's limits.
 *
 * If we try to lower the MPS size for EP0, then no transfers work properly
 * for EP0, and the system will fail basic enumeration. As no cause for this
 * has currently been found, we cannot support any large IN transfers for
 * EP0.
 */
#define EP0_MPS_LIMIT	64

struct s3c_hsotg;
struct s3c_hsotg_req;

/**
 * struct s3c_hsotg_ep - driver endpoint definition.
 * @ep: The gadget layer representation of the endpoint.
 * @name: The driver generated name for the endpoint.
 * @queue: Queue of requests for this endpoint.
 * @parent: Reference back to the parent device structure.
 * @req: The current request that the endpoint is processing. This is
 *       used to indicate an request has been loaded onto the endpoint
 *       and has yet to be completed (maybe due to data move, or simply
 *	 awaiting an ack from the core all the data has been completed).
 * @debugfs: File entry for debugfs file for this endpoint.
 * @lock: State lock to protect contents of endpoint.
 * @dir_in: Set to true if this endpoint is of the IN direction, which
 *	    means that it is sending data to the Host.
 * @index: The index for the endpoint registers.
 * @name: The name array passed to the USB core.
 * @halted: Set if the endpoint has been halted.
 * @periodic: Set if this is a periodic ep, such as Interrupt
 * @sent_zlp: Set if we've sent a zero-length packet.
 * @total_data: The total number of data bytes done.
 * @fifo_size: The size of the FIFO (for periodic IN endpoints)
 * @fifo_load: The amount of data loaded into the FIFO (periodic IN)
 * @last_load: The offset of data for the last start of request.
 * @size_loaded: The last loaded size for DxEPTSIZE for periodic IN
 *
 * This is the driver's state for each registered enpoint, allowing it
 * to keep track of transactions that need doing. Each endpoint has a
 * lock to protect the state, to try and avoid using an overall lock
 * for the host controller as much as possible.
 *
 * For periodic IN endpoints, we have fifo_size and fifo_load to try
 * and keep track of the amount of data in the periodic FIFO for each
 * of these as we don't have a status register that tells us how much
104 105 106
 * is in each of them. (note, this may actually be useless information
 * as in shared-fifo mode periodic in acts like a single-frame packet
 * buffer than a fifo)
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
 */
struct s3c_hsotg_ep {
	struct usb_ep		ep;
	struct list_head	queue;
	struct s3c_hsotg	*parent;
	struct s3c_hsotg_req	*req;
	struct dentry		*debugfs;


	unsigned long		total_data;
	unsigned int		size_loaded;
	unsigned int		last_load;
	unsigned int		fifo_load;
	unsigned short		fifo_size;

	unsigned char		dir_in;
	unsigned char		index;

	unsigned int		halted:1;
	unsigned int		periodic:1;
	unsigned int		sent_zlp:1;

	char			name[10];
};

/**
 * struct s3c_hsotg - driver state.
 * @dev: The parent device supplied to the probe function
 * @driver: USB gadget driver
 * @plat: The platform specific configuration data.
 * @regs: The memory area mapped for accessing registers.
 * @irq: The IRQ number we are using
139
 * @supplies: Definition of USB power supplies
140
 * @dedicated_fifos: Set if the hardware has dedicated IN-EP fifos.
141
 * @num_of_eps: Number of available EPs (excluding EP0)
142 143 144 145 146 147 148
 * @debug_root: root directrory for debugfs.
 * @debug_file: main status file for debugfs.
 * @debug_fifo: FIFO status file for debugfs.
 * @ep0_reply: Request used for ep0 reply.
 * @ep0_buff: Buffer for EP0 reply data, if needed.
 * @ctrl_buff: Buffer for EP0 control requests.
 * @ctrl_req: Request for EP0 control packets.
149
 * @setup: NAK management for EP0 SETUP
150
 * @last_rst: Time of last reset
151 152 153 154 155 156 157
 * @eps: The endpoints being supplied to the gadget framework
 */
struct s3c_hsotg {
	struct device		 *dev;
	struct usb_gadget_driver *driver;
	struct s3c_hsotg_plat	 *plat;

158 159
	spinlock_t              lock;

160 161
	void __iomem		*regs;
	int			irq;
162
	struct clk		*clk;
163

164 165
	struct regulator_bulk_data supplies[ARRAY_SIZE(s3c_hsotg_supply_names)];

166
	unsigned int		dedicated_fifos:1;
167
	unsigned char           num_of_eps;
168

169 170 171 172 173 174 175 176 177 178
	struct dentry		*debug_root;
	struct dentry		*debug_file;
	struct dentry		*debug_fifo;

	struct usb_request	*ep0_reply;
	struct usb_request	*ctrl_req;
	u8			ep0_buff[8];
	u8			ctrl_buff[8];

	struct usb_gadget	gadget;
179
	unsigned int		setup;
180
	unsigned long           last_rst;
181
	struct s3c_hsotg_ep	*eps;
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
};

/**
 * struct s3c_hsotg_req - data transfer request
 * @req: The USB gadget request
 * @queue: The list of requests for the endpoint this is queued for.
 * @in_progress: Has already had size/packets written to core
 * @mapped: DMA buffer for this request has been mapped via dma_map_single().
 */
struct s3c_hsotg_req {
	struct usb_request	req;
	struct list_head	queue;
	unsigned char		in_progress;
	unsigned char		mapped;
};

/* conversion functions */
static inline struct s3c_hsotg_req *our_req(struct usb_request *req)
{
	return container_of(req, struct s3c_hsotg_req, req);
}

static inline struct s3c_hsotg_ep *our_ep(struct usb_ep *ep)
{
	return container_of(ep, struct s3c_hsotg_ep, ep);
}

static inline struct s3c_hsotg *to_hsotg(struct usb_gadget *gadget)
{
	return container_of(gadget, struct s3c_hsotg, gadget);
}

static inline void __orr32(void __iomem *ptr, u32 val)
{
	writel(readl(ptr) | val, ptr);
}

static inline void __bic32(void __iomem *ptr, u32 val)
{
	writel(readl(ptr) & ~val, ptr);
}

/* forward decleration of functions */
static void s3c_hsotg_dump(struct s3c_hsotg *hsotg);

/**
 * using_dma - return the DMA status of the driver.
 * @hsotg: The driver state.
 *
 * Return true if we're using DMA.
 *
 * Currently, we have the DMA support code worked into everywhere
 * that needs it, but the AMBA DMA implementation in the hardware can
 * only DMA from 32bit aligned addresses. This means that gadgets such
 * as the CDC Ethernet cannot work as they often pass packets which are
 * not 32bit aligned.
 *
 * Unfortunately the choice to use DMA or not is global to the controller
 * and seems to be only settable when the controller is being put through
 * a core reset. This means we either need to fix the gadgets to take
 * account of DMA alignment, or add bounce buffers (yuerk).
 *
 * Until this issue is sorted out, we always return 'false'.
 */
static inline bool using_dma(struct s3c_hsotg *hsotg)
{
	return false;	/* support is not complete */
}

/**
 * s3c_hsotg_en_gsint - enable one or more of the general interrupt
 * @hsotg: The device state
 * @ints: A bitmask of the interrupts to enable
 */
static void s3c_hsotg_en_gsint(struct s3c_hsotg *hsotg, u32 ints)
{
258
	u32 gsintmsk = readl(hsotg->regs + GINTMSK);
259 260 261 262 263 264
	u32 new_gsintmsk;

	new_gsintmsk = gsintmsk | ints;

	if (new_gsintmsk != gsintmsk) {
		dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
265
		writel(new_gsintmsk, hsotg->regs + GINTMSK);
266 267 268 269 270 271 272 273 274 275
	}
}

/**
 * s3c_hsotg_disable_gsint - disable one or more of the general interrupt
 * @hsotg: The device state
 * @ints: A bitmask of the interrupts to enable
 */
static void s3c_hsotg_disable_gsint(struct s3c_hsotg *hsotg, u32 ints)
{
276
	u32 gsintmsk = readl(hsotg->regs + GINTMSK);
277 278 279 280 281
	u32 new_gsintmsk;

	new_gsintmsk = gsintmsk & ~ints;

	if (new_gsintmsk != gsintmsk)
282
		writel(new_gsintmsk, hsotg->regs + GINTMSK);
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
}

/**
 * s3c_hsotg_ctrl_epint - enable/disable an endpoint irq
 * @hsotg: The device state
 * @ep: The endpoint index
 * @dir_in: True if direction is in.
 * @en: The enable value, true to enable
 *
 * Set or clear the mask for an individual endpoint's interrupt
 * request.
 */
static void s3c_hsotg_ctrl_epint(struct s3c_hsotg *hsotg,
				 unsigned int ep, unsigned int dir_in,
				 unsigned int en)
{
	unsigned long flags;
	u32 bit = 1 << ep;
	u32 daint;

	if (!dir_in)
		bit <<= 16;

	local_irq_save(flags);
307
	daint = readl(hsotg->regs + DAINTMSK);
308 309 310 311
	if (en)
		daint |= bit;
	else
		daint &= ~bit;
312
	writel(daint, hsotg->regs + DAINTMSK);
313 314 315 316 317 318 319 320 321
	local_irq_restore(flags);
}

/**
 * s3c_hsotg_init_fifo - initialise non-periodic FIFOs
 * @hsotg: The device instance.
 */
static void s3c_hsotg_init_fifo(struct s3c_hsotg *hsotg)
{
322 323 324
	unsigned int ep;
	unsigned int addr;
	unsigned int size;
325
	int timeout;
326 327
	u32 val;

328
	/* set FIFO sizes to 2048/1024 */
329

330 331 332 333
	writel(2048, hsotg->regs + GRXFSIZ);
	writel(GNPTXFSIZ_NPTxFStAddr(2048) |
	       GNPTXFSIZ_NPTxFDep(1024),
	       hsotg->regs + GNPTXFSIZ);
334

335 336
	/*
	 * arange all the rest of the TX FIFOs, as some versions of this
337 338
	 * block have overlapping default addresses. This also ensures
	 * that if the settings have been changed, then they are set to
339 340
	 * known values.
	 */
341 342 343 344 345

	/* start at the end of the GNPTXFSIZ, rounded up */
	addr = 2048 + 1024;
	size = 768;

346 347 348 349
	/*
	 * currently we allocate TX FIFOs for all possible endpoints,
	 * and assume that they are all the same size.
	 */
350

351
	for (ep = 1; ep <= 15; ep++) {
352
		val = addr;
353
		val |= size << DPTXFSIZn_DPTxFSize_SHIFT;
354 355
		addr += size;

356
		writel(val, hsotg->regs + DPTXFSIZn(ep));
357
	}
358

359 360 361 362
	/*
	 * according to p428 of the design guide, we need to ensure that
	 * all fifos are flushed before continuing
	 */
363

364 365
	writel(GRSTCTL_TxFNum(0x10) | GRSTCTL_TxFFlsh |
	       GRSTCTL_RxFFlsh, hsotg->regs + GRSTCTL);
366 367 368 369

	/* wait until the fifos are both flushed */
	timeout = 100;
	while (1) {
370
		val = readl(hsotg->regs + GRSTCTL);
371

372
		if ((val & (GRSTCTL_TxFFlsh | GRSTCTL_RxFFlsh)) == 0)
373 374 375 376 377 378 379 380 381 382 383 384
			break;

		if (--timeout == 0) {
			dev_err(hsotg->dev,
				"%s: timeout flushing fifos (GRSTCTL=%08x)\n",
				__func__, val);
		}

		udelay(1);
	}

	dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
385 386 387 388 389 390 391 392
}

/**
 * @ep: USB endpoint to allocate request for.
 * @flags: Allocation flags
 *
 * Allocate a new USB request structure appropriate for the specified endpoint
 */
393 394
static struct usb_request *s3c_hsotg_ep_alloc_request(struct usb_ep *ep,
						      gfp_t flags)
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
{
	struct s3c_hsotg_req *req;

	req = kzalloc(sizeof(struct s3c_hsotg_req), flags);
	if (!req)
		return NULL;

	INIT_LIST_HEAD(&req->queue);

	req->req.dma = DMA_ADDR_INVALID;
	return &req->req;
}

/**
 * is_ep_periodic - return true if the endpoint is in periodic mode.
 * @hs_ep: The endpoint to query.
 *
 * Returns true if the endpoint is in periodic mode, meaning it is being
 * used for an Interrupt or ISO transfer.
 */
static inline int is_ep_periodic(struct s3c_hsotg_ep *hs_ep)
{
	return hs_ep->periodic;
}

/**
 * s3c_hsotg_unmap_dma - unmap the DMA memory being used for the request
 * @hsotg: The device state.
 * @hs_ep: The endpoint for the request
 * @hs_req: The request being processed.
 *
 * This is the reverse of s3c_hsotg_map_dma(), called for the completion
 * of a request to ensure the buffer is ready for access by the caller.
428
 */
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
static void s3c_hsotg_unmap_dma(struct s3c_hsotg *hsotg,
				struct s3c_hsotg_ep *hs_ep,
				struct s3c_hsotg_req *hs_req)
{
	struct usb_request *req = &hs_req->req;
	enum dma_data_direction dir;

	dir = hs_ep->dir_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE;

	/* ignore this if we're not moving any data */
	if (hs_req->req.length == 0)
		return;

	if (hs_req->mapped) {
		/* we mapped this, so unmap and remove the dma */

		dma_unmap_single(hsotg->dev, req->dma, req->length, dir);

		req->dma = DMA_ADDR_INVALID;
		hs_req->mapped = 0;
	} else {
450
		dma_sync_single_for_cpu(hsotg->dev, req->dma, req->length, dir);
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
	}
}

/**
 * s3c_hsotg_write_fifo - write packet Data to the TxFIFO
 * @hsotg: The controller state.
 * @hs_ep: The endpoint we're going to write for.
 * @hs_req: The request to write data for.
 *
 * This is called when the TxFIFO has some space in it to hold a new
 * transmission and we have something to give it. The actual setup of
 * the data size is done elsewhere, so all we have to do is to actually
 * write the data.
 *
 * The return value is zero if there is more space (or nothing was done)
 * otherwise -ENOSPC is returned if the FIFO space was used up.
 *
 * This routine is only needed for PIO
469
 */
470 471 472 473 474
static int s3c_hsotg_write_fifo(struct s3c_hsotg *hsotg,
				struct s3c_hsotg_ep *hs_ep,
				struct s3c_hsotg_req *hs_req)
{
	bool periodic = is_ep_periodic(hs_ep);
475
	u32 gnptxsts = readl(hsotg->regs + GNPTXSTS);
476 477 478 479 480 481 482 483 484 485 486 487
	int buf_pos = hs_req->req.actual;
	int to_write = hs_ep->size_loaded;
	void *data;
	int can_write;
	int pkt_round;

	to_write -= (buf_pos - hs_ep->last_load);

	/* if there's nothing to write, get out early */
	if (to_write == 0)
		return 0;

488
	if (periodic && !hsotg->dedicated_fifos) {
489
		u32 epsize = readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
490 491 492
		int size_left;
		int size_done;

493 494 495 496
		/*
		 * work out how much data was loaded so we can calculate
		 * how much data is left in the fifo.
		 */
497

498
		size_left = DxEPTSIZ_XferSize_GET(epsize);
499

500 501
		/*
		 * if shared fifo, we cannot write anything until the
502 503 504
		 * previous data has been completely sent.
		 */
		if (hs_ep->fifo_load != 0) {
505
			s3c_hsotg_en_gsint(hsotg, GINTSTS_PTxFEmp);
506 507 508
			return -ENOSPC;
		}

509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
		dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
			__func__, size_left,
			hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);

		/* how much of the data has moved */
		size_done = hs_ep->size_loaded - size_left;

		/* how much data is left in the fifo */
		can_write = hs_ep->fifo_load - size_done;
		dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
			__func__, can_write);

		can_write = hs_ep->fifo_size - can_write;
		dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
			__func__, can_write);

		if (can_write <= 0) {
526
			s3c_hsotg_en_gsint(hsotg, GINTSTS_PTxFEmp);
527 528
			return -ENOSPC;
		}
529
	} else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
530
		can_write = readl(hsotg->regs + DTXFSTS(hs_ep->index));
531 532 533

		can_write &= 0xffff;
		can_write *= 4;
534
	} else {
535
		if (GNPTXSTS_NPTxQSpcAvail_GET(gnptxsts) == 0) {
536 537 538 539
			dev_dbg(hsotg->dev,
				"%s: no queue slots available (0x%08x)\n",
				__func__, gnptxsts);

540
			s3c_hsotg_en_gsint(hsotg, GINTSTS_NPTxFEmp);
541 542 543
			return -ENOSPC;
		}

544
		can_write = GNPTXSTS_NPTxFSpcAvail_GET(gnptxsts);
545
		can_write *= 4;	/* fifo size is in 32bit quantities. */
546 547 548 549 550
	}

	dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, mps %d\n",
		 __func__, gnptxsts, can_write, to_write, hs_ep->ep.maxpacket);

551 552
	/*
	 * limit to 512 bytes of data, it seems at least on the non-periodic
553 554 555 556 557 558
	 * FIFO, requests of >512 cause the endpoint to get stuck with a
	 * fragment of the end of the transfer in it.
	 */
	if (can_write > 512)
		can_write = 512;

559 560
	/*
	 * limit the write to one max-packet size worth of data, but allow
561
	 * the transfer to return that it did not run out of fifo space
562 563
	 * doing it.
	 */
564 565 566 567
	if (to_write > hs_ep->ep.maxpacket) {
		to_write = hs_ep->ep.maxpacket;

		s3c_hsotg_en_gsint(hsotg,
568 569
				   periodic ? GINTSTS_PTxFEmp :
				   GINTSTS_NPTxFEmp);
570 571
	}

572 573 574 575 576 577
	/* see if we can write data */

	if (to_write > can_write) {
		to_write = can_write;
		pkt_round = to_write % hs_ep->ep.maxpacket;

578 579
		/*
		 * Round the write down to an
580 581 582 583 584 585 586 587 588
		 * exact number of packets.
		 *
		 * Note, we do not currently check to see if we can ever
		 * write a full packet or not to the FIFO.
		 */

		if (pkt_round)
			to_write -= pkt_round;

589 590 591 592
		/*
		 * enable correct FIFO interrupt to alert us when there
		 * is more room left.
		 */
593 594

		s3c_hsotg_en_gsint(hsotg,
595 596
				   periodic ? GINTSTS_PTxFEmp :
				   GINTSTS_NPTxFEmp);
597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
	}

	dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
		 to_write, hs_req->req.length, can_write, buf_pos);

	if (to_write <= 0)
		return -ENOSPC;

	hs_req->req.actual = buf_pos + to_write;
	hs_ep->total_data += to_write;

	if (periodic)
		hs_ep->fifo_load += to_write;

	to_write = DIV_ROUND_UP(to_write, 4);
	data = hs_req->req.buf + buf_pos;

614
	writesl(hsotg->regs + EPFIFO(hs_ep->index), data, to_write);
615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632

	return (to_write >= can_write) ? -ENOSPC : 0;
}

/**
 * get_ep_limit - get the maximum data legnth for this endpoint
 * @hs_ep: The endpoint
 *
 * Return the maximum data that can be queued in one go on a given endpoint
 * so that transfers that are too long can be split.
 */
static unsigned get_ep_limit(struct s3c_hsotg_ep *hs_ep)
{
	int index = hs_ep->index;
	unsigned maxsize;
	unsigned maxpkt;

	if (index != 0) {
633 634
		maxsize = DxEPTSIZ_XferSize_LIMIT + 1;
		maxpkt = DxEPTSIZ_PktCnt_LIMIT + 1;
635
	} else {
636
		maxsize = 64+64;
637
		if (hs_ep->dir_in)
638
			maxpkt = DIEPTSIZ0_PktCnt_LIMIT + 1;
639
		else
640 641 642 643 644 645 646
			maxpkt = 2;
	}

	/* we made the constant loading easier above by using +1 */
	maxpkt--;
	maxsize--;

647 648 649 650
	/*
	 * constrain by packet count if maxpkts*pktsize is greater
	 * than the length register size.
	 */
651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696

	if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
		maxsize = maxpkt * hs_ep->ep.maxpacket;

	return maxsize;
}

/**
 * s3c_hsotg_start_req - start a USB request from an endpoint's queue
 * @hsotg: The controller state.
 * @hs_ep: The endpoint to process a request for
 * @hs_req: The request to start.
 * @continuing: True if we are doing more for the current request.
 *
 * Start the given request running by setting the endpoint registers
 * appropriately, and writing any data to the FIFOs.
 */
static void s3c_hsotg_start_req(struct s3c_hsotg *hsotg,
				struct s3c_hsotg_ep *hs_ep,
				struct s3c_hsotg_req *hs_req,
				bool continuing)
{
	struct usb_request *ureq = &hs_req->req;
	int index = hs_ep->index;
	int dir_in = hs_ep->dir_in;
	u32 epctrl_reg;
	u32 epsize_reg;
	u32 epsize;
	u32 ctrl;
	unsigned length;
	unsigned packets;
	unsigned maxreq;

	if (index != 0) {
		if (hs_ep->req && !continuing) {
			dev_err(hsotg->dev, "%s: active request\n", __func__);
			WARN_ON(1);
			return;
		} else if (hs_ep->req != hs_req && continuing) {
			dev_err(hsotg->dev,
				"%s: continue different req\n", __func__);
			WARN_ON(1);
			return;
		}
	}

697 698
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
	epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
699 700 701 702 703

	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
		__func__, readl(hsotg->regs + epctrl_reg), index,
		hs_ep->dir_in ? "in" : "out");

704 705 706
	/* If endpoint is stalled, we will restart request later */
	ctrl = readl(hsotg->regs + epctrl_reg);

707
	if (ctrl & DxEPCTL_Stall) {
708 709 710 711
		dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
		return;
	}

712
	length = ureq->length - ureq->actual;
713 714
	dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
		ureq->length, ureq->actual);
715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740
	if (0)
		dev_dbg(hsotg->dev,
			"REQ buf %p len %d dma 0x%08x noi=%d zp=%d snok=%d\n",
			ureq->buf, length, ureq->dma,
			ureq->no_interrupt, ureq->zero, ureq->short_not_ok);

	maxreq = get_ep_limit(hs_ep);
	if (length > maxreq) {
		int round = maxreq % hs_ep->ep.maxpacket;

		dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
			__func__, length, maxreq, round);

		/* round down to multiple of packets */
		if (round)
			maxreq -= round;

		length = maxreq;
	}

	if (length)
		packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
	else
		packets = 1;	/* send one packet if length is zero. */

	if (dir_in && index != 0)
741
		epsize = DxEPTSIZ_MC(1);
742 743 744 745
	else
		epsize = 0;

	if (index != 0 && ureq->zero) {
746 747 748 749
		/*
		 * test for the packets being exactly right for the
		 * transfer
		 */
750 751 752 753 754

		if (length == (packets * hs_ep->ep.maxpacket))
			packets++;
	}

755 756
	epsize |= DxEPTSIZ_PktCnt(packets);
	epsize |= DxEPTSIZ_XferSize(length);
757 758 759 760 761 762 763 764 765 766

	dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
		__func__, packets, length, ureq->length, epsize, epsize_reg);

	/* store the request as the current one we're doing */
	hs_ep->req = hs_req;

	/* write size / packets */
	writel(epsize, hsotg->regs + epsize_reg);

767
	if (using_dma(hsotg) && !continuing) {
768 769
		unsigned int dma_reg;

770 771 772 773
		/*
		 * write DMA address to control register, buffer already
		 * synced by s3c_hsotg_ep_queue().
		 */
774

775
		dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
776 777 778 779 780 781
		writel(ureq->dma, hsotg->regs + dma_reg);

		dev_dbg(hsotg->dev, "%s: 0x%08x => 0x%08x\n",
			__func__, ureq->dma, dma_reg);
	}

782 783
	ctrl |= DxEPCTL_EPEna;	/* ensure ep enabled */
	ctrl |= DxEPCTL_USBActEp;
784 785 786 787 788 789 790

	dev_dbg(hsotg->dev, "setup req:%d\n", hsotg->setup);

	/* For Setup request do not clear NAK */
	if (hsotg->setup && index == 0)
		hsotg->setup = 0;
	else
791
		ctrl |= DxEPCTL_CNAK;	/* clear NAK set by core */
792

793 794 795 796

	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
	writel(ctrl, hsotg->regs + epctrl_reg);

797 798
	/*
	 * set these, it seems that DMA support increments past the end
799
	 * of the packet buffer so we need to calculate the length from
800 801
	 * this information.
	 */
802 803 804 805 806 807 808 809 810 811
	hs_ep->size_loaded = length;
	hs_ep->last_load = ureq->actual;

	if (dir_in && !using_dma(hsotg)) {
		/* set these anyway, we may need them for non-periodic in */
		hs_ep->fifo_load = 0;

		s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
	}

812 813 814 815
	/*
	 * clear the INTknTXFEmpMsk when we start request, more as a aide
	 * to debugging to see what is going on.
	 */
816
	if (dir_in)
817 818
		writel(DIEPMSK_INTknTXFEmpMsk,
		       hsotg->regs + DIEPINT(index));
819

820 821 822 823
	/*
	 * Note, trying to clear the NAK here causes problems with transmit
	 * on the S3C6400 ending up with the TXFIFO becoming full.
	 */
824 825

	/* check ep is enabled */
826
	if (!(readl(hsotg->regs + epctrl_reg) & DxEPCTL_EPEna))
827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845
		dev_warn(hsotg->dev,
			 "ep%d: failed to become enabled (DxEPCTL=0x%08x)?\n",
			 index, readl(hsotg->regs + epctrl_reg));

	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n",
		__func__, readl(hsotg->regs + epctrl_reg));
}

/**
 * s3c_hsotg_map_dma - map the DMA memory being used for the request
 * @hsotg: The device state.
 * @hs_ep: The endpoint the request is on.
 * @req: The request being processed.
 *
 * We've been asked to queue a request, so ensure that the memory buffer
 * is correctly setup for DMA. If we've been passed an extant DMA address
 * then ensure the buffer has been synced to memory. If our buffer has no
 * DMA memory, then we map the memory and mark our request to allow us to
 * cleanup on completion.
846
 */
847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878
static int s3c_hsotg_map_dma(struct s3c_hsotg *hsotg,
			     struct s3c_hsotg_ep *hs_ep,
			     struct usb_request *req)
{
	enum dma_data_direction dir;
	struct s3c_hsotg_req *hs_req = our_req(req);

	dir = hs_ep->dir_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE;

	/* if the length is zero, ignore the DMA data */
	if (hs_req->req.length == 0)
		return 0;

	if (req->dma == DMA_ADDR_INVALID) {
		dma_addr_t dma;

		dma = dma_map_single(hsotg->dev, req->buf, req->length, dir);

		if (unlikely(dma_mapping_error(hsotg->dev, dma)))
			goto dma_error;

		if (dma & 3) {
			dev_err(hsotg->dev, "%s: unaligned dma buffer\n",
				__func__);

			dma_unmap_single(hsotg->dev, dma, req->length, dir);
			return -EINVAL;
		}

		hs_req->mapped = 1;
		req->dma = dma;
	} else {
879
		dma_sync_single_for_cpu(hsotg->dev, req->dma, req->length, dir);
880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924
		hs_req->mapped = 0;
	}

	return 0;

dma_error:
	dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
		__func__, req->buf, req->length);

	return -EIO;
}

static int s3c_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
			      gfp_t gfp_flags)
{
	struct s3c_hsotg_req *hs_req = our_req(req);
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
	struct s3c_hsotg *hs = hs_ep->parent;
	bool first;

	dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
		ep->name, req, req->length, req->buf, req->no_interrupt,
		req->zero, req->short_not_ok);

	/* initialise status of the request */
	INIT_LIST_HEAD(&hs_req->queue);
	req->actual = 0;
	req->status = -EINPROGRESS;

	/* if we're using DMA, sync the buffers as necessary */
	if (using_dma(hs)) {
		int ret = s3c_hsotg_map_dma(hs, hs_ep, req);
		if (ret)
			return ret;
	}

	first = list_empty(&hs_ep->queue);
	list_add_tail(&hs_req->queue, &hs_ep->queue);

	if (first)
		s3c_hsotg_start_req(hs, hs_ep, hs_req, false);

	return 0;
}

925 926 927 928 929 930 931 932 933 934 935 936 937 938 939
static int s3c_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
			      gfp_t gfp_flags)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
	struct s3c_hsotg *hs = hs_ep->parent;
	unsigned long flags = 0;
	int ret = 0;

	spin_lock_irqsave(&hs->lock, flags);
	ret = s3c_hsotg_ep_queue(ep, req, gfp_flags);
	spin_unlock_irqrestore(&hs->lock, flags);

	return ret;
}

940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973
static void s3c_hsotg_ep_free_request(struct usb_ep *ep,
				      struct usb_request *req)
{
	struct s3c_hsotg_req *hs_req = our_req(req);

	kfree(hs_req);
}

/**
 * s3c_hsotg_complete_oursetup - setup completion callback
 * @ep: The endpoint the request was on.
 * @req: The request completed.
 *
 * Called on completion of any requests the driver itself
 * submitted that need cleaning up.
 */
static void s3c_hsotg_complete_oursetup(struct usb_ep *ep,
					struct usb_request *req)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
	struct s3c_hsotg *hsotg = hs_ep->parent;

	dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);

	s3c_hsotg_ep_free_request(ep, req);
}

/**
 * ep_from_windex - convert control wIndex value to endpoint
 * @hsotg: The driver state.
 * @windex: The control request wIndex field (in host order).
 *
 * Convert the given wIndex into a pointer to an driver endpoint
 * structure, or return NULL if it is not a valid endpoint.
974
 */
975 976 977 978 979 980 981 982 983 984
static struct s3c_hsotg_ep *ep_from_windex(struct s3c_hsotg *hsotg,
					   u32 windex)
{
	struct s3c_hsotg_ep *ep = &hsotg->eps[windex & 0x7F];
	int dir = (windex & USB_DIR_IN) ? 1 : 0;
	int idx = windex & 0x7F;

	if (windex >= 0x100)
		return NULL;

985
	if (idx > hsotg->num_of_eps)
986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
		return NULL;

	if (idx && ep->dir_in != dir)
		return NULL;

	return ep;
}

/**
 * s3c_hsotg_send_reply - send reply to control request
 * @hsotg: The device state
 * @ep: Endpoint 0
 * @buff: Buffer for request
 * @length: Length of reply.
 *
 * Create a request and queue it on the given endpoint. This is useful as
 * an internal method of sending replies to certain control requests, etc.
 */
static int s3c_hsotg_send_reply(struct s3c_hsotg *hsotg,
				struct s3c_hsotg_ep *ep,
				void *buff,
				int length)
{
	struct usb_request *req;
	int ret;

	dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);

	req = s3c_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
	hsotg->ep0_reply = req;
	if (!req) {
		dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
		return -ENOMEM;
	}

	req->buf = hsotg->ep0_buff;
	req->length = length;
	req->zero = 1; /* always do zero-length final transfer */
	req->complete = s3c_hsotg_complete_oursetup;

	if (length)
		memcpy(req->buf, buff, length);
	else
		ep->sent_zlp = 1;

	ret = s3c_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
	if (ret) {
		dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
		return ret;
	}

	return 0;
}

/**
 * s3c_hsotg_process_req_status - process request GET_STATUS
 * @hsotg: The device state
 * @ctrl: USB control request
 */
static int s3c_hsotg_process_req_status(struct s3c_hsotg *hsotg,
					struct usb_ctrlrequest *ctrl)
{
	struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
	struct s3c_hsotg_ep *ep;
	__le16 reply;
	int ret;

	dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);

	if (!ep0->dir_in) {
		dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
		return -EINVAL;
	}

	switch (ctrl->bRequestType & USB_RECIP_MASK) {
	case USB_RECIP_DEVICE:
		reply = cpu_to_le16(0); /* bit 0 => self powered,
					 * bit 1 => remote wakeup */
		break;

	case USB_RECIP_INTERFACE:
		/* currently, the data result should be zero */
		reply = cpu_to_le16(0);
		break;

	case USB_RECIP_ENDPOINT:
		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
		if (!ep)
			return -ENOENT;

		reply = cpu_to_le16(ep->halted ? 1 : 0);
		break;

	default:
		return 0;
	}

	if (le16_to_cpu(ctrl->wLength) != 2)
		return -EINVAL;

	ret = s3c_hsotg_send_reply(hsotg, ep0, &reply, 2);
	if (ret) {
		dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
		return ret;
	}

	return 1;
}

static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value);

1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
/**
 * get_ep_head - return the first request on the endpoint
 * @hs_ep: The controller endpoint to get
 *
 * Get the first request on the endpoint.
 */
static struct s3c_hsotg_req *get_ep_head(struct s3c_hsotg_ep *hs_ep)
{
	if (list_empty(&hs_ep->queue))
		return NULL;

	return list_first_entry(&hs_ep->queue, struct s3c_hsotg_req, queue);
}

1111 1112 1113 1114 1115 1116 1117 1118
/**
 * s3c_hsotg_process_req_featire - process request {SET,CLEAR}_FEATURE
 * @hsotg: The device state
 * @ctrl: USB control request
 */
static int s3c_hsotg_process_req_feature(struct s3c_hsotg *hsotg,
					 struct usb_ctrlrequest *ctrl)
{
1119
	struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
1120 1121
	struct s3c_hsotg_req *hs_req;
	bool restart;
1122 1123
	bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
	struct s3c_hsotg_ep *ep;
1124
	int ret;
1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139

	dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
		__func__, set ? "SET" : "CLEAR");

	if (ctrl->bRequestType == USB_RECIP_ENDPOINT) {
		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
		if (!ep) {
			dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
				__func__, le16_to_cpu(ctrl->wIndex));
			return -ENOENT;
		}

		switch (le16_to_cpu(ctrl->wValue)) {
		case USB_ENDPOINT_HALT:
			s3c_hsotg_ep_sethalt(&ep->ep, set);
1140 1141 1142 1143 1144 1145 1146

			ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
			if (ret) {
				dev_err(hsotg->dev,
					"%s: failed to send reply\n", __func__);
				return ret;
			}
1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169

			if (!set) {
				/*
				 * If we have request in progress,
				 * then complete it
				 */
				if (ep->req) {
					hs_req = ep->req;
					ep->req = NULL;
					list_del_init(&hs_req->queue);
					hs_req->req.complete(&ep->ep,
							     &hs_req->req);
				}

				/* If we have pending request, then start it */
				restart = !list_empty(&ep->queue);
				if (restart) {
					hs_req = get_ep_head(ep);
					s3c_hsotg_start_req(hsotg, ep,
							    hs_req, false);
				}
			}

1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
			break;

		default:
			return -ENOENT;
		}
	} else
		return -ENOENT;  /* currently only deal with endpoint */

	return 1;
}

/**
 * s3c_hsotg_process_control - process a control request
 * @hsotg: The device state
 * @ctrl: The control request received
 *
 * The controller has received the SETUP phase of a control request, and
 * needs to work out what to do next (and whether to pass it on to the
 * gadget driver).
 */
static void s3c_hsotg_process_control(struct s3c_hsotg *hsotg,
				      struct usb_ctrlrequest *ctrl)
{
	struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
	int ret = 0;
	u32 dcfg;

	ep0->sent_zlp = 0;

	dev_dbg(hsotg->dev, "ctrl Req=%02x, Type=%02x, V=%04x, L=%04x\n",
		 ctrl->bRequest, ctrl->bRequestType,
		 ctrl->wValue, ctrl->wLength);

1203 1204 1205 1206
	/*
	 * record the direction of the request, for later use when enquing
	 * packets onto EP0.
	 */
1207 1208 1209 1210

	ep0->dir_in = (ctrl->bRequestType & USB_DIR_IN) ? 1 : 0;
	dev_dbg(hsotg->dev, "ctrl: dir_in=%d\n", ep0->dir_in);

1211 1212 1213 1214
	/*
	 * if we've no data with this request, then the last part of the
	 * transaction is going to implicitly be IN.
	 */
1215 1216 1217 1218 1219 1220
	if (ctrl->wLength == 0)
		ep0->dir_in = 1;

	if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
		switch (ctrl->bRequest) {
		case USB_REQ_SET_ADDRESS:
1221 1222 1223 1224
			dcfg = readl(hsotg->regs + DCFG);
			dcfg &= ~DCFG_DevAddr_MASK;
			dcfg |= ctrl->wValue << DCFG_DevAddr_SHIFT;
			writel(dcfg, hsotg->regs + DCFG);
1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249

			dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);

			ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
			return;

		case USB_REQ_GET_STATUS:
			ret = s3c_hsotg_process_req_status(hsotg, ctrl);
			break;

		case USB_REQ_CLEAR_FEATURE:
		case USB_REQ_SET_FEATURE:
			ret = s3c_hsotg_process_req_feature(hsotg, ctrl);
			break;
		}
	}

	/* as a fallback, try delivering it to the driver to deal with */

	if (ret == 0 && hsotg->driver) {
		ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
		if (ret < 0)
			dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
	}

1250 1251
	/*
	 * the request is either unhandlable, or is not formatted correctly
1252 1253 1254 1255 1256 1257 1258 1259
	 * so respond with a STALL for the status stage to indicate failure.
	 */

	if (ret < 0) {
		u32 reg;
		u32 ctrl;

		dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
1260
		reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;
1261

1262
		/*
1263
		 * DxEPCTL_Stall will be cleared by EP once it has
1264 1265
		 * taken effect, so no need to clear later.
		 */
1266 1267

		ctrl = readl(hsotg->regs + reg);
1268 1269
		ctrl |= DxEPCTL_Stall;
		ctrl |= DxEPCTL_CNAK;
1270 1271 1272
		writel(ctrl, hsotg->regs + reg);

		dev_dbg(hsotg->dev,
L
Lucas De Marchi 已提交
1273
			"written DxEPCTL=0x%08x to %08x (DxEPCTL=0x%08x)\n",
1274 1275
			ctrl, reg, readl(hsotg->regs + reg));

1276 1277 1278 1279
		/*
		 * don't believe we need to anything more to get the EP
		 * to reply with a STALL packet
		 */
1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
	}
}

static void s3c_hsotg_enqueue_setup(struct s3c_hsotg *hsotg);

/**
 * s3c_hsotg_complete_setup - completion of a setup transfer
 * @ep: The endpoint the request was on.
 * @req: The request completed.
 *
 * Called on completion of any requests the driver itself submitted for
 * EP0 setup packets
 */
static void s3c_hsotg_complete_setup(struct usb_ep *ep,
				     struct usb_request *req)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
	struct s3c_hsotg *hsotg = hs_ep->parent;

	if (req->status < 0) {
		dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
		return;
	}

	if (req->actual == 0)
		s3c_hsotg_enqueue_setup(hsotg);
	else
		s3c_hsotg_process_control(hsotg, req->buf);
}

/**
 * s3c_hsotg_enqueue_setup - start a request for EP0 packets
 * @hsotg: The device state.
 *
 * Enqueue a request on EP0 if necessary to received any SETUP packets
 * received from the host.
 */
static void s3c_hsotg_enqueue_setup(struct s3c_hsotg *hsotg)
{
	struct usb_request *req = hsotg->ctrl_req;
	struct s3c_hsotg_req *hs_req = our_req(req);
	int ret;

	dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);

	req->zero = 0;
	req->length = 8;
	req->buf = hsotg->ctrl_buff;
	req->complete = s3c_hsotg_complete_setup;

	if (!list_empty(&hs_req->queue)) {
		dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
		return;
	}

	hsotg->eps[0].dir_in = 0;

	ret = s3c_hsotg_ep_queue(&hsotg->eps[0].ep, req, GFP_ATOMIC);
	if (ret < 0) {
		dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
1340 1341 1342 1343
		/*
		 * Don't think there's much we can do other than watch the
		 * driver fail.
		 */
1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
	}
}

/**
 * s3c_hsotg_complete_request - complete a request given to us
 * @hsotg: The device state.
 * @hs_ep: The endpoint the request was on.
 * @hs_req: The request to complete.
 * @result: The result code (0 => Ok, otherwise errno)
 *
 * The given request has finished, so call the necessary completion
 * if it has one and then look to see if we can start a new request
 * on the endpoint.
 *
 * Note, expects the ep to already be locked as appropriate.
1359
 */
1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
static void s3c_hsotg_complete_request(struct s3c_hsotg *hsotg,
				       struct s3c_hsotg_ep *hs_ep,
				       struct s3c_hsotg_req *hs_req,
				       int result)
{
	bool restart;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
		return;
	}

	dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
		hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);

1375 1376 1377 1378
	/*
	 * only replace the status if we've not already set an error
	 * from a previous transaction
	 */
1379 1380 1381 1382 1383 1384 1385 1386 1387 1388

	if (hs_req->req.status == -EINPROGRESS)
		hs_req->req.status = result;

	hs_ep->req = NULL;
	list_del_init(&hs_req->queue);

	if (using_dma(hsotg))
		s3c_hsotg_unmap_dma(hsotg, hs_ep, hs_req);

1389 1390 1391 1392
	/*
	 * call the complete request with the locks off, just in case the
	 * request tries to queue more work for this endpoint.
	 */
1393 1394

	if (hs_req->req.complete) {
1395
		spin_unlock(&hsotg->lock);
1396
		hs_req->req.complete(&hs_ep->ep, &hs_req->req);
1397
		spin_lock(&hsotg->lock);
1398 1399
	}

1400 1401
	/*
	 * Look to see if there is anything else to do. Note, the completion
1402
	 * of the previous request may have caused a new request to be started
1403 1404
	 * so be careful when doing this.
	 */
1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428

	if (!hs_ep->req && result >= 0) {
		restart = !list_empty(&hs_ep->queue);
		if (restart) {
			hs_req = get_ep_head(hs_ep);
			s3c_hsotg_start_req(hsotg, hs_ep, hs_req, false);
		}
	}
}

/**
 * s3c_hsotg_rx_data - receive data from the FIFO for an endpoint
 * @hsotg: The device state.
 * @ep_idx: The endpoint index for the data
 * @size: The size of data in the fifo, in bytes
 *
 * The FIFO status shows there is data to read from the FIFO for a given
 * endpoint, so sort out whether we need to read the data into a request
 * that has been made for that endpoint.
 */
static void s3c_hsotg_rx_data(struct s3c_hsotg *hsotg, int ep_idx, int size)
{
	struct s3c_hsotg_ep *hs_ep = &hsotg->eps[ep_idx];
	struct s3c_hsotg_req *hs_req = hs_ep->req;
1429
	void __iomem *fifo = hsotg->regs + EPFIFO(ep_idx);
1430 1431 1432 1433
	int to_read;
	int max_req;
	int read_ptr;

1434

1435
	if (!hs_req) {
1436
		u32 epctl = readl(hsotg->regs + DOEPCTL(ep_idx));
1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
		int ptr;

		dev_warn(hsotg->dev,
			 "%s: FIFO %d bytes on ep%d but no req (DxEPCTl=0x%08x)\n",
			 __func__, size, ep_idx, epctl);

		/* dump the data from the FIFO, we've nothing we can do */
		for (ptr = 0; ptr < size; ptr += 4)
			(void)readl(fifo);

		return;
	}

	to_read = size;
	read_ptr = hs_req->req.actual;
	max_req = hs_req->req.length - read_ptr;

1454 1455 1456
	dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
		__func__, to_read, max_req, read_ptr, hs_req->req.length);

1457
	if (to_read > max_req) {
1458 1459
		/*
		 * more data appeared than we where willing
1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470
		 * to deal with in this request.
		 */

		/* currently we don't deal this */
		WARN_ON_ONCE(1);
	}

	hs_ep->total_data += to_read;
	hs_req->req.actual += to_read;
	to_read = DIV_ROUND_UP(to_read, 4);

1471 1472 1473 1474
	/*
	 * note, we might over-write the buffer end by 3 bytes depending on
	 * alignment of the data.
	 */
1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
	readsl(fifo, hs_req->req.buf + read_ptr, to_read);
}

/**
 * s3c_hsotg_send_zlp - send zero-length packet on control endpoint
 * @hsotg: The device instance
 * @req: The request currently on this endpoint
 *
 * Generate a zero-length IN packet request for terminating a SETUP
 * transaction.
 *
 * Note, since we don't write any data to the TxFIFO, then it is
L
Lucas De Marchi 已提交
1487
 * currently believed that we do not need to wait for any space in
1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511
 * the TxFIFO.
 */
static void s3c_hsotg_send_zlp(struct s3c_hsotg *hsotg,
			       struct s3c_hsotg_req *req)
{
	u32 ctrl;

	if (!req) {
		dev_warn(hsotg->dev, "%s: no request?\n", __func__);
		return;
	}

	if (req->req.length == 0) {
		hsotg->eps[0].sent_zlp = 1;
		s3c_hsotg_enqueue_setup(hsotg);
		return;
	}

	hsotg->eps[0].dir_in = 1;
	hsotg->eps[0].sent_zlp = 1;

	dev_dbg(hsotg->dev, "sending zero-length packet\n");

	/* issue a zero-sized packet to terminate this */
1512 1513
	writel(DxEPTSIZ_MC(1) | DxEPTSIZ_PktCnt(1) |
	       DxEPTSIZ_XferSize(0), hsotg->regs + DIEPTSIZ(0));
1514

1515 1516 1517 1518 1519
	ctrl = readl(hsotg->regs + DIEPCTL0);
	ctrl |= DxEPCTL_CNAK;  /* clear NAK set by core */
	ctrl |= DxEPCTL_EPEna; /* ensure ep enabled */
	ctrl |= DxEPCTL_USBActEp;
	writel(ctrl, hsotg->regs + DIEPCTL0);
1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530
}

/**
 * s3c_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
 * @hsotg: The device instance
 * @epnum: The endpoint received from
 * @was_setup: Set if processing a SetupDone event.
 *
 * The RXFIFO has delivered an OutDone event, which means that the data
 * transfer for an OUT endpoint has been completed, either by a short
 * packet or by the finish of a transfer.
1531
 */
1532 1533 1534
static void s3c_hsotg_handle_outdone(struct s3c_hsotg *hsotg,
				     int epnum, bool was_setup)
{
1535
	u32 epsize = readl(hsotg->regs + DOEPTSIZ(epnum));
1536 1537 1538
	struct s3c_hsotg_ep *hs_ep = &hsotg->eps[epnum];
	struct s3c_hsotg_req *hs_req = hs_ep->req;
	struct usb_request *req = &hs_req->req;
1539
	unsigned size_left = DxEPTSIZ_XferSize_GET(epsize);
1540 1541 1542 1543 1544 1545 1546 1547 1548 1549
	int result = 0;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
		return;
	}

	if (using_dma(hsotg)) {
		unsigned size_done;

1550 1551
		/*
		 * Calculate the size of the transfer by checking how much
1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
		 * is left in the endpoint size register and then working it
		 * out from the amount we loaded for the transfer.
		 *
		 * We need to do this as DMA pointers are always 32bit aligned
		 * so may overshoot/undershoot the transfer.
		 */

		size_done = hs_ep->size_loaded - size_left;
		size_done += hs_ep->last_load;

		req->actual = size_done;
	}

1565 1566 1567 1568
	/* if there is more request to do, schedule new transfer */
	if (req->actual < req->length && size_left == 0) {
		s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
		return;
1569 1570 1571 1572 1573 1574
	} else if (epnum == 0) {
		/*
		 * After was_setup = 1 =>
		 * set CNAK for non Setup requests
		 */
		hsotg->setup = was_setup ? 0 : 1;
1575 1576
	}

1577 1578 1579 1580
	if (req->actual < req->length && req->short_not_ok) {
		dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
			__func__, req->actual, req->length);

1581 1582 1583 1584
		/*
		 * todo - what should we return here? there's no one else
		 * even bothering to check the status.
		 */
1585 1586 1587
	}

	if (epnum == 0) {
1588 1589 1590 1591
		/*
		 * Condition req->complete != s3c_hsotg_complete_setup says:
		 * send ZLP when we have an asynchronous request from gadget
		 */
1592 1593 1594 1595
		if (!was_setup && req->complete != s3c_hsotg_complete_setup)
			s3c_hsotg_send_zlp(hsotg, hs_req);
	}

1596
	s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
1597 1598 1599 1600 1601 1602 1603
}

/**
 * s3c_hsotg_read_frameno - read current frame number
 * @hsotg: The device instance
 *
 * Return the current frame number
1604
 */
1605 1606 1607 1608
static u32 s3c_hsotg_read_frameno(struct s3c_hsotg *hsotg)
{
	u32 dsts;

1609 1610 1611
	dsts = readl(hsotg->regs + DSTS);
	dsts &= DSTS_SOFFN_MASK;
	dsts >>= DSTS_SOFFN_SHIFT;
1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623

	return dsts;
}

/**
 * s3c_hsotg_handle_rx - RX FIFO has data
 * @hsotg: The device instance
 *
 * The IRQ handler has detected that the RX FIFO has some data in it
 * that requires processing, so find out what is in there and do the
 * appropriate read.
 *
L
Lucas De Marchi 已提交
1624
 * The RXFIFO is a true FIFO, the packets coming out are still in packet
1625 1626 1627 1628 1629 1630 1631
 * chunks, so if you have x packets received on an endpoint you'll get x
 * FIFO events delivered, each with a packet's worth of data in it.
 *
 * When using DMA, we should not be processing events from the RXFIFO
 * as the actual data should be sent to the memory directly and we turn
 * on the completion interrupts to get notifications of transfer completion.
 */
1632
static void s3c_hsotg_handle_rx(struct s3c_hsotg *hsotg)
1633
{
1634
	u32 grxstsr = readl(hsotg->regs + GRXSTSP);
1635 1636 1637 1638
	u32 epnum, status, size;

	WARN_ON(using_dma(hsotg));

1639 1640
	epnum = grxstsr & GRXSTS_EPNum_MASK;
	status = grxstsr & GRXSTS_PktSts_MASK;
1641

1642 1643
	size = grxstsr & GRXSTS_ByteCnt_MASK;
	size >>= GRXSTS_ByteCnt_SHIFT;
1644 1645 1646 1647 1648

	if (1)
		dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
			__func__, grxstsr, size, epnum);

1649
#define __status(x) ((x) >> GRXSTS_PktSts_SHIFT)
1650

1651 1652
	switch (status >> GRXSTS_PktSts_SHIFT) {
	case __status(GRXSTS_PktSts_GlobalOutNAK):
1653 1654 1655
		dev_dbg(hsotg->dev, "GlobalOutNAK\n");
		break;

1656
	case __status(GRXSTS_PktSts_OutDone):
1657 1658 1659 1660 1661 1662 1663
		dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
			s3c_hsotg_read_frameno(hsotg));

		if (!using_dma(hsotg))
			s3c_hsotg_handle_outdone(hsotg, epnum, false);
		break;

1664
	case __status(GRXSTS_PktSts_SetupDone):
1665 1666 1667
		dev_dbg(hsotg->dev,
			"SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
			s3c_hsotg_read_frameno(hsotg),
1668
			readl(hsotg->regs + DOEPCTL(0)));
1669 1670 1671 1672

		s3c_hsotg_handle_outdone(hsotg, epnum, true);
		break;

1673
	case __status(GRXSTS_PktSts_OutRX):
1674 1675 1676
		s3c_hsotg_rx_data(hsotg, epnum, size);
		break;

1677
	case __status(GRXSTS_PktSts_SetupRX):
1678 1679 1680
		dev_dbg(hsotg->dev,
			"SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
			s3c_hsotg_read_frameno(hsotg),
1681
			readl(hsotg->regs + DOEPCTL(0)));
1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697

		s3c_hsotg_rx_data(hsotg, epnum, size);
		break;

	default:
		dev_warn(hsotg->dev, "%s: unknown status %08x\n",
			 __func__, grxstsr);

		s3c_hsotg_dump(hsotg);
		break;
	}
}

/**
 * s3c_hsotg_ep0_mps - turn max packet size into register setting
 * @mps: The maximum packet size in bytes.
1698
 */
1699 1700 1701 1702
static u32 s3c_hsotg_ep0_mps(unsigned int mps)
{
	switch (mps) {
	case 64:
1703
		return D0EPCTL_MPS_64;
1704
	case 32:
1705
		return D0EPCTL_MPS_32;
1706
	case 16:
1707
		return D0EPCTL_MPS_16;
1708
	case 8:
1709
		return D0EPCTL_MPS_8;
1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739
	}

	/* bad max packet size, warn and return invalid result */
	WARN_ON(1);
	return (u32)-1;
}

/**
 * s3c_hsotg_set_ep_maxpacket - set endpoint's max-packet field
 * @hsotg: The driver state.
 * @ep: The index number of the endpoint
 * @mps: The maximum packet size in bytes
 *
 * Configure the maximum packet size for the given endpoint, updating
 * the hardware control registers to reflect this.
 */
static void s3c_hsotg_set_ep_maxpacket(struct s3c_hsotg *hsotg,
				       unsigned int ep, unsigned int mps)
{
	struct s3c_hsotg_ep *hs_ep = &hsotg->eps[ep];
	void __iomem *regs = hsotg->regs;
	u32 mpsval;
	u32 reg;

	if (ep == 0) {
		/* EP0 is a special case */
		mpsval = s3c_hsotg_ep0_mps(mps);
		if (mpsval > 3)
			goto bad_mps;
	} else {
1740
		if (mps >= DxEPCTL_MPS_LIMIT+1)
1741 1742 1743 1744 1745 1746 1747
			goto bad_mps;

		mpsval = mps;
	}

	hs_ep->ep.maxpacket = mps;

1748 1749 1750 1751
	/*
	 * update both the in and out endpoint controldir_ registers, even
	 * if one of the directions may not be in use.
	 */
1752

1753 1754
	reg = readl(regs + DIEPCTL(ep));
	reg &= ~DxEPCTL_MPS_MASK;
1755
	reg |= mpsval;
1756
	writel(reg, regs + DIEPCTL(ep));
1757

1758
	if (ep) {
1759 1760
		reg = readl(regs + DOEPCTL(ep));
		reg &= ~DxEPCTL_MPS_MASK;
1761
		reg |= mpsval;
1762
		writel(reg, regs + DOEPCTL(ep));
1763
	}
1764 1765 1766 1767 1768 1769 1770

	return;

bad_mps:
	dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
}

1771 1772 1773 1774 1775 1776 1777 1778 1779 1780
/**
 * s3c_hsotg_txfifo_flush - flush Tx FIFO
 * @hsotg: The driver state
 * @idx: The index for the endpoint (0..15)
 */
static void s3c_hsotg_txfifo_flush(struct s3c_hsotg *hsotg, unsigned int idx)
{
	int timeout;
	int val;

1781 1782
	writel(GRSTCTL_TxFNum(idx) | GRSTCTL_TxFFlsh,
		hsotg->regs + GRSTCTL);
1783 1784 1785 1786 1787

	/* wait until the fifo is flushed */
	timeout = 100;

	while (1) {
1788
		val = readl(hsotg->regs + GRSTCTL);
1789

1790
		if ((val & (GRSTCTL_TxFFlsh)) == 0)
1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801
			break;

		if (--timeout == 0) {
			dev_err(hsotg->dev,
				"%s: timeout flushing fifo (GRSTCTL=%08x)\n",
				__func__, val);
		}

		udelay(1);
	}
}
1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839

/**
 * s3c_hsotg_trytx - check to see if anything needs transmitting
 * @hsotg: The driver state
 * @hs_ep: The driver endpoint to check.
 *
 * Check to see if there is a request that has data to send, and if so
 * make an attempt to write data into the FIFO.
 */
static int s3c_hsotg_trytx(struct s3c_hsotg *hsotg,
			   struct s3c_hsotg_ep *hs_ep)
{
	struct s3c_hsotg_req *hs_req = hs_ep->req;

	if (!hs_ep->dir_in || !hs_req)
		return 0;

	if (hs_req->req.actual < hs_req->req.length) {
		dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
			hs_ep->index);
		return s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
	}

	return 0;
}

/**
 * s3c_hsotg_complete_in - complete IN transfer
 * @hsotg: The device state.
 * @hs_ep: The endpoint that has just completed.
 *
 * An IN transfer has been completed, update the transfer's state and then
 * call the relevant completion routines.
 */
static void s3c_hsotg_complete_in(struct s3c_hsotg *hsotg,
				  struct s3c_hsotg_ep *hs_ep)
{
	struct s3c_hsotg_req *hs_req = hs_ep->req;
1840
	u32 epsize = readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
1841 1842 1843 1844 1845 1846 1847
	int size_left, size_done;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "XferCompl but no req\n");
		return;
	}

1848 1849 1850
	/* Finish ZLP handling for IN EP0 transactions */
	if (hsotg->eps[0].sent_zlp) {
		dev_dbg(hsotg->dev, "zlp packet received\n");
1851
		s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1852 1853 1854
		return;
	}

1855 1856
	/*
	 * Calculate the size of the transfer by checking how much is left
1857 1858 1859 1860 1861 1862 1863 1864
	 * in the endpoint size register and then working it out from
	 * the amount we loaded for the transfer.
	 *
	 * We do this even for DMA, as the transfer may have incremented
	 * past the end of the buffer (DMA transfers are always 32bit
	 * aligned).
	 */

1865
	size_left = DxEPTSIZ_XferSize_GET(epsize);
1866 1867 1868 1869 1870 1871 1872 1873 1874

	size_done = hs_ep->size_loaded - size_left;
	size_done += hs_ep->last_load;

	if (hs_req->req.actual != size_done)
		dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
			__func__, hs_req->req.actual, size_done);

	hs_req->req.actual = size_done;
1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893
	dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
		hs_req->req.length, hs_req->req.actual, hs_req->req.zero);

	/*
	 * Check if dealing with Maximum Packet Size(MPS) IN transfer at EP0
	 * When sent data is a multiple MPS size (e.g. 64B ,128B ,192B
	 * ,256B ... ), after last MPS sized packet send IN ZLP packet to
	 * inform the host that no more data is available.
	 * The state of req.zero member is checked to be sure that the value to
	 * send is smaller than wValue expected from host.
	 * Check req.length to NOT send another ZLP when the current one is
	 * under completion (the one for which this completion has been called).
	 */
	if (hs_req->req.length && hs_ep->index == 0 && hs_req->req.zero &&
	    hs_req->req.length == hs_req->req.actual &&
	    !(hs_req->req.length % hs_ep->ep.maxpacket)) {

		dev_dbg(hsotg->dev, "ep0 zlp IN packet sent\n");
		s3c_hsotg_send_zlp(hsotg, hs_req);
1894

1895 1896
		return;
	}
1897 1898 1899 1900 1901

	if (!size_left && hs_req->req.actual < hs_req->req.length) {
		dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
		s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
	} else
1902
		s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1903 1904 1905 1906 1907 1908 1909 1910 1911
}

/**
 * s3c_hsotg_epint - handle an in/out endpoint interrupt
 * @hsotg: The driver state
 * @idx: The index for the endpoint (0..15)
 * @dir_in: Set if this is an IN endpoint
 *
 * Process and clear any interrupt pending for an individual endpoint
1912
 */
1913 1914 1915 1916
static void s3c_hsotg_epint(struct s3c_hsotg *hsotg, unsigned int idx,
			    int dir_in)
{
	struct s3c_hsotg_ep *hs_ep = &hsotg->eps[idx];
1917 1918 1919
	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
	u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
1920 1921 1922 1923
	u32 ints;

	ints = readl(hsotg->regs + epint_reg);

1924 1925 1926
	/* Clear endpoint interrupts */
	writel(ints, hsotg->regs + epint_reg);

1927 1928 1929
	dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
		__func__, idx, dir_in ? "in" : "out", ints);

1930
	if (ints & DxEPINT_XferCompl) {
1931 1932 1933 1934 1935
		dev_dbg(hsotg->dev,
			"%s: XferCompl: DxEPCTL=0x%08x, DxEPTSIZ=%08x\n",
			__func__, readl(hsotg->regs + epctl_reg),
			readl(hsotg->regs + epsiz_reg));

1936 1937 1938 1939
		/*
		 * we get OutDone from the FIFO, so we only need to look
		 * at completing IN requests here
		 */
1940 1941 1942
		if (dir_in) {
			s3c_hsotg_complete_in(hsotg, hs_ep);

1943
			if (idx == 0 && !hs_ep->req)
1944 1945
				s3c_hsotg_enqueue_setup(hsotg);
		} else if (using_dma(hsotg)) {
1946 1947 1948 1949
			/*
			 * We're using DMA, we need to fire an OutDone here
			 * as we ignore the RXFIFO.
			 */
1950 1951 1952 1953 1954

			s3c_hsotg_handle_outdone(hsotg, idx, false);
		}
	}

1955
	if (ints & DxEPINT_EPDisbld) {
1956 1957
		dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);

1958 1959 1960 1961 1962
		if (dir_in) {
			int epctl = readl(hsotg->regs + epctl_reg);

			s3c_hsotg_txfifo_flush(hsotg, idx);

1963 1964 1965
			if ((epctl & DxEPCTL_Stall) &&
				(epctl & DxEPCTL_EPType_Bulk)) {
				int dctl = readl(hsotg->regs + DCTL);
1966

1967 1968
				dctl |= DCTL_CGNPInNAK;
				writel(dctl, hsotg->regs + DCTL);
1969 1970 1971 1972
			}
		}
	}

1973
	if (ints & DxEPINT_AHBErr)
1974 1975
		dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);

1976
	if (ints & DxEPINT_Setup) {  /* Setup or Timeout */
1977 1978 1979
		dev_dbg(hsotg->dev, "%s: Setup/Timeout\n",  __func__);

		if (using_dma(hsotg) && idx == 0) {
1980 1981
			/*
			 * this is the notification we've received a
1982 1983
			 * setup packet. In non-DMA mode we'd get this
			 * from the RXFIFO, instead we need to process
1984 1985
			 * the setup here.
			 */
1986 1987 1988 1989 1990 1991 1992 1993

			if (dir_in)
				WARN_ON_ONCE(1);
			else
				s3c_hsotg_handle_outdone(hsotg, 0, true);
		}
	}

1994
	if (ints & DxEPINT_Back2BackSetup)
1995 1996 1997
		dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);

	if (dir_in) {
1998
		/* not sure if this is important, but we'll clear it anyway */
1999
		if (ints & DIEPMSK_INTknTXFEmpMsk) {
2000 2001 2002 2003 2004
			dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
				__func__, idx);
		}

		/* this probably means something bad is happening */
2005
		if (ints & DIEPMSK_INTknEPMisMsk) {
2006 2007 2008
			dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
				 __func__, idx);
		}
2009 2010 2011

		/* FIFO has space or is empty (see GAHBCFG) */
		if (hsotg->dedicated_fifos &&
2012
		    ints & DIEPMSK_TxFIFOEmpty) {
2013 2014
			dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
				__func__, idx);
2015 2016
			if (!using_dma(hsotg))
				s3c_hsotg_trytx(hsotg, hs_ep);
2017
		}
2018 2019 2020 2021 2022 2023 2024 2025 2026
	}
}

/**
 * s3c_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
 * @hsotg: The device state.
 *
 * Handle updating the device settings after the enumeration phase has
 * been completed.
2027
 */
2028 2029
static void s3c_hsotg_irq_enumdone(struct s3c_hsotg *hsotg)
{
2030
	u32 dsts = readl(hsotg->regs + DSTS);
2031 2032
	int ep0_mps = 0, ep_mps;

2033 2034
	/*
	 * This should signal the finish of the enumeration phase
2035
	 * of the USB handshaking, so we should now know what rate
2036 2037
	 * we connected at.
	 */
2038 2039 2040

	dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);

2041 2042
	/*
	 * note, since we're limited by the size of transfer on EP0, and
2043
	 * it seems IN transfers must be a even number of packets we do
2044 2045
	 * not advertise a 64byte MPS on EP0.
	 */
2046 2047

	/* catch both EnumSpd_FS and EnumSpd_FS48 */
2048 2049 2050
	switch (dsts & DSTS_EnumSpd_MASK) {
	case DSTS_EnumSpd_FS:
	case DSTS_EnumSpd_FS48:
2051 2052 2053 2054 2055
		hsotg->gadget.speed = USB_SPEED_FULL;
		ep0_mps = EP0_MPS_LIMIT;
		ep_mps = 64;
		break;

2056
	case DSTS_EnumSpd_HS:
2057 2058 2059 2060 2061
		hsotg->gadget.speed = USB_SPEED_HIGH;
		ep0_mps = EP0_MPS_LIMIT;
		ep_mps = 512;
		break;

2062
	case DSTS_EnumSpd_LS:
2063
		hsotg->gadget.speed = USB_SPEED_LOW;
2064 2065
		/*
		 * note, we don't actually support LS in this driver at the
2066 2067 2068 2069 2070
		 * moment, and the documentation seems to imply that it isn't
		 * supported by the PHYs on some of the devices.
		 */
		break;
	}
2071 2072
	dev_info(hsotg->dev, "new device is %s\n",
		 usb_speed_string(hsotg->gadget.speed));
2073

2074 2075 2076 2077
	/*
	 * we should now know the maximum packet size for an
	 * endpoint, so set the endpoints to a default value.
	 */
2078 2079 2080 2081

	if (ep0_mps) {
		int i;
		s3c_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps);
2082
		for (i = 1; i < hsotg->num_of_eps; i++)
2083 2084 2085 2086 2087 2088 2089 2090
			s3c_hsotg_set_ep_maxpacket(hsotg, i, ep_mps);
	}

	/* ensure after enumeration our EP0 is active */

	s3c_hsotg_enqueue_setup(hsotg);

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2091 2092
		readl(hsotg->regs + DIEPCTL0),
		readl(hsotg->regs + DOEPCTL0));
2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111
}

/**
 * kill_all_requests - remove all requests from the endpoint's queue
 * @hsotg: The device state.
 * @ep: The endpoint the requests may be on.
 * @result: The result code to use.
 * @force: Force removal of any current requests
 *
 * Go through the requests on the given endpoint and mark them
 * completed with the given result code.
 */
static void kill_all_requests(struct s3c_hsotg *hsotg,
			      struct s3c_hsotg_ep *ep,
			      int result, bool force)
{
	struct s3c_hsotg_req *req, *treq;

	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
2112 2113 2114 2115
		/*
		 * currently, we can't do much about an already
		 * running request on an in endpoint
		 */
2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126

		if (ep->req == req && ep->dir_in && !force)
			continue;

		s3c_hsotg_complete_request(hsotg, ep, req,
					   result);
	}
}

#define call_gadget(_hs, _entry) \
	if ((_hs)->gadget.speed != USB_SPEED_UNKNOWN &&	\
2127 2128 2129 2130 2131
	    (_hs)->driver && (_hs)->driver->_entry) { \
		spin_unlock(&_hs->lock); \
		(_hs)->driver->_entry(&(_hs)->gadget); \
		spin_lock(&_hs->lock); \
		}
2132 2133

/**
2134
 * s3c_hsotg_disconnect - disconnect service
2135 2136
 * @hsotg: The device state.
 *
2137 2138 2139
 * The device has been disconnected. Remove all current
 * transactions and signal the gadget driver that this
 * has happened.
2140
 */
2141
static void s3c_hsotg_disconnect(struct s3c_hsotg *hsotg)
2142 2143 2144
{
	unsigned ep;

2145
	for (ep = 0; ep < hsotg->num_of_eps; ep++)
2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162
		kill_all_requests(hsotg, &hsotg->eps[ep], -ESHUTDOWN, true);

	call_gadget(hsotg, disconnect);
}

/**
 * s3c_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
 * @hsotg: The device state:
 * @periodic: True if this is a periodic FIFO interrupt
 */
static void s3c_hsotg_irq_fifoempty(struct s3c_hsotg *hsotg, bool periodic)
{
	struct s3c_hsotg_ep *ep;
	int epno, ret;

	/* look through for any more data to transmit */

2163
	for (epno = 0; epno < hsotg->num_of_eps; epno++) {
2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179
		ep = &hsotg->eps[epno];

		if (!ep->dir_in)
			continue;

		if ((periodic && !ep->periodic) ||
		    (!periodic && ep->periodic))
			continue;

		ret = s3c_hsotg_trytx(hsotg, ep);
		if (ret < 0)
			break;
	}
}

/* IRQ flags which will trigger a retry around the IRQ loop */
2180 2181 2182
#define IRQ_RETRY_MASK (GINTSTS_NPTxFEmp | \
			GINTSTS_PTxFEmp |  \
			GINTSTS_RxFLvl)
2183

2184 2185 2186 2187 2188
/**
 * s3c_hsotg_corereset - issue softreset to the core
 * @hsotg: The device state
 *
 * Issue a soft reset to the core, and await the core finishing it.
2189
 */
2190 2191 2192 2193 2194 2195 2196 2197
static int s3c_hsotg_corereset(struct s3c_hsotg *hsotg)
{
	int timeout;
	u32 grstctl;

	dev_dbg(hsotg->dev, "resetting core\n");

	/* issue soft reset */
2198
	writel(GRSTCTL_CSftRst, hsotg->regs + GRSTCTL);
2199

2200
	timeout = 10000;
2201
	do {
2202 2203
		grstctl = readl(hsotg->regs + GRSTCTL);
	} while ((grstctl & GRSTCTL_CSftRst) && timeout-- > 0);
2204

2205
	if (grstctl & GRSTCTL_CSftRst) {
2206 2207 2208 2209
		dev_err(hsotg->dev, "Failed to get CSftRst asserted\n");
		return -EINVAL;
	}

2210
	timeout = 10000;
2211 2212

	while (1) {
2213
		u32 grstctl = readl(hsotg->regs + GRSTCTL);
2214 2215 2216 2217 2218 2219 2220 2221

		if (timeout-- < 0) {
			dev_info(hsotg->dev,
				 "%s: reset failed, GRSTCTL=%08x\n",
				 __func__, grstctl);
			return -ETIMEDOUT;
		}

2222
		if (!(grstctl & GRSTCTL_AHBIdle))
2223 2224 2225 2226 2227 2228 2229 2230 2231
			continue;

		break;		/* reset done */
	}

	dev_dbg(hsotg->dev, "reset successful\n");
	return 0;
}

2232 2233 2234 2235 2236 2237
/**
 * s3c_hsotg_core_init - issue softreset to the core
 * @hsotg: The device state
 *
 * Issue a soft reset to the core, and await the core finishing it.
 */
2238 2239 2240 2241 2242 2243 2244 2245 2246 2247
static void s3c_hsotg_core_init(struct s3c_hsotg *hsotg)
{
	s3c_hsotg_corereset(hsotg);

	/*
	 * we must now enable ep0 ready for host detection and then
	 * set configuration.
	 */

	/* set the PLL on, remove the HNP/SRP and set the PHY */
2248 2249
	writel(GUSBCFG_PHYIf16 | GUSBCFG_TOutCal(7) |
	       (0x5 << 10), hsotg->regs + GUSBCFG);
2250 2251 2252

	s3c_hsotg_init_fifo(hsotg);

2253
	__orr32(hsotg->regs + DCTL, DCTL_SftDiscon);
2254

2255
	writel(1 << 18 | DCFG_DevSpd_HS,  hsotg->regs + DCFG);
2256 2257

	/* Clear any pending OTG interrupts */
2258
	writel(0xffffffff, hsotg->regs + GOTGINT);
2259 2260

	/* Clear any pending interrupts */
2261
	writel(0xffffffff, hsotg->regs + GINTSTS);
2262

2263 2264 2265 2266 2267 2268
	writel(GINTSTS_ErlySusp | GINTSTS_SessReqInt |
	       GINTSTS_GOUTNakEff | GINTSTS_GINNakEff |
	       GINTSTS_ConIDStsChng | GINTSTS_USBRst |
	       GINTSTS_EnumDone | GINTSTS_OTGInt |
	       GINTSTS_USBSusp | GINTSTS_WkUpInt,
	       hsotg->regs + GINTMSK);
2269 2270

	if (using_dma(hsotg))
2271 2272 2273
		writel(GAHBCFG_GlblIntrEn | GAHBCFG_DMAEn |
		       GAHBCFG_HBstLen_Incr4,
		       hsotg->regs + GAHBCFG);
2274
	else
2275
		writel(GAHBCFG_GlblIntrEn, hsotg->regs + GAHBCFG);
2276 2277 2278 2279 2280 2281 2282

	/*
	 * Enabling INTknTXFEmpMsk here seems to be a big mistake, we end
	 * up being flooded with interrupts if the host is polling the
	 * endpoint to try and read data.
	 */

2283 2284 2285 2286 2287
	writel(((hsotg->dedicated_fifos) ? DIEPMSK_TxFIFOEmpty : 0) |
	       DIEPMSK_EPDisbldMsk | DIEPMSK_XferComplMsk |
	       DIEPMSK_TimeOUTMsk | DIEPMSK_AHBErrMsk |
	       DIEPMSK_INTknEPMisMsk,
	       hsotg->regs + DIEPMSK);
2288 2289 2290 2291 2292

	/*
	 * don't need XferCompl, we get that from RXFIFO in slave mode. In
	 * DMA mode we may need this.
	 */
2293 2294 2295 2296 2297
	writel((using_dma(hsotg) ? (DIEPMSK_XferComplMsk |
				    DIEPMSK_TimeOUTMsk) : 0) |
	       DOEPMSK_EPDisbldMsk | DOEPMSK_AHBErrMsk |
	       DOEPMSK_SetupMsk,
	       hsotg->regs + DOEPMSK);
2298

2299
	writel(0, hsotg->regs + DAINTMSK);
2300 2301

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2302 2303
		readl(hsotg->regs + DIEPCTL0),
		readl(hsotg->regs + DOEPCTL0));
2304 2305

	/* enable in and out endpoint interrupts */
2306
	s3c_hsotg_en_gsint(hsotg, GINTSTS_OEPInt | GINTSTS_IEPInt);
2307 2308 2309 2310 2311 2312 2313

	/*
	 * Enable the RXFIFO when in slave mode, as this is how we collect
	 * the data. In DMA mode, we get events from the FIFO but also
	 * things we cannot process, so do not use it.
	 */
	if (!using_dma(hsotg))
2314
		s3c_hsotg_en_gsint(hsotg, GINTSTS_RxFLvl);
2315 2316 2317 2318 2319

	/* Enable interrupts for EP0 in and out */
	s3c_hsotg_ctrl_epint(hsotg, 0, 0, 1);
	s3c_hsotg_ctrl_epint(hsotg, 0, 1, 1);

2320
	__orr32(hsotg->regs + DCTL, DCTL_PWROnPrgDone);
2321
	udelay(10);  /* see openiboot */
2322
	__bic32(hsotg->regs + DCTL, DCTL_PWROnPrgDone);
2323

2324
	dev_dbg(hsotg->dev, "DCTL=0x%08x\n", readl(hsotg->regs + DCTL));
2325 2326

	/*
2327
	 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
2328 2329 2330 2331
	 * writing to the EPCTL register..
	 */

	/* set to read 1 8byte packet */
2332 2333
	writel(DxEPTSIZ_MC(1) | DxEPTSIZ_PktCnt(1) |
	       DxEPTSIZ_XferSize(8), hsotg->regs + DOEPTSIZ0);
2334 2335

	writel(s3c_hsotg_ep0_mps(hsotg->eps[0].ep.maxpacket) |
2336 2337 2338
	       DxEPCTL_CNAK | DxEPCTL_EPEna |
	       DxEPCTL_USBActEp,
	       hsotg->regs + DOEPCTL0);
2339 2340 2341

	/* enable, but don't activate EP0in */
	writel(s3c_hsotg_ep0_mps(hsotg->eps[0].ep.maxpacket) |
2342
	       DxEPCTL_USBActEp, hsotg->regs + DIEPCTL0);
2343 2344 2345 2346

	s3c_hsotg_enqueue_setup(hsotg);

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2347 2348
		readl(hsotg->regs + DIEPCTL0),
		readl(hsotg->regs + DOEPCTL0));
2349 2350

	/* clear global NAKs */
2351 2352
	writel(DCTL_CGOUTNak | DCTL_CGNPInNAK,
	       hsotg->regs + DCTL);
2353 2354 2355 2356 2357

	/* must be at-least 3ms to allow bus to see disconnect */
	mdelay(3);

	/* remove the soft-disconnect and let's go */
2358
	__bic32(hsotg->regs + DCTL, DCTL_SftDiscon);
2359 2360
}

2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372
/**
 * s3c_hsotg_irq - handle device interrupt
 * @irq: The IRQ number triggered
 * @pw: The pw value when registered the handler.
 */
static irqreturn_t s3c_hsotg_irq(int irq, void *pw)
{
	struct s3c_hsotg *hsotg = pw;
	int retry_count = 8;
	u32 gintsts;
	u32 gintmsk;

2373
	spin_lock(&hsotg->lock);
2374
irq_retry:
2375 2376
	gintsts = readl(hsotg->regs + GINTSTS);
	gintmsk = readl(hsotg->regs + GINTMSK);
2377 2378 2379 2380 2381 2382

	dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
		__func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);

	gintsts &= gintmsk;

2383 2384
	if (gintsts & GINTSTS_OTGInt) {
		u32 otgint = readl(hsotg->regs + GOTGINT);
2385 2386 2387

		dev_info(hsotg->dev, "OTGInt: %08x\n", otgint);

2388
		writel(otgint, hsotg->regs + GOTGINT);
2389 2390
	}

2391
	if (gintsts & GINTSTS_SessReqInt) {
2392
		dev_dbg(hsotg->dev, "%s: SessReqInt\n", __func__);
2393
		writel(GINTSTS_SessReqInt, hsotg->regs + GINTSTS);
2394 2395
	}

2396 2397
	if (gintsts & GINTSTS_EnumDone) {
		writel(GINTSTS_EnumDone, hsotg->regs + GINTSTS);
2398 2399

		s3c_hsotg_irq_enumdone(hsotg);
2400 2401
	}

2402
	if (gintsts & GINTSTS_ConIDStsChng) {
2403
		dev_dbg(hsotg->dev, "ConIDStsChg (DSTS=0x%08x, GOTCTL=%08x)\n",
2404 2405
			readl(hsotg->regs + DSTS),
			readl(hsotg->regs + GOTGCTL));
2406

2407
		writel(GINTSTS_ConIDStsChng, hsotg->regs + GINTSTS);
2408 2409
	}

2410 2411 2412 2413
	if (gintsts & (GINTSTS_OEPInt | GINTSTS_IEPInt)) {
		u32 daint = readl(hsotg->regs + DAINT);
		u32 daint_out = daint >> DAINT_OutEP_SHIFT;
		u32 daint_in = daint & ~(daint_out << DAINT_OutEP_SHIFT);
2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428
		int ep;

		dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);

		for (ep = 0; ep < 15 && daint_out; ep++, daint_out >>= 1) {
			if (daint_out & 1)
				s3c_hsotg_epint(hsotg, ep, 0);
		}

		for (ep = 0; ep < 15 && daint_in; ep++, daint_in >>= 1) {
			if (daint_in & 1)
				s3c_hsotg_epint(hsotg, ep, 1);
		}
	}

2429
	if (gintsts & GINTSTS_USBRst) {
2430

2431
		u32 usb_status = readl(hsotg->regs + GOTGCTL);
2432

2433 2434
		dev_info(hsotg->dev, "%s: USBRst\n", __func__);
		dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
2435
			readl(hsotg->regs + GNPTXSTS));
2436

2437
		writel(GINTSTS_USBRst, hsotg->regs + GINTSTS);
2438

2439
		if (usb_status & GOTGCTL_BSESVLD) {
2440 2441
			if (time_after(jiffies, hsotg->last_rst +
				       msecs_to_jiffies(200))) {
2442

2443 2444
				kill_all_requests(hsotg, &hsotg->eps[0],
							  -ECONNRESET, true);
2445

2446 2447 2448 2449
				s3c_hsotg_core_init(hsotg);
				hsotg->last_rst = jiffies;
			}
		}
2450 2451 2452 2453
	}

	/* check both FIFOs */

2454
	if (gintsts & GINTSTS_NPTxFEmp) {
2455 2456
		dev_dbg(hsotg->dev, "NPTxFEmp\n");

2457 2458
		/*
		 * Disable the interrupt to stop it happening again
2459
		 * unless one of these endpoint routines decides that
2460 2461
		 * it needs re-enabling
		 */
2462

2463
		s3c_hsotg_disable_gsint(hsotg, GINTSTS_NPTxFEmp);
2464 2465 2466
		s3c_hsotg_irq_fifoempty(hsotg, false);
	}

2467
	if (gintsts & GINTSTS_PTxFEmp) {
2468 2469
		dev_dbg(hsotg->dev, "PTxFEmp\n");

2470
		/* See note in GINTSTS_NPTxFEmp */
2471

2472
		s3c_hsotg_disable_gsint(hsotg, GINTSTS_PTxFEmp);
2473 2474 2475
		s3c_hsotg_irq_fifoempty(hsotg, true);
	}

2476
	if (gintsts & GINTSTS_RxFLvl) {
2477 2478
		/*
		 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
2479
		 * we need to retry s3c_hsotg_handle_rx if this is still
2480 2481
		 * set.
		 */
2482 2483 2484 2485

		s3c_hsotg_handle_rx(hsotg);
	}

2486
	if (gintsts & GINTSTS_ModeMis) {
2487
		dev_warn(hsotg->dev, "warning, mode mismatch triggered\n");
2488
		writel(GINTSTS_ModeMis, hsotg->regs + GINTSTS);
2489 2490
	}

2491 2492 2493
	if (gintsts & GINTSTS_USBSusp) {
		dev_info(hsotg->dev, "GINTSTS_USBSusp\n");
		writel(GINTSTS_USBSusp, hsotg->regs + GINTSTS);
2494 2495

		call_gadget(hsotg, suspend);
2496
		s3c_hsotg_disconnect(hsotg);
2497 2498
	}

2499 2500 2501
	if (gintsts & GINTSTS_WkUpInt) {
		dev_info(hsotg->dev, "GINTSTS_WkUpIn\n");
		writel(GINTSTS_WkUpInt, hsotg->regs + GINTSTS);
2502 2503 2504 2505

		call_gadget(hsotg, resume);
	}

2506 2507 2508
	if (gintsts & GINTSTS_ErlySusp) {
		dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
		writel(GINTSTS_ErlySusp, hsotg->regs + GINTSTS);
2509 2510

		s3c_hsotg_disconnect(hsotg);
2511 2512
	}

2513 2514
	/*
	 * these next two seem to crop-up occasionally causing the core
2515
	 * to shutdown the USB transfer, so try clearing them and logging
2516 2517
	 * the occurrence.
	 */
2518

2519
	if (gintsts & GINTSTS_GOUTNakEff) {
2520 2521
		dev_info(hsotg->dev, "GOUTNakEff triggered\n");

2522
		writel(DCTL_CGOUTNak, hsotg->regs + DCTL);
2523 2524

		s3c_hsotg_dump(hsotg);
2525 2526
	}

2527
	if (gintsts & GINTSTS_GINNakEff) {
2528 2529
		dev_info(hsotg->dev, "GINNakEff triggered\n");

2530
		writel(DCTL_CGNPInNAK, hsotg->regs + DCTL);
2531 2532

		s3c_hsotg_dump(hsotg);
2533 2534
	}

2535 2536 2537 2538
	/*
	 * if we've had fifo events, we should try and go around the
	 * loop again to see if there's any point in returning yet.
	 */
2539 2540 2541 2542

	if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
			goto irq_retry;

2543 2544
	spin_unlock(&hsotg->lock);

2545 2546 2547 2548 2549 2550 2551 2552 2553
	return IRQ_HANDLED;
}

/**
 * s3c_hsotg_ep_enable - enable the given endpoint
 * @ep: The USB endpint to configure
 * @desc: The USB endpoint descriptor to configure with.
 *
 * This is called from the USB gadget code's usb_ep_enable().
2554
 */
2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565
static int s3c_hsotg_ep_enable(struct usb_ep *ep,
			       const struct usb_endpoint_descriptor *desc)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
	struct s3c_hsotg *hsotg = hs_ep->parent;
	unsigned long flags;
	int index = hs_ep->index;
	u32 epctrl_reg;
	u32 epctrl;
	u32 mps;
	int dir_in;
2566
	int ret = 0;
2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581

	dev_dbg(hsotg->dev,
		"%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
		__func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
		desc->wMaxPacketSize, desc->bInterval);

	/* not to be called for EP0 */
	WARN_ON(index == 0);

	dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
	if (dir_in != hs_ep->dir_in) {
		dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
		return -EINVAL;
	}

2582
	mps = usb_endpoint_maxp(desc);
2583 2584 2585

	/* note, we handle this here instead of s3c_hsotg_set_ep_maxpacket */

2586
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
2587 2588 2589 2590 2591
	epctrl = readl(hsotg->regs + epctrl_reg);

	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
		__func__, epctrl, epctrl_reg);

2592
	spin_lock_irqsave(&hsotg->lock, flags);
2593

2594 2595
	epctrl &= ~(DxEPCTL_EPType_MASK | DxEPCTL_MPS_MASK);
	epctrl |= DxEPCTL_MPS(mps);
2596

2597 2598 2599 2600
	/*
	 * mark the endpoint as active, otherwise the core may ignore
	 * transactions entirely for this endpoint
	 */
2601
	epctrl |= DxEPCTL_USBActEp;
2602

2603 2604
	/*
	 * set the NAK status on the endpoint, otherwise we might try and
2605 2606 2607 2608 2609
	 * do something with data that we've yet got a request to process
	 * since the RXFIFO will take data for an endpoint even if the
	 * size register hasn't been set.
	 */

2610
	epctrl |= DxEPCTL_SNAK;
2611 2612 2613 2614 2615 2616 2617 2618 2619 2620

	/* update the endpoint state */
	hs_ep->ep.maxpacket = mps;

	/* default, set to non-periodic */
	hs_ep->periodic = 0;

	switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
	case USB_ENDPOINT_XFER_ISOC:
		dev_err(hsotg->dev, "no current ISOC support\n");
2621 2622
		ret = -EINVAL;
		goto out;
2623 2624

	case USB_ENDPOINT_XFER_BULK:
2625
		epctrl |= DxEPCTL_EPType_Bulk;
2626 2627 2628 2629
		break;

	case USB_ENDPOINT_XFER_INT:
		if (dir_in) {
2630 2631
			/*
			 * Allocate our TxFNum by simply using the index
2632 2633
			 * of the endpoint for the moment. We could do
			 * something better if the host indicates how
2634 2635
			 * many FIFOs we are expecting to use.
			 */
2636 2637

			hs_ep->periodic = 1;
2638
			epctrl |= DxEPCTL_TxFNum(index);
2639 2640
		}

2641
		epctrl |= DxEPCTL_EPType_Intterupt;
2642 2643 2644
		break;

	case USB_ENDPOINT_XFER_CONTROL:
2645
		epctrl |= DxEPCTL_EPType_Control;
2646 2647 2648
		break;
	}

2649 2650
	/*
	 * if the hardware has dedicated fifos, we must give each IN EP
2651 2652 2653
	 * a unique tx-fifo even if it is non-periodic.
	 */
	if (dir_in && hsotg->dedicated_fifos)
2654
		epctrl |= DxEPCTL_TxFNum(index);
2655

2656 2657
	/* for non control endpoints, set PID to D0 */
	if (index)
2658
		epctrl |= DxEPCTL_SetD0PID;
2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669

	dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
		__func__, epctrl);

	writel(epctrl, hsotg->regs + epctrl_reg);
	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
		__func__, readl(hsotg->regs + epctrl_reg));

	/* enable the endpoint interrupt */
	s3c_hsotg_ctrl_epint(hsotg, index, dir_in, 1);

2670
out:
2671
	spin_unlock_irqrestore(&hsotg->lock, flags);
2672
	return ret;
2673 2674
}

2675 2676 2677 2678
/**
 * s3c_hsotg_ep_disable - disable given endpoint
 * @ep: The endpoint to disable.
 */
2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695
static int s3c_hsotg_ep_disable(struct usb_ep *ep)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
	struct s3c_hsotg *hsotg = hs_ep->parent;
	int dir_in = hs_ep->dir_in;
	int index = hs_ep->index;
	unsigned long flags;
	u32 epctrl_reg;
	u32 ctrl;

	dev_info(hsotg->dev, "%s(ep %p)\n", __func__, ep);

	if (ep == &hsotg->eps[0].ep) {
		dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
		return -EINVAL;
	}

2696
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
2697

2698
	spin_lock_irqsave(&hsotg->lock, flags);
2699 2700 2701 2702 2703
	/* terminate all requests with shutdown */
	kill_all_requests(hsotg, hs_ep, -ESHUTDOWN, false);


	ctrl = readl(hsotg->regs + epctrl_reg);
2704 2705 2706
	ctrl &= ~DxEPCTL_EPEna;
	ctrl &= ~DxEPCTL_USBActEp;
	ctrl |= DxEPCTL_SNAK;
2707 2708 2709 2710 2711 2712 2713

	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
	writel(ctrl, hsotg->regs + epctrl_reg);

	/* disable endpoint interrupts */
	s3c_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);

2714
	spin_unlock_irqrestore(&hsotg->lock, flags);
2715 2716 2717 2718 2719 2720 2721
	return 0;
}

/**
 * on_list - check request is on the given endpoint
 * @ep: The endpoint to check.
 * @test: The request to test if it is on the endpoint.
2722
 */
2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734
static bool on_list(struct s3c_hsotg_ep *ep, struct s3c_hsotg_req *test)
{
	struct s3c_hsotg_req *req, *treq;

	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
		if (req == test)
			return true;
	}

	return false;
}

2735 2736 2737 2738 2739
/**
 * s3c_hsotg_ep_dequeue - dequeue given endpoint
 * @ep: The endpoint to dequeue.
 * @req: The request to be removed from a queue.
 */
2740 2741 2742 2743 2744 2745 2746 2747 2748
static int s3c_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
{
	struct s3c_hsotg_req *hs_req = our_req(req);
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
	struct s3c_hsotg *hs = hs_ep->parent;
	unsigned long flags;

	dev_info(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);

2749
	spin_lock_irqsave(&hs->lock, flags);
2750 2751

	if (!on_list(hs_ep, hs_req)) {
2752
		spin_unlock_irqrestore(&hs->lock, flags);
2753 2754 2755 2756
		return -EINVAL;
	}

	s3c_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
2757
	spin_unlock_irqrestore(&hs->lock, flags);
2758 2759 2760 2761

	return 0;
}

2762 2763 2764 2765 2766
/**
 * s3c_hsotg_ep_sethalt - set halt on a given endpoint
 * @ep: The endpoint to set halt.
 * @value: Set or unset the halt.
 */
2767 2768 2769 2770 2771 2772 2773
static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
	struct s3c_hsotg *hs = hs_ep->parent;
	int index = hs_ep->index;
	u32 epreg;
	u32 epctl;
2774
	u32 xfertype;
2775 2776 2777 2778 2779

	dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);

	/* write both IN and OUT control registers */

2780
	epreg = DIEPCTL(index);
2781 2782
	epctl = readl(hs->regs + epreg);

2783
	if (value) {
2784 2785 2786
		epctl |= DxEPCTL_Stall + DxEPCTL_SNAK;
		if (epctl & DxEPCTL_EPEna)
			epctl |= DxEPCTL_EPDis;
2787
	} else {
2788 2789 2790 2791 2792
		epctl &= ~DxEPCTL_Stall;
		xfertype = epctl & DxEPCTL_EPType_MASK;
		if (xfertype == DxEPCTL_EPType_Bulk ||
			xfertype == DxEPCTL_EPType_Intterupt)
				epctl |= DxEPCTL_SetD0PID;
2793
	}
2794 2795 2796

	writel(epctl, hs->regs + epreg);

2797
	epreg = DOEPCTL(index);
2798 2799 2800
	epctl = readl(hs->regs + epreg);

	if (value)
2801
		epctl |= DxEPCTL_Stall;
2802
	else {
2803 2804 2805 2806 2807
		epctl &= ~DxEPCTL_Stall;
		xfertype = epctl & DxEPCTL_EPType_MASK;
		if (xfertype == DxEPCTL_EPType_Bulk ||
			xfertype == DxEPCTL_EPType_Intterupt)
				epctl |= DxEPCTL_SetD0PID;
2808
	}
2809 2810 2811 2812 2813 2814

	writel(epctl, hs->regs + epreg);

	return 0;
}

2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833
/**
 * s3c_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
 * @ep: The endpoint to set halt.
 * @value: Set or unset the halt.
 */
static int s3c_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
	struct s3c_hsotg *hs = hs_ep->parent;
	unsigned long flags = 0;
	int ret = 0;

	spin_lock_irqsave(&hs->lock, flags);
	ret = s3c_hsotg_ep_sethalt(ep, value);
	spin_unlock_irqrestore(&hs->lock, flags);

	return ret;
}

2834 2835 2836 2837 2838
static struct usb_ep_ops s3c_hsotg_ep_ops = {
	.enable		= s3c_hsotg_ep_enable,
	.disable	= s3c_hsotg_ep_disable,
	.alloc_request	= s3c_hsotg_ep_alloc_request,
	.free_request	= s3c_hsotg_ep_free_request,
2839
	.queue		= s3c_hsotg_ep_queue_lock,
2840
	.dequeue	= s3c_hsotg_ep_dequeue,
2841
	.set_halt	= s3c_hsotg_ep_sethalt_lock,
L
Lucas De Marchi 已提交
2842
	/* note, don't believe we have any call for the fifo routines */
2843 2844
};

2845 2846
/**
 * s3c_hsotg_phy_enable - enable platform phy dev
2847
 * @hsotg: The driver state
2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862
 *
 * A wrapper for platform code responsible for controlling
 * low-level USB code
 */
static void s3c_hsotg_phy_enable(struct s3c_hsotg *hsotg)
{
	struct platform_device *pdev = to_platform_device(hsotg->dev);

	dev_dbg(hsotg->dev, "pdev 0x%p\n", pdev);
	if (hsotg->plat->phy_init)
		hsotg->plat->phy_init(pdev, hsotg->plat->phy_type);
}

/**
 * s3c_hsotg_phy_disable - disable platform phy dev
2863
 * @hsotg: The driver state
2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875
 *
 * A wrapper for platform code responsible for controlling
 * low-level USB code
 */
static void s3c_hsotg_phy_disable(struct s3c_hsotg *hsotg)
{
	struct platform_device *pdev = to_platform_device(hsotg->dev);

	if (hsotg->plat->phy_exit)
		hsotg->plat->phy_exit(pdev, hsotg->plat->phy_type);
}

2876 2877 2878 2879
/**
 * s3c_hsotg_init - initalize the usb core
 * @hsotg: The driver state
 */
2880 2881 2882 2883
static void s3c_hsotg_init(struct s3c_hsotg *hsotg)
{
	/* unmask subset of endpoint interrupts */

2884 2885 2886
	writel(DIEPMSK_TimeOUTMsk | DIEPMSK_AHBErrMsk |
	       DIEPMSK_EPDisbldMsk | DIEPMSK_XferComplMsk,
	       hsotg->regs + DIEPMSK);
2887

2888 2889 2890
	writel(DOEPMSK_SetupMsk | DOEPMSK_AHBErrMsk |
	       DOEPMSK_EPDisbldMsk | DOEPMSK_XferComplMsk,
	       hsotg->regs + DOEPMSK);
2891

2892
	writel(0, hsotg->regs + DAINTMSK);
2893 2894

	/* Be in disconnected state until gadget is registered */
2895
	__orr32(hsotg->regs + DCTL, DCTL_SftDiscon);
2896 2897 2898

	if (0) {
		/* post global nak until we're ready */
2899 2900
		writel(DCTL_SGNPInNAK | DCTL_SGOUTNak,
		       hsotg->regs + DCTL);
2901 2902 2903 2904 2905
	}

	/* setup fifos */

	dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
2906 2907
		readl(hsotg->regs + GRXFSIZ),
		readl(hsotg->regs + GNPTXFSIZ));
2908 2909 2910 2911

	s3c_hsotg_init_fifo(hsotg);

	/* set the PLL on, remove the HNP/SRP and set the PHY */
2912 2913
	writel(GUSBCFG_PHYIf16 | GUSBCFG_TOutCal(7) | (0x5 << 10),
	       hsotg->regs + GUSBCFG);
2914

2915 2916
	writel(using_dma(hsotg) ? GAHBCFG_DMAEn : 0x0,
	       hsotg->regs + GAHBCFG);
2917 2918
}

2919 2920 2921 2922 2923 2924 2925 2926
/**
 * s3c_hsotg_udc_start - prepare the udc for work
 * @gadget: The usb gadget state
 * @driver: The usb gadget driver
 *
 * Perform initialization to prepare udc device and driver
 * to work.
 */
2927 2928
static int s3c_hsotg_udc_start(struct usb_gadget *gadget,
			   struct usb_gadget_driver *driver)
2929
{
2930
	struct s3c_hsotg *hsotg = to_hsotg(gadget);
2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942
	int ret;

	if (!hsotg) {
		printk(KERN_ERR "%s: called with no device\n", __func__);
		return -ENODEV;
	}

	if (!driver) {
		dev_err(hsotg->dev, "%s: no driver\n", __func__);
		return -EINVAL;
	}

2943
	if (driver->max_speed < USB_SPEED_FULL)
2944 2945
		dev_err(hsotg->dev, "%s: bad speed\n", __func__);

2946
	if (!driver->setup) {
2947 2948 2949 2950 2951 2952 2953 2954 2955
		dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
		return -EINVAL;
	}

	WARN_ON(hsotg->driver);

	driver->driver.bus = NULL;
	hsotg->driver = driver;
	hsotg->gadget.dev.driver = &driver->driver;
2956
	hsotg->gadget.dev.of_node = hsotg->dev->of_node;
2957 2958 2959
	hsotg->gadget.dev.dma_mask = hsotg->dev->dma_mask;
	hsotg->gadget.speed = USB_SPEED_UNKNOWN;

2960 2961
	ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
				    hsotg->supplies);
2962
	if (ret) {
2963
		dev_err(hsotg->dev, "failed to enable supplies: %d\n", ret);
2964 2965 2966
		goto err;
	}

2967
	hsotg->last_rst = jiffies;
2968 2969 2970 2971 2972 2973 2974 2975 2976
	dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
	return 0;

err:
	hsotg->driver = NULL;
	hsotg->gadget.dev.driver = NULL;
	return ret;
}

2977 2978 2979 2980 2981 2982 2983
/**
 * s3c_hsotg_udc_stop - stop the udc
 * @gadget: The usb gadget state
 * @driver: The usb gadget driver
 *
 * Stop udc hw block and stay tunned for future transmissions
 */
2984 2985
static int s3c_hsotg_udc_stop(struct usb_gadget *gadget,
			  struct usb_gadget_driver *driver)
2986
{
2987
	struct s3c_hsotg *hsotg = to_hsotg(gadget);
2988
	unsigned long flags = 0;
2989 2990 2991 2992 2993 2994 2995 2996 2997
	int ep;

	if (!hsotg)
		return -ENODEV;

	if (!driver || driver != hsotg->driver || !driver->unbind)
		return -EINVAL;

	/* all endpoints should be shutdown */
2998
	for (ep = 0; ep < hsotg->num_of_eps; ep++)
2999 3000
		s3c_hsotg_ep_disable(&hsotg->eps[ep].ep);

3001 3002
	spin_lock_irqsave(&hsotg->lock, flags);

3003 3004
	s3c_hsotg_phy_disable(hsotg);
	regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies), hsotg->supplies);
3005 3006 3007

	hsotg->driver = NULL;
	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
3008
	hsotg->gadget.dev.driver = NULL;
3009

3010 3011
	spin_unlock_irqrestore(&hsotg->lock, flags);

3012 3013 3014 3015 3016 3017
	dev_info(hsotg->dev, "unregistered gadget driver '%s'\n",
		 driver->driver.name);

	return 0;
}

3018 3019 3020 3021 3022 3023
/**
 * s3c_hsotg_gadget_getframe - read the frame number
 * @gadget: The usb gadget state
 *
 * Read the {micro} frame number
 */
3024 3025 3026 3027 3028
static int s3c_hsotg_gadget_getframe(struct usb_gadget *gadget)
{
	return s3c_hsotg_read_frameno(to_hsotg(gadget));
}

3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057
/**
 * s3c_hsotg_pullup - connect/disconnect the USB PHY
 * @gadget: The usb gadget state
 * @is_on: Current state of the USB PHY
 *
 * Connect/Disconnect the USB PHY pullup
 */
static int s3c_hsotg_pullup(struct usb_gadget *gadget, int is_on)
{
	struct s3c_hsotg *hsotg = to_hsotg(gadget);
	unsigned long flags = 0;

	dev_dbg(hsotg->dev, "%s: is_in: %d\n", __func__, is_on);

	spin_lock_irqsave(&hsotg->lock, flags);
	if (is_on) {
		s3c_hsotg_phy_enable(hsotg);
		s3c_hsotg_core_init(hsotg);
	} else {
		s3c_hsotg_disconnect(hsotg);
		s3c_hsotg_phy_disable(hsotg);
	}

	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
	spin_unlock_irqrestore(&hsotg->lock, flags);

	return 0;
}

3058 3059
static struct usb_gadget_ops s3c_hsotg_gadget_ops = {
	.get_frame	= s3c_hsotg_gadget_getframe,
3060 3061
	.udc_start		= s3c_hsotg_udc_start,
	.udc_stop		= s3c_hsotg_udc_stop,
3062
	.pullup                 = s3c_hsotg_pullup,
3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106
};

/**
 * s3c_hsotg_initep - initialise a single endpoint
 * @hsotg: The device state.
 * @hs_ep: The endpoint to be initialised.
 * @epnum: The endpoint number
 *
 * Initialise the given endpoint (as part of the probe and device state
 * creation) to give to the gadget driver. Setup the endpoint name, any
 * direction information and other state that may be required.
 */
static void __devinit s3c_hsotg_initep(struct s3c_hsotg *hsotg,
				       struct s3c_hsotg_ep *hs_ep,
				       int epnum)
{
	u32 ptxfifo;
	char *dir;

	if (epnum == 0)
		dir = "";
	else if ((epnum % 2) == 0) {
		dir = "out";
	} else {
		dir = "in";
		hs_ep->dir_in = 1;
	}

	hs_ep->index = epnum;

	snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);

	INIT_LIST_HEAD(&hs_ep->queue);
	INIT_LIST_HEAD(&hs_ep->ep.ep_list);

	/* add to the list of endpoints known by the gadget driver */
	if (epnum)
		list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);

	hs_ep->parent = hsotg;
	hs_ep->ep.name = hs_ep->name;
	hs_ep->ep.maxpacket = epnum ? 512 : EP0_MPS_LIMIT;
	hs_ep->ep.ops = &s3c_hsotg_ep_ops;

3107 3108
	/*
	 * Read the FIFO size for the Periodic TX FIFO, even if we're
3109 3110 3111 3112
	 * an OUT endpoint, we may as well do this if in future the
	 * code is changed to make each endpoint's direction changeable.
	 */

3113 3114
	ptxfifo = readl(hsotg->regs + DPTXFSIZn(epnum));
	hs_ep->fifo_size = DPTXFSIZn_DPTxFSize_GET(ptxfifo) * 4;
3115

3116 3117
	/*
	 * if we're using dma, we need to set the next-endpoint pointer
3118 3119 3120 3121
	 * to be something valid.
	 */

	if (using_dma(hsotg)) {
3122 3123 3124
		u32 next = DxEPCTL_NextEp((epnum + 1) % 15);
		writel(next, hsotg->regs + DIEPCTL(epnum));
		writel(next, hsotg->regs + DOEPCTL(epnum));
3125 3126 3127
	}
}

3128 3129 3130 3131 3132 3133 3134
/**
 * s3c_hsotg_hw_cfg - read HW configuration registers
 * @param: The device state
 *
 * Read the USB core HW configuration registers
 */
static void s3c_hsotg_hw_cfg(struct s3c_hsotg *hsotg)
3135
{
3136 3137
	u32 cfg2, cfg4;
	/* check hardware configuration */
3138

3139 3140
	cfg2 = readl(hsotg->regs + 0x48);
	hsotg->num_of_eps = (cfg2 >> 10) & 0xF;
3141

3142
	dev_info(hsotg->dev, "EPs:%d\n", hsotg->num_of_eps);
3143 3144 3145 3146 3147 3148

	cfg4 = readl(hsotg->regs + 0x50);
	hsotg->dedicated_fifos = (cfg4 >> 25) & 1;

	dev_info(hsotg->dev, "%s fifos\n",
		 hsotg->dedicated_fifos ? "dedicated" : "shared");
3149 3150
}

3151 3152 3153 3154
/**
 * s3c_hsotg_dump - dump state of the udc
 * @param: The device state
 */
3155 3156
static void s3c_hsotg_dump(struct s3c_hsotg *hsotg)
{
M
Mark Brown 已提交
3157
#ifdef DEBUG
3158 3159 3160 3161 3162 3163
	struct device *dev = hsotg->dev;
	void __iomem *regs = hsotg->regs;
	u32 val;
	int idx;

	dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
3164 3165
		 readl(regs + DCFG), readl(regs + DCTL),
		 readl(regs + DIEPMSK));
3166 3167

	dev_info(dev, "GAHBCFG=0x%08x, 0x44=0x%08x\n",
3168
		 readl(regs + GAHBCFG), readl(regs + 0x44));
3169 3170

	dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
3171
		 readl(regs + GRXFSIZ), readl(regs + GNPTXFSIZ));
3172 3173 3174 3175

	/* show periodic fifo settings */

	for (idx = 1; idx <= 15; idx++) {
3176
		val = readl(regs + DPTXFSIZn(idx));
3177
		dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
3178 3179
			 val >> DPTXFSIZn_DPTxFSize_SHIFT,
			 val & DPTXFSIZn_DPTxFStAddr_MASK);
3180 3181 3182 3183 3184
	}

	for (idx = 0; idx < 15; idx++) {
		dev_info(dev,
			 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
3185 3186 3187
			 readl(regs + DIEPCTL(idx)),
			 readl(regs + DIEPTSIZ(idx)),
			 readl(regs + DIEPDMA(idx)));
3188

3189
		val = readl(regs + DOEPCTL(idx));
3190 3191
		dev_info(dev,
			 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
3192 3193 3194
			 idx, readl(regs + DOEPCTL(idx)),
			 readl(regs + DOEPTSIZ(idx)),
			 readl(regs + DOEPDMA(idx)));
3195 3196 3197 3198

	}

	dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
3199
		 readl(regs + DVBUSDIS), readl(regs + DVBUSPULSE));
M
Mark Brown 已提交
3200
#endif
3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218
}

/**
 * state_show - debugfs: show overall driver and device state.
 * @seq: The seq file to write to.
 * @v: Unused parameter.
 *
 * This debugfs entry shows the overall state of the hardware and
 * some general information about each of the endpoints available
 * to the system.
 */
static int state_show(struct seq_file *seq, void *v)
{
	struct s3c_hsotg *hsotg = seq->private;
	void __iomem *regs = hsotg->regs;
	int idx;

	seq_printf(seq, "DCFG=0x%08x, DCTL=0x%08x, DSTS=0x%08x\n",
3219 3220 3221
		 readl(regs + DCFG),
		 readl(regs + DCTL),
		 readl(regs + DSTS));
3222 3223

	seq_printf(seq, "DIEPMSK=0x%08x, DOEPMASK=0x%08x\n",
3224
		   readl(regs + DIEPMSK), readl(regs + DOEPMSK));
3225 3226

	seq_printf(seq, "GINTMSK=0x%08x, GINTSTS=0x%08x\n",
3227 3228
		   readl(regs + GINTMSK),
		   readl(regs + GINTSTS));
3229 3230

	seq_printf(seq, "DAINTMSK=0x%08x, DAINT=0x%08x\n",
3231 3232
		   readl(regs + DAINTMSK),
		   readl(regs + DAINT));
3233 3234

	seq_printf(seq, "GNPTXSTS=0x%08x, GRXSTSR=%08x\n",
3235 3236
		   readl(regs + GNPTXSTS),
		   readl(regs + GRXSTSR));
3237 3238 3239 3240 3241 3242

	seq_printf(seq, "\nEndpoint status:\n");

	for (idx = 0; idx < 15; idx++) {
		u32 in, out;

3243 3244
		in = readl(regs + DIEPCTL(idx));
		out = readl(regs + DOEPCTL(idx));
3245 3246 3247 3248

		seq_printf(seq, "ep%d: DIEPCTL=0x%08x, DOEPCTL=0x%08x",
			   idx, in, out);

3249 3250
		in = readl(regs + DIEPTSIZ(idx));
		out = readl(regs + DOEPTSIZ(idx));
3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280

		seq_printf(seq, ", DIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x",
			   in, out);

		seq_printf(seq, "\n");
	}

	return 0;
}

static int state_open(struct inode *inode, struct file *file)
{
	return single_open(file, state_show, inode->i_private);
}

static const struct file_operations state_fops = {
	.owner		= THIS_MODULE,
	.open		= state_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

/**
 * fifo_show - debugfs: show the fifo information
 * @seq: The seq_file to write data to.
 * @v: Unused parameter.
 *
 * Show the FIFO information for the overall fifo and all the
 * periodic transmission FIFOs.
3281
 */
3282 3283 3284 3285 3286 3287 3288 3289
static int fifo_show(struct seq_file *seq, void *v)
{
	struct s3c_hsotg *hsotg = seq->private;
	void __iomem *regs = hsotg->regs;
	u32 val;
	int idx;

	seq_printf(seq, "Non-periodic FIFOs:\n");
3290
	seq_printf(seq, "RXFIFO: Size %d\n", readl(regs + GRXFSIZ));
3291

3292
	val = readl(regs + GNPTXFSIZ);
3293
	seq_printf(seq, "NPTXFIFO: Size %d, Start 0x%08x\n",
3294 3295
		   val >> GNPTXFSIZ_NPTxFDep_SHIFT,
		   val & GNPTXFSIZ_NPTxFStAddr_MASK);
3296 3297 3298 3299

	seq_printf(seq, "\nPeriodic TXFIFOs:\n");

	for (idx = 1; idx <= 15; idx++) {
3300
		val = readl(regs + DPTXFSIZn(idx));
3301 3302

		seq_printf(seq, "\tDPTXFIFO%2d: Size %d, Start 0x%08x\n", idx,
3303 3304
			   val >> DPTXFSIZn_DPTxFSize_SHIFT,
			   val & DPTXFSIZn_DPTxFStAddr_MASK);
3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335
	}

	return 0;
}

static int fifo_open(struct inode *inode, struct file *file)
{
	return single_open(file, fifo_show, inode->i_private);
}

static const struct file_operations fifo_fops = {
	.owner		= THIS_MODULE,
	.open		= fifo_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};


static const char *decode_direction(int is_in)
{
	return is_in ? "in" : "out";
}

/**
 * ep_show - debugfs: show the state of an endpoint.
 * @seq: The seq_file to write data to.
 * @v: Unused parameter.
 *
 * This debugfs entry shows the state of the given endpoint (one is
 * registered for each available).
3336
 */
3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352
static int ep_show(struct seq_file *seq, void *v)
{
	struct s3c_hsotg_ep *ep = seq->private;
	struct s3c_hsotg *hsotg = ep->parent;
	struct s3c_hsotg_req *req;
	void __iomem *regs = hsotg->regs;
	int index = ep->index;
	int show_limit = 15;
	unsigned long flags;

	seq_printf(seq, "Endpoint index %d, named %s,  dir %s:\n",
		   ep->index, ep->ep.name, decode_direction(ep->dir_in));

	/* first show the register state */

	seq_printf(seq, "\tDIEPCTL=0x%08x, DOEPCTL=0x%08x\n",
3353 3354
		   readl(regs + DIEPCTL(index)),
		   readl(regs + DOEPCTL(index)));
3355 3356

	seq_printf(seq, "\tDIEPDMA=0x%08x, DOEPDMA=0x%08x\n",
3357 3358
		   readl(regs + DIEPDMA(index)),
		   readl(regs + DOEPDMA(index)));
3359 3360

	seq_printf(seq, "\tDIEPINT=0x%08x, DOEPINT=0x%08x\n",
3361 3362
		   readl(regs + DIEPINT(index)),
		   readl(regs + DOEPINT(index)));
3363 3364

	seq_printf(seq, "\tDIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x\n",
3365 3366
		   readl(regs + DIEPTSIZ(index)),
		   readl(regs + DOEPTSIZ(index)));
3367 3368 3369 3370 3371 3372 3373 3374

	seq_printf(seq, "\n");
	seq_printf(seq, "mps %d\n", ep->ep.maxpacket);
	seq_printf(seq, "total_data=%ld\n", ep->total_data);

	seq_printf(seq, "request list (%p,%p):\n",
		   ep->queue.next, ep->queue.prev);

3375
	spin_lock_irqsave(&hsotg->lock, flags);
3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389

	list_for_each_entry(req, &ep->queue, queue) {
		if (--show_limit < 0) {
			seq_printf(seq, "not showing more requests...\n");
			break;
		}

		seq_printf(seq, "%c req %p: %d bytes @%p, ",
			   req == ep->req ? '*' : ' ',
			   req, req->req.length, req->req.buf);
		seq_printf(seq, "%d done, res %d\n",
			   req->req.actual, req->req.status);
	}

3390
	spin_unlock_irqrestore(&hsotg->lock, flags);
3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415

	return 0;
}

static int ep_open(struct inode *inode, struct file *file)
{
	return single_open(file, ep_show, inode->i_private);
}

static const struct file_operations ep_fops = {
	.owner		= THIS_MODULE,
	.open		= ep_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

/**
 * s3c_hsotg_create_debug - create debugfs directory and files
 * @hsotg: The driver state
 *
 * Create the debugfs files to allow the user to get information
 * about the state of the system. The directory name is created
 * with the same name as the device itself, in case we end up
 * with multiple blocks in future systems.
3416
 */
3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444
static void __devinit s3c_hsotg_create_debug(struct s3c_hsotg *hsotg)
{
	struct dentry *root;
	unsigned epidx;

	root = debugfs_create_dir(dev_name(hsotg->dev), NULL);
	hsotg->debug_root = root;
	if (IS_ERR(root)) {
		dev_err(hsotg->dev, "cannot create debug root\n");
		return;
	}

	/* create general state file */

	hsotg->debug_file = debugfs_create_file("state", 0444, root,
						hsotg, &state_fops);

	if (IS_ERR(hsotg->debug_file))
		dev_err(hsotg->dev, "%s: failed to create state\n", __func__);

	hsotg->debug_fifo = debugfs_create_file("fifo", 0444, root,
						hsotg, &fifo_fops);

	if (IS_ERR(hsotg->debug_fifo))
		dev_err(hsotg->dev, "%s: failed to create fifo\n", __func__);

	/* create one file for each endpoint */

3445
	for (epidx = 0; epidx < hsotg->num_of_eps; epidx++) {
3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461
		struct s3c_hsotg_ep *ep = &hsotg->eps[epidx];

		ep->debugfs = debugfs_create_file(ep->name, 0444,
						  root, ep, &ep_fops);

		if (IS_ERR(ep->debugfs))
			dev_err(hsotg->dev, "failed to create %s debug file\n",
				ep->name);
	}
}

/**
 * s3c_hsotg_delete_debug - cleanup debugfs entries
 * @hsotg: The driver state
 *
 * Cleanup (remove) the debugfs files for use on module exit.
3462
 */
3463 3464 3465 3466
static void __devexit s3c_hsotg_delete_debug(struct s3c_hsotg *hsotg)
{
	unsigned epidx;

3467
	for (epidx = 0; epidx < hsotg->num_of_eps; epidx++) {
3468 3469 3470 3471 3472 3473 3474 3475 3476
		struct s3c_hsotg_ep *ep = &hsotg->eps[epidx];
		debugfs_remove(ep->debugfs);
	}

	debugfs_remove(hsotg->debug_file);
	debugfs_remove(hsotg->debug_fifo);
	debugfs_remove(hsotg->debug_root);
}

3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487
/**
 * s3c_hsotg_release - release callback for hsotg device
 * @dev: Device to for which release is called
 */
static void s3c_hsotg_release(struct device *dev)
{
	struct s3c_hsotg *hsotg = dev_get_drvdata(dev);

	kfree(hsotg);
}

3488 3489 3490 3491
/**
 * s3c_hsotg_probe - probe function for hsotg driver
 * @pdev: The platform information for the driver
 */
3492

3493 3494 3495 3496
static int __devinit s3c_hsotg_probe(struct platform_device *pdev)
{
	struct s3c_hsotg_plat *plat = pdev->dev.platform_data;
	struct device *dev = &pdev->dev;
3497
	struct s3c_hsotg_ep *eps;
3498 3499 3500 3501
	struct s3c_hsotg *hsotg;
	struct resource *res;
	int epnum;
	int ret;
3502
	int i;
3503

3504 3505 3506 3507 3508
	plat = pdev->dev.platform_data;
	if (!plat) {
		dev_err(&pdev->dev, "no platform data defined\n");
		return -EINVAL;
	}
3509

3510
	hsotg = devm_kzalloc(&pdev->dev, sizeof(struct s3c_hsotg), GFP_KERNEL);
3511 3512 3513 3514 3515 3516 3517 3518
	if (!hsotg) {
		dev_err(dev, "cannot get memory\n");
		return -ENOMEM;
	}

	hsotg->dev = dev;
	hsotg->plat = plat;

3519
	hsotg->clk = devm_clk_get(&pdev->dev, "otg");
3520 3521
	if (IS_ERR(hsotg->clk)) {
		dev_err(dev, "cannot get otg clock\n");
3522
		return PTR_ERR(hsotg->clk);
3523 3524
	}

3525 3526 3527 3528
	platform_set_drvdata(pdev, hsotg);

	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);

3529
	hsotg->regs = devm_request_and_ioremap(&pdev->dev, res);
3530 3531 3532
	if (!hsotg->regs) {
		dev_err(dev, "cannot map registers\n");
		ret = -ENXIO;
3533
		goto err_clk;
3534 3535 3536 3537 3538
	}

	ret = platform_get_irq(pdev, 0);
	if (ret < 0) {
		dev_err(dev, "cannot find IRQ\n");
3539
		goto err_clk;
3540 3541
	}

3542 3543
	spin_lock_init(&hsotg->lock);

3544 3545
	hsotg->irq = ret;

3546 3547
	ret = devm_request_irq(&pdev->dev, hsotg->irq, s3c_hsotg_irq, 0,
				dev_name(dev), hsotg);
3548 3549
	if (ret < 0) {
		dev_err(dev, "cannot claim IRQ\n");
3550
		goto err_clk;
3551 3552 3553 3554 3555 3556 3557 3558
	}

	dev_info(dev, "regs %p, irq %d\n", hsotg->regs, hsotg->irq);

	device_initialize(&hsotg->gadget.dev);

	dev_set_name(&hsotg->gadget.dev, "gadget");

3559
	hsotg->gadget.max_speed = USB_SPEED_HIGH;
3560 3561 3562 3563 3564
	hsotg->gadget.ops = &s3c_hsotg_gadget_ops;
	hsotg->gadget.name = dev_name(dev);

	hsotg->gadget.dev.parent = dev;
	hsotg->gadget.dev.dma_mask = dev->dma_mask;
3565
	hsotg->gadget.dev.release = s3c_hsotg_release;
3566 3567 3568

	/* reset the system */

3569
	clk_prepare_enable(hsotg->clk);
3570

3571 3572 3573 3574 3575 3576 3577 3578 3579
	/* regulators */

	for (i = 0; i < ARRAY_SIZE(hsotg->supplies); i++)
		hsotg->supplies[i].supply = s3c_hsotg_supply_names[i];

	ret = regulator_bulk_get(dev, ARRAY_SIZE(hsotg->supplies),
				 hsotg->supplies);
	if (ret) {
		dev_err(dev, "failed to request supplies: %d\n", ret);
3580
		goto err_clk;
3581 3582 3583 3584 3585 3586 3587 3588 3589 3590
	}

	ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
				    hsotg->supplies);

	if (ret) {
		dev_err(hsotg->dev, "failed to enable supplies: %d\n", ret);
		goto err_supplies;
	}

3591 3592
	/* usb phy enable */
	s3c_hsotg_phy_enable(hsotg);
3593 3594 3595

	s3c_hsotg_corereset(hsotg);
	s3c_hsotg_init(hsotg);
3596 3597 3598 3599 3600 3601
	s3c_hsotg_hw_cfg(hsotg);

	/* hsotg->num_of_eps holds number of EPs other than ep0 */

	if (hsotg->num_of_eps == 0) {
		dev_err(dev, "wrong number of EPs (zero)\n");
3602
		ret = -EINVAL;
3603 3604 3605 3606 3607 3608 3609
		goto err_supplies;
	}

	eps = kcalloc(hsotg->num_of_eps + 1, sizeof(struct s3c_hsotg_ep),
		      GFP_KERNEL);
	if (!eps) {
		dev_err(dev, "cannot get memory\n");
3610
		ret = -ENOMEM;
3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626
		goto err_supplies;
	}

	hsotg->eps = eps;

	/* setup endpoint information */

	INIT_LIST_HEAD(&hsotg->gadget.ep_list);
	hsotg->gadget.ep0 = &hsotg->eps[0].ep;

	/* allocate EP0 request */

	hsotg->ctrl_req = s3c_hsotg_ep_alloc_request(&hsotg->eps[0].ep,
						     GFP_KERNEL);
	if (!hsotg->ctrl_req) {
		dev_err(dev, "failed to allocate ctrl req\n");
3627
		ret = -ENOMEM;
3628 3629
		goto err_ep_mem;
	}
3630 3631

	/* initialise the endpoints now the core has been initialised */
3632
	for (epnum = 0; epnum < hsotg->num_of_eps; epnum++)
3633 3634
		s3c_hsotg_initep(hsotg, &hsotg->eps[epnum], epnum);

3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651
	/* disable power and clock */

	ret = regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies),
				    hsotg->supplies);
	if (ret) {
		dev_err(hsotg->dev, "failed to disable supplies: %d\n", ret);
		goto err_ep_mem;
	}

	s3c_hsotg_phy_disable(hsotg);

	ret = device_add(&hsotg->gadget.dev);
	if (ret) {
		put_device(&hsotg->gadget.dev);
		goto err_ep_mem;
	}

3652 3653
	ret = usb_add_gadget_udc(&pdev->dev, &hsotg->gadget);
	if (ret)
3654
		goto err_ep_mem;
3655

3656 3657 3658 3659 3660 3661
	s3c_hsotg_create_debug(hsotg);

	s3c_hsotg_dump(hsotg);

	return 0;

3662
err_ep_mem:
3663
	kfree(eps);
3664
err_supplies:
3665
	s3c_hsotg_phy_disable(hsotg);
3666
	regulator_bulk_free(ARRAY_SIZE(hsotg->supplies), hsotg->supplies);
3667

3668
err_clk:
3669
	clk_disable_unprepare(hsotg->clk);
3670

3671 3672 3673
	return ret;
}

3674 3675 3676 3677
/**
 * s3c_hsotg_remove - remove function for hsotg driver
 * @pdev: The platform information for the driver
 */
3678 3679 3680 3681
static int __devexit s3c_hsotg_remove(struct platform_device *pdev)
{
	struct s3c_hsotg *hsotg = platform_get_drvdata(pdev);

3682 3683
	usb_del_gadget_udc(&hsotg->gadget);

3684 3685
	s3c_hsotg_delete_debug(hsotg);

3686 3687 3688 3689
	if (hsotg->driver) {
		/* should have been done already by driver model core */
		usb_gadget_unregister_driver(hsotg->driver);
	}
3690

3691
	s3c_hsotg_phy_disable(hsotg);
3692 3693
	regulator_bulk_free(ARRAY_SIZE(hsotg->supplies), hsotg->supplies);

3694
	clk_disable_unprepare(hsotg->clk);
3695

3696
	device_unregister(&hsotg->gadget.dev);
3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715
	return 0;
}

#if 1
#define s3c_hsotg_suspend NULL
#define s3c_hsotg_resume NULL
#endif

static struct platform_driver s3c_hsotg_driver = {
	.driver		= {
		.name	= "s3c-hsotg",
		.owner	= THIS_MODULE,
	},
	.probe		= s3c_hsotg_probe,
	.remove		= __devexit_p(s3c_hsotg_remove),
	.suspend	= s3c_hsotg_suspend,
	.resume		= s3c_hsotg_resume,
};

3716
module_platform_driver(s3c_hsotg_driver);
3717 3718 3719 3720 3721

MODULE_DESCRIPTION("Samsung S3C USB High-speed/OtG device");
MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:s3c-hsotg");