s3c-hsotg.c 92.6 KB
Newer Older
1 2
/**
 * linux/drivers/usb/gadget/s3c-hsotg.c
3 4 5
 *
 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
 *		http://www.samsung.com
6 7 8 9 10 11 12 13 14 15 16
 *
 * Copyright 2008 Openmoko, Inc.
 * Copyright 2008 Simtec Electronics
 *      Ben Dooks <ben@simtec.co.uk>
 *      http://armlinux.simtec.co.uk/
 *
 * S3C USB2.0 High-speed / OtG driver
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
17
 */
18 19 20 21 22 23 24 25 26 27 28

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
#include <linux/platform_device.h>
#include <linux/dma-mapping.h>
#include <linux/debugfs.h>
#include <linux/seq_file.h>
#include <linux/delay.h>
#include <linux/io.h>
29
#include <linux/slab.h>
30
#include <linux/clk.h>
31
#include <linux/regulator/consumer.h>
32
#include <linux/of_platform.h>
33 34 35

#include <linux/usb/ch9.h>
#include <linux/usb/gadget.h>
36
#include <linux/usb/phy.h>
37
#include <linux/platform_data/s3c-hsotg.h>
38 39 40

#include <mach/map.h>

41
#include "s3c-hsotg.h"
42

43 44 45 46 47
static const char * const s3c_hsotg_supply_names[] = {
	"vusb_d",		/* digital USB supply, 1.2V */
	"vusb_a",		/* analog USB supply, 1.1V */
};

48 49
/*
 * EP0_MPS_LIMIT
50 51
 *
 * Unfortunately there seems to be a limit of the amount of data that can
L
Lucas De Marchi 已提交
52 53
 * be transferred by IN transactions on EP0. This is either 127 bytes or 3
 * packets (which practically means 1 packet and 63 bytes of data) when the
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
 * MPS is set to 64.
 *
 * This means if we are wanting to move >127 bytes of data, we need to
 * split the transactions up, but just doing one packet at a time does
 * not work (this may be an implicit DATA0 PID on first packet of the
 * transaction) and doing 2 packets is outside the controller's limits.
 *
 * If we try to lower the MPS size for EP0, then no transfers work properly
 * for EP0, and the system will fail basic enumeration. As no cause for this
 * has currently been found, we cannot support any large IN transfers for
 * EP0.
 */
#define EP0_MPS_LIMIT	64

struct s3c_hsotg;
struct s3c_hsotg_req;

/**
 * struct s3c_hsotg_ep - driver endpoint definition.
 * @ep: The gadget layer representation of the endpoint.
 * @name: The driver generated name for the endpoint.
 * @queue: Queue of requests for this endpoint.
 * @parent: Reference back to the parent device structure.
 * @req: The current request that the endpoint is processing. This is
 *       used to indicate an request has been loaded onto the endpoint
 *       and has yet to be completed (maybe due to data move, or simply
 *	 awaiting an ack from the core all the data has been completed).
 * @debugfs: File entry for debugfs file for this endpoint.
 * @lock: State lock to protect contents of endpoint.
 * @dir_in: Set to true if this endpoint is of the IN direction, which
 *	    means that it is sending data to the Host.
 * @index: The index for the endpoint registers.
86
 * @interval - Interval for periodic endpoints
87 88 89
 * @name: The name array passed to the USB core.
 * @halted: Set if the endpoint has been halted.
 * @periodic: Set if this is a periodic ep, such as Interrupt
90
 * @isochronous: Set if this is a isochronous ep
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
 * @sent_zlp: Set if we've sent a zero-length packet.
 * @total_data: The total number of data bytes done.
 * @fifo_size: The size of the FIFO (for periodic IN endpoints)
 * @fifo_load: The amount of data loaded into the FIFO (periodic IN)
 * @last_load: The offset of data for the last start of request.
 * @size_loaded: The last loaded size for DxEPTSIZE for periodic IN
 *
 * This is the driver's state for each registered enpoint, allowing it
 * to keep track of transactions that need doing. Each endpoint has a
 * lock to protect the state, to try and avoid using an overall lock
 * for the host controller as much as possible.
 *
 * For periodic IN endpoints, we have fifo_size and fifo_load to try
 * and keep track of the amount of data in the periodic FIFO for each
 * of these as we don't have a status register that tells us how much
106 107 108
 * is in each of them. (note, this may actually be useless information
 * as in shared-fifo mode periodic in acts like a single-frame packet
 * buffer than a fifo)
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
 */
struct s3c_hsotg_ep {
	struct usb_ep		ep;
	struct list_head	queue;
	struct s3c_hsotg	*parent;
	struct s3c_hsotg_req	*req;
	struct dentry		*debugfs;


	unsigned long		total_data;
	unsigned int		size_loaded;
	unsigned int		last_load;
	unsigned int		fifo_load;
	unsigned short		fifo_size;

	unsigned char		dir_in;
	unsigned char		index;
126
	unsigned char		interval;
127 128 129

	unsigned int		halted:1;
	unsigned int		periodic:1;
130
	unsigned int		isochronous:1;
131 132 133 134 135 136 137 138 139
	unsigned int		sent_zlp:1;

	char			name[10];
};

/**
 * struct s3c_hsotg - driver state.
 * @dev: The parent device supplied to the probe function
 * @driver: USB gadget driver
140 141 142
 * @phy: The otg phy transceiver structure for phy control.
 * @plat: The platform specific configuration data. This can be removed once
 * all SoCs support usb transceiver.
143 144
 * @regs: The memory area mapped for accessing registers.
 * @irq: The IRQ number we are using
145
 * @supplies: Definition of USB power supplies
146
 * @dedicated_fifos: Set if the hardware has dedicated IN-EP fifos.
147
 * @num_of_eps: Number of available EPs (excluding EP0)
148 149 150 151 152 153 154
 * @debug_root: root directrory for debugfs.
 * @debug_file: main status file for debugfs.
 * @debug_fifo: FIFO status file for debugfs.
 * @ep0_reply: Request used for ep0 reply.
 * @ep0_buff: Buffer for EP0 reply data, if needed.
 * @ctrl_buff: Buffer for EP0 control requests.
 * @ctrl_req: Request for EP0 control packets.
155
 * @setup: NAK management for EP0 SETUP
156
 * @last_rst: Time of last reset
157 158 159 160 161
 * @eps: The endpoints being supplied to the gadget framework
 */
struct s3c_hsotg {
	struct device		 *dev;
	struct usb_gadget_driver *driver;
162
	struct usb_phy		*phy;
163 164
	struct s3c_hsotg_plat	 *plat;

165 166
	spinlock_t              lock;

167 168
	void __iomem		*regs;
	int			irq;
169
	struct clk		*clk;
170

171 172
	struct regulator_bulk_data supplies[ARRAY_SIZE(s3c_hsotg_supply_names)];

173
	unsigned int		dedicated_fifos:1;
174
	unsigned char           num_of_eps;
175

176 177 178 179 180 181 182 183 184 185
	struct dentry		*debug_root;
	struct dentry		*debug_file;
	struct dentry		*debug_fifo;

	struct usb_request	*ep0_reply;
	struct usb_request	*ctrl_req;
	u8			ep0_buff[8];
	u8			ctrl_buff[8];

	struct usb_gadget	gadget;
186
	unsigned int		setup;
187
	unsigned long           last_rst;
188
	struct s3c_hsotg_ep	*eps;
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
};

/**
 * struct s3c_hsotg_req - data transfer request
 * @req: The USB gadget request
 * @queue: The list of requests for the endpoint this is queued for.
 * @in_progress: Has already had size/packets written to core
 * @mapped: DMA buffer for this request has been mapped via dma_map_single().
 */
struct s3c_hsotg_req {
	struct usb_request	req;
	struct list_head	queue;
	unsigned char		in_progress;
	unsigned char		mapped;
};

/* conversion functions */
static inline struct s3c_hsotg_req *our_req(struct usb_request *req)
{
	return container_of(req, struct s3c_hsotg_req, req);
}

static inline struct s3c_hsotg_ep *our_ep(struct usb_ep *ep)
{
	return container_of(ep, struct s3c_hsotg_ep, ep);
}

static inline struct s3c_hsotg *to_hsotg(struct usb_gadget *gadget)
{
	return container_of(gadget, struct s3c_hsotg, gadget);
}

static inline void __orr32(void __iomem *ptr, u32 val)
{
	writel(readl(ptr) | val, ptr);
}

static inline void __bic32(void __iomem *ptr, u32 val)
{
	writel(readl(ptr) & ~val, ptr);
}

/* forward decleration of functions */
static void s3c_hsotg_dump(struct s3c_hsotg *hsotg);

/**
 * using_dma - return the DMA status of the driver.
 * @hsotg: The driver state.
 *
 * Return true if we're using DMA.
 *
 * Currently, we have the DMA support code worked into everywhere
 * that needs it, but the AMBA DMA implementation in the hardware can
 * only DMA from 32bit aligned addresses. This means that gadgets such
 * as the CDC Ethernet cannot work as they often pass packets which are
 * not 32bit aligned.
 *
 * Unfortunately the choice to use DMA or not is global to the controller
 * and seems to be only settable when the controller is being put through
 * a core reset. This means we either need to fix the gadgets to take
 * account of DMA alignment, or add bounce buffers (yuerk).
 *
 * Until this issue is sorted out, we always return 'false'.
 */
static inline bool using_dma(struct s3c_hsotg *hsotg)
{
	return false;	/* support is not complete */
}

/**
 * s3c_hsotg_en_gsint - enable one or more of the general interrupt
 * @hsotg: The device state
 * @ints: A bitmask of the interrupts to enable
 */
static void s3c_hsotg_en_gsint(struct s3c_hsotg *hsotg, u32 ints)
{
265
	u32 gsintmsk = readl(hsotg->regs + GINTMSK);
266 267 268 269 270 271
	u32 new_gsintmsk;

	new_gsintmsk = gsintmsk | ints;

	if (new_gsintmsk != gsintmsk) {
		dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
272
		writel(new_gsintmsk, hsotg->regs + GINTMSK);
273 274 275 276 277 278 279 280 281 282
	}
}

/**
 * s3c_hsotg_disable_gsint - disable one or more of the general interrupt
 * @hsotg: The device state
 * @ints: A bitmask of the interrupts to enable
 */
static void s3c_hsotg_disable_gsint(struct s3c_hsotg *hsotg, u32 ints)
{
283
	u32 gsintmsk = readl(hsotg->regs + GINTMSK);
284 285 286 287 288
	u32 new_gsintmsk;

	new_gsintmsk = gsintmsk & ~ints;

	if (new_gsintmsk != gsintmsk)
289
		writel(new_gsintmsk, hsotg->regs + GINTMSK);
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
}

/**
 * s3c_hsotg_ctrl_epint - enable/disable an endpoint irq
 * @hsotg: The device state
 * @ep: The endpoint index
 * @dir_in: True if direction is in.
 * @en: The enable value, true to enable
 *
 * Set or clear the mask for an individual endpoint's interrupt
 * request.
 */
static void s3c_hsotg_ctrl_epint(struct s3c_hsotg *hsotg,
				 unsigned int ep, unsigned int dir_in,
				 unsigned int en)
{
	unsigned long flags;
	u32 bit = 1 << ep;
	u32 daint;

	if (!dir_in)
		bit <<= 16;

	local_irq_save(flags);
314
	daint = readl(hsotg->regs + DAINTMSK);
315 316 317 318
	if (en)
		daint |= bit;
	else
		daint &= ~bit;
319
	writel(daint, hsotg->regs + DAINTMSK);
320 321 322 323 324 325 326 327 328
	local_irq_restore(flags);
}

/**
 * s3c_hsotg_init_fifo - initialise non-periodic FIFOs
 * @hsotg: The device instance.
 */
static void s3c_hsotg_init_fifo(struct s3c_hsotg *hsotg)
{
329 330 331
	unsigned int ep;
	unsigned int addr;
	unsigned int size;
332
	int timeout;
333 334
	u32 val;

335
	/* set FIFO sizes to 2048/1024 */
336

337 338 339 340
	writel(2048, hsotg->regs + GRXFSIZ);
	writel(GNPTXFSIZ_NPTxFStAddr(2048) |
	       GNPTXFSIZ_NPTxFDep(1024),
	       hsotg->regs + GNPTXFSIZ);
341

342 343
	/*
	 * arange all the rest of the TX FIFOs, as some versions of this
344 345
	 * block have overlapping default addresses. This also ensures
	 * that if the settings have been changed, then they are set to
346 347
	 * known values.
	 */
348 349 350 351 352

	/* start at the end of the GNPTXFSIZ, rounded up */
	addr = 2048 + 1024;
	size = 768;

353 354 355 356
	/*
	 * currently we allocate TX FIFOs for all possible endpoints,
	 * and assume that they are all the same size.
	 */
357

358
	for (ep = 1; ep <= 15; ep++) {
359
		val = addr;
360
		val |= size << DPTXFSIZn_DPTxFSize_SHIFT;
361 362
		addr += size;

363
		writel(val, hsotg->regs + DPTXFSIZn(ep));
364
	}
365

366 367 368 369
	/*
	 * according to p428 of the design guide, we need to ensure that
	 * all fifos are flushed before continuing
	 */
370

371 372
	writel(GRSTCTL_TxFNum(0x10) | GRSTCTL_TxFFlsh |
	       GRSTCTL_RxFFlsh, hsotg->regs + GRSTCTL);
373 374 375 376

	/* wait until the fifos are both flushed */
	timeout = 100;
	while (1) {
377
		val = readl(hsotg->regs + GRSTCTL);
378

379
		if ((val & (GRSTCTL_TxFFlsh | GRSTCTL_RxFFlsh)) == 0)
380 381 382 383 384 385 386 387 388 389 390 391
			break;

		if (--timeout == 0) {
			dev_err(hsotg->dev,
				"%s: timeout flushing fifos (GRSTCTL=%08x)\n",
				__func__, val);
		}

		udelay(1);
	}

	dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
392 393 394 395 396 397 398 399
}

/**
 * @ep: USB endpoint to allocate request for.
 * @flags: Allocation flags
 *
 * Allocate a new USB request structure appropriate for the specified endpoint
 */
400 401
static struct usb_request *s3c_hsotg_ep_alloc_request(struct usb_ep *ep,
						      gfp_t flags)
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
{
	struct s3c_hsotg_req *req;

	req = kzalloc(sizeof(struct s3c_hsotg_req), flags);
	if (!req)
		return NULL;

	INIT_LIST_HEAD(&req->queue);

	return &req->req;
}

/**
 * is_ep_periodic - return true if the endpoint is in periodic mode.
 * @hs_ep: The endpoint to query.
 *
 * Returns true if the endpoint is in periodic mode, meaning it is being
 * used for an Interrupt or ISO transfer.
 */
static inline int is_ep_periodic(struct s3c_hsotg_ep *hs_ep)
{
	return hs_ep->periodic;
}

/**
 * s3c_hsotg_unmap_dma - unmap the DMA memory being used for the request
 * @hsotg: The device state.
 * @hs_ep: The endpoint for the request
 * @hs_req: The request being processed.
 *
 * This is the reverse of s3c_hsotg_map_dma(), called for the completion
 * of a request to ensure the buffer is ready for access by the caller.
434
 */
435 436 437 438 439 440 441 442 443 444
static void s3c_hsotg_unmap_dma(struct s3c_hsotg *hsotg,
				struct s3c_hsotg_ep *hs_ep,
				struct s3c_hsotg_req *hs_req)
{
	struct usb_request *req = &hs_req->req;

	/* ignore this if we're not moving any data */
	if (hs_req->req.length == 0)
		return;

445
	usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in);
446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
}

/**
 * s3c_hsotg_write_fifo - write packet Data to the TxFIFO
 * @hsotg: The controller state.
 * @hs_ep: The endpoint we're going to write for.
 * @hs_req: The request to write data for.
 *
 * This is called when the TxFIFO has some space in it to hold a new
 * transmission and we have something to give it. The actual setup of
 * the data size is done elsewhere, so all we have to do is to actually
 * write the data.
 *
 * The return value is zero if there is more space (or nothing was done)
 * otherwise -ENOSPC is returned if the FIFO space was used up.
 *
 * This routine is only needed for PIO
463
 */
464 465 466 467 468
static int s3c_hsotg_write_fifo(struct s3c_hsotg *hsotg,
				struct s3c_hsotg_ep *hs_ep,
				struct s3c_hsotg_req *hs_req)
{
	bool periodic = is_ep_periodic(hs_ep);
469
	u32 gnptxsts = readl(hsotg->regs + GNPTXSTS);
470 471 472 473 474 475 476 477 478 479 480 481
	int buf_pos = hs_req->req.actual;
	int to_write = hs_ep->size_loaded;
	void *data;
	int can_write;
	int pkt_round;

	to_write -= (buf_pos - hs_ep->last_load);

	/* if there's nothing to write, get out early */
	if (to_write == 0)
		return 0;

482
	if (periodic && !hsotg->dedicated_fifos) {
483
		u32 epsize = readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
484 485 486
		int size_left;
		int size_done;

487 488 489 490
		/*
		 * work out how much data was loaded so we can calculate
		 * how much data is left in the fifo.
		 */
491

492
		size_left = DxEPTSIZ_XferSize_GET(epsize);
493

494 495
		/*
		 * if shared fifo, we cannot write anything until the
496 497 498
		 * previous data has been completely sent.
		 */
		if (hs_ep->fifo_load != 0) {
499
			s3c_hsotg_en_gsint(hsotg, GINTSTS_PTxFEmp);
500 501 502
			return -ENOSPC;
		}

503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
		dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
			__func__, size_left,
			hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);

		/* how much of the data has moved */
		size_done = hs_ep->size_loaded - size_left;

		/* how much data is left in the fifo */
		can_write = hs_ep->fifo_load - size_done;
		dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
			__func__, can_write);

		can_write = hs_ep->fifo_size - can_write;
		dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
			__func__, can_write);

		if (can_write <= 0) {
520
			s3c_hsotg_en_gsint(hsotg, GINTSTS_PTxFEmp);
521 522
			return -ENOSPC;
		}
523
	} else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
524
		can_write = readl(hsotg->regs + DTXFSTS(hs_ep->index));
525 526 527

		can_write &= 0xffff;
		can_write *= 4;
528
	} else {
529
		if (GNPTXSTS_NPTxQSpcAvail_GET(gnptxsts) == 0) {
530 531 532 533
			dev_dbg(hsotg->dev,
				"%s: no queue slots available (0x%08x)\n",
				__func__, gnptxsts);

534
			s3c_hsotg_en_gsint(hsotg, GINTSTS_NPTxFEmp);
535 536 537
			return -ENOSPC;
		}

538
		can_write = GNPTXSTS_NPTxFSpcAvail_GET(gnptxsts);
539
		can_write *= 4;	/* fifo size is in 32bit quantities. */
540 541 542 543 544
	}

	dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, mps %d\n",
		 __func__, gnptxsts, can_write, to_write, hs_ep->ep.maxpacket);

545 546
	/*
	 * limit to 512 bytes of data, it seems at least on the non-periodic
547 548 549 550 551 552
	 * FIFO, requests of >512 cause the endpoint to get stuck with a
	 * fragment of the end of the transfer in it.
	 */
	if (can_write > 512)
		can_write = 512;

553 554
	/*
	 * limit the write to one max-packet size worth of data, but allow
555
	 * the transfer to return that it did not run out of fifo space
556 557
	 * doing it.
	 */
558 559 560 561
	if (to_write > hs_ep->ep.maxpacket) {
		to_write = hs_ep->ep.maxpacket;

		s3c_hsotg_en_gsint(hsotg,
562 563
				   periodic ? GINTSTS_PTxFEmp :
				   GINTSTS_NPTxFEmp);
564 565
	}

566 567 568 569 570 571
	/* see if we can write data */

	if (to_write > can_write) {
		to_write = can_write;
		pkt_round = to_write % hs_ep->ep.maxpacket;

572 573
		/*
		 * Round the write down to an
574 575 576 577 578 579 580 581 582
		 * exact number of packets.
		 *
		 * Note, we do not currently check to see if we can ever
		 * write a full packet or not to the FIFO.
		 */

		if (pkt_round)
			to_write -= pkt_round;

583 584 585 586
		/*
		 * enable correct FIFO interrupt to alert us when there
		 * is more room left.
		 */
587 588

		s3c_hsotg_en_gsint(hsotg,
589 590
				   periodic ? GINTSTS_PTxFEmp :
				   GINTSTS_NPTxFEmp);
591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607
	}

	dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
		 to_write, hs_req->req.length, can_write, buf_pos);

	if (to_write <= 0)
		return -ENOSPC;

	hs_req->req.actual = buf_pos + to_write;
	hs_ep->total_data += to_write;

	if (periodic)
		hs_ep->fifo_load += to_write;

	to_write = DIV_ROUND_UP(to_write, 4);
	data = hs_req->req.buf + buf_pos;

608
	writesl(hsotg->regs + EPFIFO(hs_ep->index), data, to_write);
609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626

	return (to_write >= can_write) ? -ENOSPC : 0;
}

/**
 * get_ep_limit - get the maximum data legnth for this endpoint
 * @hs_ep: The endpoint
 *
 * Return the maximum data that can be queued in one go on a given endpoint
 * so that transfers that are too long can be split.
 */
static unsigned get_ep_limit(struct s3c_hsotg_ep *hs_ep)
{
	int index = hs_ep->index;
	unsigned maxsize;
	unsigned maxpkt;

	if (index != 0) {
627 628
		maxsize = DxEPTSIZ_XferSize_LIMIT + 1;
		maxpkt = DxEPTSIZ_PktCnt_LIMIT + 1;
629
	} else {
630
		maxsize = 64+64;
631
		if (hs_ep->dir_in)
632
			maxpkt = DIEPTSIZ0_PktCnt_LIMIT + 1;
633
		else
634 635 636 637 638 639 640
			maxpkt = 2;
	}

	/* we made the constant loading easier above by using +1 */
	maxpkt--;
	maxsize--;

641 642 643 644
	/*
	 * constrain by packet count if maxpkts*pktsize is greater
	 * than the length register size.
	 */
645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690

	if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
		maxsize = maxpkt * hs_ep->ep.maxpacket;

	return maxsize;
}

/**
 * s3c_hsotg_start_req - start a USB request from an endpoint's queue
 * @hsotg: The controller state.
 * @hs_ep: The endpoint to process a request for
 * @hs_req: The request to start.
 * @continuing: True if we are doing more for the current request.
 *
 * Start the given request running by setting the endpoint registers
 * appropriately, and writing any data to the FIFOs.
 */
static void s3c_hsotg_start_req(struct s3c_hsotg *hsotg,
				struct s3c_hsotg_ep *hs_ep,
				struct s3c_hsotg_req *hs_req,
				bool continuing)
{
	struct usb_request *ureq = &hs_req->req;
	int index = hs_ep->index;
	int dir_in = hs_ep->dir_in;
	u32 epctrl_reg;
	u32 epsize_reg;
	u32 epsize;
	u32 ctrl;
	unsigned length;
	unsigned packets;
	unsigned maxreq;

	if (index != 0) {
		if (hs_ep->req && !continuing) {
			dev_err(hsotg->dev, "%s: active request\n", __func__);
			WARN_ON(1);
			return;
		} else if (hs_ep->req != hs_req && continuing) {
			dev_err(hsotg->dev,
				"%s: continue different req\n", __func__);
			WARN_ON(1);
			return;
		}
	}

691 692
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
	epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
693 694 695 696 697

	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
		__func__, readl(hsotg->regs + epctrl_reg), index,
		hs_ep->dir_in ? "in" : "out");

698 699 700
	/* If endpoint is stalled, we will restart request later */
	ctrl = readl(hsotg->regs + epctrl_reg);

701
	if (ctrl & DxEPCTL_Stall) {
702 703 704 705
		dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
		return;
	}

706
	length = ureq->length - ureq->actual;
707 708
	dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
		ureq->length, ureq->actual);
709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734
	if (0)
		dev_dbg(hsotg->dev,
			"REQ buf %p len %d dma 0x%08x noi=%d zp=%d snok=%d\n",
			ureq->buf, length, ureq->dma,
			ureq->no_interrupt, ureq->zero, ureq->short_not_ok);

	maxreq = get_ep_limit(hs_ep);
	if (length > maxreq) {
		int round = maxreq % hs_ep->ep.maxpacket;

		dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
			__func__, length, maxreq, round);

		/* round down to multiple of packets */
		if (round)
			maxreq -= round;

		length = maxreq;
	}

	if (length)
		packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
	else
		packets = 1;	/* send one packet if length is zero. */

	if (dir_in && index != 0)
735
		epsize = DxEPTSIZ_MC(1);
736 737 738 739
	else
		epsize = 0;

	if (index != 0 && ureq->zero) {
740 741 742 743
		/*
		 * test for the packets being exactly right for the
		 * transfer
		 */
744 745 746 747 748

		if (length == (packets * hs_ep->ep.maxpacket))
			packets++;
	}

749 750
	epsize |= DxEPTSIZ_PktCnt(packets);
	epsize |= DxEPTSIZ_XferSize(length);
751 752 753 754 755 756 757 758 759 760

	dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
		__func__, packets, length, ureq->length, epsize, epsize_reg);

	/* store the request as the current one we're doing */
	hs_ep->req = hs_req;

	/* write size / packets */
	writel(epsize, hsotg->regs + epsize_reg);

761
	if (using_dma(hsotg) && !continuing) {
762 763
		unsigned int dma_reg;

764 765 766 767
		/*
		 * write DMA address to control register, buffer already
		 * synced by s3c_hsotg_ep_queue().
		 */
768

769
		dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
770 771 772 773 774 775
		writel(ureq->dma, hsotg->regs + dma_reg);

		dev_dbg(hsotg->dev, "%s: 0x%08x => 0x%08x\n",
			__func__, ureq->dma, dma_reg);
	}

776 777
	ctrl |= DxEPCTL_EPEna;	/* ensure ep enabled */
	ctrl |= DxEPCTL_USBActEp;
778 779 780 781 782 783 784

	dev_dbg(hsotg->dev, "setup req:%d\n", hsotg->setup);

	/* For Setup request do not clear NAK */
	if (hsotg->setup && index == 0)
		hsotg->setup = 0;
	else
785
		ctrl |= DxEPCTL_CNAK;	/* clear NAK set by core */
786

787 788 789 790

	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
	writel(ctrl, hsotg->regs + epctrl_reg);

791 792
	/*
	 * set these, it seems that DMA support increments past the end
793
	 * of the packet buffer so we need to calculate the length from
794 795
	 * this information.
	 */
796 797 798 799 800 801 802 803 804 805
	hs_ep->size_loaded = length;
	hs_ep->last_load = ureq->actual;

	if (dir_in && !using_dma(hsotg)) {
		/* set these anyway, we may need them for non-periodic in */
		hs_ep->fifo_load = 0;

		s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
	}

806 807 808 809
	/*
	 * clear the INTknTXFEmpMsk when we start request, more as a aide
	 * to debugging to see what is going on.
	 */
810
	if (dir_in)
811 812
		writel(DIEPMSK_INTknTXFEmpMsk,
		       hsotg->regs + DIEPINT(index));
813

814 815 816 817
	/*
	 * Note, trying to clear the NAK here causes problems with transmit
	 * on the S3C6400 ending up with the TXFIFO becoming full.
	 */
818 819

	/* check ep is enabled */
820
	if (!(readl(hsotg->regs + epctrl_reg) & DxEPCTL_EPEna))
821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839
		dev_warn(hsotg->dev,
			 "ep%d: failed to become enabled (DxEPCTL=0x%08x)?\n",
			 index, readl(hsotg->regs + epctrl_reg));

	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n",
		__func__, readl(hsotg->regs + epctrl_reg));
}

/**
 * s3c_hsotg_map_dma - map the DMA memory being used for the request
 * @hsotg: The device state.
 * @hs_ep: The endpoint the request is on.
 * @req: The request being processed.
 *
 * We've been asked to queue a request, so ensure that the memory buffer
 * is correctly setup for DMA. If we've been passed an extant DMA address
 * then ensure the buffer has been synced to memory. If our buffer has no
 * DMA memory, then we map the memory and mark our request to allow us to
 * cleanup on completion.
840
 */
841 842 843 844 845
static int s3c_hsotg_map_dma(struct s3c_hsotg *hsotg,
			     struct s3c_hsotg_ep *hs_ep,
			     struct usb_request *req)
{
	struct s3c_hsotg_req *hs_req = our_req(req);
846
	int ret;
847 848 849 850 851

	/* if the length is zero, ignore the DMA data */
	if (hs_req->req.length == 0)
		return 0;

852 853 854
	ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
	if (ret)
		goto dma_error;
855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897

	return 0;

dma_error:
	dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
		__func__, req->buf, req->length);

	return -EIO;
}

static int s3c_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
			      gfp_t gfp_flags)
{
	struct s3c_hsotg_req *hs_req = our_req(req);
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
	struct s3c_hsotg *hs = hs_ep->parent;
	bool first;

	dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
		ep->name, req, req->length, req->buf, req->no_interrupt,
		req->zero, req->short_not_ok);

	/* initialise status of the request */
	INIT_LIST_HEAD(&hs_req->queue);
	req->actual = 0;
	req->status = -EINPROGRESS;

	/* if we're using DMA, sync the buffers as necessary */
	if (using_dma(hs)) {
		int ret = s3c_hsotg_map_dma(hs, hs_ep, req);
		if (ret)
			return ret;
	}

	first = list_empty(&hs_ep->queue);
	list_add_tail(&hs_req->queue, &hs_ep->queue);

	if (first)
		s3c_hsotg_start_req(hs, hs_ep, hs_req, false);

	return 0;
}

898 899 900 901 902 903 904 905 906 907 908 909 910 911 912
static int s3c_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
			      gfp_t gfp_flags)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
	struct s3c_hsotg *hs = hs_ep->parent;
	unsigned long flags = 0;
	int ret = 0;

	spin_lock_irqsave(&hs->lock, flags);
	ret = s3c_hsotg_ep_queue(ep, req, gfp_flags);
	spin_unlock_irqrestore(&hs->lock, flags);

	return ret;
}

913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946
static void s3c_hsotg_ep_free_request(struct usb_ep *ep,
				      struct usb_request *req)
{
	struct s3c_hsotg_req *hs_req = our_req(req);

	kfree(hs_req);
}

/**
 * s3c_hsotg_complete_oursetup - setup completion callback
 * @ep: The endpoint the request was on.
 * @req: The request completed.
 *
 * Called on completion of any requests the driver itself
 * submitted that need cleaning up.
 */
static void s3c_hsotg_complete_oursetup(struct usb_ep *ep,
					struct usb_request *req)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
	struct s3c_hsotg *hsotg = hs_ep->parent;

	dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);

	s3c_hsotg_ep_free_request(ep, req);
}

/**
 * ep_from_windex - convert control wIndex value to endpoint
 * @hsotg: The driver state.
 * @windex: The control request wIndex field (in host order).
 *
 * Convert the given wIndex into a pointer to an driver endpoint
 * structure, or return NULL if it is not a valid endpoint.
947
 */
948 949 950 951 952 953 954 955 956 957
static struct s3c_hsotg_ep *ep_from_windex(struct s3c_hsotg *hsotg,
					   u32 windex)
{
	struct s3c_hsotg_ep *ep = &hsotg->eps[windex & 0x7F];
	int dir = (windex & USB_DIR_IN) ? 1 : 0;
	int idx = windex & 0x7F;

	if (windex >= 0x100)
		return NULL;

958
	if (idx > hsotg->num_of_eps)
959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
		return NULL;

	if (idx && ep->dir_in != dir)
		return NULL;

	return ep;
}

/**
 * s3c_hsotg_send_reply - send reply to control request
 * @hsotg: The device state
 * @ep: Endpoint 0
 * @buff: Buffer for request
 * @length: Length of reply.
 *
 * Create a request and queue it on the given endpoint. This is useful as
 * an internal method of sending replies to certain control requests, etc.
 */
static int s3c_hsotg_send_reply(struct s3c_hsotg *hsotg,
				struct s3c_hsotg_ep *ep,
				void *buff,
				int length)
{
	struct usb_request *req;
	int ret;

	dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);

	req = s3c_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
	hsotg->ep0_reply = req;
	if (!req) {
		dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
		return -ENOMEM;
	}

	req->buf = hsotg->ep0_buff;
	req->length = length;
	req->zero = 1; /* always do zero-length final transfer */
	req->complete = s3c_hsotg_complete_oursetup;

	if (length)
		memcpy(req->buf, buff, length);
	else
		ep->sent_zlp = 1;

	ret = s3c_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
	if (ret) {
		dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
		return ret;
	}

	return 0;
}

/**
 * s3c_hsotg_process_req_status - process request GET_STATUS
 * @hsotg: The device state
 * @ctrl: USB control request
 */
static int s3c_hsotg_process_req_status(struct s3c_hsotg *hsotg,
					struct usb_ctrlrequest *ctrl)
{
	struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
	struct s3c_hsotg_ep *ep;
	__le16 reply;
	int ret;

	dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);

	if (!ep0->dir_in) {
		dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
		return -EINVAL;
	}

	switch (ctrl->bRequestType & USB_RECIP_MASK) {
	case USB_RECIP_DEVICE:
		reply = cpu_to_le16(0); /* bit 0 => self powered,
					 * bit 1 => remote wakeup */
		break;

	case USB_RECIP_INTERFACE:
		/* currently, the data result should be zero */
		reply = cpu_to_le16(0);
		break;

	case USB_RECIP_ENDPOINT:
		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
		if (!ep)
			return -ENOENT;

		reply = cpu_to_le16(ep->halted ? 1 : 0);
		break;

	default:
		return 0;
	}

	if (le16_to_cpu(ctrl->wLength) != 2)
		return -EINVAL;

	ret = s3c_hsotg_send_reply(hsotg, ep0, &reply, 2);
	if (ret) {
		dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
		return ret;
	}

	return 1;
}

static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value);

1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
/**
 * get_ep_head - return the first request on the endpoint
 * @hs_ep: The controller endpoint to get
 *
 * Get the first request on the endpoint.
 */
static struct s3c_hsotg_req *get_ep_head(struct s3c_hsotg_ep *hs_ep)
{
	if (list_empty(&hs_ep->queue))
		return NULL;

	return list_first_entry(&hs_ep->queue, struct s3c_hsotg_req, queue);
}

1084 1085 1086 1087 1088 1089 1090 1091
/**
 * s3c_hsotg_process_req_featire - process request {SET,CLEAR}_FEATURE
 * @hsotg: The device state
 * @ctrl: USB control request
 */
static int s3c_hsotg_process_req_feature(struct s3c_hsotg *hsotg,
					 struct usb_ctrlrequest *ctrl)
{
1092
	struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
1093 1094
	struct s3c_hsotg_req *hs_req;
	bool restart;
1095 1096
	bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
	struct s3c_hsotg_ep *ep;
1097
	int ret;
1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112

	dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
		__func__, set ? "SET" : "CLEAR");

	if (ctrl->bRequestType == USB_RECIP_ENDPOINT) {
		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
		if (!ep) {
			dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
				__func__, le16_to_cpu(ctrl->wIndex));
			return -ENOENT;
		}

		switch (le16_to_cpu(ctrl->wValue)) {
		case USB_ENDPOINT_HALT:
			s3c_hsotg_ep_sethalt(&ep->ep, set);
1113 1114 1115 1116 1117 1118 1119

			ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
			if (ret) {
				dev_err(hsotg->dev,
					"%s: failed to send reply\n", __func__);
				return ret;
			}
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142

			if (!set) {
				/*
				 * If we have request in progress,
				 * then complete it
				 */
				if (ep->req) {
					hs_req = ep->req;
					ep->req = NULL;
					list_del_init(&hs_req->queue);
					hs_req->req.complete(&ep->ep,
							     &hs_req->req);
				}

				/* If we have pending request, then start it */
				restart = !list_empty(&ep->queue);
				if (restart) {
					hs_req = get_ep_head(ep);
					s3c_hsotg_start_req(hsotg, ep,
							    hs_req, false);
				}
			}

1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
			break;

		default:
			return -ENOENT;
		}
	} else
		return -ENOENT;  /* currently only deal with endpoint */

	return 1;
}

/**
 * s3c_hsotg_process_control - process a control request
 * @hsotg: The device state
 * @ctrl: The control request received
 *
 * The controller has received the SETUP phase of a control request, and
 * needs to work out what to do next (and whether to pass it on to the
 * gadget driver).
 */
static void s3c_hsotg_process_control(struct s3c_hsotg *hsotg,
				      struct usb_ctrlrequest *ctrl)
{
	struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
	int ret = 0;
	u32 dcfg;

	ep0->sent_zlp = 0;

	dev_dbg(hsotg->dev, "ctrl Req=%02x, Type=%02x, V=%04x, L=%04x\n",
		 ctrl->bRequest, ctrl->bRequestType,
		 ctrl->wValue, ctrl->wLength);

1176 1177 1178 1179
	/*
	 * record the direction of the request, for later use when enquing
	 * packets onto EP0.
	 */
1180 1181 1182 1183

	ep0->dir_in = (ctrl->bRequestType & USB_DIR_IN) ? 1 : 0;
	dev_dbg(hsotg->dev, "ctrl: dir_in=%d\n", ep0->dir_in);

1184 1185 1186 1187
	/*
	 * if we've no data with this request, then the last part of the
	 * transaction is going to implicitly be IN.
	 */
1188 1189 1190 1191 1192 1193
	if (ctrl->wLength == 0)
		ep0->dir_in = 1;

	if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
		switch (ctrl->bRequest) {
		case USB_REQ_SET_ADDRESS:
1194 1195 1196 1197
			dcfg = readl(hsotg->regs + DCFG);
			dcfg &= ~DCFG_DevAddr_MASK;
			dcfg |= ctrl->wValue << DCFG_DevAddr_SHIFT;
			writel(dcfg, hsotg->regs + DCFG);
1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222

			dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);

			ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
			return;

		case USB_REQ_GET_STATUS:
			ret = s3c_hsotg_process_req_status(hsotg, ctrl);
			break;

		case USB_REQ_CLEAR_FEATURE:
		case USB_REQ_SET_FEATURE:
			ret = s3c_hsotg_process_req_feature(hsotg, ctrl);
			break;
		}
	}

	/* as a fallback, try delivering it to the driver to deal with */

	if (ret == 0 && hsotg->driver) {
		ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
		if (ret < 0)
			dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
	}

1223 1224
	/*
	 * the request is either unhandlable, or is not formatted correctly
1225 1226 1227 1228 1229 1230 1231 1232
	 * so respond with a STALL for the status stage to indicate failure.
	 */

	if (ret < 0) {
		u32 reg;
		u32 ctrl;

		dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
1233
		reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;
1234

1235
		/*
1236
		 * DxEPCTL_Stall will be cleared by EP once it has
1237 1238
		 * taken effect, so no need to clear later.
		 */
1239 1240

		ctrl = readl(hsotg->regs + reg);
1241 1242
		ctrl |= DxEPCTL_Stall;
		ctrl |= DxEPCTL_CNAK;
1243 1244 1245
		writel(ctrl, hsotg->regs + reg);

		dev_dbg(hsotg->dev,
L
Lucas De Marchi 已提交
1246
			"written DxEPCTL=0x%08x to %08x (DxEPCTL=0x%08x)\n",
1247 1248
			ctrl, reg, readl(hsotg->regs + reg));

1249 1250 1251 1252
		/*
		 * don't believe we need to anything more to get the EP
		 * to reply with a STALL packet
		 */
1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
	}
}

static void s3c_hsotg_enqueue_setup(struct s3c_hsotg *hsotg);

/**
 * s3c_hsotg_complete_setup - completion of a setup transfer
 * @ep: The endpoint the request was on.
 * @req: The request completed.
 *
 * Called on completion of any requests the driver itself submitted for
 * EP0 setup packets
 */
static void s3c_hsotg_complete_setup(struct usb_ep *ep,
				     struct usb_request *req)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
	struct s3c_hsotg *hsotg = hs_ep->parent;

	if (req->status < 0) {
		dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
		return;
	}

	if (req->actual == 0)
		s3c_hsotg_enqueue_setup(hsotg);
	else
		s3c_hsotg_process_control(hsotg, req->buf);
}

/**
 * s3c_hsotg_enqueue_setup - start a request for EP0 packets
 * @hsotg: The device state.
 *
 * Enqueue a request on EP0 if necessary to received any SETUP packets
 * received from the host.
 */
static void s3c_hsotg_enqueue_setup(struct s3c_hsotg *hsotg)
{
	struct usb_request *req = hsotg->ctrl_req;
	struct s3c_hsotg_req *hs_req = our_req(req);
	int ret;

	dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);

	req->zero = 0;
	req->length = 8;
	req->buf = hsotg->ctrl_buff;
	req->complete = s3c_hsotg_complete_setup;

	if (!list_empty(&hs_req->queue)) {
		dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
		return;
	}

	hsotg->eps[0].dir_in = 0;

	ret = s3c_hsotg_ep_queue(&hsotg->eps[0].ep, req, GFP_ATOMIC);
	if (ret < 0) {
		dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
1313 1314 1315 1316
		/*
		 * Don't think there's much we can do other than watch the
		 * driver fail.
		 */
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331
	}
}

/**
 * s3c_hsotg_complete_request - complete a request given to us
 * @hsotg: The device state.
 * @hs_ep: The endpoint the request was on.
 * @hs_req: The request to complete.
 * @result: The result code (0 => Ok, otherwise errno)
 *
 * The given request has finished, so call the necessary completion
 * if it has one and then look to see if we can start a new request
 * on the endpoint.
 *
 * Note, expects the ep to already be locked as appropriate.
1332
 */
1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
static void s3c_hsotg_complete_request(struct s3c_hsotg *hsotg,
				       struct s3c_hsotg_ep *hs_ep,
				       struct s3c_hsotg_req *hs_req,
				       int result)
{
	bool restart;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
		return;
	}

	dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
		hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);

1348 1349 1350 1351
	/*
	 * only replace the status if we've not already set an error
	 * from a previous transaction
	 */
1352 1353 1354 1355 1356 1357 1358 1359 1360 1361

	if (hs_req->req.status == -EINPROGRESS)
		hs_req->req.status = result;

	hs_ep->req = NULL;
	list_del_init(&hs_req->queue);

	if (using_dma(hsotg))
		s3c_hsotg_unmap_dma(hsotg, hs_ep, hs_req);

1362 1363 1364 1365
	/*
	 * call the complete request with the locks off, just in case the
	 * request tries to queue more work for this endpoint.
	 */
1366 1367

	if (hs_req->req.complete) {
1368
		spin_unlock(&hsotg->lock);
1369
		hs_req->req.complete(&hs_ep->ep, &hs_req->req);
1370
		spin_lock(&hsotg->lock);
1371 1372
	}

1373 1374
	/*
	 * Look to see if there is anything else to do. Note, the completion
1375
	 * of the previous request may have caused a new request to be started
1376 1377
	 * so be careful when doing this.
	 */
1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401

	if (!hs_ep->req && result >= 0) {
		restart = !list_empty(&hs_ep->queue);
		if (restart) {
			hs_req = get_ep_head(hs_ep);
			s3c_hsotg_start_req(hsotg, hs_ep, hs_req, false);
		}
	}
}

/**
 * s3c_hsotg_rx_data - receive data from the FIFO for an endpoint
 * @hsotg: The device state.
 * @ep_idx: The endpoint index for the data
 * @size: The size of data in the fifo, in bytes
 *
 * The FIFO status shows there is data to read from the FIFO for a given
 * endpoint, so sort out whether we need to read the data into a request
 * that has been made for that endpoint.
 */
static void s3c_hsotg_rx_data(struct s3c_hsotg *hsotg, int ep_idx, int size)
{
	struct s3c_hsotg_ep *hs_ep = &hsotg->eps[ep_idx];
	struct s3c_hsotg_req *hs_req = hs_ep->req;
1402
	void __iomem *fifo = hsotg->regs + EPFIFO(ep_idx);
1403 1404 1405 1406
	int to_read;
	int max_req;
	int read_ptr;

1407

1408
	if (!hs_req) {
1409
		u32 epctl = readl(hsotg->regs + DOEPCTL(ep_idx));
1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426
		int ptr;

		dev_warn(hsotg->dev,
			 "%s: FIFO %d bytes on ep%d but no req (DxEPCTl=0x%08x)\n",
			 __func__, size, ep_idx, epctl);

		/* dump the data from the FIFO, we've nothing we can do */
		for (ptr = 0; ptr < size; ptr += 4)
			(void)readl(fifo);

		return;
	}

	to_read = size;
	read_ptr = hs_req->req.actual;
	max_req = hs_req->req.length - read_ptr;

1427 1428 1429
	dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
		__func__, to_read, max_req, read_ptr, hs_req->req.length);

1430
	if (to_read > max_req) {
1431 1432
		/*
		 * more data appeared than we where willing
1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443
		 * to deal with in this request.
		 */

		/* currently we don't deal this */
		WARN_ON_ONCE(1);
	}

	hs_ep->total_data += to_read;
	hs_req->req.actual += to_read;
	to_read = DIV_ROUND_UP(to_read, 4);

1444 1445 1446 1447
	/*
	 * note, we might over-write the buffer end by 3 bytes depending on
	 * alignment of the data.
	 */
1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459
	readsl(fifo, hs_req->req.buf + read_ptr, to_read);
}

/**
 * s3c_hsotg_send_zlp - send zero-length packet on control endpoint
 * @hsotg: The device instance
 * @req: The request currently on this endpoint
 *
 * Generate a zero-length IN packet request for terminating a SETUP
 * transaction.
 *
 * Note, since we don't write any data to the TxFIFO, then it is
L
Lucas De Marchi 已提交
1460
 * currently believed that we do not need to wait for any space in
1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484
 * the TxFIFO.
 */
static void s3c_hsotg_send_zlp(struct s3c_hsotg *hsotg,
			       struct s3c_hsotg_req *req)
{
	u32 ctrl;

	if (!req) {
		dev_warn(hsotg->dev, "%s: no request?\n", __func__);
		return;
	}

	if (req->req.length == 0) {
		hsotg->eps[0].sent_zlp = 1;
		s3c_hsotg_enqueue_setup(hsotg);
		return;
	}

	hsotg->eps[0].dir_in = 1;
	hsotg->eps[0].sent_zlp = 1;

	dev_dbg(hsotg->dev, "sending zero-length packet\n");

	/* issue a zero-sized packet to terminate this */
1485 1486
	writel(DxEPTSIZ_MC(1) | DxEPTSIZ_PktCnt(1) |
	       DxEPTSIZ_XferSize(0), hsotg->regs + DIEPTSIZ(0));
1487

1488 1489 1490 1491 1492
	ctrl = readl(hsotg->regs + DIEPCTL0);
	ctrl |= DxEPCTL_CNAK;  /* clear NAK set by core */
	ctrl |= DxEPCTL_EPEna; /* ensure ep enabled */
	ctrl |= DxEPCTL_USBActEp;
	writel(ctrl, hsotg->regs + DIEPCTL0);
1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
}

/**
 * s3c_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
 * @hsotg: The device instance
 * @epnum: The endpoint received from
 * @was_setup: Set if processing a SetupDone event.
 *
 * The RXFIFO has delivered an OutDone event, which means that the data
 * transfer for an OUT endpoint has been completed, either by a short
 * packet or by the finish of a transfer.
1504
 */
1505 1506 1507
static void s3c_hsotg_handle_outdone(struct s3c_hsotg *hsotg,
				     int epnum, bool was_setup)
{
1508
	u32 epsize = readl(hsotg->regs + DOEPTSIZ(epnum));
1509 1510 1511
	struct s3c_hsotg_ep *hs_ep = &hsotg->eps[epnum];
	struct s3c_hsotg_req *hs_req = hs_ep->req;
	struct usb_request *req = &hs_req->req;
1512
	unsigned size_left = DxEPTSIZ_XferSize_GET(epsize);
1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
	int result = 0;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
		return;
	}

	if (using_dma(hsotg)) {
		unsigned size_done;

1523 1524
		/*
		 * Calculate the size of the transfer by checking how much
1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537
		 * is left in the endpoint size register and then working it
		 * out from the amount we loaded for the transfer.
		 *
		 * We need to do this as DMA pointers are always 32bit aligned
		 * so may overshoot/undershoot the transfer.
		 */

		size_done = hs_ep->size_loaded - size_left;
		size_done += hs_ep->last_load;

		req->actual = size_done;
	}

1538 1539 1540 1541
	/* if there is more request to do, schedule new transfer */
	if (req->actual < req->length && size_left == 0) {
		s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
		return;
1542 1543 1544 1545 1546 1547
	} else if (epnum == 0) {
		/*
		 * After was_setup = 1 =>
		 * set CNAK for non Setup requests
		 */
		hsotg->setup = was_setup ? 0 : 1;
1548 1549
	}

1550 1551 1552 1553
	if (req->actual < req->length && req->short_not_ok) {
		dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
			__func__, req->actual, req->length);

1554 1555 1556 1557
		/*
		 * todo - what should we return here? there's no one else
		 * even bothering to check the status.
		 */
1558 1559 1560
	}

	if (epnum == 0) {
1561 1562 1563 1564
		/*
		 * Condition req->complete != s3c_hsotg_complete_setup says:
		 * send ZLP when we have an asynchronous request from gadget
		 */
1565 1566 1567 1568
		if (!was_setup && req->complete != s3c_hsotg_complete_setup)
			s3c_hsotg_send_zlp(hsotg, hs_req);
	}

1569
	s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
1570 1571 1572 1573 1574 1575 1576
}

/**
 * s3c_hsotg_read_frameno - read current frame number
 * @hsotg: The device instance
 *
 * Return the current frame number
1577
 */
1578 1579 1580 1581
static u32 s3c_hsotg_read_frameno(struct s3c_hsotg *hsotg)
{
	u32 dsts;

1582 1583 1584
	dsts = readl(hsotg->regs + DSTS);
	dsts &= DSTS_SOFFN_MASK;
	dsts >>= DSTS_SOFFN_SHIFT;
1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596

	return dsts;
}

/**
 * s3c_hsotg_handle_rx - RX FIFO has data
 * @hsotg: The device instance
 *
 * The IRQ handler has detected that the RX FIFO has some data in it
 * that requires processing, so find out what is in there and do the
 * appropriate read.
 *
L
Lucas De Marchi 已提交
1597
 * The RXFIFO is a true FIFO, the packets coming out are still in packet
1598 1599 1600 1601 1602 1603 1604
 * chunks, so if you have x packets received on an endpoint you'll get x
 * FIFO events delivered, each with a packet's worth of data in it.
 *
 * When using DMA, we should not be processing events from the RXFIFO
 * as the actual data should be sent to the memory directly and we turn
 * on the completion interrupts to get notifications of transfer completion.
 */
1605
static void s3c_hsotg_handle_rx(struct s3c_hsotg *hsotg)
1606
{
1607
	u32 grxstsr = readl(hsotg->regs + GRXSTSP);
1608 1609 1610 1611
	u32 epnum, status, size;

	WARN_ON(using_dma(hsotg));

1612 1613
	epnum = grxstsr & GRXSTS_EPNum_MASK;
	status = grxstsr & GRXSTS_PktSts_MASK;
1614

1615 1616
	size = grxstsr & GRXSTS_ByteCnt_MASK;
	size >>= GRXSTS_ByteCnt_SHIFT;
1617 1618 1619 1620 1621

	if (1)
		dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
			__func__, grxstsr, size, epnum);

1622
#define __status(x) ((x) >> GRXSTS_PktSts_SHIFT)
1623

1624 1625
	switch (status >> GRXSTS_PktSts_SHIFT) {
	case __status(GRXSTS_PktSts_GlobalOutNAK):
1626 1627 1628
		dev_dbg(hsotg->dev, "GlobalOutNAK\n");
		break;

1629
	case __status(GRXSTS_PktSts_OutDone):
1630 1631 1632 1633 1634 1635 1636
		dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
			s3c_hsotg_read_frameno(hsotg));

		if (!using_dma(hsotg))
			s3c_hsotg_handle_outdone(hsotg, epnum, false);
		break;

1637
	case __status(GRXSTS_PktSts_SetupDone):
1638 1639 1640
		dev_dbg(hsotg->dev,
			"SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
			s3c_hsotg_read_frameno(hsotg),
1641
			readl(hsotg->regs + DOEPCTL(0)));
1642 1643 1644 1645

		s3c_hsotg_handle_outdone(hsotg, epnum, true);
		break;

1646
	case __status(GRXSTS_PktSts_OutRX):
1647 1648 1649
		s3c_hsotg_rx_data(hsotg, epnum, size);
		break;

1650
	case __status(GRXSTS_PktSts_SetupRX):
1651 1652 1653
		dev_dbg(hsotg->dev,
			"SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
			s3c_hsotg_read_frameno(hsotg),
1654
			readl(hsotg->regs + DOEPCTL(0)));
1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670

		s3c_hsotg_rx_data(hsotg, epnum, size);
		break;

	default:
		dev_warn(hsotg->dev, "%s: unknown status %08x\n",
			 __func__, grxstsr);

		s3c_hsotg_dump(hsotg);
		break;
	}
}

/**
 * s3c_hsotg_ep0_mps - turn max packet size into register setting
 * @mps: The maximum packet size in bytes.
1671
 */
1672 1673 1674 1675
static u32 s3c_hsotg_ep0_mps(unsigned int mps)
{
	switch (mps) {
	case 64:
1676
		return D0EPCTL_MPS_64;
1677
	case 32:
1678
		return D0EPCTL_MPS_32;
1679
	case 16:
1680
		return D0EPCTL_MPS_16;
1681
	case 8:
1682
		return D0EPCTL_MPS_8;
1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
	}

	/* bad max packet size, warn and return invalid result */
	WARN_ON(1);
	return (u32)-1;
}

/**
 * s3c_hsotg_set_ep_maxpacket - set endpoint's max-packet field
 * @hsotg: The driver state.
 * @ep: The index number of the endpoint
 * @mps: The maximum packet size in bytes
 *
 * Configure the maximum packet size for the given endpoint, updating
 * the hardware control registers to reflect this.
 */
static void s3c_hsotg_set_ep_maxpacket(struct s3c_hsotg *hsotg,
				       unsigned int ep, unsigned int mps)
{
	struct s3c_hsotg_ep *hs_ep = &hsotg->eps[ep];
	void __iomem *regs = hsotg->regs;
	u32 mpsval;
	u32 reg;

	if (ep == 0) {
		/* EP0 is a special case */
		mpsval = s3c_hsotg_ep0_mps(mps);
		if (mpsval > 3)
			goto bad_mps;
1712
		hs_ep->ep.maxpacket = mps;
1713
	} else {
1714 1715
		mpsval = mps & DxEPCTL_MPS_MASK;
		if (mpsval > 1024)
1716
			goto bad_mps;
1717
		hs_ep->ep.maxpacket = mpsval;
1718 1719
	}

1720 1721 1722 1723
	/*
	 * update both the in and out endpoint controldir_ registers, even
	 * if one of the directions may not be in use.
	 */
1724

1725 1726
	reg = readl(regs + DIEPCTL(ep));
	reg &= ~DxEPCTL_MPS_MASK;
1727
	reg |= mpsval;
1728
	writel(reg, regs + DIEPCTL(ep));
1729

1730
	if (ep) {
1731 1732
		reg = readl(regs + DOEPCTL(ep));
		reg &= ~DxEPCTL_MPS_MASK;
1733
		reg |= mpsval;
1734
		writel(reg, regs + DOEPCTL(ep));
1735
	}
1736 1737 1738 1739 1740 1741 1742

	return;

bad_mps:
	dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
}

1743 1744 1745 1746 1747 1748 1749 1750 1751 1752
/**
 * s3c_hsotg_txfifo_flush - flush Tx FIFO
 * @hsotg: The driver state
 * @idx: The index for the endpoint (0..15)
 */
static void s3c_hsotg_txfifo_flush(struct s3c_hsotg *hsotg, unsigned int idx)
{
	int timeout;
	int val;

1753 1754
	writel(GRSTCTL_TxFNum(idx) | GRSTCTL_TxFFlsh,
		hsotg->regs + GRSTCTL);
1755 1756 1757 1758 1759

	/* wait until the fifo is flushed */
	timeout = 100;

	while (1) {
1760
		val = readl(hsotg->regs + GRSTCTL);
1761

1762
		if ((val & (GRSTCTL_TxFFlsh)) == 0)
1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773
			break;

		if (--timeout == 0) {
			dev_err(hsotg->dev,
				"%s: timeout flushing fifo (GRSTCTL=%08x)\n",
				__func__, val);
		}

		udelay(1);
	}
}
1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811

/**
 * s3c_hsotg_trytx - check to see if anything needs transmitting
 * @hsotg: The driver state
 * @hs_ep: The driver endpoint to check.
 *
 * Check to see if there is a request that has data to send, and if so
 * make an attempt to write data into the FIFO.
 */
static int s3c_hsotg_trytx(struct s3c_hsotg *hsotg,
			   struct s3c_hsotg_ep *hs_ep)
{
	struct s3c_hsotg_req *hs_req = hs_ep->req;

	if (!hs_ep->dir_in || !hs_req)
		return 0;

	if (hs_req->req.actual < hs_req->req.length) {
		dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
			hs_ep->index);
		return s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
	}

	return 0;
}

/**
 * s3c_hsotg_complete_in - complete IN transfer
 * @hsotg: The device state.
 * @hs_ep: The endpoint that has just completed.
 *
 * An IN transfer has been completed, update the transfer's state and then
 * call the relevant completion routines.
 */
static void s3c_hsotg_complete_in(struct s3c_hsotg *hsotg,
				  struct s3c_hsotg_ep *hs_ep)
{
	struct s3c_hsotg_req *hs_req = hs_ep->req;
1812
	u32 epsize = readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
1813 1814 1815 1816 1817 1818 1819
	int size_left, size_done;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "XferCompl but no req\n");
		return;
	}

1820 1821 1822
	/* Finish ZLP handling for IN EP0 transactions */
	if (hsotg->eps[0].sent_zlp) {
		dev_dbg(hsotg->dev, "zlp packet received\n");
1823
		s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1824 1825 1826
		return;
	}

1827 1828
	/*
	 * Calculate the size of the transfer by checking how much is left
1829 1830 1831 1832 1833 1834 1835 1836
	 * in the endpoint size register and then working it out from
	 * the amount we loaded for the transfer.
	 *
	 * We do this even for DMA, as the transfer may have incremented
	 * past the end of the buffer (DMA transfers are always 32bit
	 * aligned).
	 */

1837
	size_left = DxEPTSIZ_XferSize_GET(epsize);
1838 1839 1840 1841 1842 1843 1844 1845 1846

	size_done = hs_ep->size_loaded - size_left;
	size_done += hs_ep->last_load;

	if (hs_req->req.actual != size_done)
		dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
			__func__, hs_req->req.actual, size_done);

	hs_req->req.actual = size_done;
1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865
	dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
		hs_req->req.length, hs_req->req.actual, hs_req->req.zero);

	/*
	 * Check if dealing with Maximum Packet Size(MPS) IN transfer at EP0
	 * When sent data is a multiple MPS size (e.g. 64B ,128B ,192B
	 * ,256B ... ), after last MPS sized packet send IN ZLP packet to
	 * inform the host that no more data is available.
	 * The state of req.zero member is checked to be sure that the value to
	 * send is smaller than wValue expected from host.
	 * Check req.length to NOT send another ZLP when the current one is
	 * under completion (the one for which this completion has been called).
	 */
	if (hs_req->req.length && hs_ep->index == 0 && hs_req->req.zero &&
	    hs_req->req.length == hs_req->req.actual &&
	    !(hs_req->req.length % hs_ep->ep.maxpacket)) {

		dev_dbg(hsotg->dev, "ep0 zlp IN packet sent\n");
		s3c_hsotg_send_zlp(hsotg, hs_req);
1866

1867 1868
		return;
	}
1869 1870 1871 1872 1873

	if (!size_left && hs_req->req.actual < hs_req->req.length) {
		dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
		s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
	} else
1874
		s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1875 1876 1877 1878 1879 1880 1881 1882 1883
}

/**
 * s3c_hsotg_epint - handle an in/out endpoint interrupt
 * @hsotg: The driver state
 * @idx: The index for the endpoint (0..15)
 * @dir_in: Set if this is an IN endpoint
 *
 * Process and clear any interrupt pending for an individual endpoint
1884
 */
1885 1886 1887 1888
static void s3c_hsotg_epint(struct s3c_hsotg *hsotg, unsigned int idx,
			    int dir_in)
{
	struct s3c_hsotg_ep *hs_ep = &hsotg->eps[idx];
1889 1890 1891
	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
	u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
1892
	u32 ints;
1893
	u32 ctrl;
1894 1895

	ints = readl(hsotg->regs + epint_reg);
1896
	ctrl = readl(hsotg->regs + epctl_reg);
1897

1898 1899 1900
	/* Clear endpoint interrupts */
	writel(ints, hsotg->regs + epint_reg);

1901 1902 1903
	dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
		__func__, idx, dir_in ? "in" : "out", ints);

1904
	if (ints & DxEPINT_XferCompl) {
1905 1906 1907 1908 1909 1910 1911 1912
		if (hs_ep->isochronous && hs_ep->interval == 1) {
			if (ctrl & DxEPCTL_EOFrNum)
				ctrl |= DxEPCTL_SetEvenFr;
			else
				ctrl |= DxEPCTL_SetOddFr;
			writel(ctrl, hsotg->regs + epctl_reg);
		}

1913 1914 1915 1916 1917
		dev_dbg(hsotg->dev,
			"%s: XferCompl: DxEPCTL=0x%08x, DxEPTSIZ=%08x\n",
			__func__, readl(hsotg->regs + epctl_reg),
			readl(hsotg->regs + epsiz_reg));

1918 1919 1920 1921
		/*
		 * we get OutDone from the FIFO, so we only need to look
		 * at completing IN requests here
		 */
1922 1923 1924
		if (dir_in) {
			s3c_hsotg_complete_in(hsotg, hs_ep);

1925
			if (idx == 0 && !hs_ep->req)
1926 1927
				s3c_hsotg_enqueue_setup(hsotg);
		} else if (using_dma(hsotg)) {
1928 1929 1930 1931
			/*
			 * We're using DMA, we need to fire an OutDone here
			 * as we ignore the RXFIFO.
			 */
1932 1933 1934 1935 1936

			s3c_hsotg_handle_outdone(hsotg, idx, false);
		}
	}

1937
	if (ints & DxEPINT_EPDisbld) {
1938 1939
		dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);

1940 1941 1942 1943 1944
		if (dir_in) {
			int epctl = readl(hsotg->regs + epctl_reg);

			s3c_hsotg_txfifo_flush(hsotg, idx);

1945 1946 1947
			if ((epctl & DxEPCTL_Stall) &&
				(epctl & DxEPCTL_EPType_Bulk)) {
				int dctl = readl(hsotg->regs + DCTL);
1948

1949 1950
				dctl |= DCTL_CGNPInNAK;
				writel(dctl, hsotg->regs + DCTL);
1951 1952 1953 1954
			}
		}
	}

1955
	if (ints & DxEPINT_AHBErr)
1956 1957
		dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);

1958
	if (ints & DxEPINT_Setup) {  /* Setup or Timeout */
1959 1960 1961
		dev_dbg(hsotg->dev, "%s: Setup/Timeout\n",  __func__);

		if (using_dma(hsotg) && idx == 0) {
1962 1963
			/*
			 * this is the notification we've received a
1964 1965
			 * setup packet. In non-DMA mode we'd get this
			 * from the RXFIFO, instead we need to process
1966 1967
			 * the setup here.
			 */
1968 1969 1970 1971 1972 1973 1974 1975

			if (dir_in)
				WARN_ON_ONCE(1);
			else
				s3c_hsotg_handle_outdone(hsotg, 0, true);
		}
	}

1976
	if (ints & DxEPINT_Back2BackSetup)
1977 1978
		dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);

1979
	if (dir_in && !hs_ep->isochronous) {
1980
		/* not sure if this is important, but we'll clear it anyway */
1981
		if (ints & DIEPMSK_INTknTXFEmpMsk) {
1982 1983 1984 1985 1986
			dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
				__func__, idx);
		}

		/* this probably means something bad is happening */
1987
		if (ints & DIEPMSK_INTknEPMisMsk) {
1988 1989 1990
			dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
				 __func__, idx);
		}
1991 1992 1993

		/* FIFO has space or is empty (see GAHBCFG) */
		if (hsotg->dedicated_fifos &&
1994
		    ints & DIEPMSK_TxFIFOEmpty) {
1995 1996
			dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
				__func__, idx);
1997 1998
			if (!using_dma(hsotg))
				s3c_hsotg_trytx(hsotg, hs_ep);
1999
		}
2000 2001 2002 2003 2004 2005 2006 2007 2008
	}
}

/**
 * s3c_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
 * @hsotg: The device state.
 *
 * Handle updating the device settings after the enumeration phase has
 * been completed.
2009
 */
2010 2011
static void s3c_hsotg_irq_enumdone(struct s3c_hsotg *hsotg)
{
2012
	u32 dsts = readl(hsotg->regs + DSTS);
2013 2014
	int ep0_mps = 0, ep_mps;

2015 2016
	/*
	 * This should signal the finish of the enumeration phase
2017
	 * of the USB handshaking, so we should now know what rate
2018 2019
	 * we connected at.
	 */
2020 2021 2022

	dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);

2023 2024
	/*
	 * note, since we're limited by the size of transfer on EP0, and
2025
	 * it seems IN transfers must be a even number of packets we do
2026 2027
	 * not advertise a 64byte MPS on EP0.
	 */
2028 2029

	/* catch both EnumSpd_FS and EnumSpd_FS48 */
2030 2031 2032
	switch (dsts & DSTS_EnumSpd_MASK) {
	case DSTS_EnumSpd_FS:
	case DSTS_EnumSpd_FS48:
2033 2034 2035 2036 2037
		hsotg->gadget.speed = USB_SPEED_FULL;
		ep0_mps = EP0_MPS_LIMIT;
		ep_mps = 64;
		break;

2038
	case DSTS_EnumSpd_HS:
2039 2040 2041 2042 2043
		hsotg->gadget.speed = USB_SPEED_HIGH;
		ep0_mps = EP0_MPS_LIMIT;
		ep_mps = 512;
		break;

2044
	case DSTS_EnumSpd_LS:
2045
		hsotg->gadget.speed = USB_SPEED_LOW;
2046 2047
		/*
		 * note, we don't actually support LS in this driver at the
2048 2049 2050 2051 2052
		 * moment, and the documentation seems to imply that it isn't
		 * supported by the PHYs on some of the devices.
		 */
		break;
	}
2053 2054
	dev_info(hsotg->dev, "new device is %s\n",
		 usb_speed_string(hsotg->gadget.speed));
2055

2056 2057 2058 2059
	/*
	 * we should now know the maximum packet size for an
	 * endpoint, so set the endpoints to a default value.
	 */
2060 2061 2062 2063

	if (ep0_mps) {
		int i;
		s3c_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps);
2064
		for (i = 1; i < hsotg->num_of_eps; i++)
2065 2066 2067 2068 2069 2070 2071 2072
			s3c_hsotg_set_ep_maxpacket(hsotg, i, ep_mps);
	}

	/* ensure after enumeration our EP0 is active */

	s3c_hsotg_enqueue_setup(hsotg);

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2073 2074
		readl(hsotg->regs + DIEPCTL0),
		readl(hsotg->regs + DOEPCTL0));
2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093
}

/**
 * kill_all_requests - remove all requests from the endpoint's queue
 * @hsotg: The device state.
 * @ep: The endpoint the requests may be on.
 * @result: The result code to use.
 * @force: Force removal of any current requests
 *
 * Go through the requests on the given endpoint and mark them
 * completed with the given result code.
 */
static void kill_all_requests(struct s3c_hsotg *hsotg,
			      struct s3c_hsotg_ep *ep,
			      int result, bool force)
{
	struct s3c_hsotg_req *req, *treq;

	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
2094 2095 2096 2097
		/*
		 * currently, we can't do much about an already
		 * running request on an in endpoint
		 */
2098 2099 2100 2101 2102 2103 2104 2105 2106 2107

		if (ep->req == req && ep->dir_in && !force)
			continue;

		s3c_hsotg_complete_request(hsotg, ep, req,
					   result);
	}
}

#define call_gadget(_hs, _entry) \
2108
do { \
2109
	if ((_hs)->gadget.speed != USB_SPEED_UNKNOWN &&	\
2110 2111 2112 2113
	    (_hs)->driver && (_hs)->driver->_entry) { \
		spin_unlock(&_hs->lock); \
		(_hs)->driver->_entry(&(_hs)->gadget); \
		spin_lock(&_hs->lock); \
2114 2115
	} \
} while (0)
2116 2117

/**
2118
 * s3c_hsotg_disconnect - disconnect service
2119 2120
 * @hsotg: The device state.
 *
2121 2122 2123
 * The device has been disconnected. Remove all current
 * transactions and signal the gadget driver that this
 * has happened.
2124
 */
2125
static void s3c_hsotg_disconnect(struct s3c_hsotg *hsotg)
2126 2127 2128
{
	unsigned ep;

2129
	for (ep = 0; ep < hsotg->num_of_eps; ep++)
2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146
		kill_all_requests(hsotg, &hsotg->eps[ep], -ESHUTDOWN, true);

	call_gadget(hsotg, disconnect);
}

/**
 * s3c_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
 * @hsotg: The device state:
 * @periodic: True if this is a periodic FIFO interrupt
 */
static void s3c_hsotg_irq_fifoempty(struct s3c_hsotg *hsotg, bool periodic)
{
	struct s3c_hsotg_ep *ep;
	int epno, ret;

	/* look through for any more data to transmit */

2147
	for (epno = 0; epno < hsotg->num_of_eps; epno++) {
2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163
		ep = &hsotg->eps[epno];

		if (!ep->dir_in)
			continue;

		if ((periodic && !ep->periodic) ||
		    (!periodic && ep->periodic))
			continue;

		ret = s3c_hsotg_trytx(hsotg, ep);
		if (ret < 0)
			break;
	}
}

/* IRQ flags which will trigger a retry around the IRQ loop */
2164 2165 2166
#define IRQ_RETRY_MASK (GINTSTS_NPTxFEmp | \
			GINTSTS_PTxFEmp |  \
			GINTSTS_RxFLvl)
2167

2168 2169 2170 2171 2172
/**
 * s3c_hsotg_corereset - issue softreset to the core
 * @hsotg: The device state
 *
 * Issue a soft reset to the core, and await the core finishing it.
2173
 */
2174 2175 2176 2177 2178 2179 2180 2181
static int s3c_hsotg_corereset(struct s3c_hsotg *hsotg)
{
	int timeout;
	u32 grstctl;

	dev_dbg(hsotg->dev, "resetting core\n");

	/* issue soft reset */
2182
	writel(GRSTCTL_CSftRst, hsotg->regs + GRSTCTL);
2183

2184
	timeout = 10000;
2185
	do {
2186 2187
		grstctl = readl(hsotg->regs + GRSTCTL);
	} while ((grstctl & GRSTCTL_CSftRst) && timeout-- > 0);
2188

2189
	if (grstctl & GRSTCTL_CSftRst) {
2190 2191 2192 2193
		dev_err(hsotg->dev, "Failed to get CSftRst asserted\n");
		return -EINVAL;
	}

2194
	timeout = 10000;
2195 2196

	while (1) {
2197
		u32 grstctl = readl(hsotg->regs + GRSTCTL);
2198 2199 2200 2201 2202 2203 2204 2205

		if (timeout-- < 0) {
			dev_info(hsotg->dev,
				 "%s: reset failed, GRSTCTL=%08x\n",
				 __func__, grstctl);
			return -ETIMEDOUT;
		}

2206
		if (!(grstctl & GRSTCTL_AHBIdle))
2207 2208 2209 2210 2211 2212 2213 2214 2215
			continue;

		break;		/* reset done */
	}

	dev_dbg(hsotg->dev, "reset successful\n");
	return 0;
}

2216 2217 2218 2219 2220 2221
/**
 * s3c_hsotg_core_init - issue softreset to the core
 * @hsotg: The device state
 *
 * Issue a soft reset to the core, and await the core finishing it.
 */
2222 2223 2224 2225 2226 2227 2228 2229 2230 2231
static void s3c_hsotg_core_init(struct s3c_hsotg *hsotg)
{
	s3c_hsotg_corereset(hsotg);

	/*
	 * we must now enable ep0 ready for host detection and then
	 * set configuration.
	 */

	/* set the PLL on, remove the HNP/SRP and set the PHY */
2232 2233
	writel(GUSBCFG_PHYIf16 | GUSBCFG_TOutCal(7) |
	       (0x5 << 10), hsotg->regs + GUSBCFG);
2234 2235 2236

	s3c_hsotg_init_fifo(hsotg);

2237
	__orr32(hsotg->regs + DCTL, DCTL_SftDiscon);
2238

2239
	writel(1 << 18 | DCFG_DevSpd_HS,  hsotg->regs + DCFG);
2240 2241

	/* Clear any pending OTG interrupts */
2242
	writel(0xffffffff, hsotg->regs + GOTGINT);
2243 2244

	/* Clear any pending interrupts */
2245
	writel(0xffffffff, hsotg->regs + GINTSTS);
2246

2247 2248 2249 2250 2251 2252
	writel(GINTSTS_ErlySusp | GINTSTS_SessReqInt |
	       GINTSTS_GOUTNakEff | GINTSTS_GINNakEff |
	       GINTSTS_ConIDStsChng | GINTSTS_USBRst |
	       GINTSTS_EnumDone | GINTSTS_OTGInt |
	       GINTSTS_USBSusp | GINTSTS_WkUpInt,
	       hsotg->regs + GINTMSK);
2253 2254

	if (using_dma(hsotg))
2255 2256 2257
		writel(GAHBCFG_GlblIntrEn | GAHBCFG_DMAEn |
		       GAHBCFG_HBstLen_Incr4,
		       hsotg->regs + GAHBCFG);
2258
	else
2259
		writel(GAHBCFG_GlblIntrEn, hsotg->regs + GAHBCFG);
2260 2261 2262 2263 2264 2265 2266

	/*
	 * Enabling INTknTXFEmpMsk here seems to be a big mistake, we end
	 * up being flooded with interrupts if the host is polling the
	 * endpoint to try and read data.
	 */

2267 2268 2269 2270 2271
	writel(((hsotg->dedicated_fifos) ? DIEPMSK_TxFIFOEmpty : 0) |
	       DIEPMSK_EPDisbldMsk | DIEPMSK_XferComplMsk |
	       DIEPMSK_TimeOUTMsk | DIEPMSK_AHBErrMsk |
	       DIEPMSK_INTknEPMisMsk,
	       hsotg->regs + DIEPMSK);
2272 2273 2274 2275 2276

	/*
	 * don't need XferCompl, we get that from RXFIFO in slave mode. In
	 * DMA mode we may need this.
	 */
2277 2278 2279 2280 2281
	writel((using_dma(hsotg) ? (DIEPMSK_XferComplMsk |
				    DIEPMSK_TimeOUTMsk) : 0) |
	       DOEPMSK_EPDisbldMsk | DOEPMSK_AHBErrMsk |
	       DOEPMSK_SetupMsk,
	       hsotg->regs + DOEPMSK);
2282

2283
	writel(0, hsotg->regs + DAINTMSK);
2284 2285

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2286 2287
		readl(hsotg->regs + DIEPCTL0),
		readl(hsotg->regs + DOEPCTL0));
2288 2289

	/* enable in and out endpoint interrupts */
2290
	s3c_hsotg_en_gsint(hsotg, GINTSTS_OEPInt | GINTSTS_IEPInt);
2291 2292 2293 2294 2295 2296 2297

	/*
	 * Enable the RXFIFO when in slave mode, as this is how we collect
	 * the data. In DMA mode, we get events from the FIFO but also
	 * things we cannot process, so do not use it.
	 */
	if (!using_dma(hsotg))
2298
		s3c_hsotg_en_gsint(hsotg, GINTSTS_RxFLvl);
2299 2300 2301 2302 2303

	/* Enable interrupts for EP0 in and out */
	s3c_hsotg_ctrl_epint(hsotg, 0, 0, 1);
	s3c_hsotg_ctrl_epint(hsotg, 0, 1, 1);

2304
	__orr32(hsotg->regs + DCTL, DCTL_PWROnPrgDone);
2305
	udelay(10);  /* see openiboot */
2306
	__bic32(hsotg->regs + DCTL, DCTL_PWROnPrgDone);
2307

2308
	dev_dbg(hsotg->dev, "DCTL=0x%08x\n", readl(hsotg->regs + DCTL));
2309 2310

	/*
2311
	 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
2312 2313 2314 2315
	 * writing to the EPCTL register..
	 */

	/* set to read 1 8byte packet */
2316 2317
	writel(DxEPTSIZ_MC(1) | DxEPTSIZ_PktCnt(1) |
	       DxEPTSIZ_XferSize(8), hsotg->regs + DOEPTSIZ0);
2318 2319

	writel(s3c_hsotg_ep0_mps(hsotg->eps[0].ep.maxpacket) |
2320 2321 2322
	       DxEPCTL_CNAK | DxEPCTL_EPEna |
	       DxEPCTL_USBActEp,
	       hsotg->regs + DOEPCTL0);
2323 2324 2325

	/* enable, but don't activate EP0in */
	writel(s3c_hsotg_ep0_mps(hsotg->eps[0].ep.maxpacket) |
2326
	       DxEPCTL_USBActEp, hsotg->regs + DIEPCTL0);
2327 2328 2329 2330

	s3c_hsotg_enqueue_setup(hsotg);

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2331 2332
		readl(hsotg->regs + DIEPCTL0),
		readl(hsotg->regs + DOEPCTL0));
2333 2334

	/* clear global NAKs */
2335 2336
	writel(DCTL_CGOUTNak | DCTL_CGNPInNAK,
	       hsotg->regs + DCTL);
2337 2338 2339 2340 2341

	/* must be at-least 3ms to allow bus to see disconnect */
	mdelay(3);

	/* remove the soft-disconnect and let's go */
2342
	__bic32(hsotg->regs + DCTL, DCTL_SftDiscon);
2343 2344
}

2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356
/**
 * s3c_hsotg_irq - handle device interrupt
 * @irq: The IRQ number triggered
 * @pw: The pw value when registered the handler.
 */
static irqreturn_t s3c_hsotg_irq(int irq, void *pw)
{
	struct s3c_hsotg *hsotg = pw;
	int retry_count = 8;
	u32 gintsts;
	u32 gintmsk;

2357
	spin_lock(&hsotg->lock);
2358
irq_retry:
2359 2360
	gintsts = readl(hsotg->regs + GINTSTS);
	gintmsk = readl(hsotg->regs + GINTMSK);
2361 2362 2363 2364 2365 2366

	dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
		__func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);

	gintsts &= gintmsk;

2367 2368
	if (gintsts & GINTSTS_OTGInt) {
		u32 otgint = readl(hsotg->regs + GOTGINT);
2369 2370 2371

		dev_info(hsotg->dev, "OTGInt: %08x\n", otgint);

2372
		writel(otgint, hsotg->regs + GOTGINT);
2373 2374
	}

2375
	if (gintsts & GINTSTS_SessReqInt) {
2376
		dev_dbg(hsotg->dev, "%s: SessReqInt\n", __func__);
2377
		writel(GINTSTS_SessReqInt, hsotg->regs + GINTSTS);
2378 2379
	}

2380 2381
	if (gintsts & GINTSTS_EnumDone) {
		writel(GINTSTS_EnumDone, hsotg->regs + GINTSTS);
2382 2383

		s3c_hsotg_irq_enumdone(hsotg);
2384 2385
	}

2386
	if (gintsts & GINTSTS_ConIDStsChng) {
2387
		dev_dbg(hsotg->dev, "ConIDStsChg (DSTS=0x%08x, GOTCTL=%08x)\n",
2388 2389
			readl(hsotg->regs + DSTS),
			readl(hsotg->regs + GOTGCTL));
2390

2391
		writel(GINTSTS_ConIDStsChng, hsotg->regs + GINTSTS);
2392 2393
	}

2394 2395 2396 2397
	if (gintsts & (GINTSTS_OEPInt | GINTSTS_IEPInt)) {
		u32 daint = readl(hsotg->regs + DAINT);
		u32 daint_out = daint >> DAINT_OutEP_SHIFT;
		u32 daint_in = daint & ~(daint_out << DAINT_OutEP_SHIFT);
2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412
		int ep;

		dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);

		for (ep = 0; ep < 15 && daint_out; ep++, daint_out >>= 1) {
			if (daint_out & 1)
				s3c_hsotg_epint(hsotg, ep, 0);
		}

		for (ep = 0; ep < 15 && daint_in; ep++, daint_in >>= 1) {
			if (daint_in & 1)
				s3c_hsotg_epint(hsotg, ep, 1);
		}
	}

2413
	if (gintsts & GINTSTS_USBRst) {
2414

2415
		u32 usb_status = readl(hsotg->regs + GOTGCTL);
2416

2417 2418
		dev_info(hsotg->dev, "%s: USBRst\n", __func__);
		dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
2419
			readl(hsotg->regs + GNPTXSTS));
2420

2421
		writel(GINTSTS_USBRst, hsotg->regs + GINTSTS);
2422

2423
		if (usb_status & GOTGCTL_BSESVLD) {
2424 2425
			if (time_after(jiffies, hsotg->last_rst +
				       msecs_to_jiffies(200))) {
2426

2427 2428
				kill_all_requests(hsotg, &hsotg->eps[0],
							  -ECONNRESET, true);
2429

2430 2431 2432 2433
				s3c_hsotg_core_init(hsotg);
				hsotg->last_rst = jiffies;
			}
		}
2434 2435 2436 2437
	}

	/* check both FIFOs */

2438
	if (gintsts & GINTSTS_NPTxFEmp) {
2439 2440
		dev_dbg(hsotg->dev, "NPTxFEmp\n");

2441 2442
		/*
		 * Disable the interrupt to stop it happening again
2443
		 * unless one of these endpoint routines decides that
2444 2445
		 * it needs re-enabling
		 */
2446

2447
		s3c_hsotg_disable_gsint(hsotg, GINTSTS_NPTxFEmp);
2448 2449 2450
		s3c_hsotg_irq_fifoempty(hsotg, false);
	}

2451
	if (gintsts & GINTSTS_PTxFEmp) {
2452 2453
		dev_dbg(hsotg->dev, "PTxFEmp\n");

2454
		/* See note in GINTSTS_NPTxFEmp */
2455

2456
		s3c_hsotg_disable_gsint(hsotg, GINTSTS_PTxFEmp);
2457 2458 2459
		s3c_hsotg_irq_fifoempty(hsotg, true);
	}

2460
	if (gintsts & GINTSTS_RxFLvl) {
2461 2462
		/*
		 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
2463
		 * we need to retry s3c_hsotg_handle_rx if this is still
2464 2465
		 * set.
		 */
2466 2467 2468 2469

		s3c_hsotg_handle_rx(hsotg);
	}

2470
	if (gintsts & GINTSTS_ModeMis) {
2471
		dev_warn(hsotg->dev, "warning, mode mismatch triggered\n");
2472
		writel(GINTSTS_ModeMis, hsotg->regs + GINTSTS);
2473 2474
	}

2475 2476 2477
	if (gintsts & GINTSTS_USBSusp) {
		dev_info(hsotg->dev, "GINTSTS_USBSusp\n");
		writel(GINTSTS_USBSusp, hsotg->regs + GINTSTS);
2478 2479

		call_gadget(hsotg, suspend);
2480
		s3c_hsotg_disconnect(hsotg);
2481 2482
	}

2483 2484 2485
	if (gintsts & GINTSTS_WkUpInt) {
		dev_info(hsotg->dev, "GINTSTS_WkUpIn\n");
		writel(GINTSTS_WkUpInt, hsotg->regs + GINTSTS);
2486 2487 2488 2489

		call_gadget(hsotg, resume);
	}

2490 2491 2492
	if (gintsts & GINTSTS_ErlySusp) {
		dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
		writel(GINTSTS_ErlySusp, hsotg->regs + GINTSTS);
2493 2494
	}

2495 2496
	/*
	 * these next two seem to crop-up occasionally causing the core
2497
	 * to shutdown the USB transfer, so try clearing them and logging
2498 2499
	 * the occurrence.
	 */
2500

2501
	if (gintsts & GINTSTS_GOUTNakEff) {
2502 2503
		dev_info(hsotg->dev, "GOUTNakEff triggered\n");

2504
		writel(DCTL_CGOUTNak, hsotg->regs + DCTL);
2505 2506

		s3c_hsotg_dump(hsotg);
2507 2508
	}

2509
	if (gintsts & GINTSTS_GINNakEff) {
2510 2511
		dev_info(hsotg->dev, "GINNakEff triggered\n");

2512
		writel(DCTL_CGNPInNAK, hsotg->regs + DCTL);
2513 2514

		s3c_hsotg_dump(hsotg);
2515 2516
	}

2517 2518 2519 2520
	/*
	 * if we've had fifo events, we should try and go around the
	 * loop again to see if there's any point in returning yet.
	 */
2521 2522 2523 2524

	if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
			goto irq_retry;

2525 2526
	spin_unlock(&hsotg->lock);

2527 2528 2529 2530 2531 2532 2533 2534 2535
	return IRQ_HANDLED;
}

/**
 * s3c_hsotg_ep_enable - enable the given endpoint
 * @ep: The USB endpint to configure
 * @desc: The USB endpoint descriptor to configure with.
 *
 * This is called from the USB gadget code's usb_ep_enable().
2536
 */
2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547
static int s3c_hsotg_ep_enable(struct usb_ep *ep,
			       const struct usb_endpoint_descriptor *desc)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
	struct s3c_hsotg *hsotg = hs_ep->parent;
	unsigned long flags;
	int index = hs_ep->index;
	u32 epctrl_reg;
	u32 epctrl;
	u32 mps;
	int dir_in;
2548
	int ret = 0;
2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563

	dev_dbg(hsotg->dev,
		"%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
		__func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
		desc->wMaxPacketSize, desc->bInterval);

	/* not to be called for EP0 */
	WARN_ON(index == 0);

	dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
	if (dir_in != hs_ep->dir_in) {
		dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
		return -EINVAL;
	}

2564
	mps = usb_endpoint_maxp(desc);
2565 2566 2567

	/* note, we handle this here instead of s3c_hsotg_set_ep_maxpacket */

2568
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
2569 2570 2571 2572 2573
	epctrl = readl(hsotg->regs + epctrl_reg);

	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
		__func__, epctrl, epctrl_reg);

2574
	spin_lock_irqsave(&hsotg->lock, flags);
2575

2576 2577
	epctrl &= ~(DxEPCTL_EPType_MASK | DxEPCTL_MPS_MASK);
	epctrl |= DxEPCTL_MPS(mps);
2578

2579 2580 2581 2582
	/*
	 * mark the endpoint as active, otherwise the core may ignore
	 * transactions entirely for this endpoint
	 */
2583
	epctrl |= DxEPCTL_USBActEp;
2584

2585 2586
	/*
	 * set the NAK status on the endpoint, otherwise we might try and
2587 2588 2589 2590 2591
	 * do something with data that we've yet got a request to process
	 * since the RXFIFO will take data for an endpoint even if the
	 * size register hasn't been set.
	 */

2592
	epctrl |= DxEPCTL_SNAK;
2593 2594

	/* update the endpoint state */
2595
	s3c_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps);
2596 2597

	/* default, set to non-periodic */
2598
	hs_ep->isochronous = 0;
2599
	hs_ep->periodic = 0;
2600
	hs_ep->interval = desc->bInterval;
2601 2602 2603

	switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
	case USB_ENDPOINT_XFER_ISOC:
2604 2605 2606 2607 2608 2609
		epctrl |= DxEPCTL_EPType_Iso;
		epctrl |= DxEPCTL_SetEvenFr;
		hs_ep->isochronous = 1;
		if (dir_in)
			hs_ep->periodic = 1;
		break;
2610 2611

	case USB_ENDPOINT_XFER_BULK:
2612
		epctrl |= DxEPCTL_EPType_Bulk;
2613 2614 2615 2616
		break;

	case USB_ENDPOINT_XFER_INT:
		if (dir_in) {
2617 2618
			/*
			 * Allocate our TxFNum by simply using the index
2619 2620
			 * of the endpoint for the moment. We could do
			 * something better if the host indicates how
2621 2622
			 * many FIFOs we are expecting to use.
			 */
2623 2624

			hs_ep->periodic = 1;
2625
			epctrl |= DxEPCTL_TxFNum(index);
2626 2627
		}

2628
		epctrl |= DxEPCTL_EPType_Intterupt;
2629 2630 2631
		break;

	case USB_ENDPOINT_XFER_CONTROL:
2632
		epctrl |= DxEPCTL_EPType_Control;
2633 2634 2635
		break;
	}

2636 2637
	/*
	 * if the hardware has dedicated fifos, we must give each IN EP
2638 2639 2640
	 * a unique tx-fifo even if it is non-periodic.
	 */
	if (dir_in && hsotg->dedicated_fifos)
2641
		epctrl |= DxEPCTL_TxFNum(index);
2642

2643 2644
	/* for non control endpoints, set PID to D0 */
	if (index)
2645
		epctrl |= DxEPCTL_SetD0PID;
2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656

	dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
		__func__, epctrl);

	writel(epctrl, hsotg->regs + epctrl_reg);
	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
		__func__, readl(hsotg->regs + epctrl_reg));

	/* enable the endpoint interrupt */
	s3c_hsotg_ctrl_epint(hsotg, index, dir_in, 1);

2657
out:
2658
	spin_unlock_irqrestore(&hsotg->lock, flags);
2659
	return ret;
2660 2661
}

2662 2663 2664 2665
/**
 * s3c_hsotg_ep_disable - disable given endpoint
 * @ep: The endpoint to disable.
 */
2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682
static int s3c_hsotg_ep_disable(struct usb_ep *ep)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
	struct s3c_hsotg *hsotg = hs_ep->parent;
	int dir_in = hs_ep->dir_in;
	int index = hs_ep->index;
	unsigned long flags;
	u32 epctrl_reg;
	u32 ctrl;

	dev_info(hsotg->dev, "%s(ep %p)\n", __func__, ep);

	if (ep == &hsotg->eps[0].ep) {
		dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
		return -EINVAL;
	}

2683
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
2684

2685
	spin_lock_irqsave(&hsotg->lock, flags);
2686 2687 2688 2689 2690
	/* terminate all requests with shutdown */
	kill_all_requests(hsotg, hs_ep, -ESHUTDOWN, false);


	ctrl = readl(hsotg->regs + epctrl_reg);
2691 2692 2693
	ctrl &= ~DxEPCTL_EPEna;
	ctrl &= ~DxEPCTL_USBActEp;
	ctrl |= DxEPCTL_SNAK;
2694 2695 2696 2697 2698 2699 2700

	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
	writel(ctrl, hsotg->regs + epctrl_reg);

	/* disable endpoint interrupts */
	s3c_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);

2701
	spin_unlock_irqrestore(&hsotg->lock, flags);
2702 2703 2704 2705 2706 2707 2708
	return 0;
}

/**
 * on_list - check request is on the given endpoint
 * @ep: The endpoint to check.
 * @test: The request to test if it is on the endpoint.
2709
 */
2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721
static bool on_list(struct s3c_hsotg_ep *ep, struct s3c_hsotg_req *test)
{
	struct s3c_hsotg_req *req, *treq;

	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
		if (req == test)
			return true;
	}

	return false;
}

2722 2723 2724 2725 2726
/**
 * s3c_hsotg_ep_dequeue - dequeue given endpoint
 * @ep: The endpoint to dequeue.
 * @req: The request to be removed from a queue.
 */
2727 2728 2729 2730 2731 2732 2733 2734 2735
static int s3c_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
{
	struct s3c_hsotg_req *hs_req = our_req(req);
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
	struct s3c_hsotg *hs = hs_ep->parent;
	unsigned long flags;

	dev_info(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);

2736
	spin_lock_irqsave(&hs->lock, flags);
2737 2738

	if (!on_list(hs_ep, hs_req)) {
2739
		spin_unlock_irqrestore(&hs->lock, flags);
2740 2741 2742 2743
		return -EINVAL;
	}

	s3c_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
2744
	spin_unlock_irqrestore(&hs->lock, flags);
2745 2746 2747 2748

	return 0;
}

2749 2750 2751 2752 2753
/**
 * s3c_hsotg_ep_sethalt - set halt on a given endpoint
 * @ep: The endpoint to set halt.
 * @value: Set or unset the halt.
 */
2754 2755 2756 2757 2758 2759 2760
static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
	struct s3c_hsotg *hs = hs_ep->parent;
	int index = hs_ep->index;
	u32 epreg;
	u32 epctl;
2761
	u32 xfertype;
2762 2763 2764 2765 2766

	dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);

	/* write both IN and OUT control registers */

2767
	epreg = DIEPCTL(index);
2768 2769
	epctl = readl(hs->regs + epreg);

2770
	if (value) {
2771 2772 2773
		epctl |= DxEPCTL_Stall + DxEPCTL_SNAK;
		if (epctl & DxEPCTL_EPEna)
			epctl |= DxEPCTL_EPDis;
2774
	} else {
2775 2776 2777 2778 2779
		epctl &= ~DxEPCTL_Stall;
		xfertype = epctl & DxEPCTL_EPType_MASK;
		if (xfertype == DxEPCTL_EPType_Bulk ||
			xfertype == DxEPCTL_EPType_Intterupt)
				epctl |= DxEPCTL_SetD0PID;
2780
	}
2781 2782 2783

	writel(epctl, hs->regs + epreg);

2784
	epreg = DOEPCTL(index);
2785 2786 2787
	epctl = readl(hs->regs + epreg);

	if (value)
2788
		epctl |= DxEPCTL_Stall;
2789
	else {
2790 2791 2792 2793 2794
		epctl &= ~DxEPCTL_Stall;
		xfertype = epctl & DxEPCTL_EPType_MASK;
		if (xfertype == DxEPCTL_EPType_Bulk ||
			xfertype == DxEPCTL_EPType_Intterupt)
				epctl |= DxEPCTL_SetD0PID;
2795
	}
2796 2797 2798 2799 2800 2801

	writel(epctl, hs->regs + epreg);

	return 0;
}

2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820
/**
 * s3c_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
 * @ep: The endpoint to set halt.
 * @value: Set or unset the halt.
 */
static int s3c_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
	struct s3c_hsotg *hs = hs_ep->parent;
	unsigned long flags = 0;
	int ret = 0;

	spin_lock_irqsave(&hs->lock, flags);
	ret = s3c_hsotg_ep_sethalt(ep, value);
	spin_unlock_irqrestore(&hs->lock, flags);

	return ret;
}

2821 2822 2823 2824 2825
static struct usb_ep_ops s3c_hsotg_ep_ops = {
	.enable		= s3c_hsotg_ep_enable,
	.disable	= s3c_hsotg_ep_disable,
	.alloc_request	= s3c_hsotg_ep_alloc_request,
	.free_request	= s3c_hsotg_ep_free_request,
2826
	.queue		= s3c_hsotg_ep_queue_lock,
2827
	.dequeue	= s3c_hsotg_ep_dequeue,
2828
	.set_halt	= s3c_hsotg_ep_sethalt_lock,
L
Lucas De Marchi 已提交
2829
	/* note, don't believe we have any call for the fifo routines */
2830 2831
};

2832 2833
/**
 * s3c_hsotg_phy_enable - enable platform phy dev
2834
 * @hsotg: The driver state
2835 2836 2837 2838 2839 2840 2841 2842 2843
 *
 * A wrapper for platform code responsible for controlling
 * low-level USB code
 */
static void s3c_hsotg_phy_enable(struct s3c_hsotg *hsotg)
{
	struct platform_device *pdev = to_platform_device(hsotg->dev);

	dev_dbg(hsotg->dev, "pdev 0x%p\n", pdev);
2844 2845 2846 2847

	if (hsotg->phy)
		usb_phy_init(hsotg->phy);
	else if (hsotg->plat->phy_init)
2848 2849 2850 2851 2852
		hsotg->plat->phy_init(pdev, hsotg->plat->phy_type);
}

/**
 * s3c_hsotg_phy_disable - disable platform phy dev
2853
 * @hsotg: The driver state
2854 2855 2856 2857 2858 2859 2860 2861
 *
 * A wrapper for platform code responsible for controlling
 * low-level USB code
 */
static void s3c_hsotg_phy_disable(struct s3c_hsotg *hsotg)
{
	struct platform_device *pdev = to_platform_device(hsotg->dev);

2862 2863 2864
	if (hsotg->phy)
		usb_phy_shutdown(hsotg->phy);
	else if (hsotg->plat->phy_exit)
2865 2866 2867
		hsotg->plat->phy_exit(pdev, hsotg->plat->phy_type);
}

2868 2869 2870 2871
/**
 * s3c_hsotg_init - initalize the usb core
 * @hsotg: The driver state
 */
2872 2873 2874 2875
static void s3c_hsotg_init(struct s3c_hsotg *hsotg)
{
	/* unmask subset of endpoint interrupts */

2876 2877 2878
	writel(DIEPMSK_TimeOUTMsk | DIEPMSK_AHBErrMsk |
	       DIEPMSK_EPDisbldMsk | DIEPMSK_XferComplMsk,
	       hsotg->regs + DIEPMSK);
2879

2880 2881 2882
	writel(DOEPMSK_SetupMsk | DOEPMSK_AHBErrMsk |
	       DOEPMSK_EPDisbldMsk | DOEPMSK_XferComplMsk,
	       hsotg->regs + DOEPMSK);
2883

2884
	writel(0, hsotg->regs + DAINTMSK);
2885 2886

	/* Be in disconnected state until gadget is registered */
2887
	__orr32(hsotg->regs + DCTL, DCTL_SftDiscon);
2888 2889 2890

	if (0) {
		/* post global nak until we're ready */
2891 2892
		writel(DCTL_SGNPInNAK | DCTL_SGOUTNak,
		       hsotg->regs + DCTL);
2893 2894 2895 2896 2897
	}

	/* setup fifos */

	dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
2898 2899
		readl(hsotg->regs + GRXFSIZ),
		readl(hsotg->regs + GNPTXFSIZ));
2900 2901 2902 2903

	s3c_hsotg_init_fifo(hsotg);

	/* set the PLL on, remove the HNP/SRP and set the PHY */
2904 2905
	writel(GUSBCFG_PHYIf16 | GUSBCFG_TOutCal(7) | (0x5 << 10),
	       hsotg->regs + GUSBCFG);
2906

2907 2908
	writel(using_dma(hsotg) ? GAHBCFG_DMAEn : 0x0,
	       hsotg->regs + GAHBCFG);
2909 2910
}

2911 2912 2913 2914 2915 2916 2917 2918
/**
 * s3c_hsotg_udc_start - prepare the udc for work
 * @gadget: The usb gadget state
 * @driver: The usb gadget driver
 *
 * Perform initialization to prepare udc device and driver
 * to work.
 */
2919 2920
static int s3c_hsotg_udc_start(struct usb_gadget *gadget,
			   struct usb_gadget_driver *driver)
2921
{
2922
	struct s3c_hsotg *hsotg = to_hsotg(gadget);
2923 2924 2925
	int ret;

	if (!hsotg) {
2926
		pr_err("%s: called with no device\n", __func__);
2927 2928 2929 2930 2931 2932 2933 2934
		return -ENODEV;
	}

	if (!driver) {
		dev_err(hsotg->dev, "%s: no driver\n", __func__);
		return -EINVAL;
	}

2935
	if (driver->max_speed < USB_SPEED_FULL)
2936 2937
		dev_err(hsotg->dev, "%s: bad speed\n", __func__);

2938
	if (!driver->setup) {
2939 2940 2941 2942 2943 2944 2945 2946
		dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
		return -EINVAL;
	}

	WARN_ON(hsotg->driver);

	driver->driver.bus = NULL;
	hsotg->driver = driver;
2947
	hsotg->gadget.dev.of_node = hsotg->dev->of_node;
2948 2949
	hsotg->gadget.speed = USB_SPEED_UNKNOWN;

2950 2951
	ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
				    hsotg->supplies);
2952
	if (ret) {
2953
		dev_err(hsotg->dev, "failed to enable supplies: %d\n", ret);
2954 2955 2956
		goto err;
	}

2957
	hsotg->last_rst = jiffies;
2958 2959 2960 2961 2962 2963 2964 2965
	dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
	return 0;

err:
	hsotg->driver = NULL;
	return ret;
}

2966 2967 2968 2969 2970 2971 2972
/**
 * s3c_hsotg_udc_stop - stop the udc
 * @gadget: The usb gadget state
 * @driver: The usb gadget driver
 *
 * Stop udc hw block and stay tunned for future transmissions
 */
2973 2974
static int s3c_hsotg_udc_stop(struct usb_gadget *gadget,
			  struct usb_gadget_driver *driver)
2975
{
2976
	struct s3c_hsotg *hsotg = to_hsotg(gadget);
2977
	unsigned long flags = 0;
2978 2979 2980 2981 2982 2983
	int ep;

	if (!hsotg)
		return -ENODEV;

	/* all endpoints should be shutdown */
2984
	for (ep = 0; ep < hsotg->num_of_eps; ep++)
2985 2986
		s3c_hsotg_ep_disable(&hsotg->eps[ep].ep);

2987 2988
	spin_lock_irqsave(&hsotg->lock, flags);

2989
	s3c_hsotg_phy_disable(hsotg);
2990

2991 2992 2993
	if (!driver)
		hsotg->driver = NULL;

2994 2995
	hsotg->gadget.speed = USB_SPEED_UNKNOWN;

2996 2997
	spin_unlock_irqrestore(&hsotg->lock, flags);

2998
	regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies), hsotg->supplies);
2999 3000 3001 3002

	return 0;
}

3003 3004 3005 3006 3007 3008
/**
 * s3c_hsotg_gadget_getframe - read the frame number
 * @gadget: The usb gadget state
 *
 * Read the {micro} frame number
 */
3009 3010 3011 3012 3013
static int s3c_hsotg_gadget_getframe(struct usb_gadget *gadget)
{
	return s3c_hsotg_read_frameno(to_hsotg(gadget));
}

3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042
/**
 * s3c_hsotg_pullup - connect/disconnect the USB PHY
 * @gadget: The usb gadget state
 * @is_on: Current state of the USB PHY
 *
 * Connect/Disconnect the USB PHY pullup
 */
static int s3c_hsotg_pullup(struct usb_gadget *gadget, int is_on)
{
	struct s3c_hsotg *hsotg = to_hsotg(gadget);
	unsigned long flags = 0;

	dev_dbg(hsotg->dev, "%s: is_in: %d\n", __func__, is_on);

	spin_lock_irqsave(&hsotg->lock, flags);
	if (is_on) {
		s3c_hsotg_phy_enable(hsotg);
		s3c_hsotg_core_init(hsotg);
	} else {
		s3c_hsotg_disconnect(hsotg);
		s3c_hsotg_phy_disable(hsotg);
	}

	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
	spin_unlock_irqrestore(&hsotg->lock, flags);

	return 0;
}

3043
static const struct usb_gadget_ops s3c_hsotg_gadget_ops = {
3044
	.get_frame	= s3c_hsotg_gadget_getframe,
3045 3046
	.udc_start		= s3c_hsotg_udc_start,
	.udc_stop		= s3c_hsotg_udc_stop,
3047
	.pullup                 = s3c_hsotg_pullup,
3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059
};

/**
 * s3c_hsotg_initep - initialise a single endpoint
 * @hsotg: The device state.
 * @hs_ep: The endpoint to be initialised.
 * @epnum: The endpoint number
 *
 * Initialise the given endpoint (as part of the probe and device state
 * creation) to give to the gadget driver. Setup the endpoint name, any
 * direction information and other state that may be required.
 */
B
Bill Pemberton 已提交
3060
static void s3c_hsotg_initep(struct s3c_hsotg *hsotg,
3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088
				       struct s3c_hsotg_ep *hs_ep,
				       int epnum)
{
	u32 ptxfifo;
	char *dir;

	if (epnum == 0)
		dir = "";
	else if ((epnum % 2) == 0) {
		dir = "out";
	} else {
		dir = "in";
		hs_ep->dir_in = 1;
	}

	hs_ep->index = epnum;

	snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);

	INIT_LIST_HEAD(&hs_ep->queue);
	INIT_LIST_HEAD(&hs_ep->ep.ep_list);

	/* add to the list of endpoints known by the gadget driver */
	if (epnum)
		list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);

	hs_ep->parent = hsotg;
	hs_ep->ep.name = hs_ep->name;
3089
	hs_ep->ep.maxpacket = epnum ? 1024 : EP0_MPS_LIMIT;
3090 3091
	hs_ep->ep.ops = &s3c_hsotg_ep_ops;

3092 3093
	/*
	 * Read the FIFO size for the Periodic TX FIFO, even if we're
3094 3095 3096 3097
	 * an OUT endpoint, we may as well do this if in future the
	 * code is changed to make each endpoint's direction changeable.
	 */

3098 3099
	ptxfifo = readl(hsotg->regs + DPTXFSIZn(epnum));
	hs_ep->fifo_size = DPTXFSIZn_DPTxFSize_GET(ptxfifo) * 4;
3100

3101 3102
	/*
	 * if we're using dma, we need to set the next-endpoint pointer
3103 3104 3105 3106
	 * to be something valid.
	 */

	if (using_dma(hsotg)) {
3107 3108 3109
		u32 next = DxEPCTL_NextEp((epnum + 1) % 15);
		writel(next, hsotg->regs + DIEPCTL(epnum));
		writel(next, hsotg->regs + DOEPCTL(epnum));
3110 3111 3112
	}
}

3113 3114 3115 3116 3117 3118 3119
/**
 * s3c_hsotg_hw_cfg - read HW configuration registers
 * @param: The device state
 *
 * Read the USB core HW configuration registers
 */
static void s3c_hsotg_hw_cfg(struct s3c_hsotg *hsotg)
3120
{
3121 3122
	u32 cfg2, cfg4;
	/* check hardware configuration */
3123

3124 3125
	cfg2 = readl(hsotg->regs + 0x48);
	hsotg->num_of_eps = (cfg2 >> 10) & 0xF;
3126

3127
	dev_info(hsotg->dev, "EPs:%d\n", hsotg->num_of_eps);
3128 3129 3130 3131 3132 3133

	cfg4 = readl(hsotg->regs + 0x50);
	hsotg->dedicated_fifos = (cfg4 >> 25) & 1;

	dev_info(hsotg->dev, "%s fifos\n",
		 hsotg->dedicated_fifos ? "dedicated" : "shared");
3134 3135
}

3136 3137 3138 3139
/**
 * s3c_hsotg_dump - dump state of the udc
 * @param: The device state
 */
3140 3141
static void s3c_hsotg_dump(struct s3c_hsotg *hsotg)
{
M
Mark Brown 已提交
3142
#ifdef DEBUG
3143 3144 3145 3146 3147 3148
	struct device *dev = hsotg->dev;
	void __iomem *regs = hsotg->regs;
	u32 val;
	int idx;

	dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
3149 3150
		 readl(regs + DCFG), readl(regs + DCTL),
		 readl(regs + DIEPMSK));
3151 3152

	dev_info(dev, "GAHBCFG=0x%08x, 0x44=0x%08x\n",
3153
		 readl(regs + GAHBCFG), readl(regs + 0x44));
3154 3155

	dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
3156
		 readl(regs + GRXFSIZ), readl(regs + GNPTXFSIZ));
3157 3158 3159 3160

	/* show periodic fifo settings */

	for (idx = 1; idx <= 15; idx++) {
3161
		val = readl(regs + DPTXFSIZn(idx));
3162
		dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
3163 3164
			 val >> DPTXFSIZn_DPTxFSize_SHIFT,
			 val & DPTXFSIZn_DPTxFStAddr_MASK);
3165 3166 3167 3168 3169
	}

	for (idx = 0; idx < 15; idx++) {
		dev_info(dev,
			 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
3170 3171 3172
			 readl(regs + DIEPCTL(idx)),
			 readl(regs + DIEPTSIZ(idx)),
			 readl(regs + DIEPDMA(idx)));
3173

3174
		val = readl(regs + DOEPCTL(idx));
3175 3176
		dev_info(dev,
			 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
3177 3178 3179
			 idx, readl(regs + DOEPCTL(idx)),
			 readl(regs + DOEPTSIZ(idx)),
			 readl(regs + DOEPDMA(idx)));
3180 3181 3182 3183

	}

	dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
3184
		 readl(regs + DVBUSDIS), readl(regs + DVBUSPULSE));
M
Mark Brown 已提交
3185
#endif
3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203
}

/**
 * state_show - debugfs: show overall driver and device state.
 * @seq: The seq file to write to.
 * @v: Unused parameter.
 *
 * This debugfs entry shows the overall state of the hardware and
 * some general information about each of the endpoints available
 * to the system.
 */
static int state_show(struct seq_file *seq, void *v)
{
	struct s3c_hsotg *hsotg = seq->private;
	void __iomem *regs = hsotg->regs;
	int idx;

	seq_printf(seq, "DCFG=0x%08x, DCTL=0x%08x, DSTS=0x%08x\n",
3204 3205 3206
		 readl(regs + DCFG),
		 readl(regs + DCTL),
		 readl(regs + DSTS));
3207 3208

	seq_printf(seq, "DIEPMSK=0x%08x, DOEPMASK=0x%08x\n",
3209
		   readl(regs + DIEPMSK), readl(regs + DOEPMSK));
3210 3211

	seq_printf(seq, "GINTMSK=0x%08x, GINTSTS=0x%08x\n",
3212 3213
		   readl(regs + GINTMSK),
		   readl(regs + GINTSTS));
3214 3215

	seq_printf(seq, "DAINTMSK=0x%08x, DAINT=0x%08x\n",
3216 3217
		   readl(regs + DAINTMSK),
		   readl(regs + DAINT));
3218 3219

	seq_printf(seq, "GNPTXSTS=0x%08x, GRXSTSR=%08x\n",
3220 3221
		   readl(regs + GNPTXSTS),
		   readl(regs + GRXSTSR));
3222

3223
	seq_puts(seq, "\nEndpoint status:\n");
3224 3225 3226 3227

	for (idx = 0; idx < 15; idx++) {
		u32 in, out;

3228 3229
		in = readl(regs + DIEPCTL(idx));
		out = readl(regs + DOEPCTL(idx));
3230 3231 3232 3233

		seq_printf(seq, "ep%d: DIEPCTL=0x%08x, DOEPCTL=0x%08x",
			   idx, in, out);

3234 3235
		in = readl(regs + DIEPTSIZ(idx));
		out = readl(regs + DOEPTSIZ(idx));
3236 3237 3238 3239

		seq_printf(seq, ", DIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x",
			   in, out);

3240
		seq_puts(seq, "\n");
3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265
	}

	return 0;
}

static int state_open(struct inode *inode, struct file *file)
{
	return single_open(file, state_show, inode->i_private);
}

static const struct file_operations state_fops = {
	.owner		= THIS_MODULE,
	.open		= state_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

/**
 * fifo_show - debugfs: show the fifo information
 * @seq: The seq_file to write data to.
 * @v: Unused parameter.
 *
 * Show the FIFO information for the overall fifo and all the
 * periodic transmission FIFOs.
3266
 */
3267 3268 3269 3270 3271 3272 3273
static int fifo_show(struct seq_file *seq, void *v)
{
	struct s3c_hsotg *hsotg = seq->private;
	void __iomem *regs = hsotg->regs;
	u32 val;
	int idx;

3274
	seq_puts(seq, "Non-periodic FIFOs:\n");
3275
	seq_printf(seq, "RXFIFO: Size %d\n", readl(regs + GRXFSIZ));
3276

3277
	val = readl(regs + GNPTXFSIZ);
3278
	seq_printf(seq, "NPTXFIFO: Size %d, Start 0x%08x\n",
3279 3280
		   val >> GNPTXFSIZ_NPTxFDep_SHIFT,
		   val & GNPTXFSIZ_NPTxFStAddr_MASK);
3281

3282
	seq_puts(seq, "\nPeriodic TXFIFOs:\n");
3283 3284

	for (idx = 1; idx <= 15; idx++) {
3285
		val = readl(regs + DPTXFSIZn(idx));
3286 3287

		seq_printf(seq, "\tDPTXFIFO%2d: Size %d, Start 0x%08x\n", idx,
3288 3289
			   val >> DPTXFSIZn_DPTxFSize_SHIFT,
			   val & DPTXFSIZn_DPTxFStAddr_MASK);
3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320
	}

	return 0;
}

static int fifo_open(struct inode *inode, struct file *file)
{
	return single_open(file, fifo_show, inode->i_private);
}

static const struct file_operations fifo_fops = {
	.owner		= THIS_MODULE,
	.open		= fifo_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};


static const char *decode_direction(int is_in)
{
	return is_in ? "in" : "out";
}

/**
 * ep_show - debugfs: show the state of an endpoint.
 * @seq: The seq_file to write data to.
 * @v: Unused parameter.
 *
 * This debugfs entry shows the state of the given endpoint (one is
 * registered for each available).
3321
 */
3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337
static int ep_show(struct seq_file *seq, void *v)
{
	struct s3c_hsotg_ep *ep = seq->private;
	struct s3c_hsotg *hsotg = ep->parent;
	struct s3c_hsotg_req *req;
	void __iomem *regs = hsotg->regs;
	int index = ep->index;
	int show_limit = 15;
	unsigned long flags;

	seq_printf(seq, "Endpoint index %d, named %s,  dir %s:\n",
		   ep->index, ep->ep.name, decode_direction(ep->dir_in));

	/* first show the register state */

	seq_printf(seq, "\tDIEPCTL=0x%08x, DOEPCTL=0x%08x\n",
3338 3339
		   readl(regs + DIEPCTL(index)),
		   readl(regs + DOEPCTL(index)));
3340 3341

	seq_printf(seq, "\tDIEPDMA=0x%08x, DOEPDMA=0x%08x\n",
3342 3343
		   readl(regs + DIEPDMA(index)),
		   readl(regs + DOEPDMA(index)));
3344 3345

	seq_printf(seq, "\tDIEPINT=0x%08x, DOEPINT=0x%08x\n",
3346 3347
		   readl(regs + DIEPINT(index)),
		   readl(regs + DOEPINT(index)));
3348 3349

	seq_printf(seq, "\tDIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x\n",
3350 3351
		   readl(regs + DIEPTSIZ(index)),
		   readl(regs + DOEPTSIZ(index)));
3352

3353
	seq_puts(seq, "\n");
3354 3355 3356 3357 3358 3359
	seq_printf(seq, "mps %d\n", ep->ep.maxpacket);
	seq_printf(seq, "total_data=%ld\n", ep->total_data);

	seq_printf(seq, "request list (%p,%p):\n",
		   ep->queue.next, ep->queue.prev);

3360
	spin_lock_irqsave(&hsotg->lock, flags);
3361 3362 3363

	list_for_each_entry(req, &ep->queue, queue) {
		if (--show_limit < 0) {
3364
			seq_puts(seq, "not showing more requests...\n");
3365 3366 3367 3368 3369 3370 3371 3372 3373 3374
			break;
		}

		seq_printf(seq, "%c req %p: %d bytes @%p, ",
			   req == ep->req ? '*' : ' ',
			   req, req->req.length, req->req.buf);
		seq_printf(seq, "%d done, res %d\n",
			   req->req.actual, req->req.status);
	}

3375
	spin_unlock_irqrestore(&hsotg->lock, flags);
3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400

	return 0;
}

static int ep_open(struct inode *inode, struct file *file)
{
	return single_open(file, ep_show, inode->i_private);
}

static const struct file_operations ep_fops = {
	.owner		= THIS_MODULE,
	.open		= ep_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

/**
 * s3c_hsotg_create_debug - create debugfs directory and files
 * @hsotg: The driver state
 *
 * Create the debugfs files to allow the user to get information
 * about the state of the system. The directory name is created
 * with the same name as the device itself, in case we end up
 * with multiple blocks in future systems.
3401
 */
B
Bill Pemberton 已提交
3402
static void s3c_hsotg_create_debug(struct s3c_hsotg *hsotg)
3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429
{
	struct dentry *root;
	unsigned epidx;

	root = debugfs_create_dir(dev_name(hsotg->dev), NULL);
	hsotg->debug_root = root;
	if (IS_ERR(root)) {
		dev_err(hsotg->dev, "cannot create debug root\n");
		return;
	}

	/* create general state file */

	hsotg->debug_file = debugfs_create_file("state", 0444, root,
						hsotg, &state_fops);

	if (IS_ERR(hsotg->debug_file))
		dev_err(hsotg->dev, "%s: failed to create state\n", __func__);

	hsotg->debug_fifo = debugfs_create_file("fifo", 0444, root,
						hsotg, &fifo_fops);

	if (IS_ERR(hsotg->debug_fifo))
		dev_err(hsotg->dev, "%s: failed to create fifo\n", __func__);

	/* create one file for each endpoint */

3430
	for (epidx = 0; epidx < hsotg->num_of_eps; epidx++) {
3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446
		struct s3c_hsotg_ep *ep = &hsotg->eps[epidx];

		ep->debugfs = debugfs_create_file(ep->name, 0444,
						  root, ep, &ep_fops);

		if (IS_ERR(ep->debugfs))
			dev_err(hsotg->dev, "failed to create %s debug file\n",
				ep->name);
	}
}

/**
 * s3c_hsotg_delete_debug - cleanup debugfs entries
 * @hsotg: The driver state
 *
 * Cleanup (remove) the debugfs files for use on module exit.
3447
 */
B
Bill Pemberton 已提交
3448
static void s3c_hsotg_delete_debug(struct s3c_hsotg *hsotg)
3449 3450 3451
{
	unsigned epidx;

3452
	for (epidx = 0; epidx < hsotg->num_of_eps; epidx++) {
3453 3454 3455 3456 3457 3458 3459 3460 3461
		struct s3c_hsotg_ep *ep = &hsotg->eps[epidx];
		debugfs_remove(ep->debugfs);
	}

	debugfs_remove(hsotg->debug_file);
	debugfs_remove(hsotg->debug_fifo);
	debugfs_remove(hsotg->debug_root);
}

3462 3463 3464 3465
/**
 * s3c_hsotg_probe - probe function for hsotg driver
 * @pdev: The platform information for the driver
 */
3466

B
Bill Pemberton 已提交
3467
static int s3c_hsotg_probe(struct platform_device *pdev)
3468
{
J
Jingoo Han 已提交
3469
	struct s3c_hsotg_plat *plat = dev_get_platdata(&pdev->dev);
3470
	struct usb_phy *phy;
3471
	struct device *dev = &pdev->dev;
3472
	struct s3c_hsotg_ep *eps;
3473 3474 3475 3476
	struct s3c_hsotg *hsotg;
	struct resource *res;
	int epnum;
	int ret;
3477
	int i;
3478

3479
	hsotg = devm_kzalloc(&pdev->dev, sizeof(struct s3c_hsotg), GFP_KERNEL);
3480 3481 3482 3483 3484
	if (!hsotg) {
		dev_err(dev, "cannot get memory\n");
		return -ENOMEM;
	}

3485
	phy = devm_usb_get_phy(dev, USB_PHY_TYPE_USB2);
3486
	if (IS_ERR(phy)) {
3487
		/* Fallback for pdata */
J
Jingoo Han 已提交
3488
		plat = dev_get_platdata(&pdev->dev);
3489 3490 3491 3492 3493 3494 3495 3496 3497 3498
		if (!plat) {
			dev_err(&pdev->dev, "no platform data or transceiver defined\n");
			return -EPROBE_DEFER;
		} else {
			hsotg->plat = plat;
		}
	} else {
		hsotg->phy = phy;
	}

3499 3500
	hsotg->dev = dev;

3501
	hsotg->clk = devm_clk_get(&pdev->dev, "otg");
3502 3503
	if (IS_ERR(hsotg->clk)) {
		dev_err(dev, "cannot get otg clock\n");
3504
		return PTR_ERR(hsotg->clk);
3505 3506
	}

3507 3508 3509 3510
	platform_set_drvdata(pdev, hsotg);

	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);

3511 3512 3513
	hsotg->regs = devm_ioremap_resource(&pdev->dev, res);
	if (IS_ERR(hsotg->regs)) {
		ret = PTR_ERR(hsotg->regs);
3514
		goto err_clk;
3515 3516 3517 3518 3519
	}

	ret = platform_get_irq(pdev, 0);
	if (ret < 0) {
		dev_err(dev, "cannot find IRQ\n");
3520
		goto err_clk;
3521 3522
	}

3523 3524
	spin_lock_init(&hsotg->lock);

3525 3526
	hsotg->irq = ret;

3527 3528
	ret = devm_request_irq(&pdev->dev, hsotg->irq, s3c_hsotg_irq, 0,
				dev_name(dev), hsotg);
3529 3530
	if (ret < 0) {
		dev_err(dev, "cannot claim IRQ\n");
3531
		goto err_clk;
3532 3533 3534 3535
	}

	dev_info(dev, "regs %p, irq %d\n", hsotg->regs, hsotg->irq);

3536
	hsotg->gadget.max_speed = USB_SPEED_HIGH;
3537 3538 3539 3540 3541
	hsotg->gadget.ops = &s3c_hsotg_gadget_ops;
	hsotg->gadget.name = dev_name(dev);

	/* reset the system */

3542
	clk_prepare_enable(hsotg->clk);
3543

3544 3545 3546 3547 3548
	/* regulators */

	for (i = 0; i < ARRAY_SIZE(hsotg->supplies); i++)
		hsotg->supplies[i].supply = s3c_hsotg_supply_names[i];

3549
	ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(hsotg->supplies),
3550 3551 3552
				 hsotg->supplies);
	if (ret) {
		dev_err(dev, "failed to request supplies: %d\n", ret);
3553
		goto err_clk;
3554 3555 3556 3557 3558 3559 3560 3561 3562 3563
	}

	ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
				    hsotg->supplies);

	if (ret) {
		dev_err(hsotg->dev, "failed to enable supplies: %d\n", ret);
		goto err_supplies;
	}

3564 3565
	/* usb phy enable */
	s3c_hsotg_phy_enable(hsotg);
3566 3567 3568

	s3c_hsotg_corereset(hsotg);
	s3c_hsotg_init(hsotg);
3569 3570 3571 3572 3573 3574
	s3c_hsotg_hw_cfg(hsotg);

	/* hsotg->num_of_eps holds number of EPs other than ep0 */

	if (hsotg->num_of_eps == 0) {
		dev_err(dev, "wrong number of EPs (zero)\n");
3575
		ret = -EINVAL;
3576 3577 3578 3579 3580 3581 3582
		goto err_supplies;
	}

	eps = kcalloc(hsotg->num_of_eps + 1, sizeof(struct s3c_hsotg_ep),
		      GFP_KERNEL);
	if (!eps) {
		dev_err(dev, "cannot get memory\n");
3583
		ret = -ENOMEM;
3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599
		goto err_supplies;
	}

	hsotg->eps = eps;

	/* setup endpoint information */

	INIT_LIST_HEAD(&hsotg->gadget.ep_list);
	hsotg->gadget.ep0 = &hsotg->eps[0].ep;

	/* allocate EP0 request */

	hsotg->ctrl_req = s3c_hsotg_ep_alloc_request(&hsotg->eps[0].ep,
						     GFP_KERNEL);
	if (!hsotg->ctrl_req) {
		dev_err(dev, "failed to allocate ctrl req\n");
3600
		ret = -ENOMEM;
3601 3602
		goto err_ep_mem;
	}
3603 3604

	/* initialise the endpoints now the core has been initialised */
3605
	for (epnum = 0; epnum < hsotg->num_of_eps; epnum++)
3606 3607
		s3c_hsotg_initep(hsotg, &hsotg->eps[epnum], epnum);

3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618
	/* disable power and clock */

	ret = regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies),
				    hsotg->supplies);
	if (ret) {
		dev_err(hsotg->dev, "failed to disable supplies: %d\n", ret);
		goto err_ep_mem;
	}

	s3c_hsotg_phy_disable(hsotg);

3619 3620
	ret = usb_add_gadget_udc(&pdev->dev, &hsotg->gadget);
	if (ret)
3621
		goto err_ep_mem;
3622

3623 3624 3625 3626 3627 3628
	s3c_hsotg_create_debug(hsotg);

	s3c_hsotg_dump(hsotg);

	return 0;

3629
err_ep_mem:
3630
	kfree(eps);
3631
err_supplies:
3632
	s3c_hsotg_phy_disable(hsotg);
3633
err_clk:
3634
	clk_disable_unprepare(hsotg->clk);
3635

3636 3637 3638
	return ret;
}

3639 3640 3641 3642
/**
 * s3c_hsotg_remove - remove function for hsotg driver
 * @pdev: The platform information for the driver
 */
B
Bill Pemberton 已提交
3643
static int s3c_hsotg_remove(struct platform_device *pdev)
3644 3645 3646
{
	struct s3c_hsotg *hsotg = platform_get_drvdata(pdev);

3647 3648
	usb_del_gadget_udc(&hsotg->gadget);

3649 3650
	s3c_hsotg_delete_debug(hsotg);

3651 3652 3653 3654
	if (hsotg->driver) {
		/* should have been done already by driver model core */
		usb_gadget_unregister_driver(hsotg->driver);
	}
3655

3656
	s3c_hsotg_phy_disable(hsotg);
3657
	clk_disable_unprepare(hsotg->clk);
3658

3659 3660 3661 3662 3663 3664 3665 3666
	return 0;
}

#if 1
#define s3c_hsotg_suspend NULL
#define s3c_hsotg_resume NULL
#endif

3667 3668 3669 3670 3671 3672 3673 3674
#ifdef CONFIG_OF
static const struct of_device_id s3c_hsotg_of_ids[] = {
	{ .compatible = "samsung,s3c6400-hsotg", },
	{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, s3c_hsotg_of_ids);
#endif

3675 3676 3677 3678
static struct platform_driver s3c_hsotg_driver = {
	.driver		= {
		.name	= "s3c-hsotg",
		.owner	= THIS_MODULE,
3679
		.of_match_table = of_match_ptr(s3c_hsotg_of_ids),
3680 3681
	},
	.probe		= s3c_hsotg_probe,
B
Bill Pemberton 已提交
3682
	.remove		= s3c_hsotg_remove,
3683 3684 3685 3686
	.suspend	= s3c_hsotg_suspend,
	.resume		= s3c_hsotg_resume,
};

3687
module_platform_driver(s3c_hsotg_driver);
3688 3689 3690 3691 3692

MODULE_DESCRIPTION("Samsung S3C USB High-speed/OtG device");
MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:s3c-hsotg");