s3c-hsotg.c 92.0 KB
Newer Older
1 2
/**
 * linux/drivers/usb/gadget/s3c-hsotg.c
3 4 5
 *
 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
 *		http://www.samsung.com
6 7 8 9 10 11 12 13 14 15 16
 *
 * Copyright 2008 Openmoko, Inc.
 * Copyright 2008 Simtec Electronics
 *      Ben Dooks <ben@simtec.co.uk>
 *      http://armlinux.simtec.co.uk/
 *
 * S3C USB2.0 High-speed / OtG driver
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
17
 */
18 19 20 21 22 23 24 25 26 27 28

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
#include <linux/platform_device.h>
#include <linux/dma-mapping.h>
#include <linux/debugfs.h>
#include <linux/seq_file.h>
#include <linux/delay.h>
#include <linux/io.h>
29
#include <linux/slab.h>
30
#include <linux/clk.h>
31
#include <linux/regulator/consumer.h>
32
#include <linux/of_platform.h>
33 34 35

#include <linux/usb/ch9.h>
#include <linux/usb/gadget.h>
36
#include <linux/usb/phy.h>
37
#include <linux/platform_data/s3c-hsotg.h>
38 39 40

#include <mach/map.h>

41
#include "s3c-hsotg.h"
42

43 44 45 46 47
static const char * const s3c_hsotg_supply_names[] = {
	"vusb_d",		/* digital USB supply, 1.2V */
	"vusb_a",		/* analog USB supply, 1.1V */
};

48 49
/*
 * EP0_MPS_LIMIT
50 51
 *
 * Unfortunately there seems to be a limit of the amount of data that can
L
Lucas De Marchi 已提交
52 53
 * be transferred by IN transactions on EP0. This is either 127 bytes or 3
 * packets (which practically means 1 packet and 63 bytes of data) when the
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
 * MPS is set to 64.
 *
 * This means if we are wanting to move >127 bytes of data, we need to
 * split the transactions up, but just doing one packet at a time does
 * not work (this may be an implicit DATA0 PID on first packet of the
 * transaction) and doing 2 packets is outside the controller's limits.
 *
 * If we try to lower the MPS size for EP0, then no transfers work properly
 * for EP0, and the system will fail basic enumeration. As no cause for this
 * has currently been found, we cannot support any large IN transfers for
 * EP0.
 */
#define EP0_MPS_LIMIT	64

struct s3c_hsotg;
struct s3c_hsotg_req;

/**
 * struct s3c_hsotg_ep - driver endpoint definition.
 * @ep: The gadget layer representation of the endpoint.
 * @name: The driver generated name for the endpoint.
 * @queue: Queue of requests for this endpoint.
 * @parent: Reference back to the parent device structure.
 * @req: The current request that the endpoint is processing. This is
 *       used to indicate an request has been loaded onto the endpoint
 *       and has yet to be completed (maybe due to data move, or simply
 *	 awaiting an ack from the core all the data has been completed).
 * @debugfs: File entry for debugfs file for this endpoint.
 * @lock: State lock to protect contents of endpoint.
 * @dir_in: Set to true if this endpoint is of the IN direction, which
 *	    means that it is sending data to the Host.
 * @index: The index for the endpoint registers.
 * @name: The name array passed to the USB core.
 * @halted: Set if the endpoint has been halted.
 * @periodic: Set if this is a periodic ep, such as Interrupt
 * @sent_zlp: Set if we've sent a zero-length packet.
 * @total_data: The total number of data bytes done.
 * @fifo_size: The size of the FIFO (for periodic IN endpoints)
 * @fifo_load: The amount of data loaded into the FIFO (periodic IN)
 * @last_load: The offset of data for the last start of request.
 * @size_loaded: The last loaded size for DxEPTSIZE for periodic IN
 *
 * This is the driver's state for each registered enpoint, allowing it
 * to keep track of transactions that need doing. Each endpoint has a
 * lock to protect the state, to try and avoid using an overall lock
 * for the host controller as much as possible.
 *
 * For periodic IN endpoints, we have fifo_size and fifo_load to try
 * and keep track of the amount of data in the periodic FIFO for each
 * of these as we don't have a status register that tells us how much
104 105 106
 * is in each of them. (note, this may actually be useless information
 * as in shared-fifo mode periodic in acts like a single-frame packet
 * buffer than a fifo)
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
 */
struct s3c_hsotg_ep {
	struct usb_ep		ep;
	struct list_head	queue;
	struct s3c_hsotg	*parent;
	struct s3c_hsotg_req	*req;
	struct dentry		*debugfs;


	unsigned long		total_data;
	unsigned int		size_loaded;
	unsigned int		last_load;
	unsigned int		fifo_load;
	unsigned short		fifo_size;

	unsigned char		dir_in;
	unsigned char		index;

	unsigned int		halted:1;
	unsigned int		periodic:1;
	unsigned int		sent_zlp:1;

	char			name[10];
};

/**
 * struct s3c_hsotg - driver state.
 * @dev: The parent device supplied to the probe function
 * @driver: USB gadget driver
136 137 138
 * @phy: The otg phy transceiver structure for phy control.
 * @plat: The platform specific configuration data. This can be removed once
 * all SoCs support usb transceiver.
139 140
 * @regs: The memory area mapped for accessing registers.
 * @irq: The IRQ number we are using
141
 * @supplies: Definition of USB power supplies
142
 * @dedicated_fifos: Set if the hardware has dedicated IN-EP fifos.
143
 * @num_of_eps: Number of available EPs (excluding EP0)
144 145 146 147 148 149 150
 * @debug_root: root directrory for debugfs.
 * @debug_file: main status file for debugfs.
 * @debug_fifo: FIFO status file for debugfs.
 * @ep0_reply: Request used for ep0 reply.
 * @ep0_buff: Buffer for EP0 reply data, if needed.
 * @ctrl_buff: Buffer for EP0 control requests.
 * @ctrl_req: Request for EP0 control packets.
151
 * @setup: NAK management for EP0 SETUP
152
 * @last_rst: Time of last reset
153 154 155 156 157
 * @eps: The endpoints being supplied to the gadget framework
 */
struct s3c_hsotg {
	struct device		 *dev;
	struct usb_gadget_driver *driver;
158
	struct usb_phy		*phy;
159 160
	struct s3c_hsotg_plat	 *plat;

161 162
	spinlock_t              lock;

163 164
	void __iomem		*regs;
	int			irq;
165
	struct clk		*clk;
166

167 168
	struct regulator_bulk_data supplies[ARRAY_SIZE(s3c_hsotg_supply_names)];

169
	unsigned int		dedicated_fifos:1;
170
	unsigned char           num_of_eps;
171

172 173 174 175 176 177 178 179 180 181
	struct dentry		*debug_root;
	struct dentry		*debug_file;
	struct dentry		*debug_fifo;

	struct usb_request	*ep0_reply;
	struct usb_request	*ctrl_req;
	u8			ep0_buff[8];
	u8			ctrl_buff[8];

	struct usb_gadget	gadget;
182
	unsigned int		setup;
183
	unsigned long           last_rst;
184
	struct s3c_hsotg_ep	*eps;
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
};

/**
 * struct s3c_hsotg_req - data transfer request
 * @req: The USB gadget request
 * @queue: The list of requests for the endpoint this is queued for.
 * @in_progress: Has already had size/packets written to core
 * @mapped: DMA buffer for this request has been mapped via dma_map_single().
 */
struct s3c_hsotg_req {
	struct usb_request	req;
	struct list_head	queue;
	unsigned char		in_progress;
	unsigned char		mapped;
};

/* conversion functions */
static inline struct s3c_hsotg_req *our_req(struct usb_request *req)
{
	return container_of(req, struct s3c_hsotg_req, req);
}

static inline struct s3c_hsotg_ep *our_ep(struct usb_ep *ep)
{
	return container_of(ep, struct s3c_hsotg_ep, ep);
}

static inline struct s3c_hsotg *to_hsotg(struct usb_gadget *gadget)
{
	return container_of(gadget, struct s3c_hsotg, gadget);
}

static inline void __orr32(void __iomem *ptr, u32 val)
{
	writel(readl(ptr) | val, ptr);
}

static inline void __bic32(void __iomem *ptr, u32 val)
{
	writel(readl(ptr) & ~val, ptr);
}

/* forward decleration of functions */
static void s3c_hsotg_dump(struct s3c_hsotg *hsotg);

/**
 * using_dma - return the DMA status of the driver.
 * @hsotg: The driver state.
 *
 * Return true if we're using DMA.
 *
 * Currently, we have the DMA support code worked into everywhere
 * that needs it, but the AMBA DMA implementation in the hardware can
 * only DMA from 32bit aligned addresses. This means that gadgets such
 * as the CDC Ethernet cannot work as they often pass packets which are
 * not 32bit aligned.
 *
 * Unfortunately the choice to use DMA or not is global to the controller
 * and seems to be only settable when the controller is being put through
 * a core reset. This means we either need to fix the gadgets to take
 * account of DMA alignment, or add bounce buffers (yuerk).
 *
 * Until this issue is sorted out, we always return 'false'.
 */
static inline bool using_dma(struct s3c_hsotg *hsotg)
{
	return false;	/* support is not complete */
}

/**
 * s3c_hsotg_en_gsint - enable one or more of the general interrupt
 * @hsotg: The device state
 * @ints: A bitmask of the interrupts to enable
 */
static void s3c_hsotg_en_gsint(struct s3c_hsotg *hsotg, u32 ints)
{
261
	u32 gsintmsk = readl(hsotg->regs + GINTMSK);
262 263 264 265 266 267
	u32 new_gsintmsk;

	new_gsintmsk = gsintmsk | ints;

	if (new_gsintmsk != gsintmsk) {
		dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
268
		writel(new_gsintmsk, hsotg->regs + GINTMSK);
269 270 271 272 273 274 275 276 277 278
	}
}

/**
 * s3c_hsotg_disable_gsint - disable one or more of the general interrupt
 * @hsotg: The device state
 * @ints: A bitmask of the interrupts to enable
 */
static void s3c_hsotg_disable_gsint(struct s3c_hsotg *hsotg, u32 ints)
{
279
	u32 gsintmsk = readl(hsotg->regs + GINTMSK);
280 281 282 283 284
	u32 new_gsintmsk;

	new_gsintmsk = gsintmsk & ~ints;

	if (new_gsintmsk != gsintmsk)
285
		writel(new_gsintmsk, hsotg->regs + GINTMSK);
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
}

/**
 * s3c_hsotg_ctrl_epint - enable/disable an endpoint irq
 * @hsotg: The device state
 * @ep: The endpoint index
 * @dir_in: True if direction is in.
 * @en: The enable value, true to enable
 *
 * Set or clear the mask for an individual endpoint's interrupt
 * request.
 */
static void s3c_hsotg_ctrl_epint(struct s3c_hsotg *hsotg,
				 unsigned int ep, unsigned int dir_in,
				 unsigned int en)
{
	unsigned long flags;
	u32 bit = 1 << ep;
	u32 daint;

	if (!dir_in)
		bit <<= 16;

	local_irq_save(flags);
310
	daint = readl(hsotg->regs + DAINTMSK);
311 312 313 314
	if (en)
		daint |= bit;
	else
		daint &= ~bit;
315
	writel(daint, hsotg->regs + DAINTMSK);
316 317 318 319 320 321 322 323 324
	local_irq_restore(flags);
}

/**
 * s3c_hsotg_init_fifo - initialise non-periodic FIFOs
 * @hsotg: The device instance.
 */
static void s3c_hsotg_init_fifo(struct s3c_hsotg *hsotg)
{
325 326 327
	unsigned int ep;
	unsigned int addr;
	unsigned int size;
328
	int timeout;
329 330
	u32 val;

331
	/* set FIFO sizes to 2048/1024 */
332

333 334 335 336
	writel(2048, hsotg->regs + GRXFSIZ);
	writel(GNPTXFSIZ_NPTxFStAddr(2048) |
	       GNPTXFSIZ_NPTxFDep(1024),
	       hsotg->regs + GNPTXFSIZ);
337

338 339
	/*
	 * arange all the rest of the TX FIFOs, as some versions of this
340 341
	 * block have overlapping default addresses. This also ensures
	 * that if the settings have been changed, then they are set to
342 343
	 * known values.
	 */
344 345 346 347 348

	/* start at the end of the GNPTXFSIZ, rounded up */
	addr = 2048 + 1024;
	size = 768;

349 350 351 352
	/*
	 * currently we allocate TX FIFOs for all possible endpoints,
	 * and assume that they are all the same size.
	 */
353

354
	for (ep = 1; ep <= 15; ep++) {
355
		val = addr;
356
		val |= size << DPTXFSIZn_DPTxFSize_SHIFT;
357 358
		addr += size;

359
		writel(val, hsotg->regs + DPTXFSIZn(ep));
360
	}
361

362 363 364 365
	/*
	 * according to p428 of the design guide, we need to ensure that
	 * all fifos are flushed before continuing
	 */
366

367 368
	writel(GRSTCTL_TxFNum(0x10) | GRSTCTL_TxFFlsh |
	       GRSTCTL_RxFFlsh, hsotg->regs + GRSTCTL);
369 370 371 372

	/* wait until the fifos are both flushed */
	timeout = 100;
	while (1) {
373
		val = readl(hsotg->regs + GRSTCTL);
374

375
		if ((val & (GRSTCTL_TxFFlsh | GRSTCTL_RxFFlsh)) == 0)
376 377 378 379 380 381 382 383 384 385 386 387
			break;

		if (--timeout == 0) {
			dev_err(hsotg->dev,
				"%s: timeout flushing fifos (GRSTCTL=%08x)\n",
				__func__, val);
		}

		udelay(1);
	}

	dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
388 389 390 391 392 393 394 395
}

/**
 * @ep: USB endpoint to allocate request for.
 * @flags: Allocation flags
 *
 * Allocate a new USB request structure appropriate for the specified endpoint
 */
396 397
static struct usb_request *s3c_hsotg_ep_alloc_request(struct usb_ep *ep,
						      gfp_t flags)
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
{
	struct s3c_hsotg_req *req;

	req = kzalloc(sizeof(struct s3c_hsotg_req), flags);
	if (!req)
		return NULL;

	INIT_LIST_HEAD(&req->queue);

	return &req->req;
}

/**
 * is_ep_periodic - return true if the endpoint is in periodic mode.
 * @hs_ep: The endpoint to query.
 *
 * Returns true if the endpoint is in periodic mode, meaning it is being
 * used for an Interrupt or ISO transfer.
 */
static inline int is_ep_periodic(struct s3c_hsotg_ep *hs_ep)
{
	return hs_ep->periodic;
}

/**
 * s3c_hsotg_unmap_dma - unmap the DMA memory being used for the request
 * @hsotg: The device state.
 * @hs_ep: The endpoint for the request
 * @hs_req: The request being processed.
 *
 * This is the reverse of s3c_hsotg_map_dma(), called for the completion
 * of a request to ensure the buffer is ready for access by the caller.
430
 */
431 432 433 434 435 436 437 438 439 440
static void s3c_hsotg_unmap_dma(struct s3c_hsotg *hsotg,
				struct s3c_hsotg_ep *hs_ep,
				struct s3c_hsotg_req *hs_req)
{
	struct usb_request *req = &hs_req->req;

	/* ignore this if we're not moving any data */
	if (hs_req->req.length == 0)
		return;

441
	usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in);
442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
}

/**
 * s3c_hsotg_write_fifo - write packet Data to the TxFIFO
 * @hsotg: The controller state.
 * @hs_ep: The endpoint we're going to write for.
 * @hs_req: The request to write data for.
 *
 * This is called when the TxFIFO has some space in it to hold a new
 * transmission and we have something to give it. The actual setup of
 * the data size is done elsewhere, so all we have to do is to actually
 * write the data.
 *
 * The return value is zero if there is more space (or nothing was done)
 * otherwise -ENOSPC is returned if the FIFO space was used up.
 *
 * This routine is only needed for PIO
459
 */
460 461 462 463 464
static int s3c_hsotg_write_fifo(struct s3c_hsotg *hsotg,
				struct s3c_hsotg_ep *hs_ep,
				struct s3c_hsotg_req *hs_req)
{
	bool periodic = is_ep_periodic(hs_ep);
465
	u32 gnptxsts = readl(hsotg->regs + GNPTXSTS);
466 467 468 469 470 471 472 473 474 475 476 477
	int buf_pos = hs_req->req.actual;
	int to_write = hs_ep->size_loaded;
	void *data;
	int can_write;
	int pkt_round;

	to_write -= (buf_pos - hs_ep->last_load);

	/* if there's nothing to write, get out early */
	if (to_write == 0)
		return 0;

478
	if (periodic && !hsotg->dedicated_fifos) {
479
		u32 epsize = readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
480 481 482
		int size_left;
		int size_done;

483 484 485 486
		/*
		 * work out how much data was loaded so we can calculate
		 * how much data is left in the fifo.
		 */
487

488
		size_left = DxEPTSIZ_XferSize_GET(epsize);
489

490 491
		/*
		 * if shared fifo, we cannot write anything until the
492 493 494
		 * previous data has been completely sent.
		 */
		if (hs_ep->fifo_load != 0) {
495
			s3c_hsotg_en_gsint(hsotg, GINTSTS_PTxFEmp);
496 497 498
			return -ENOSPC;
		}

499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
		dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
			__func__, size_left,
			hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);

		/* how much of the data has moved */
		size_done = hs_ep->size_loaded - size_left;

		/* how much data is left in the fifo */
		can_write = hs_ep->fifo_load - size_done;
		dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
			__func__, can_write);

		can_write = hs_ep->fifo_size - can_write;
		dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
			__func__, can_write);

		if (can_write <= 0) {
516
			s3c_hsotg_en_gsint(hsotg, GINTSTS_PTxFEmp);
517 518
			return -ENOSPC;
		}
519
	} else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
520
		can_write = readl(hsotg->regs + DTXFSTS(hs_ep->index));
521 522 523

		can_write &= 0xffff;
		can_write *= 4;
524
	} else {
525
		if (GNPTXSTS_NPTxQSpcAvail_GET(gnptxsts) == 0) {
526 527 528 529
			dev_dbg(hsotg->dev,
				"%s: no queue slots available (0x%08x)\n",
				__func__, gnptxsts);

530
			s3c_hsotg_en_gsint(hsotg, GINTSTS_NPTxFEmp);
531 532 533
			return -ENOSPC;
		}

534
		can_write = GNPTXSTS_NPTxFSpcAvail_GET(gnptxsts);
535
		can_write *= 4;	/* fifo size is in 32bit quantities. */
536 537 538 539 540
	}

	dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, mps %d\n",
		 __func__, gnptxsts, can_write, to_write, hs_ep->ep.maxpacket);

541 542
	/*
	 * limit to 512 bytes of data, it seems at least on the non-periodic
543 544 545 546 547 548
	 * FIFO, requests of >512 cause the endpoint to get stuck with a
	 * fragment of the end of the transfer in it.
	 */
	if (can_write > 512)
		can_write = 512;

549 550
	/*
	 * limit the write to one max-packet size worth of data, but allow
551
	 * the transfer to return that it did not run out of fifo space
552 553
	 * doing it.
	 */
554 555 556 557
	if (to_write > hs_ep->ep.maxpacket) {
		to_write = hs_ep->ep.maxpacket;

		s3c_hsotg_en_gsint(hsotg,
558 559
				   periodic ? GINTSTS_PTxFEmp :
				   GINTSTS_NPTxFEmp);
560 561
	}

562 563 564 565 566 567
	/* see if we can write data */

	if (to_write > can_write) {
		to_write = can_write;
		pkt_round = to_write % hs_ep->ep.maxpacket;

568 569
		/*
		 * Round the write down to an
570 571 572 573 574 575 576 577 578
		 * exact number of packets.
		 *
		 * Note, we do not currently check to see if we can ever
		 * write a full packet or not to the FIFO.
		 */

		if (pkt_round)
			to_write -= pkt_round;

579 580 581 582
		/*
		 * enable correct FIFO interrupt to alert us when there
		 * is more room left.
		 */
583 584

		s3c_hsotg_en_gsint(hsotg,
585 586
				   periodic ? GINTSTS_PTxFEmp :
				   GINTSTS_NPTxFEmp);
587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
	}

	dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
		 to_write, hs_req->req.length, can_write, buf_pos);

	if (to_write <= 0)
		return -ENOSPC;

	hs_req->req.actual = buf_pos + to_write;
	hs_ep->total_data += to_write;

	if (periodic)
		hs_ep->fifo_load += to_write;

	to_write = DIV_ROUND_UP(to_write, 4);
	data = hs_req->req.buf + buf_pos;

604
	writesl(hsotg->regs + EPFIFO(hs_ep->index), data, to_write);
605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622

	return (to_write >= can_write) ? -ENOSPC : 0;
}

/**
 * get_ep_limit - get the maximum data legnth for this endpoint
 * @hs_ep: The endpoint
 *
 * Return the maximum data that can be queued in one go on a given endpoint
 * so that transfers that are too long can be split.
 */
static unsigned get_ep_limit(struct s3c_hsotg_ep *hs_ep)
{
	int index = hs_ep->index;
	unsigned maxsize;
	unsigned maxpkt;

	if (index != 0) {
623 624
		maxsize = DxEPTSIZ_XferSize_LIMIT + 1;
		maxpkt = DxEPTSIZ_PktCnt_LIMIT + 1;
625
	} else {
626
		maxsize = 64+64;
627
		if (hs_ep->dir_in)
628
			maxpkt = DIEPTSIZ0_PktCnt_LIMIT + 1;
629
		else
630 631 632 633 634 635 636
			maxpkt = 2;
	}

	/* we made the constant loading easier above by using +1 */
	maxpkt--;
	maxsize--;

637 638 639 640
	/*
	 * constrain by packet count if maxpkts*pktsize is greater
	 * than the length register size.
	 */
641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686

	if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
		maxsize = maxpkt * hs_ep->ep.maxpacket;

	return maxsize;
}

/**
 * s3c_hsotg_start_req - start a USB request from an endpoint's queue
 * @hsotg: The controller state.
 * @hs_ep: The endpoint to process a request for
 * @hs_req: The request to start.
 * @continuing: True if we are doing more for the current request.
 *
 * Start the given request running by setting the endpoint registers
 * appropriately, and writing any data to the FIFOs.
 */
static void s3c_hsotg_start_req(struct s3c_hsotg *hsotg,
				struct s3c_hsotg_ep *hs_ep,
				struct s3c_hsotg_req *hs_req,
				bool continuing)
{
	struct usb_request *ureq = &hs_req->req;
	int index = hs_ep->index;
	int dir_in = hs_ep->dir_in;
	u32 epctrl_reg;
	u32 epsize_reg;
	u32 epsize;
	u32 ctrl;
	unsigned length;
	unsigned packets;
	unsigned maxreq;

	if (index != 0) {
		if (hs_ep->req && !continuing) {
			dev_err(hsotg->dev, "%s: active request\n", __func__);
			WARN_ON(1);
			return;
		} else if (hs_ep->req != hs_req && continuing) {
			dev_err(hsotg->dev,
				"%s: continue different req\n", __func__);
			WARN_ON(1);
			return;
		}
	}

687 688
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
	epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
689 690 691 692 693

	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
		__func__, readl(hsotg->regs + epctrl_reg), index,
		hs_ep->dir_in ? "in" : "out");

694 695 696
	/* If endpoint is stalled, we will restart request later */
	ctrl = readl(hsotg->regs + epctrl_reg);

697
	if (ctrl & DxEPCTL_Stall) {
698 699 700 701
		dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
		return;
	}

702
	length = ureq->length - ureq->actual;
703 704
	dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
		ureq->length, ureq->actual);
705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
	if (0)
		dev_dbg(hsotg->dev,
			"REQ buf %p len %d dma 0x%08x noi=%d zp=%d snok=%d\n",
			ureq->buf, length, ureq->dma,
			ureq->no_interrupt, ureq->zero, ureq->short_not_ok);

	maxreq = get_ep_limit(hs_ep);
	if (length > maxreq) {
		int round = maxreq % hs_ep->ep.maxpacket;

		dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
			__func__, length, maxreq, round);

		/* round down to multiple of packets */
		if (round)
			maxreq -= round;

		length = maxreq;
	}

	if (length)
		packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
	else
		packets = 1;	/* send one packet if length is zero. */

	if (dir_in && index != 0)
731
		epsize = DxEPTSIZ_MC(1);
732 733 734 735
	else
		epsize = 0;

	if (index != 0 && ureq->zero) {
736 737 738 739
		/*
		 * test for the packets being exactly right for the
		 * transfer
		 */
740 741 742 743 744

		if (length == (packets * hs_ep->ep.maxpacket))
			packets++;
	}

745 746
	epsize |= DxEPTSIZ_PktCnt(packets);
	epsize |= DxEPTSIZ_XferSize(length);
747 748 749 750 751 752 753 754 755 756

	dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
		__func__, packets, length, ureq->length, epsize, epsize_reg);

	/* store the request as the current one we're doing */
	hs_ep->req = hs_req;

	/* write size / packets */
	writel(epsize, hsotg->regs + epsize_reg);

757
	if (using_dma(hsotg) && !continuing) {
758 759
		unsigned int dma_reg;

760 761 762 763
		/*
		 * write DMA address to control register, buffer already
		 * synced by s3c_hsotg_ep_queue().
		 */
764

765
		dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
766 767 768 769 770 771
		writel(ureq->dma, hsotg->regs + dma_reg);

		dev_dbg(hsotg->dev, "%s: 0x%08x => 0x%08x\n",
			__func__, ureq->dma, dma_reg);
	}

772 773
	ctrl |= DxEPCTL_EPEna;	/* ensure ep enabled */
	ctrl |= DxEPCTL_USBActEp;
774 775 776 777 778 779 780

	dev_dbg(hsotg->dev, "setup req:%d\n", hsotg->setup);

	/* For Setup request do not clear NAK */
	if (hsotg->setup && index == 0)
		hsotg->setup = 0;
	else
781
		ctrl |= DxEPCTL_CNAK;	/* clear NAK set by core */
782

783 784 785 786

	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
	writel(ctrl, hsotg->regs + epctrl_reg);

787 788
	/*
	 * set these, it seems that DMA support increments past the end
789
	 * of the packet buffer so we need to calculate the length from
790 791
	 * this information.
	 */
792 793 794 795 796 797 798 799 800 801
	hs_ep->size_loaded = length;
	hs_ep->last_load = ureq->actual;

	if (dir_in && !using_dma(hsotg)) {
		/* set these anyway, we may need them for non-periodic in */
		hs_ep->fifo_load = 0;

		s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
	}

802 803 804 805
	/*
	 * clear the INTknTXFEmpMsk when we start request, more as a aide
	 * to debugging to see what is going on.
	 */
806
	if (dir_in)
807 808
		writel(DIEPMSK_INTknTXFEmpMsk,
		       hsotg->regs + DIEPINT(index));
809

810 811 812 813
	/*
	 * Note, trying to clear the NAK here causes problems with transmit
	 * on the S3C6400 ending up with the TXFIFO becoming full.
	 */
814 815

	/* check ep is enabled */
816
	if (!(readl(hsotg->regs + epctrl_reg) & DxEPCTL_EPEna))
817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835
		dev_warn(hsotg->dev,
			 "ep%d: failed to become enabled (DxEPCTL=0x%08x)?\n",
			 index, readl(hsotg->regs + epctrl_reg));

	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n",
		__func__, readl(hsotg->regs + epctrl_reg));
}

/**
 * s3c_hsotg_map_dma - map the DMA memory being used for the request
 * @hsotg: The device state.
 * @hs_ep: The endpoint the request is on.
 * @req: The request being processed.
 *
 * We've been asked to queue a request, so ensure that the memory buffer
 * is correctly setup for DMA. If we've been passed an extant DMA address
 * then ensure the buffer has been synced to memory. If our buffer has no
 * DMA memory, then we map the memory and mark our request to allow us to
 * cleanup on completion.
836
 */
837 838 839 840 841
static int s3c_hsotg_map_dma(struct s3c_hsotg *hsotg,
			     struct s3c_hsotg_ep *hs_ep,
			     struct usb_request *req)
{
	struct s3c_hsotg_req *hs_req = our_req(req);
842
	int ret;
843 844 845 846 847

	/* if the length is zero, ignore the DMA data */
	if (hs_req->req.length == 0)
		return 0;

848 849 850
	ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
	if (ret)
		goto dma_error;
851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893

	return 0;

dma_error:
	dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
		__func__, req->buf, req->length);

	return -EIO;
}

static int s3c_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
			      gfp_t gfp_flags)
{
	struct s3c_hsotg_req *hs_req = our_req(req);
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
	struct s3c_hsotg *hs = hs_ep->parent;
	bool first;

	dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
		ep->name, req, req->length, req->buf, req->no_interrupt,
		req->zero, req->short_not_ok);

	/* initialise status of the request */
	INIT_LIST_HEAD(&hs_req->queue);
	req->actual = 0;
	req->status = -EINPROGRESS;

	/* if we're using DMA, sync the buffers as necessary */
	if (using_dma(hs)) {
		int ret = s3c_hsotg_map_dma(hs, hs_ep, req);
		if (ret)
			return ret;
	}

	first = list_empty(&hs_ep->queue);
	list_add_tail(&hs_req->queue, &hs_ep->queue);

	if (first)
		s3c_hsotg_start_req(hs, hs_ep, hs_req, false);

	return 0;
}

894 895 896 897 898 899 900 901 902 903 904 905 906 907 908
static int s3c_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
			      gfp_t gfp_flags)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
	struct s3c_hsotg *hs = hs_ep->parent;
	unsigned long flags = 0;
	int ret = 0;

	spin_lock_irqsave(&hs->lock, flags);
	ret = s3c_hsotg_ep_queue(ep, req, gfp_flags);
	spin_unlock_irqrestore(&hs->lock, flags);

	return ret;
}

909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942
static void s3c_hsotg_ep_free_request(struct usb_ep *ep,
				      struct usb_request *req)
{
	struct s3c_hsotg_req *hs_req = our_req(req);

	kfree(hs_req);
}

/**
 * s3c_hsotg_complete_oursetup - setup completion callback
 * @ep: The endpoint the request was on.
 * @req: The request completed.
 *
 * Called on completion of any requests the driver itself
 * submitted that need cleaning up.
 */
static void s3c_hsotg_complete_oursetup(struct usb_ep *ep,
					struct usb_request *req)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
	struct s3c_hsotg *hsotg = hs_ep->parent;

	dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);

	s3c_hsotg_ep_free_request(ep, req);
}

/**
 * ep_from_windex - convert control wIndex value to endpoint
 * @hsotg: The driver state.
 * @windex: The control request wIndex field (in host order).
 *
 * Convert the given wIndex into a pointer to an driver endpoint
 * structure, or return NULL if it is not a valid endpoint.
943
 */
944 945 946 947 948 949 950 951 952 953
static struct s3c_hsotg_ep *ep_from_windex(struct s3c_hsotg *hsotg,
					   u32 windex)
{
	struct s3c_hsotg_ep *ep = &hsotg->eps[windex & 0x7F];
	int dir = (windex & USB_DIR_IN) ? 1 : 0;
	int idx = windex & 0x7F;

	if (windex >= 0x100)
		return NULL;

954
	if (idx > hsotg->num_of_eps)
955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
		return NULL;

	if (idx && ep->dir_in != dir)
		return NULL;

	return ep;
}

/**
 * s3c_hsotg_send_reply - send reply to control request
 * @hsotg: The device state
 * @ep: Endpoint 0
 * @buff: Buffer for request
 * @length: Length of reply.
 *
 * Create a request and queue it on the given endpoint. This is useful as
 * an internal method of sending replies to certain control requests, etc.
 */
static int s3c_hsotg_send_reply(struct s3c_hsotg *hsotg,
				struct s3c_hsotg_ep *ep,
				void *buff,
				int length)
{
	struct usb_request *req;
	int ret;

	dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);

	req = s3c_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
	hsotg->ep0_reply = req;
	if (!req) {
		dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
		return -ENOMEM;
	}

	req->buf = hsotg->ep0_buff;
	req->length = length;
	req->zero = 1; /* always do zero-length final transfer */
	req->complete = s3c_hsotg_complete_oursetup;

	if (length)
		memcpy(req->buf, buff, length);
	else
		ep->sent_zlp = 1;

	ret = s3c_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
	if (ret) {
		dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
		return ret;
	}

	return 0;
}

/**
 * s3c_hsotg_process_req_status - process request GET_STATUS
 * @hsotg: The device state
 * @ctrl: USB control request
 */
static int s3c_hsotg_process_req_status(struct s3c_hsotg *hsotg,
					struct usb_ctrlrequest *ctrl)
{
	struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
	struct s3c_hsotg_ep *ep;
	__le16 reply;
	int ret;

	dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);

	if (!ep0->dir_in) {
		dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
		return -EINVAL;
	}

	switch (ctrl->bRequestType & USB_RECIP_MASK) {
	case USB_RECIP_DEVICE:
		reply = cpu_to_le16(0); /* bit 0 => self powered,
					 * bit 1 => remote wakeup */
		break;

	case USB_RECIP_INTERFACE:
		/* currently, the data result should be zero */
		reply = cpu_to_le16(0);
		break;

	case USB_RECIP_ENDPOINT:
		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
		if (!ep)
			return -ENOENT;

		reply = cpu_to_le16(ep->halted ? 1 : 0);
		break;

	default:
		return 0;
	}

	if (le16_to_cpu(ctrl->wLength) != 2)
		return -EINVAL;

	ret = s3c_hsotg_send_reply(hsotg, ep0, &reply, 2);
	if (ret) {
		dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
		return ret;
	}

	return 1;
}

static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value);

1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
/**
 * get_ep_head - return the first request on the endpoint
 * @hs_ep: The controller endpoint to get
 *
 * Get the first request on the endpoint.
 */
static struct s3c_hsotg_req *get_ep_head(struct s3c_hsotg_ep *hs_ep)
{
	if (list_empty(&hs_ep->queue))
		return NULL;

	return list_first_entry(&hs_ep->queue, struct s3c_hsotg_req, queue);
}

1080 1081 1082 1083 1084 1085 1086 1087
/**
 * s3c_hsotg_process_req_featire - process request {SET,CLEAR}_FEATURE
 * @hsotg: The device state
 * @ctrl: USB control request
 */
static int s3c_hsotg_process_req_feature(struct s3c_hsotg *hsotg,
					 struct usb_ctrlrequest *ctrl)
{
1088
	struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
1089 1090
	struct s3c_hsotg_req *hs_req;
	bool restart;
1091 1092
	bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
	struct s3c_hsotg_ep *ep;
1093
	int ret;
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108

	dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
		__func__, set ? "SET" : "CLEAR");

	if (ctrl->bRequestType == USB_RECIP_ENDPOINT) {
		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
		if (!ep) {
			dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
				__func__, le16_to_cpu(ctrl->wIndex));
			return -ENOENT;
		}

		switch (le16_to_cpu(ctrl->wValue)) {
		case USB_ENDPOINT_HALT:
			s3c_hsotg_ep_sethalt(&ep->ep, set);
1109 1110 1111 1112 1113 1114 1115

			ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
			if (ret) {
				dev_err(hsotg->dev,
					"%s: failed to send reply\n", __func__);
				return ret;
			}
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138

			if (!set) {
				/*
				 * If we have request in progress,
				 * then complete it
				 */
				if (ep->req) {
					hs_req = ep->req;
					ep->req = NULL;
					list_del_init(&hs_req->queue);
					hs_req->req.complete(&ep->ep,
							     &hs_req->req);
				}

				/* If we have pending request, then start it */
				restart = !list_empty(&ep->queue);
				if (restart) {
					hs_req = get_ep_head(ep);
					s3c_hsotg_start_req(hsotg, ep,
							    hs_req, false);
				}
			}

1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
			break;

		default:
			return -ENOENT;
		}
	} else
		return -ENOENT;  /* currently only deal with endpoint */

	return 1;
}

/**
 * s3c_hsotg_process_control - process a control request
 * @hsotg: The device state
 * @ctrl: The control request received
 *
 * The controller has received the SETUP phase of a control request, and
 * needs to work out what to do next (and whether to pass it on to the
 * gadget driver).
 */
static void s3c_hsotg_process_control(struct s3c_hsotg *hsotg,
				      struct usb_ctrlrequest *ctrl)
{
	struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
	int ret = 0;
	u32 dcfg;

	ep0->sent_zlp = 0;

	dev_dbg(hsotg->dev, "ctrl Req=%02x, Type=%02x, V=%04x, L=%04x\n",
		 ctrl->bRequest, ctrl->bRequestType,
		 ctrl->wValue, ctrl->wLength);

1172 1173 1174 1175
	/*
	 * record the direction of the request, for later use when enquing
	 * packets onto EP0.
	 */
1176 1177 1178 1179

	ep0->dir_in = (ctrl->bRequestType & USB_DIR_IN) ? 1 : 0;
	dev_dbg(hsotg->dev, "ctrl: dir_in=%d\n", ep0->dir_in);

1180 1181 1182 1183
	/*
	 * if we've no data with this request, then the last part of the
	 * transaction is going to implicitly be IN.
	 */
1184 1185 1186 1187 1188 1189
	if (ctrl->wLength == 0)
		ep0->dir_in = 1;

	if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
		switch (ctrl->bRequest) {
		case USB_REQ_SET_ADDRESS:
1190 1191 1192 1193
			dcfg = readl(hsotg->regs + DCFG);
			dcfg &= ~DCFG_DevAddr_MASK;
			dcfg |= ctrl->wValue << DCFG_DevAddr_SHIFT;
			writel(dcfg, hsotg->regs + DCFG);
1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218

			dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);

			ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
			return;

		case USB_REQ_GET_STATUS:
			ret = s3c_hsotg_process_req_status(hsotg, ctrl);
			break;

		case USB_REQ_CLEAR_FEATURE:
		case USB_REQ_SET_FEATURE:
			ret = s3c_hsotg_process_req_feature(hsotg, ctrl);
			break;
		}
	}

	/* as a fallback, try delivering it to the driver to deal with */

	if (ret == 0 && hsotg->driver) {
		ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
		if (ret < 0)
			dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
	}

1219 1220
	/*
	 * the request is either unhandlable, or is not formatted correctly
1221 1222 1223 1224 1225 1226 1227 1228
	 * so respond with a STALL for the status stage to indicate failure.
	 */

	if (ret < 0) {
		u32 reg;
		u32 ctrl;

		dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
1229
		reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;
1230

1231
		/*
1232
		 * DxEPCTL_Stall will be cleared by EP once it has
1233 1234
		 * taken effect, so no need to clear later.
		 */
1235 1236

		ctrl = readl(hsotg->regs + reg);
1237 1238
		ctrl |= DxEPCTL_Stall;
		ctrl |= DxEPCTL_CNAK;
1239 1240 1241
		writel(ctrl, hsotg->regs + reg);

		dev_dbg(hsotg->dev,
L
Lucas De Marchi 已提交
1242
			"written DxEPCTL=0x%08x to %08x (DxEPCTL=0x%08x)\n",
1243 1244
			ctrl, reg, readl(hsotg->regs + reg));

1245 1246 1247 1248
		/*
		 * don't believe we need to anything more to get the EP
		 * to reply with a STALL packet
		 */
1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
	}
}

static void s3c_hsotg_enqueue_setup(struct s3c_hsotg *hsotg);

/**
 * s3c_hsotg_complete_setup - completion of a setup transfer
 * @ep: The endpoint the request was on.
 * @req: The request completed.
 *
 * Called on completion of any requests the driver itself submitted for
 * EP0 setup packets
 */
static void s3c_hsotg_complete_setup(struct usb_ep *ep,
				     struct usb_request *req)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
	struct s3c_hsotg *hsotg = hs_ep->parent;

	if (req->status < 0) {
		dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
		return;
	}

	if (req->actual == 0)
		s3c_hsotg_enqueue_setup(hsotg);
	else
		s3c_hsotg_process_control(hsotg, req->buf);
}

/**
 * s3c_hsotg_enqueue_setup - start a request for EP0 packets
 * @hsotg: The device state.
 *
 * Enqueue a request on EP0 if necessary to received any SETUP packets
 * received from the host.
 */
static void s3c_hsotg_enqueue_setup(struct s3c_hsotg *hsotg)
{
	struct usb_request *req = hsotg->ctrl_req;
	struct s3c_hsotg_req *hs_req = our_req(req);
	int ret;

	dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);

	req->zero = 0;
	req->length = 8;
	req->buf = hsotg->ctrl_buff;
	req->complete = s3c_hsotg_complete_setup;

	if (!list_empty(&hs_req->queue)) {
		dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
		return;
	}

	hsotg->eps[0].dir_in = 0;

	ret = s3c_hsotg_ep_queue(&hsotg->eps[0].ep, req, GFP_ATOMIC);
	if (ret < 0) {
		dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
1309 1310 1311 1312
		/*
		 * Don't think there's much we can do other than watch the
		 * driver fail.
		 */
1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
	}
}

/**
 * s3c_hsotg_complete_request - complete a request given to us
 * @hsotg: The device state.
 * @hs_ep: The endpoint the request was on.
 * @hs_req: The request to complete.
 * @result: The result code (0 => Ok, otherwise errno)
 *
 * The given request has finished, so call the necessary completion
 * if it has one and then look to see if we can start a new request
 * on the endpoint.
 *
 * Note, expects the ep to already be locked as appropriate.
1328
 */
1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
static void s3c_hsotg_complete_request(struct s3c_hsotg *hsotg,
				       struct s3c_hsotg_ep *hs_ep,
				       struct s3c_hsotg_req *hs_req,
				       int result)
{
	bool restart;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
		return;
	}

	dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
		hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);

1344 1345 1346 1347
	/*
	 * only replace the status if we've not already set an error
	 * from a previous transaction
	 */
1348 1349 1350 1351 1352 1353 1354 1355 1356 1357

	if (hs_req->req.status == -EINPROGRESS)
		hs_req->req.status = result;

	hs_ep->req = NULL;
	list_del_init(&hs_req->queue);

	if (using_dma(hsotg))
		s3c_hsotg_unmap_dma(hsotg, hs_ep, hs_req);

1358 1359 1360 1361
	/*
	 * call the complete request with the locks off, just in case the
	 * request tries to queue more work for this endpoint.
	 */
1362 1363

	if (hs_req->req.complete) {
1364
		spin_unlock(&hsotg->lock);
1365
		hs_req->req.complete(&hs_ep->ep, &hs_req->req);
1366
		spin_lock(&hsotg->lock);
1367 1368
	}

1369 1370
	/*
	 * Look to see if there is anything else to do. Note, the completion
1371
	 * of the previous request may have caused a new request to be started
1372 1373
	 * so be careful when doing this.
	 */
1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397

	if (!hs_ep->req && result >= 0) {
		restart = !list_empty(&hs_ep->queue);
		if (restart) {
			hs_req = get_ep_head(hs_ep);
			s3c_hsotg_start_req(hsotg, hs_ep, hs_req, false);
		}
	}
}

/**
 * s3c_hsotg_rx_data - receive data from the FIFO for an endpoint
 * @hsotg: The device state.
 * @ep_idx: The endpoint index for the data
 * @size: The size of data in the fifo, in bytes
 *
 * The FIFO status shows there is data to read from the FIFO for a given
 * endpoint, so sort out whether we need to read the data into a request
 * that has been made for that endpoint.
 */
static void s3c_hsotg_rx_data(struct s3c_hsotg *hsotg, int ep_idx, int size)
{
	struct s3c_hsotg_ep *hs_ep = &hsotg->eps[ep_idx];
	struct s3c_hsotg_req *hs_req = hs_ep->req;
1398
	void __iomem *fifo = hsotg->regs + EPFIFO(ep_idx);
1399 1400 1401 1402
	int to_read;
	int max_req;
	int read_ptr;

1403

1404
	if (!hs_req) {
1405
		u32 epctl = readl(hsotg->regs + DOEPCTL(ep_idx));
1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
		int ptr;

		dev_warn(hsotg->dev,
			 "%s: FIFO %d bytes on ep%d but no req (DxEPCTl=0x%08x)\n",
			 __func__, size, ep_idx, epctl);

		/* dump the data from the FIFO, we've nothing we can do */
		for (ptr = 0; ptr < size; ptr += 4)
			(void)readl(fifo);

		return;
	}

	to_read = size;
	read_ptr = hs_req->req.actual;
	max_req = hs_req->req.length - read_ptr;

1423 1424 1425
	dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
		__func__, to_read, max_req, read_ptr, hs_req->req.length);

1426
	if (to_read > max_req) {
1427 1428
		/*
		 * more data appeared than we where willing
1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
		 * to deal with in this request.
		 */

		/* currently we don't deal this */
		WARN_ON_ONCE(1);
	}

	hs_ep->total_data += to_read;
	hs_req->req.actual += to_read;
	to_read = DIV_ROUND_UP(to_read, 4);

1440 1441 1442 1443
	/*
	 * note, we might over-write the buffer end by 3 bytes depending on
	 * alignment of the data.
	 */
1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
	readsl(fifo, hs_req->req.buf + read_ptr, to_read);
}

/**
 * s3c_hsotg_send_zlp - send zero-length packet on control endpoint
 * @hsotg: The device instance
 * @req: The request currently on this endpoint
 *
 * Generate a zero-length IN packet request for terminating a SETUP
 * transaction.
 *
 * Note, since we don't write any data to the TxFIFO, then it is
L
Lucas De Marchi 已提交
1456
 * currently believed that we do not need to wait for any space in
1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480
 * the TxFIFO.
 */
static void s3c_hsotg_send_zlp(struct s3c_hsotg *hsotg,
			       struct s3c_hsotg_req *req)
{
	u32 ctrl;

	if (!req) {
		dev_warn(hsotg->dev, "%s: no request?\n", __func__);
		return;
	}

	if (req->req.length == 0) {
		hsotg->eps[0].sent_zlp = 1;
		s3c_hsotg_enqueue_setup(hsotg);
		return;
	}

	hsotg->eps[0].dir_in = 1;
	hsotg->eps[0].sent_zlp = 1;

	dev_dbg(hsotg->dev, "sending zero-length packet\n");

	/* issue a zero-sized packet to terminate this */
1481 1482
	writel(DxEPTSIZ_MC(1) | DxEPTSIZ_PktCnt(1) |
	       DxEPTSIZ_XferSize(0), hsotg->regs + DIEPTSIZ(0));
1483

1484 1485 1486 1487 1488
	ctrl = readl(hsotg->regs + DIEPCTL0);
	ctrl |= DxEPCTL_CNAK;  /* clear NAK set by core */
	ctrl |= DxEPCTL_EPEna; /* ensure ep enabled */
	ctrl |= DxEPCTL_USBActEp;
	writel(ctrl, hsotg->regs + DIEPCTL0);
1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499
}

/**
 * s3c_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
 * @hsotg: The device instance
 * @epnum: The endpoint received from
 * @was_setup: Set if processing a SetupDone event.
 *
 * The RXFIFO has delivered an OutDone event, which means that the data
 * transfer for an OUT endpoint has been completed, either by a short
 * packet or by the finish of a transfer.
1500
 */
1501 1502 1503
static void s3c_hsotg_handle_outdone(struct s3c_hsotg *hsotg,
				     int epnum, bool was_setup)
{
1504
	u32 epsize = readl(hsotg->regs + DOEPTSIZ(epnum));
1505 1506 1507
	struct s3c_hsotg_ep *hs_ep = &hsotg->eps[epnum];
	struct s3c_hsotg_req *hs_req = hs_ep->req;
	struct usb_request *req = &hs_req->req;
1508
	unsigned size_left = DxEPTSIZ_XferSize_GET(epsize);
1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
	int result = 0;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
		return;
	}

	if (using_dma(hsotg)) {
		unsigned size_done;

1519 1520
		/*
		 * Calculate the size of the transfer by checking how much
1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
		 * is left in the endpoint size register and then working it
		 * out from the amount we loaded for the transfer.
		 *
		 * We need to do this as DMA pointers are always 32bit aligned
		 * so may overshoot/undershoot the transfer.
		 */

		size_done = hs_ep->size_loaded - size_left;
		size_done += hs_ep->last_load;

		req->actual = size_done;
	}

1534 1535 1536 1537
	/* if there is more request to do, schedule new transfer */
	if (req->actual < req->length && size_left == 0) {
		s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
		return;
1538 1539 1540 1541 1542 1543
	} else if (epnum == 0) {
		/*
		 * After was_setup = 1 =>
		 * set CNAK for non Setup requests
		 */
		hsotg->setup = was_setup ? 0 : 1;
1544 1545
	}

1546 1547 1548 1549
	if (req->actual < req->length && req->short_not_ok) {
		dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
			__func__, req->actual, req->length);

1550 1551 1552 1553
		/*
		 * todo - what should we return here? there's no one else
		 * even bothering to check the status.
		 */
1554 1555 1556
	}

	if (epnum == 0) {
1557 1558 1559 1560
		/*
		 * Condition req->complete != s3c_hsotg_complete_setup says:
		 * send ZLP when we have an asynchronous request from gadget
		 */
1561 1562 1563 1564
		if (!was_setup && req->complete != s3c_hsotg_complete_setup)
			s3c_hsotg_send_zlp(hsotg, hs_req);
	}

1565
	s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
1566 1567 1568 1569 1570 1571 1572
}

/**
 * s3c_hsotg_read_frameno - read current frame number
 * @hsotg: The device instance
 *
 * Return the current frame number
1573
 */
1574 1575 1576 1577
static u32 s3c_hsotg_read_frameno(struct s3c_hsotg *hsotg)
{
	u32 dsts;

1578 1579 1580
	dsts = readl(hsotg->regs + DSTS);
	dsts &= DSTS_SOFFN_MASK;
	dsts >>= DSTS_SOFFN_SHIFT;
1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592

	return dsts;
}

/**
 * s3c_hsotg_handle_rx - RX FIFO has data
 * @hsotg: The device instance
 *
 * The IRQ handler has detected that the RX FIFO has some data in it
 * that requires processing, so find out what is in there and do the
 * appropriate read.
 *
L
Lucas De Marchi 已提交
1593
 * The RXFIFO is a true FIFO, the packets coming out are still in packet
1594 1595 1596 1597 1598 1599 1600
 * chunks, so if you have x packets received on an endpoint you'll get x
 * FIFO events delivered, each with a packet's worth of data in it.
 *
 * When using DMA, we should not be processing events from the RXFIFO
 * as the actual data should be sent to the memory directly and we turn
 * on the completion interrupts to get notifications of transfer completion.
 */
1601
static void s3c_hsotg_handle_rx(struct s3c_hsotg *hsotg)
1602
{
1603
	u32 grxstsr = readl(hsotg->regs + GRXSTSP);
1604 1605 1606 1607
	u32 epnum, status, size;

	WARN_ON(using_dma(hsotg));

1608 1609
	epnum = grxstsr & GRXSTS_EPNum_MASK;
	status = grxstsr & GRXSTS_PktSts_MASK;
1610

1611 1612
	size = grxstsr & GRXSTS_ByteCnt_MASK;
	size >>= GRXSTS_ByteCnt_SHIFT;
1613 1614 1615 1616 1617

	if (1)
		dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
			__func__, grxstsr, size, epnum);

1618
#define __status(x) ((x) >> GRXSTS_PktSts_SHIFT)
1619

1620 1621
	switch (status >> GRXSTS_PktSts_SHIFT) {
	case __status(GRXSTS_PktSts_GlobalOutNAK):
1622 1623 1624
		dev_dbg(hsotg->dev, "GlobalOutNAK\n");
		break;

1625
	case __status(GRXSTS_PktSts_OutDone):
1626 1627 1628 1629 1630 1631 1632
		dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
			s3c_hsotg_read_frameno(hsotg));

		if (!using_dma(hsotg))
			s3c_hsotg_handle_outdone(hsotg, epnum, false);
		break;

1633
	case __status(GRXSTS_PktSts_SetupDone):
1634 1635 1636
		dev_dbg(hsotg->dev,
			"SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
			s3c_hsotg_read_frameno(hsotg),
1637
			readl(hsotg->regs + DOEPCTL(0)));
1638 1639 1640 1641

		s3c_hsotg_handle_outdone(hsotg, epnum, true);
		break;

1642
	case __status(GRXSTS_PktSts_OutRX):
1643 1644 1645
		s3c_hsotg_rx_data(hsotg, epnum, size);
		break;

1646
	case __status(GRXSTS_PktSts_SetupRX):
1647 1648 1649
		dev_dbg(hsotg->dev,
			"SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
			s3c_hsotg_read_frameno(hsotg),
1650
			readl(hsotg->regs + DOEPCTL(0)));
1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666

		s3c_hsotg_rx_data(hsotg, epnum, size);
		break;

	default:
		dev_warn(hsotg->dev, "%s: unknown status %08x\n",
			 __func__, grxstsr);

		s3c_hsotg_dump(hsotg);
		break;
	}
}

/**
 * s3c_hsotg_ep0_mps - turn max packet size into register setting
 * @mps: The maximum packet size in bytes.
1667
 */
1668 1669 1670 1671
static u32 s3c_hsotg_ep0_mps(unsigned int mps)
{
	switch (mps) {
	case 64:
1672
		return D0EPCTL_MPS_64;
1673
	case 32:
1674
		return D0EPCTL_MPS_32;
1675
	case 16:
1676
		return D0EPCTL_MPS_16;
1677
	case 8:
1678
		return D0EPCTL_MPS_8;
1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708
	}

	/* bad max packet size, warn and return invalid result */
	WARN_ON(1);
	return (u32)-1;
}

/**
 * s3c_hsotg_set_ep_maxpacket - set endpoint's max-packet field
 * @hsotg: The driver state.
 * @ep: The index number of the endpoint
 * @mps: The maximum packet size in bytes
 *
 * Configure the maximum packet size for the given endpoint, updating
 * the hardware control registers to reflect this.
 */
static void s3c_hsotg_set_ep_maxpacket(struct s3c_hsotg *hsotg,
				       unsigned int ep, unsigned int mps)
{
	struct s3c_hsotg_ep *hs_ep = &hsotg->eps[ep];
	void __iomem *regs = hsotg->regs;
	u32 mpsval;
	u32 reg;

	if (ep == 0) {
		/* EP0 is a special case */
		mpsval = s3c_hsotg_ep0_mps(mps);
		if (mpsval > 3)
			goto bad_mps;
	} else {
1709
		if (mps >= DxEPCTL_MPS_LIMIT+1)
1710 1711 1712 1713 1714 1715 1716
			goto bad_mps;

		mpsval = mps;
	}

	hs_ep->ep.maxpacket = mps;

1717 1718 1719 1720
	/*
	 * update both the in and out endpoint controldir_ registers, even
	 * if one of the directions may not be in use.
	 */
1721

1722 1723
	reg = readl(regs + DIEPCTL(ep));
	reg &= ~DxEPCTL_MPS_MASK;
1724
	reg |= mpsval;
1725
	writel(reg, regs + DIEPCTL(ep));
1726

1727
	if (ep) {
1728 1729
		reg = readl(regs + DOEPCTL(ep));
		reg &= ~DxEPCTL_MPS_MASK;
1730
		reg |= mpsval;
1731
		writel(reg, regs + DOEPCTL(ep));
1732
	}
1733 1734 1735 1736 1737 1738 1739

	return;

bad_mps:
	dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
}

1740 1741 1742 1743 1744 1745 1746 1747 1748 1749
/**
 * s3c_hsotg_txfifo_flush - flush Tx FIFO
 * @hsotg: The driver state
 * @idx: The index for the endpoint (0..15)
 */
static void s3c_hsotg_txfifo_flush(struct s3c_hsotg *hsotg, unsigned int idx)
{
	int timeout;
	int val;

1750 1751
	writel(GRSTCTL_TxFNum(idx) | GRSTCTL_TxFFlsh,
		hsotg->regs + GRSTCTL);
1752 1753 1754 1755 1756

	/* wait until the fifo is flushed */
	timeout = 100;

	while (1) {
1757
		val = readl(hsotg->regs + GRSTCTL);
1758

1759
		if ((val & (GRSTCTL_TxFFlsh)) == 0)
1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770
			break;

		if (--timeout == 0) {
			dev_err(hsotg->dev,
				"%s: timeout flushing fifo (GRSTCTL=%08x)\n",
				__func__, val);
		}

		udelay(1);
	}
}
1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808

/**
 * s3c_hsotg_trytx - check to see if anything needs transmitting
 * @hsotg: The driver state
 * @hs_ep: The driver endpoint to check.
 *
 * Check to see if there is a request that has data to send, and if so
 * make an attempt to write data into the FIFO.
 */
static int s3c_hsotg_trytx(struct s3c_hsotg *hsotg,
			   struct s3c_hsotg_ep *hs_ep)
{
	struct s3c_hsotg_req *hs_req = hs_ep->req;

	if (!hs_ep->dir_in || !hs_req)
		return 0;

	if (hs_req->req.actual < hs_req->req.length) {
		dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
			hs_ep->index);
		return s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
	}

	return 0;
}

/**
 * s3c_hsotg_complete_in - complete IN transfer
 * @hsotg: The device state.
 * @hs_ep: The endpoint that has just completed.
 *
 * An IN transfer has been completed, update the transfer's state and then
 * call the relevant completion routines.
 */
static void s3c_hsotg_complete_in(struct s3c_hsotg *hsotg,
				  struct s3c_hsotg_ep *hs_ep)
{
	struct s3c_hsotg_req *hs_req = hs_ep->req;
1809
	u32 epsize = readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
1810 1811 1812 1813 1814 1815 1816
	int size_left, size_done;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "XferCompl but no req\n");
		return;
	}

1817 1818 1819
	/* Finish ZLP handling for IN EP0 transactions */
	if (hsotg->eps[0].sent_zlp) {
		dev_dbg(hsotg->dev, "zlp packet received\n");
1820
		s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1821 1822 1823
		return;
	}

1824 1825
	/*
	 * Calculate the size of the transfer by checking how much is left
1826 1827 1828 1829 1830 1831 1832 1833
	 * in the endpoint size register and then working it out from
	 * the amount we loaded for the transfer.
	 *
	 * We do this even for DMA, as the transfer may have incremented
	 * past the end of the buffer (DMA transfers are always 32bit
	 * aligned).
	 */

1834
	size_left = DxEPTSIZ_XferSize_GET(epsize);
1835 1836 1837 1838 1839 1840 1841 1842 1843

	size_done = hs_ep->size_loaded - size_left;
	size_done += hs_ep->last_load;

	if (hs_req->req.actual != size_done)
		dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
			__func__, hs_req->req.actual, size_done);

	hs_req->req.actual = size_done;
1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862
	dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
		hs_req->req.length, hs_req->req.actual, hs_req->req.zero);

	/*
	 * Check if dealing with Maximum Packet Size(MPS) IN transfer at EP0
	 * When sent data is a multiple MPS size (e.g. 64B ,128B ,192B
	 * ,256B ... ), after last MPS sized packet send IN ZLP packet to
	 * inform the host that no more data is available.
	 * The state of req.zero member is checked to be sure that the value to
	 * send is smaller than wValue expected from host.
	 * Check req.length to NOT send another ZLP when the current one is
	 * under completion (the one for which this completion has been called).
	 */
	if (hs_req->req.length && hs_ep->index == 0 && hs_req->req.zero &&
	    hs_req->req.length == hs_req->req.actual &&
	    !(hs_req->req.length % hs_ep->ep.maxpacket)) {

		dev_dbg(hsotg->dev, "ep0 zlp IN packet sent\n");
		s3c_hsotg_send_zlp(hsotg, hs_req);
1863

1864 1865
		return;
	}
1866 1867 1868 1869 1870

	if (!size_left && hs_req->req.actual < hs_req->req.length) {
		dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
		s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
	} else
1871
		s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1872 1873 1874 1875 1876 1877 1878 1879 1880
}

/**
 * s3c_hsotg_epint - handle an in/out endpoint interrupt
 * @hsotg: The driver state
 * @idx: The index for the endpoint (0..15)
 * @dir_in: Set if this is an IN endpoint
 *
 * Process and clear any interrupt pending for an individual endpoint
1881
 */
1882 1883 1884 1885
static void s3c_hsotg_epint(struct s3c_hsotg *hsotg, unsigned int idx,
			    int dir_in)
{
	struct s3c_hsotg_ep *hs_ep = &hsotg->eps[idx];
1886 1887 1888
	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
	u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
1889 1890 1891 1892
	u32 ints;

	ints = readl(hsotg->regs + epint_reg);

1893 1894 1895
	/* Clear endpoint interrupts */
	writel(ints, hsotg->regs + epint_reg);

1896 1897 1898
	dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
		__func__, idx, dir_in ? "in" : "out", ints);

1899
	if (ints & DxEPINT_XferCompl) {
1900 1901 1902 1903 1904
		dev_dbg(hsotg->dev,
			"%s: XferCompl: DxEPCTL=0x%08x, DxEPTSIZ=%08x\n",
			__func__, readl(hsotg->regs + epctl_reg),
			readl(hsotg->regs + epsiz_reg));

1905 1906 1907 1908
		/*
		 * we get OutDone from the FIFO, so we only need to look
		 * at completing IN requests here
		 */
1909 1910 1911
		if (dir_in) {
			s3c_hsotg_complete_in(hsotg, hs_ep);

1912
			if (idx == 0 && !hs_ep->req)
1913 1914
				s3c_hsotg_enqueue_setup(hsotg);
		} else if (using_dma(hsotg)) {
1915 1916 1917 1918
			/*
			 * We're using DMA, we need to fire an OutDone here
			 * as we ignore the RXFIFO.
			 */
1919 1920 1921 1922 1923

			s3c_hsotg_handle_outdone(hsotg, idx, false);
		}
	}

1924
	if (ints & DxEPINT_EPDisbld) {
1925 1926
		dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);

1927 1928 1929 1930 1931
		if (dir_in) {
			int epctl = readl(hsotg->regs + epctl_reg);

			s3c_hsotg_txfifo_flush(hsotg, idx);

1932 1933 1934
			if ((epctl & DxEPCTL_Stall) &&
				(epctl & DxEPCTL_EPType_Bulk)) {
				int dctl = readl(hsotg->regs + DCTL);
1935

1936 1937
				dctl |= DCTL_CGNPInNAK;
				writel(dctl, hsotg->regs + DCTL);
1938 1939 1940 1941
			}
		}
	}

1942
	if (ints & DxEPINT_AHBErr)
1943 1944
		dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);

1945
	if (ints & DxEPINT_Setup) {  /* Setup or Timeout */
1946 1947 1948
		dev_dbg(hsotg->dev, "%s: Setup/Timeout\n",  __func__);

		if (using_dma(hsotg) && idx == 0) {
1949 1950
			/*
			 * this is the notification we've received a
1951 1952
			 * setup packet. In non-DMA mode we'd get this
			 * from the RXFIFO, instead we need to process
1953 1954
			 * the setup here.
			 */
1955 1956 1957 1958 1959 1960 1961 1962

			if (dir_in)
				WARN_ON_ONCE(1);
			else
				s3c_hsotg_handle_outdone(hsotg, 0, true);
		}
	}

1963
	if (ints & DxEPINT_Back2BackSetup)
1964 1965 1966
		dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);

	if (dir_in) {
1967
		/* not sure if this is important, but we'll clear it anyway */
1968
		if (ints & DIEPMSK_INTknTXFEmpMsk) {
1969 1970 1971 1972 1973
			dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
				__func__, idx);
		}

		/* this probably means something bad is happening */
1974
		if (ints & DIEPMSK_INTknEPMisMsk) {
1975 1976 1977
			dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
				 __func__, idx);
		}
1978 1979 1980

		/* FIFO has space or is empty (see GAHBCFG) */
		if (hsotg->dedicated_fifos &&
1981
		    ints & DIEPMSK_TxFIFOEmpty) {
1982 1983
			dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
				__func__, idx);
1984 1985
			if (!using_dma(hsotg))
				s3c_hsotg_trytx(hsotg, hs_ep);
1986
		}
1987 1988 1989 1990 1991 1992 1993 1994 1995
	}
}

/**
 * s3c_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
 * @hsotg: The device state.
 *
 * Handle updating the device settings after the enumeration phase has
 * been completed.
1996
 */
1997 1998
static void s3c_hsotg_irq_enumdone(struct s3c_hsotg *hsotg)
{
1999
	u32 dsts = readl(hsotg->regs + DSTS);
2000 2001
	int ep0_mps = 0, ep_mps;

2002 2003
	/*
	 * This should signal the finish of the enumeration phase
2004
	 * of the USB handshaking, so we should now know what rate
2005 2006
	 * we connected at.
	 */
2007 2008 2009

	dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);

2010 2011
	/*
	 * note, since we're limited by the size of transfer on EP0, and
2012
	 * it seems IN transfers must be a even number of packets we do
2013 2014
	 * not advertise a 64byte MPS on EP0.
	 */
2015 2016

	/* catch both EnumSpd_FS and EnumSpd_FS48 */
2017 2018 2019
	switch (dsts & DSTS_EnumSpd_MASK) {
	case DSTS_EnumSpd_FS:
	case DSTS_EnumSpd_FS48:
2020 2021 2022 2023 2024
		hsotg->gadget.speed = USB_SPEED_FULL;
		ep0_mps = EP0_MPS_LIMIT;
		ep_mps = 64;
		break;

2025
	case DSTS_EnumSpd_HS:
2026 2027 2028 2029 2030
		hsotg->gadget.speed = USB_SPEED_HIGH;
		ep0_mps = EP0_MPS_LIMIT;
		ep_mps = 512;
		break;

2031
	case DSTS_EnumSpd_LS:
2032
		hsotg->gadget.speed = USB_SPEED_LOW;
2033 2034
		/*
		 * note, we don't actually support LS in this driver at the
2035 2036 2037 2038 2039
		 * moment, and the documentation seems to imply that it isn't
		 * supported by the PHYs on some of the devices.
		 */
		break;
	}
2040 2041
	dev_info(hsotg->dev, "new device is %s\n",
		 usb_speed_string(hsotg->gadget.speed));
2042

2043 2044 2045 2046
	/*
	 * we should now know the maximum packet size for an
	 * endpoint, so set the endpoints to a default value.
	 */
2047 2048 2049 2050

	if (ep0_mps) {
		int i;
		s3c_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps);
2051
		for (i = 1; i < hsotg->num_of_eps; i++)
2052 2053 2054 2055 2056 2057 2058 2059
			s3c_hsotg_set_ep_maxpacket(hsotg, i, ep_mps);
	}

	/* ensure after enumeration our EP0 is active */

	s3c_hsotg_enqueue_setup(hsotg);

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2060 2061
		readl(hsotg->regs + DIEPCTL0),
		readl(hsotg->regs + DOEPCTL0));
2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080
}

/**
 * kill_all_requests - remove all requests from the endpoint's queue
 * @hsotg: The device state.
 * @ep: The endpoint the requests may be on.
 * @result: The result code to use.
 * @force: Force removal of any current requests
 *
 * Go through the requests on the given endpoint and mark them
 * completed with the given result code.
 */
static void kill_all_requests(struct s3c_hsotg *hsotg,
			      struct s3c_hsotg_ep *ep,
			      int result, bool force)
{
	struct s3c_hsotg_req *req, *treq;

	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
2081 2082 2083 2084
		/*
		 * currently, we can't do much about an already
		 * running request on an in endpoint
		 */
2085 2086 2087 2088 2089 2090 2091 2092 2093 2094

		if (ep->req == req && ep->dir_in && !force)
			continue;

		s3c_hsotg_complete_request(hsotg, ep, req,
					   result);
	}
}

#define call_gadget(_hs, _entry) \
2095
do { \
2096
	if ((_hs)->gadget.speed != USB_SPEED_UNKNOWN &&	\
2097 2098 2099 2100
	    (_hs)->driver && (_hs)->driver->_entry) { \
		spin_unlock(&_hs->lock); \
		(_hs)->driver->_entry(&(_hs)->gadget); \
		spin_lock(&_hs->lock); \
2101 2102
	} \
} while (0)
2103 2104

/**
2105
 * s3c_hsotg_disconnect - disconnect service
2106 2107
 * @hsotg: The device state.
 *
2108 2109 2110
 * The device has been disconnected. Remove all current
 * transactions and signal the gadget driver that this
 * has happened.
2111
 */
2112
static void s3c_hsotg_disconnect(struct s3c_hsotg *hsotg)
2113 2114 2115
{
	unsigned ep;

2116
	for (ep = 0; ep < hsotg->num_of_eps; ep++)
2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133
		kill_all_requests(hsotg, &hsotg->eps[ep], -ESHUTDOWN, true);

	call_gadget(hsotg, disconnect);
}

/**
 * s3c_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
 * @hsotg: The device state:
 * @periodic: True if this is a periodic FIFO interrupt
 */
static void s3c_hsotg_irq_fifoempty(struct s3c_hsotg *hsotg, bool periodic)
{
	struct s3c_hsotg_ep *ep;
	int epno, ret;

	/* look through for any more data to transmit */

2134
	for (epno = 0; epno < hsotg->num_of_eps; epno++) {
2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150
		ep = &hsotg->eps[epno];

		if (!ep->dir_in)
			continue;

		if ((periodic && !ep->periodic) ||
		    (!periodic && ep->periodic))
			continue;

		ret = s3c_hsotg_trytx(hsotg, ep);
		if (ret < 0)
			break;
	}
}

/* IRQ flags which will trigger a retry around the IRQ loop */
2151 2152 2153
#define IRQ_RETRY_MASK (GINTSTS_NPTxFEmp | \
			GINTSTS_PTxFEmp |  \
			GINTSTS_RxFLvl)
2154

2155 2156 2157 2158 2159
/**
 * s3c_hsotg_corereset - issue softreset to the core
 * @hsotg: The device state
 *
 * Issue a soft reset to the core, and await the core finishing it.
2160
 */
2161 2162 2163 2164 2165 2166 2167 2168
static int s3c_hsotg_corereset(struct s3c_hsotg *hsotg)
{
	int timeout;
	u32 grstctl;

	dev_dbg(hsotg->dev, "resetting core\n");

	/* issue soft reset */
2169
	writel(GRSTCTL_CSftRst, hsotg->regs + GRSTCTL);
2170

2171
	timeout = 10000;
2172
	do {
2173 2174
		grstctl = readl(hsotg->regs + GRSTCTL);
	} while ((grstctl & GRSTCTL_CSftRst) && timeout-- > 0);
2175

2176
	if (grstctl & GRSTCTL_CSftRst) {
2177 2178 2179 2180
		dev_err(hsotg->dev, "Failed to get CSftRst asserted\n");
		return -EINVAL;
	}

2181
	timeout = 10000;
2182 2183

	while (1) {
2184
		u32 grstctl = readl(hsotg->regs + GRSTCTL);
2185 2186 2187 2188 2189 2190 2191 2192

		if (timeout-- < 0) {
			dev_info(hsotg->dev,
				 "%s: reset failed, GRSTCTL=%08x\n",
				 __func__, grstctl);
			return -ETIMEDOUT;
		}

2193
		if (!(grstctl & GRSTCTL_AHBIdle))
2194 2195 2196 2197 2198 2199 2200 2201 2202
			continue;

		break;		/* reset done */
	}

	dev_dbg(hsotg->dev, "reset successful\n");
	return 0;
}

2203 2204 2205 2206 2207 2208
/**
 * s3c_hsotg_core_init - issue softreset to the core
 * @hsotg: The device state
 *
 * Issue a soft reset to the core, and await the core finishing it.
 */
2209 2210 2211 2212 2213 2214 2215 2216 2217 2218
static void s3c_hsotg_core_init(struct s3c_hsotg *hsotg)
{
	s3c_hsotg_corereset(hsotg);

	/*
	 * we must now enable ep0 ready for host detection and then
	 * set configuration.
	 */

	/* set the PLL on, remove the HNP/SRP and set the PHY */
2219 2220
	writel(GUSBCFG_PHYIf16 | GUSBCFG_TOutCal(7) |
	       (0x5 << 10), hsotg->regs + GUSBCFG);
2221 2222 2223

	s3c_hsotg_init_fifo(hsotg);

2224
	__orr32(hsotg->regs + DCTL, DCTL_SftDiscon);
2225

2226
	writel(1 << 18 | DCFG_DevSpd_HS,  hsotg->regs + DCFG);
2227 2228

	/* Clear any pending OTG interrupts */
2229
	writel(0xffffffff, hsotg->regs + GOTGINT);
2230 2231

	/* Clear any pending interrupts */
2232
	writel(0xffffffff, hsotg->regs + GINTSTS);
2233

2234 2235 2236 2237 2238 2239
	writel(GINTSTS_ErlySusp | GINTSTS_SessReqInt |
	       GINTSTS_GOUTNakEff | GINTSTS_GINNakEff |
	       GINTSTS_ConIDStsChng | GINTSTS_USBRst |
	       GINTSTS_EnumDone | GINTSTS_OTGInt |
	       GINTSTS_USBSusp | GINTSTS_WkUpInt,
	       hsotg->regs + GINTMSK);
2240 2241

	if (using_dma(hsotg))
2242 2243 2244
		writel(GAHBCFG_GlblIntrEn | GAHBCFG_DMAEn |
		       GAHBCFG_HBstLen_Incr4,
		       hsotg->regs + GAHBCFG);
2245
	else
2246
		writel(GAHBCFG_GlblIntrEn, hsotg->regs + GAHBCFG);
2247 2248 2249 2250 2251 2252 2253

	/*
	 * Enabling INTknTXFEmpMsk here seems to be a big mistake, we end
	 * up being flooded with interrupts if the host is polling the
	 * endpoint to try and read data.
	 */

2254 2255 2256 2257 2258
	writel(((hsotg->dedicated_fifos) ? DIEPMSK_TxFIFOEmpty : 0) |
	       DIEPMSK_EPDisbldMsk | DIEPMSK_XferComplMsk |
	       DIEPMSK_TimeOUTMsk | DIEPMSK_AHBErrMsk |
	       DIEPMSK_INTknEPMisMsk,
	       hsotg->regs + DIEPMSK);
2259 2260 2261 2262 2263

	/*
	 * don't need XferCompl, we get that from RXFIFO in slave mode. In
	 * DMA mode we may need this.
	 */
2264 2265 2266 2267 2268
	writel((using_dma(hsotg) ? (DIEPMSK_XferComplMsk |
				    DIEPMSK_TimeOUTMsk) : 0) |
	       DOEPMSK_EPDisbldMsk | DOEPMSK_AHBErrMsk |
	       DOEPMSK_SetupMsk,
	       hsotg->regs + DOEPMSK);
2269

2270
	writel(0, hsotg->regs + DAINTMSK);
2271 2272

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2273 2274
		readl(hsotg->regs + DIEPCTL0),
		readl(hsotg->regs + DOEPCTL0));
2275 2276

	/* enable in and out endpoint interrupts */
2277
	s3c_hsotg_en_gsint(hsotg, GINTSTS_OEPInt | GINTSTS_IEPInt);
2278 2279 2280 2281 2282 2283 2284

	/*
	 * Enable the RXFIFO when in slave mode, as this is how we collect
	 * the data. In DMA mode, we get events from the FIFO but also
	 * things we cannot process, so do not use it.
	 */
	if (!using_dma(hsotg))
2285
		s3c_hsotg_en_gsint(hsotg, GINTSTS_RxFLvl);
2286 2287 2288 2289 2290

	/* Enable interrupts for EP0 in and out */
	s3c_hsotg_ctrl_epint(hsotg, 0, 0, 1);
	s3c_hsotg_ctrl_epint(hsotg, 0, 1, 1);

2291
	__orr32(hsotg->regs + DCTL, DCTL_PWROnPrgDone);
2292
	udelay(10);  /* see openiboot */
2293
	__bic32(hsotg->regs + DCTL, DCTL_PWROnPrgDone);
2294

2295
	dev_dbg(hsotg->dev, "DCTL=0x%08x\n", readl(hsotg->regs + DCTL));
2296 2297

	/*
2298
	 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
2299 2300 2301 2302
	 * writing to the EPCTL register..
	 */

	/* set to read 1 8byte packet */
2303 2304
	writel(DxEPTSIZ_MC(1) | DxEPTSIZ_PktCnt(1) |
	       DxEPTSIZ_XferSize(8), hsotg->regs + DOEPTSIZ0);
2305 2306

	writel(s3c_hsotg_ep0_mps(hsotg->eps[0].ep.maxpacket) |
2307 2308 2309
	       DxEPCTL_CNAK | DxEPCTL_EPEna |
	       DxEPCTL_USBActEp,
	       hsotg->regs + DOEPCTL0);
2310 2311 2312

	/* enable, but don't activate EP0in */
	writel(s3c_hsotg_ep0_mps(hsotg->eps[0].ep.maxpacket) |
2313
	       DxEPCTL_USBActEp, hsotg->regs + DIEPCTL0);
2314 2315 2316 2317

	s3c_hsotg_enqueue_setup(hsotg);

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2318 2319
		readl(hsotg->regs + DIEPCTL0),
		readl(hsotg->regs + DOEPCTL0));
2320 2321

	/* clear global NAKs */
2322 2323
	writel(DCTL_CGOUTNak | DCTL_CGNPInNAK,
	       hsotg->regs + DCTL);
2324 2325 2326 2327 2328

	/* must be at-least 3ms to allow bus to see disconnect */
	mdelay(3);

	/* remove the soft-disconnect and let's go */
2329
	__bic32(hsotg->regs + DCTL, DCTL_SftDiscon);
2330 2331
}

2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343
/**
 * s3c_hsotg_irq - handle device interrupt
 * @irq: The IRQ number triggered
 * @pw: The pw value when registered the handler.
 */
static irqreturn_t s3c_hsotg_irq(int irq, void *pw)
{
	struct s3c_hsotg *hsotg = pw;
	int retry_count = 8;
	u32 gintsts;
	u32 gintmsk;

2344
	spin_lock(&hsotg->lock);
2345
irq_retry:
2346 2347
	gintsts = readl(hsotg->regs + GINTSTS);
	gintmsk = readl(hsotg->regs + GINTMSK);
2348 2349 2350 2351 2352 2353

	dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
		__func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);

	gintsts &= gintmsk;

2354 2355
	if (gintsts & GINTSTS_OTGInt) {
		u32 otgint = readl(hsotg->regs + GOTGINT);
2356 2357 2358

		dev_info(hsotg->dev, "OTGInt: %08x\n", otgint);

2359
		writel(otgint, hsotg->regs + GOTGINT);
2360 2361
	}

2362
	if (gintsts & GINTSTS_SessReqInt) {
2363
		dev_dbg(hsotg->dev, "%s: SessReqInt\n", __func__);
2364
		writel(GINTSTS_SessReqInt, hsotg->regs + GINTSTS);
2365 2366
	}

2367 2368
	if (gintsts & GINTSTS_EnumDone) {
		writel(GINTSTS_EnumDone, hsotg->regs + GINTSTS);
2369 2370

		s3c_hsotg_irq_enumdone(hsotg);
2371 2372
	}

2373
	if (gintsts & GINTSTS_ConIDStsChng) {
2374
		dev_dbg(hsotg->dev, "ConIDStsChg (DSTS=0x%08x, GOTCTL=%08x)\n",
2375 2376
			readl(hsotg->regs + DSTS),
			readl(hsotg->regs + GOTGCTL));
2377

2378
		writel(GINTSTS_ConIDStsChng, hsotg->regs + GINTSTS);
2379 2380
	}

2381 2382 2383 2384
	if (gintsts & (GINTSTS_OEPInt | GINTSTS_IEPInt)) {
		u32 daint = readl(hsotg->regs + DAINT);
		u32 daint_out = daint >> DAINT_OutEP_SHIFT;
		u32 daint_in = daint & ~(daint_out << DAINT_OutEP_SHIFT);
2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399
		int ep;

		dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);

		for (ep = 0; ep < 15 && daint_out; ep++, daint_out >>= 1) {
			if (daint_out & 1)
				s3c_hsotg_epint(hsotg, ep, 0);
		}

		for (ep = 0; ep < 15 && daint_in; ep++, daint_in >>= 1) {
			if (daint_in & 1)
				s3c_hsotg_epint(hsotg, ep, 1);
		}
	}

2400
	if (gintsts & GINTSTS_USBRst) {
2401

2402
		u32 usb_status = readl(hsotg->regs + GOTGCTL);
2403

2404 2405
		dev_info(hsotg->dev, "%s: USBRst\n", __func__);
		dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
2406
			readl(hsotg->regs + GNPTXSTS));
2407

2408
		writel(GINTSTS_USBRst, hsotg->regs + GINTSTS);
2409

2410
		if (usb_status & GOTGCTL_BSESVLD) {
2411 2412
			if (time_after(jiffies, hsotg->last_rst +
				       msecs_to_jiffies(200))) {
2413

2414 2415
				kill_all_requests(hsotg, &hsotg->eps[0],
							  -ECONNRESET, true);
2416

2417 2418 2419 2420
				s3c_hsotg_core_init(hsotg);
				hsotg->last_rst = jiffies;
			}
		}
2421 2422 2423 2424
	}

	/* check both FIFOs */

2425
	if (gintsts & GINTSTS_NPTxFEmp) {
2426 2427
		dev_dbg(hsotg->dev, "NPTxFEmp\n");

2428 2429
		/*
		 * Disable the interrupt to stop it happening again
2430
		 * unless one of these endpoint routines decides that
2431 2432
		 * it needs re-enabling
		 */
2433

2434
		s3c_hsotg_disable_gsint(hsotg, GINTSTS_NPTxFEmp);
2435 2436 2437
		s3c_hsotg_irq_fifoempty(hsotg, false);
	}

2438
	if (gintsts & GINTSTS_PTxFEmp) {
2439 2440
		dev_dbg(hsotg->dev, "PTxFEmp\n");

2441
		/* See note in GINTSTS_NPTxFEmp */
2442

2443
		s3c_hsotg_disable_gsint(hsotg, GINTSTS_PTxFEmp);
2444 2445 2446
		s3c_hsotg_irq_fifoempty(hsotg, true);
	}

2447
	if (gintsts & GINTSTS_RxFLvl) {
2448 2449
		/*
		 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
2450
		 * we need to retry s3c_hsotg_handle_rx if this is still
2451 2452
		 * set.
		 */
2453 2454 2455 2456

		s3c_hsotg_handle_rx(hsotg);
	}

2457
	if (gintsts & GINTSTS_ModeMis) {
2458
		dev_warn(hsotg->dev, "warning, mode mismatch triggered\n");
2459
		writel(GINTSTS_ModeMis, hsotg->regs + GINTSTS);
2460 2461
	}

2462 2463 2464
	if (gintsts & GINTSTS_USBSusp) {
		dev_info(hsotg->dev, "GINTSTS_USBSusp\n");
		writel(GINTSTS_USBSusp, hsotg->regs + GINTSTS);
2465 2466

		call_gadget(hsotg, suspend);
2467
		s3c_hsotg_disconnect(hsotg);
2468 2469
	}

2470 2471 2472
	if (gintsts & GINTSTS_WkUpInt) {
		dev_info(hsotg->dev, "GINTSTS_WkUpIn\n");
		writel(GINTSTS_WkUpInt, hsotg->regs + GINTSTS);
2473 2474 2475 2476

		call_gadget(hsotg, resume);
	}

2477 2478 2479
	if (gintsts & GINTSTS_ErlySusp) {
		dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
		writel(GINTSTS_ErlySusp, hsotg->regs + GINTSTS);
2480 2481
	}

2482 2483
	/*
	 * these next two seem to crop-up occasionally causing the core
2484
	 * to shutdown the USB transfer, so try clearing them and logging
2485 2486
	 * the occurrence.
	 */
2487

2488
	if (gintsts & GINTSTS_GOUTNakEff) {
2489 2490
		dev_info(hsotg->dev, "GOUTNakEff triggered\n");

2491
		writel(DCTL_CGOUTNak, hsotg->regs + DCTL);
2492 2493

		s3c_hsotg_dump(hsotg);
2494 2495
	}

2496
	if (gintsts & GINTSTS_GINNakEff) {
2497 2498
		dev_info(hsotg->dev, "GINNakEff triggered\n");

2499
		writel(DCTL_CGNPInNAK, hsotg->regs + DCTL);
2500 2501

		s3c_hsotg_dump(hsotg);
2502 2503
	}

2504 2505 2506 2507
	/*
	 * if we've had fifo events, we should try and go around the
	 * loop again to see if there's any point in returning yet.
	 */
2508 2509 2510 2511

	if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
			goto irq_retry;

2512 2513
	spin_unlock(&hsotg->lock);

2514 2515 2516 2517 2518 2519 2520 2521 2522
	return IRQ_HANDLED;
}

/**
 * s3c_hsotg_ep_enable - enable the given endpoint
 * @ep: The USB endpint to configure
 * @desc: The USB endpoint descriptor to configure with.
 *
 * This is called from the USB gadget code's usb_ep_enable().
2523
 */
2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534
static int s3c_hsotg_ep_enable(struct usb_ep *ep,
			       const struct usb_endpoint_descriptor *desc)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
	struct s3c_hsotg *hsotg = hs_ep->parent;
	unsigned long flags;
	int index = hs_ep->index;
	u32 epctrl_reg;
	u32 epctrl;
	u32 mps;
	int dir_in;
2535
	int ret = 0;
2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550

	dev_dbg(hsotg->dev,
		"%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
		__func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
		desc->wMaxPacketSize, desc->bInterval);

	/* not to be called for EP0 */
	WARN_ON(index == 0);

	dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
	if (dir_in != hs_ep->dir_in) {
		dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
		return -EINVAL;
	}

2551
	mps = usb_endpoint_maxp(desc);
2552 2553 2554

	/* note, we handle this here instead of s3c_hsotg_set_ep_maxpacket */

2555
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
2556 2557 2558 2559 2560
	epctrl = readl(hsotg->regs + epctrl_reg);

	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
		__func__, epctrl, epctrl_reg);

2561
	spin_lock_irqsave(&hsotg->lock, flags);
2562

2563 2564
	epctrl &= ~(DxEPCTL_EPType_MASK | DxEPCTL_MPS_MASK);
	epctrl |= DxEPCTL_MPS(mps);
2565

2566 2567 2568 2569
	/*
	 * mark the endpoint as active, otherwise the core may ignore
	 * transactions entirely for this endpoint
	 */
2570
	epctrl |= DxEPCTL_USBActEp;
2571

2572 2573
	/*
	 * set the NAK status on the endpoint, otherwise we might try and
2574 2575 2576 2577 2578
	 * do something with data that we've yet got a request to process
	 * since the RXFIFO will take data for an endpoint even if the
	 * size register hasn't been set.
	 */

2579
	epctrl |= DxEPCTL_SNAK;
2580 2581 2582 2583 2584 2585 2586 2587 2588 2589

	/* update the endpoint state */
	hs_ep->ep.maxpacket = mps;

	/* default, set to non-periodic */
	hs_ep->periodic = 0;

	switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
	case USB_ENDPOINT_XFER_ISOC:
		dev_err(hsotg->dev, "no current ISOC support\n");
2590 2591
		ret = -EINVAL;
		goto out;
2592 2593

	case USB_ENDPOINT_XFER_BULK:
2594
		epctrl |= DxEPCTL_EPType_Bulk;
2595 2596 2597 2598
		break;

	case USB_ENDPOINT_XFER_INT:
		if (dir_in) {
2599 2600
			/*
			 * Allocate our TxFNum by simply using the index
2601 2602
			 * of the endpoint for the moment. We could do
			 * something better if the host indicates how
2603 2604
			 * many FIFOs we are expecting to use.
			 */
2605 2606

			hs_ep->periodic = 1;
2607
			epctrl |= DxEPCTL_TxFNum(index);
2608 2609
		}

2610
		epctrl |= DxEPCTL_EPType_Intterupt;
2611 2612 2613
		break;

	case USB_ENDPOINT_XFER_CONTROL:
2614
		epctrl |= DxEPCTL_EPType_Control;
2615 2616 2617
		break;
	}

2618 2619
	/*
	 * if the hardware has dedicated fifos, we must give each IN EP
2620 2621 2622
	 * a unique tx-fifo even if it is non-periodic.
	 */
	if (dir_in && hsotg->dedicated_fifos)
2623
		epctrl |= DxEPCTL_TxFNum(index);
2624

2625 2626
	/* for non control endpoints, set PID to D0 */
	if (index)
2627
		epctrl |= DxEPCTL_SetD0PID;
2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638

	dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
		__func__, epctrl);

	writel(epctrl, hsotg->regs + epctrl_reg);
	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
		__func__, readl(hsotg->regs + epctrl_reg));

	/* enable the endpoint interrupt */
	s3c_hsotg_ctrl_epint(hsotg, index, dir_in, 1);

2639
out:
2640
	spin_unlock_irqrestore(&hsotg->lock, flags);
2641
	return ret;
2642 2643
}

2644 2645 2646 2647
/**
 * s3c_hsotg_ep_disable - disable given endpoint
 * @ep: The endpoint to disable.
 */
2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664
static int s3c_hsotg_ep_disable(struct usb_ep *ep)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
	struct s3c_hsotg *hsotg = hs_ep->parent;
	int dir_in = hs_ep->dir_in;
	int index = hs_ep->index;
	unsigned long flags;
	u32 epctrl_reg;
	u32 ctrl;

	dev_info(hsotg->dev, "%s(ep %p)\n", __func__, ep);

	if (ep == &hsotg->eps[0].ep) {
		dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
		return -EINVAL;
	}

2665
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
2666

2667
	spin_lock_irqsave(&hsotg->lock, flags);
2668 2669 2670 2671 2672
	/* terminate all requests with shutdown */
	kill_all_requests(hsotg, hs_ep, -ESHUTDOWN, false);


	ctrl = readl(hsotg->regs + epctrl_reg);
2673 2674 2675
	ctrl &= ~DxEPCTL_EPEna;
	ctrl &= ~DxEPCTL_USBActEp;
	ctrl |= DxEPCTL_SNAK;
2676 2677 2678 2679 2680 2681 2682

	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
	writel(ctrl, hsotg->regs + epctrl_reg);

	/* disable endpoint interrupts */
	s3c_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);

2683
	spin_unlock_irqrestore(&hsotg->lock, flags);
2684 2685 2686 2687 2688 2689 2690
	return 0;
}

/**
 * on_list - check request is on the given endpoint
 * @ep: The endpoint to check.
 * @test: The request to test if it is on the endpoint.
2691
 */
2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703
static bool on_list(struct s3c_hsotg_ep *ep, struct s3c_hsotg_req *test)
{
	struct s3c_hsotg_req *req, *treq;

	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
		if (req == test)
			return true;
	}

	return false;
}

2704 2705 2706 2707 2708
/**
 * s3c_hsotg_ep_dequeue - dequeue given endpoint
 * @ep: The endpoint to dequeue.
 * @req: The request to be removed from a queue.
 */
2709 2710 2711 2712 2713 2714 2715 2716 2717
static int s3c_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
{
	struct s3c_hsotg_req *hs_req = our_req(req);
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
	struct s3c_hsotg *hs = hs_ep->parent;
	unsigned long flags;

	dev_info(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);

2718
	spin_lock_irqsave(&hs->lock, flags);
2719 2720

	if (!on_list(hs_ep, hs_req)) {
2721
		spin_unlock_irqrestore(&hs->lock, flags);
2722 2723 2724 2725
		return -EINVAL;
	}

	s3c_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
2726
	spin_unlock_irqrestore(&hs->lock, flags);
2727 2728 2729 2730

	return 0;
}

2731 2732 2733 2734 2735
/**
 * s3c_hsotg_ep_sethalt - set halt on a given endpoint
 * @ep: The endpoint to set halt.
 * @value: Set or unset the halt.
 */
2736 2737 2738 2739 2740 2741 2742
static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
	struct s3c_hsotg *hs = hs_ep->parent;
	int index = hs_ep->index;
	u32 epreg;
	u32 epctl;
2743
	u32 xfertype;
2744 2745 2746 2747 2748

	dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);

	/* write both IN and OUT control registers */

2749
	epreg = DIEPCTL(index);
2750 2751
	epctl = readl(hs->regs + epreg);

2752
	if (value) {
2753 2754 2755
		epctl |= DxEPCTL_Stall + DxEPCTL_SNAK;
		if (epctl & DxEPCTL_EPEna)
			epctl |= DxEPCTL_EPDis;
2756
	} else {
2757 2758 2759 2760 2761
		epctl &= ~DxEPCTL_Stall;
		xfertype = epctl & DxEPCTL_EPType_MASK;
		if (xfertype == DxEPCTL_EPType_Bulk ||
			xfertype == DxEPCTL_EPType_Intterupt)
				epctl |= DxEPCTL_SetD0PID;
2762
	}
2763 2764 2765

	writel(epctl, hs->regs + epreg);

2766
	epreg = DOEPCTL(index);
2767 2768 2769
	epctl = readl(hs->regs + epreg);

	if (value)
2770
		epctl |= DxEPCTL_Stall;
2771
	else {
2772 2773 2774 2775 2776
		epctl &= ~DxEPCTL_Stall;
		xfertype = epctl & DxEPCTL_EPType_MASK;
		if (xfertype == DxEPCTL_EPType_Bulk ||
			xfertype == DxEPCTL_EPType_Intterupt)
				epctl |= DxEPCTL_SetD0PID;
2777
	}
2778 2779 2780 2781 2782 2783

	writel(epctl, hs->regs + epreg);

	return 0;
}

2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802
/**
 * s3c_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
 * @ep: The endpoint to set halt.
 * @value: Set or unset the halt.
 */
static int s3c_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
	struct s3c_hsotg *hs = hs_ep->parent;
	unsigned long flags = 0;
	int ret = 0;

	spin_lock_irqsave(&hs->lock, flags);
	ret = s3c_hsotg_ep_sethalt(ep, value);
	spin_unlock_irqrestore(&hs->lock, flags);

	return ret;
}

2803 2804 2805 2806 2807
static struct usb_ep_ops s3c_hsotg_ep_ops = {
	.enable		= s3c_hsotg_ep_enable,
	.disable	= s3c_hsotg_ep_disable,
	.alloc_request	= s3c_hsotg_ep_alloc_request,
	.free_request	= s3c_hsotg_ep_free_request,
2808
	.queue		= s3c_hsotg_ep_queue_lock,
2809
	.dequeue	= s3c_hsotg_ep_dequeue,
2810
	.set_halt	= s3c_hsotg_ep_sethalt_lock,
L
Lucas De Marchi 已提交
2811
	/* note, don't believe we have any call for the fifo routines */
2812 2813
};

2814 2815
/**
 * s3c_hsotg_phy_enable - enable platform phy dev
2816
 * @hsotg: The driver state
2817 2818 2819 2820 2821 2822 2823 2824 2825
 *
 * A wrapper for platform code responsible for controlling
 * low-level USB code
 */
static void s3c_hsotg_phy_enable(struct s3c_hsotg *hsotg)
{
	struct platform_device *pdev = to_platform_device(hsotg->dev);

	dev_dbg(hsotg->dev, "pdev 0x%p\n", pdev);
2826 2827 2828 2829

	if (hsotg->phy)
		usb_phy_init(hsotg->phy);
	else if (hsotg->plat->phy_init)
2830 2831 2832 2833 2834
		hsotg->plat->phy_init(pdev, hsotg->plat->phy_type);
}

/**
 * s3c_hsotg_phy_disable - disable platform phy dev
2835
 * @hsotg: The driver state
2836 2837 2838 2839 2840 2841 2842 2843
 *
 * A wrapper for platform code responsible for controlling
 * low-level USB code
 */
static void s3c_hsotg_phy_disable(struct s3c_hsotg *hsotg)
{
	struct platform_device *pdev = to_platform_device(hsotg->dev);

2844 2845 2846
	if (hsotg->phy)
		usb_phy_shutdown(hsotg->phy);
	else if (hsotg->plat->phy_exit)
2847 2848 2849
		hsotg->plat->phy_exit(pdev, hsotg->plat->phy_type);
}

2850 2851 2852 2853
/**
 * s3c_hsotg_init - initalize the usb core
 * @hsotg: The driver state
 */
2854 2855 2856 2857
static void s3c_hsotg_init(struct s3c_hsotg *hsotg)
{
	/* unmask subset of endpoint interrupts */

2858 2859 2860
	writel(DIEPMSK_TimeOUTMsk | DIEPMSK_AHBErrMsk |
	       DIEPMSK_EPDisbldMsk | DIEPMSK_XferComplMsk,
	       hsotg->regs + DIEPMSK);
2861

2862 2863 2864
	writel(DOEPMSK_SetupMsk | DOEPMSK_AHBErrMsk |
	       DOEPMSK_EPDisbldMsk | DOEPMSK_XferComplMsk,
	       hsotg->regs + DOEPMSK);
2865

2866
	writel(0, hsotg->regs + DAINTMSK);
2867 2868

	/* Be in disconnected state until gadget is registered */
2869
	__orr32(hsotg->regs + DCTL, DCTL_SftDiscon);
2870 2871 2872

	if (0) {
		/* post global nak until we're ready */
2873 2874
		writel(DCTL_SGNPInNAK | DCTL_SGOUTNak,
		       hsotg->regs + DCTL);
2875 2876 2877 2878 2879
	}

	/* setup fifos */

	dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
2880 2881
		readl(hsotg->regs + GRXFSIZ),
		readl(hsotg->regs + GNPTXFSIZ));
2882 2883 2884 2885

	s3c_hsotg_init_fifo(hsotg);

	/* set the PLL on, remove the HNP/SRP and set the PHY */
2886 2887
	writel(GUSBCFG_PHYIf16 | GUSBCFG_TOutCal(7) | (0x5 << 10),
	       hsotg->regs + GUSBCFG);
2888

2889 2890
	writel(using_dma(hsotg) ? GAHBCFG_DMAEn : 0x0,
	       hsotg->regs + GAHBCFG);
2891 2892
}

2893 2894 2895 2896 2897 2898 2899 2900
/**
 * s3c_hsotg_udc_start - prepare the udc for work
 * @gadget: The usb gadget state
 * @driver: The usb gadget driver
 *
 * Perform initialization to prepare udc device and driver
 * to work.
 */
2901 2902
static int s3c_hsotg_udc_start(struct usb_gadget *gadget,
			   struct usb_gadget_driver *driver)
2903
{
2904
	struct s3c_hsotg *hsotg = to_hsotg(gadget);
2905 2906 2907
	int ret;

	if (!hsotg) {
2908
		pr_err("%s: called with no device\n", __func__);
2909 2910 2911 2912 2913 2914 2915 2916
		return -ENODEV;
	}

	if (!driver) {
		dev_err(hsotg->dev, "%s: no driver\n", __func__);
		return -EINVAL;
	}

2917
	if (driver->max_speed < USB_SPEED_FULL)
2918 2919
		dev_err(hsotg->dev, "%s: bad speed\n", __func__);

2920
	if (!driver->setup) {
2921 2922 2923 2924 2925 2926 2927 2928
		dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
		return -EINVAL;
	}

	WARN_ON(hsotg->driver);

	driver->driver.bus = NULL;
	hsotg->driver = driver;
2929
	hsotg->gadget.dev.of_node = hsotg->dev->of_node;
2930 2931
	hsotg->gadget.speed = USB_SPEED_UNKNOWN;

2932 2933
	ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
				    hsotg->supplies);
2934
	if (ret) {
2935
		dev_err(hsotg->dev, "failed to enable supplies: %d\n", ret);
2936 2937 2938
		goto err;
	}

2939
	hsotg->last_rst = jiffies;
2940 2941 2942 2943 2944 2945 2946 2947
	dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
	return 0;

err:
	hsotg->driver = NULL;
	return ret;
}

2948 2949 2950 2951 2952 2953 2954
/**
 * s3c_hsotg_udc_stop - stop the udc
 * @gadget: The usb gadget state
 * @driver: The usb gadget driver
 *
 * Stop udc hw block and stay tunned for future transmissions
 */
2955 2956
static int s3c_hsotg_udc_stop(struct usb_gadget *gadget,
			  struct usb_gadget_driver *driver)
2957
{
2958
	struct s3c_hsotg *hsotg = to_hsotg(gadget);
2959
	unsigned long flags = 0;
2960 2961 2962 2963 2964 2965
	int ep;

	if (!hsotg)
		return -ENODEV;

	/* all endpoints should be shutdown */
2966
	for (ep = 0; ep < hsotg->num_of_eps; ep++)
2967 2968
		s3c_hsotg_ep_disable(&hsotg->eps[ep].ep);

2969 2970
	spin_lock_irqsave(&hsotg->lock, flags);

2971
	s3c_hsotg_phy_disable(hsotg);
2972

2973 2974 2975
	if (!driver)
		hsotg->driver = NULL;

2976 2977
	hsotg->gadget.speed = USB_SPEED_UNKNOWN;

2978 2979
	spin_unlock_irqrestore(&hsotg->lock, flags);

2980
	regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies), hsotg->supplies);
2981 2982 2983 2984

	return 0;
}

2985 2986 2987 2988 2989 2990
/**
 * s3c_hsotg_gadget_getframe - read the frame number
 * @gadget: The usb gadget state
 *
 * Read the {micro} frame number
 */
2991 2992 2993 2994 2995
static int s3c_hsotg_gadget_getframe(struct usb_gadget *gadget)
{
	return s3c_hsotg_read_frameno(to_hsotg(gadget));
}

2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024
/**
 * s3c_hsotg_pullup - connect/disconnect the USB PHY
 * @gadget: The usb gadget state
 * @is_on: Current state of the USB PHY
 *
 * Connect/Disconnect the USB PHY pullup
 */
static int s3c_hsotg_pullup(struct usb_gadget *gadget, int is_on)
{
	struct s3c_hsotg *hsotg = to_hsotg(gadget);
	unsigned long flags = 0;

	dev_dbg(hsotg->dev, "%s: is_in: %d\n", __func__, is_on);

	spin_lock_irqsave(&hsotg->lock, flags);
	if (is_on) {
		s3c_hsotg_phy_enable(hsotg);
		s3c_hsotg_core_init(hsotg);
	} else {
		s3c_hsotg_disconnect(hsotg);
		s3c_hsotg_phy_disable(hsotg);
	}

	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
	spin_unlock_irqrestore(&hsotg->lock, flags);

	return 0;
}

3025
static const struct usb_gadget_ops s3c_hsotg_gadget_ops = {
3026
	.get_frame	= s3c_hsotg_gadget_getframe,
3027 3028
	.udc_start		= s3c_hsotg_udc_start,
	.udc_stop		= s3c_hsotg_udc_stop,
3029
	.pullup                 = s3c_hsotg_pullup,
3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041
};

/**
 * s3c_hsotg_initep - initialise a single endpoint
 * @hsotg: The device state.
 * @hs_ep: The endpoint to be initialised.
 * @epnum: The endpoint number
 *
 * Initialise the given endpoint (as part of the probe and device state
 * creation) to give to the gadget driver. Setup the endpoint name, any
 * direction information and other state that may be required.
 */
B
Bill Pemberton 已提交
3042
static void s3c_hsotg_initep(struct s3c_hsotg *hsotg,
3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070
				       struct s3c_hsotg_ep *hs_ep,
				       int epnum)
{
	u32 ptxfifo;
	char *dir;

	if (epnum == 0)
		dir = "";
	else if ((epnum % 2) == 0) {
		dir = "out";
	} else {
		dir = "in";
		hs_ep->dir_in = 1;
	}

	hs_ep->index = epnum;

	snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);

	INIT_LIST_HEAD(&hs_ep->queue);
	INIT_LIST_HEAD(&hs_ep->ep.ep_list);

	/* add to the list of endpoints known by the gadget driver */
	if (epnum)
		list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);

	hs_ep->parent = hsotg;
	hs_ep->ep.name = hs_ep->name;
3071
	hs_ep->ep.maxpacket = epnum ? 1024 : EP0_MPS_LIMIT;
3072 3073
	hs_ep->ep.ops = &s3c_hsotg_ep_ops;

3074 3075
	/*
	 * Read the FIFO size for the Periodic TX FIFO, even if we're
3076 3077 3078 3079
	 * an OUT endpoint, we may as well do this if in future the
	 * code is changed to make each endpoint's direction changeable.
	 */

3080 3081
	ptxfifo = readl(hsotg->regs + DPTXFSIZn(epnum));
	hs_ep->fifo_size = DPTXFSIZn_DPTxFSize_GET(ptxfifo) * 4;
3082

3083 3084
	/*
	 * if we're using dma, we need to set the next-endpoint pointer
3085 3086 3087 3088
	 * to be something valid.
	 */

	if (using_dma(hsotg)) {
3089 3090 3091
		u32 next = DxEPCTL_NextEp((epnum + 1) % 15);
		writel(next, hsotg->regs + DIEPCTL(epnum));
		writel(next, hsotg->regs + DOEPCTL(epnum));
3092 3093 3094
	}
}

3095 3096 3097 3098 3099 3100 3101
/**
 * s3c_hsotg_hw_cfg - read HW configuration registers
 * @param: The device state
 *
 * Read the USB core HW configuration registers
 */
static void s3c_hsotg_hw_cfg(struct s3c_hsotg *hsotg)
3102
{
3103 3104
	u32 cfg2, cfg4;
	/* check hardware configuration */
3105

3106 3107
	cfg2 = readl(hsotg->regs + 0x48);
	hsotg->num_of_eps = (cfg2 >> 10) & 0xF;
3108

3109
	dev_info(hsotg->dev, "EPs:%d\n", hsotg->num_of_eps);
3110 3111 3112 3113 3114 3115

	cfg4 = readl(hsotg->regs + 0x50);
	hsotg->dedicated_fifos = (cfg4 >> 25) & 1;

	dev_info(hsotg->dev, "%s fifos\n",
		 hsotg->dedicated_fifos ? "dedicated" : "shared");
3116 3117
}

3118 3119 3120 3121
/**
 * s3c_hsotg_dump - dump state of the udc
 * @param: The device state
 */
3122 3123
static void s3c_hsotg_dump(struct s3c_hsotg *hsotg)
{
M
Mark Brown 已提交
3124
#ifdef DEBUG
3125 3126 3127 3128 3129 3130
	struct device *dev = hsotg->dev;
	void __iomem *regs = hsotg->regs;
	u32 val;
	int idx;

	dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
3131 3132
		 readl(regs + DCFG), readl(regs + DCTL),
		 readl(regs + DIEPMSK));
3133 3134

	dev_info(dev, "GAHBCFG=0x%08x, 0x44=0x%08x\n",
3135
		 readl(regs + GAHBCFG), readl(regs + 0x44));
3136 3137

	dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
3138
		 readl(regs + GRXFSIZ), readl(regs + GNPTXFSIZ));
3139 3140 3141 3142

	/* show periodic fifo settings */

	for (idx = 1; idx <= 15; idx++) {
3143
		val = readl(regs + DPTXFSIZn(idx));
3144
		dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
3145 3146
			 val >> DPTXFSIZn_DPTxFSize_SHIFT,
			 val & DPTXFSIZn_DPTxFStAddr_MASK);
3147 3148 3149 3150 3151
	}

	for (idx = 0; idx < 15; idx++) {
		dev_info(dev,
			 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
3152 3153 3154
			 readl(regs + DIEPCTL(idx)),
			 readl(regs + DIEPTSIZ(idx)),
			 readl(regs + DIEPDMA(idx)));
3155

3156
		val = readl(regs + DOEPCTL(idx));
3157 3158
		dev_info(dev,
			 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
3159 3160 3161
			 idx, readl(regs + DOEPCTL(idx)),
			 readl(regs + DOEPTSIZ(idx)),
			 readl(regs + DOEPDMA(idx)));
3162 3163 3164 3165

	}

	dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
3166
		 readl(regs + DVBUSDIS), readl(regs + DVBUSPULSE));
M
Mark Brown 已提交
3167
#endif
3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185
}

/**
 * state_show - debugfs: show overall driver and device state.
 * @seq: The seq file to write to.
 * @v: Unused parameter.
 *
 * This debugfs entry shows the overall state of the hardware and
 * some general information about each of the endpoints available
 * to the system.
 */
static int state_show(struct seq_file *seq, void *v)
{
	struct s3c_hsotg *hsotg = seq->private;
	void __iomem *regs = hsotg->regs;
	int idx;

	seq_printf(seq, "DCFG=0x%08x, DCTL=0x%08x, DSTS=0x%08x\n",
3186 3187 3188
		 readl(regs + DCFG),
		 readl(regs + DCTL),
		 readl(regs + DSTS));
3189 3190

	seq_printf(seq, "DIEPMSK=0x%08x, DOEPMASK=0x%08x\n",
3191
		   readl(regs + DIEPMSK), readl(regs + DOEPMSK));
3192 3193

	seq_printf(seq, "GINTMSK=0x%08x, GINTSTS=0x%08x\n",
3194 3195
		   readl(regs + GINTMSK),
		   readl(regs + GINTSTS));
3196 3197

	seq_printf(seq, "DAINTMSK=0x%08x, DAINT=0x%08x\n",
3198 3199
		   readl(regs + DAINTMSK),
		   readl(regs + DAINT));
3200 3201

	seq_printf(seq, "GNPTXSTS=0x%08x, GRXSTSR=%08x\n",
3202 3203
		   readl(regs + GNPTXSTS),
		   readl(regs + GRXSTSR));
3204

3205
	seq_puts(seq, "\nEndpoint status:\n");
3206 3207 3208 3209

	for (idx = 0; idx < 15; idx++) {
		u32 in, out;

3210 3211
		in = readl(regs + DIEPCTL(idx));
		out = readl(regs + DOEPCTL(idx));
3212 3213 3214 3215

		seq_printf(seq, "ep%d: DIEPCTL=0x%08x, DOEPCTL=0x%08x",
			   idx, in, out);

3216 3217
		in = readl(regs + DIEPTSIZ(idx));
		out = readl(regs + DOEPTSIZ(idx));
3218 3219 3220 3221

		seq_printf(seq, ", DIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x",
			   in, out);

3222
		seq_puts(seq, "\n");
3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247
	}

	return 0;
}

static int state_open(struct inode *inode, struct file *file)
{
	return single_open(file, state_show, inode->i_private);
}

static const struct file_operations state_fops = {
	.owner		= THIS_MODULE,
	.open		= state_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

/**
 * fifo_show - debugfs: show the fifo information
 * @seq: The seq_file to write data to.
 * @v: Unused parameter.
 *
 * Show the FIFO information for the overall fifo and all the
 * periodic transmission FIFOs.
3248
 */
3249 3250 3251 3252 3253 3254 3255
static int fifo_show(struct seq_file *seq, void *v)
{
	struct s3c_hsotg *hsotg = seq->private;
	void __iomem *regs = hsotg->regs;
	u32 val;
	int idx;

3256
	seq_puts(seq, "Non-periodic FIFOs:\n");
3257
	seq_printf(seq, "RXFIFO: Size %d\n", readl(regs + GRXFSIZ));
3258

3259
	val = readl(regs + GNPTXFSIZ);
3260
	seq_printf(seq, "NPTXFIFO: Size %d, Start 0x%08x\n",
3261 3262
		   val >> GNPTXFSIZ_NPTxFDep_SHIFT,
		   val & GNPTXFSIZ_NPTxFStAddr_MASK);
3263

3264
	seq_puts(seq, "\nPeriodic TXFIFOs:\n");
3265 3266

	for (idx = 1; idx <= 15; idx++) {
3267
		val = readl(regs + DPTXFSIZn(idx));
3268 3269

		seq_printf(seq, "\tDPTXFIFO%2d: Size %d, Start 0x%08x\n", idx,
3270 3271
			   val >> DPTXFSIZn_DPTxFSize_SHIFT,
			   val & DPTXFSIZn_DPTxFStAddr_MASK);
3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302
	}

	return 0;
}

static int fifo_open(struct inode *inode, struct file *file)
{
	return single_open(file, fifo_show, inode->i_private);
}

static const struct file_operations fifo_fops = {
	.owner		= THIS_MODULE,
	.open		= fifo_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};


static const char *decode_direction(int is_in)
{
	return is_in ? "in" : "out";
}

/**
 * ep_show - debugfs: show the state of an endpoint.
 * @seq: The seq_file to write data to.
 * @v: Unused parameter.
 *
 * This debugfs entry shows the state of the given endpoint (one is
 * registered for each available).
3303
 */
3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319
static int ep_show(struct seq_file *seq, void *v)
{
	struct s3c_hsotg_ep *ep = seq->private;
	struct s3c_hsotg *hsotg = ep->parent;
	struct s3c_hsotg_req *req;
	void __iomem *regs = hsotg->regs;
	int index = ep->index;
	int show_limit = 15;
	unsigned long flags;

	seq_printf(seq, "Endpoint index %d, named %s,  dir %s:\n",
		   ep->index, ep->ep.name, decode_direction(ep->dir_in));

	/* first show the register state */

	seq_printf(seq, "\tDIEPCTL=0x%08x, DOEPCTL=0x%08x\n",
3320 3321
		   readl(regs + DIEPCTL(index)),
		   readl(regs + DOEPCTL(index)));
3322 3323

	seq_printf(seq, "\tDIEPDMA=0x%08x, DOEPDMA=0x%08x\n",
3324 3325
		   readl(regs + DIEPDMA(index)),
		   readl(regs + DOEPDMA(index)));
3326 3327

	seq_printf(seq, "\tDIEPINT=0x%08x, DOEPINT=0x%08x\n",
3328 3329
		   readl(regs + DIEPINT(index)),
		   readl(regs + DOEPINT(index)));
3330 3331

	seq_printf(seq, "\tDIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x\n",
3332 3333
		   readl(regs + DIEPTSIZ(index)),
		   readl(regs + DOEPTSIZ(index)));
3334

3335
	seq_puts(seq, "\n");
3336 3337 3338 3339 3340 3341
	seq_printf(seq, "mps %d\n", ep->ep.maxpacket);
	seq_printf(seq, "total_data=%ld\n", ep->total_data);

	seq_printf(seq, "request list (%p,%p):\n",
		   ep->queue.next, ep->queue.prev);

3342
	spin_lock_irqsave(&hsotg->lock, flags);
3343 3344 3345

	list_for_each_entry(req, &ep->queue, queue) {
		if (--show_limit < 0) {
3346
			seq_puts(seq, "not showing more requests...\n");
3347 3348 3349 3350 3351 3352 3353 3354 3355 3356
			break;
		}

		seq_printf(seq, "%c req %p: %d bytes @%p, ",
			   req == ep->req ? '*' : ' ',
			   req, req->req.length, req->req.buf);
		seq_printf(seq, "%d done, res %d\n",
			   req->req.actual, req->req.status);
	}

3357
	spin_unlock_irqrestore(&hsotg->lock, flags);
3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382

	return 0;
}

static int ep_open(struct inode *inode, struct file *file)
{
	return single_open(file, ep_show, inode->i_private);
}

static const struct file_operations ep_fops = {
	.owner		= THIS_MODULE,
	.open		= ep_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

/**
 * s3c_hsotg_create_debug - create debugfs directory and files
 * @hsotg: The driver state
 *
 * Create the debugfs files to allow the user to get information
 * about the state of the system. The directory name is created
 * with the same name as the device itself, in case we end up
 * with multiple blocks in future systems.
3383
 */
B
Bill Pemberton 已提交
3384
static void s3c_hsotg_create_debug(struct s3c_hsotg *hsotg)
3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411
{
	struct dentry *root;
	unsigned epidx;

	root = debugfs_create_dir(dev_name(hsotg->dev), NULL);
	hsotg->debug_root = root;
	if (IS_ERR(root)) {
		dev_err(hsotg->dev, "cannot create debug root\n");
		return;
	}

	/* create general state file */

	hsotg->debug_file = debugfs_create_file("state", 0444, root,
						hsotg, &state_fops);

	if (IS_ERR(hsotg->debug_file))
		dev_err(hsotg->dev, "%s: failed to create state\n", __func__);

	hsotg->debug_fifo = debugfs_create_file("fifo", 0444, root,
						hsotg, &fifo_fops);

	if (IS_ERR(hsotg->debug_fifo))
		dev_err(hsotg->dev, "%s: failed to create fifo\n", __func__);

	/* create one file for each endpoint */

3412
	for (epidx = 0; epidx < hsotg->num_of_eps; epidx++) {
3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428
		struct s3c_hsotg_ep *ep = &hsotg->eps[epidx];

		ep->debugfs = debugfs_create_file(ep->name, 0444,
						  root, ep, &ep_fops);

		if (IS_ERR(ep->debugfs))
			dev_err(hsotg->dev, "failed to create %s debug file\n",
				ep->name);
	}
}

/**
 * s3c_hsotg_delete_debug - cleanup debugfs entries
 * @hsotg: The driver state
 *
 * Cleanup (remove) the debugfs files for use on module exit.
3429
 */
B
Bill Pemberton 已提交
3430
static void s3c_hsotg_delete_debug(struct s3c_hsotg *hsotg)
3431 3432 3433
{
	unsigned epidx;

3434
	for (epidx = 0; epidx < hsotg->num_of_eps; epidx++) {
3435 3436 3437 3438 3439 3440 3441 3442 3443
		struct s3c_hsotg_ep *ep = &hsotg->eps[epidx];
		debugfs_remove(ep->debugfs);
	}

	debugfs_remove(hsotg->debug_file);
	debugfs_remove(hsotg->debug_fifo);
	debugfs_remove(hsotg->debug_root);
}

3444 3445 3446 3447
/**
 * s3c_hsotg_probe - probe function for hsotg driver
 * @pdev: The platform information for the driver
 */
3448

B
Bill Pemberton 已提交
3449
static int s3c_hsotg_probe(struct platform_device *pdev)
3450
{
J
Jingoo Han 已提交
3451
	struct s3c_hsotg_plat *plat = dev_get_platdata(&pdev->dev);
3452
	struct usb_phy *phy;
3453
	struct device *dev = &pdev->dev;
3454
	struct s3c_hsotg_ep *eps;
3455 3456 3457 3458
	struct s3c_hsotg *hsotg;
	struct resource *res;
	int epnum;
	int ret;
3459
	int i;
3460

3461
	hsotg = devm_kzalloc(&pdev->dev, sizeof(struct s3c_hsotg), GFP_KERNEL);
3462 3463 3464 3465 3466
	if (!hsotg) {
		dev_err(dev, "cannot get memory\n");
		return -ENOMEM;
	}

3467
	phy = devm_usb_get_phy(dev, USB_PHY_TYPE_USB2);
3468
	if (IS_ERR(phy)) {
3469
		/* Fallback for pdata */
J
Jingoo Han 已提交
3470
		plat = dev_get_platdata(&pdev->dev);
3471 3472 3473 3474 3475 3476 3477 3478 3479 3480
		if (!plat) {
			dev_err(&pdev->dev, "no platform data or transceiver defined\n");
			return -EPROBE_DEFER;
		} else {
			hsotg->plat = plat;
		}
	} else {
		hsotg->phy = phy;
	}

3481 3482
	hsotg->dev = dev;

3483
	hsotg->clk = devm_clk_get(&pdev->dev, "otg");
3484 3485
	if (IS_ERR(hsotg->clk)) {
		dev_err(dev, "cannot get otg clock\n");
3486
		return PTR_ERR(hsotg->clk);
3487 3488
	}

3489 3490 3491 3492
	platform_set_drvdata(pdev, hsotg);

	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);

3493 3494 3495
	hsotg->regs = devm_ioremap_resource(&pdev->dev, res);
	if (IS_ERR(hsotg->regs)) {
		ret = PTR_ERR(hsotg->regs);
3496
		goto err_clk;
3497 3498 3499 3500 3501
	}

	ret = platform_get_irq(pdev, 0);
	if (ret < 0) {
		dev_err(dev, "cannot find IRQ\n");
3502
		goto err_clk;
3503 3504
	}

3505 3506
	spin_lock_init(&hsotg->lock);

3507 3508
	hsotg->irq = ret;

3509 3510
	ret = devm_request_irq(&pdev->dev, hsotg->irq, s3c_hsotg_irq, 0,
				dev_name(dev), hsotg);
3511 3512
	if (ret < 0) {
		dev_err(dev, "cannot claim IRQ\n");
3513
		goto err_clk;
3514 3515 3516 3517
	}

	dev_info(dev, "regs %p, irq %d\n", hsotg->regs, hsotg->irq);

3518
	hsotg->gadget.max_speed = USB_SPEED_HIGH;
3519 3520 3521 3522 3523
	hsotg->gadget.ops = &s3c_hsotg_gadget_ops;
	hsotg->gadget.name = dev_name(dev);

	/* reset the system */

3524
	clk_prepare_enable(hsotg->clk);
3525

3526 3527 3528 3529 3530
	/* regulators */

	for (i = 0; i < ARRAY_SIZE(hsotg->supplies); i++)
		hsotg->supplies[i].supply = s3c_hsotg_supply_names[i];

3531
	ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(hsotg->supplies),
3532 3533 3534
				 hsotg->supplies);
	if (ret) {
		dev_err(dev, "failed to request supplies: %d\n", ret);
3535
		goto err_clk;
3536 3537 3538 3539 3540 3541 3542 3543 3544 3545
	}

	ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
				    hsotg->supplies);

	if (ret) {
		dev_err(hsotg->dev, "failed to enable supplies: %d\n", ret);
		goto err_supplies;
	}

3546 3547
	/* usb phy enable */
	s3c_hsotg_phy_enable(hsotg);
3548 3549 3550

	s3c_hsotg_corereset(hsotg);
	s3c_hsotg_init(hsotg);
3551 3552 3553 3554 3555 3556
	s3c_hsotg_hw_cfg(hsotg);

	/* hsotg->num_of_eps holds number of EPs other than ep0 */

	if (hsotg->num_of_eps == 0) {
		dev_err(dev, "wrong number of EPs (zero)\n");
3557
		ret = -EINVAL;
3558 3559 3560 3561 3562 3563 3564
		goto err_supplies;
	}

	eps = kcalloc(hsotg->num_of_eps + 1, sizeof(struct s3c_hsotg_ep),
		      GFP_KERNEL);
	if (!eps) {
		dev_err(dev, "cannot get memory\n");
3565
		ret = -ENOMEM;
3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581
		goto err_supplies;
	}

	hsotg->eps = eps;

	/* setup endpoint information */

	INIT_LIST_HEAD(&hsotg->gadget.ep_list);
	hsotg->gadget.ep0 = &hsotg->eps[0].ep;

	/* allocate EP0 request */

	hsotg->ctrl_req = s3c_hsotg_ep_alloc_request(&hsotg->eps[0].ep,
						     GFP_KERNEL);
	if (!hsotg->ctrl_req) {
		dev_err(dev, "failed to allocate ctrl req\n");
3582
		ret = -ENOMEM;
3583 3584
		goto err_ep_mem;
	}
3585 3586

	/* initialise the endpoints now the core has been initialised */
3587
	for (epnum = 0; epnum < hsotg->num_of_eps; epnum++)
3588 3589
		s3c_hsotg_initep(hsotg, &hsotg->eps[epnum], epnum);

3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600
	/* disable power and clock */

	ret = regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies),
				    hsotg->supplies);
	if (ret) {
		dev_err(hsotg->dev, "failed to disable supplies: %d\n", ret);
		goto err_ep_mem;
	}

	s3c_hsotg_phy_disable(hsotg);

3601 3602
	ret = usb_add_gadget_udc(&pdev->dev, &hsotg->gadget);
	if (ret)
3603
		goto err_ep_mem;
3604

3605 3606 3607 3608 3609 3610
	s3c_hsotg_create_debug(hsotg);

	s3c_hsotg_dump(hsotg);

	return 0;

3611
err_ep_mem:
3612
	kfree(eps);
3613
err_supplies:
3614
	s3c_hsotg_phy_disable(hsotg);
3615
err_clk:
3616
	clk_disable_unprepare(hsotg->clk);
3617

3618 3619 3620
	return ret;
}

3621 3622 3623 3624
/**
 * s3c_hsotg_remove - remove function for hsotg driver
 * @pdev: The platform information for the driver
 */
B
Bill Pemberton 已提交
3625
static int s3c_hsotg_remove(struct platform_device *pdev)
3626 3627 3628
{
	struct s3c_hsotg *hsotg = platform_get_drvdata(pdev);

3629 3630
	usb_del_gadget_udc(&hsotg->gadget);

3631 3632
	s3c_hsotg_delete_debug(hsotg);

3633 3634 3635 3636
	if (hsotg->driver) {
		/* should have been done already by driver model core */
		usb_gadget_unregister_driver(hsotg->driver);
	}
3637

3638
	s3c_hsotg_phy_disable(hsotg);
3639
	clk_disable_unprepare(hsotg->clk);
3640

3641 3642 3643 3644 3645 3646 3647 3648
	return 0;
}

#if 1
#define s3c_hsotg_suspend NULL
#define s3c_hsotg_resume NULL
#endif

3649 3650 3651 3652 3653 3654 3655 3656
#ifdef CONFIG_OF
static const struct of_device_id s3c_hsotg_of_ids[] = {
	{ .compatible = "samsung,s3c6400-hsotg", },
	{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, s3c_hsotg_of_ids);
#endif

3657 3658 3659 3660
static struct platform_driver s3c_hsotg_driver = {
	.driver		= {
		.name	= "s3c-hsotg",
		.owner	= THIS_MODULE,
3661
		.of_match_table = of_match_ptr(s3c_hsotg_of_ids),
3662 3663
	},
	.probe		= s3c_hsotg_probe,
B
Bill Pemberton 已提交
3664
	.remove		= s3c_hsotg_remove,
3665 3666 3667 3668
	.suspend	= s3c_hsotg_suspend,
	.resume		= s3c_hsotg_resume,
};

3669
module_platform_driver(s3c_hsotg_driver);
3670 3671 3672 3673 3674

MODULE_DESCRIPTION("Samsung S3C USB High-speed/OtG device");
MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:s3c-hsotg");