hw-me.c 29.9 KB
Newer Older
O
Oren Weil 已提交
1 2 3
/*
 *
 * Intel Management Engine Interface (Intel MEI) Linux driver
4
 * Copyright (c) 2003-2012, Intel Corporation.
O
Oren Weil 已提交
5 6 7 8 9 10 11 12 13 14 15 16 17
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 */

#include <linux/pci.h>
18 19 20

#include <linux/kthread.h>
#include <linux/interrupt.h>
21 22

#include "mei_dev.h"
23 24
#include "hbm.h"

25 26
#include "hw-me.h"
#include "hw-me-regs.h"
27

T
Tomas Winkler 已提交
28 29
#include "mei-trace.h"

30
/**
31
 * mei_me_reg_read - Reads 32bit data from the mei device
32
 *
33
 * @hw: the me hardware structure
34 35
 * @offset: offset from which to read the data
 *
36
 * Return: register value (u32)
37
 */
38
static inline u32 mei_me_reg_read(const struct mei_me_hw *hw,
39 40
			       unsigned long offset)
{
41
	return ioread32(hw->mem_addr + offset);
42 43 44 45
}


/**
46
 * mei_me_reg_write - Writes 32bit data to the mei device
47
 *
48
 * @hw: the me hardware structure
49 50 51
 * @offset: offset from which to write the data
 * @value: register value to write (u32)
 */
52
static inline void mei_me_reg_write(const struct mei_me_hw *hw,
53 54
				 unsigned long offset, u32 value)
{
55
	iowrite32(value, hw->mem_addr + offset);
56
}
O
Oren Weil 已提交
57

58
/**
59
 * mei_me_mecbrw_read - Reads 32bit data from ME circular buffer
T
Tomas Winkler 已提交
60
 *  read window register
61 62 63
 *
 * @dev: the device structure
 *
64
 * Return: ME_CB_RW register value (u32)
65
 */
66
static inline u32 mei_me_mecbrw_read(const struct mei_device *dev)
67
{
68
	return mei_me_reg_read(to_me_hw(dev), ME_CB_RW);
69
}
70 71 72 73 74 75 76 77 78 79 80 81

/**
 * mei_me_hcbww_write - write 32bit data to the host circular buffer
 *
 * @dev: the device structure
 * @data: 32bit data to be written to the host circular buffer
 */
static inline void mei_me_hcbww_write(struct mei_device *dev, u32 data)
{
	mei_me_reg_write(to_me_hw(dev), H_CB_WW, data);
}

82
/**
83
 * mei_me_mecsr_read - Reads 32bit data from the ME CSR
84
 *
85
 * @dev: the device structure
86
 *
87
 * Return: ME_CSR_HA register value (u32)
88
 */
89
static inline u32 mei_me_mecsr_read(const struct mei_device *dev)
90
{
T
Tomas Winkler 已提交
91 92 93 94 95 96
	u32 reg;

	reg = mei_me_reg_read(to_me_hw(dev), ME_CSR_HA);
	trace_mei_reg_read(dev->dev, "ME_CSR_HA", ME_CSR_HA, reg);

	return reg;
97
}
O
Oren Weil 已提交
98 99

/**
T
Tomas Winkler 已提交
100 101
 * mei_hcsr_read - Reads 32bit data from the host CSR
 *
102
 * @dev: the device structure
T
Tomas Winkler 已提交
103
 *
104
 * Return: H_CSR register value (u32)
T
Tomas Winkler 已提交
105
 */
106
static inline u32 mei_hcsr_read(const struct mei_device *dev)
T
Tomas Winkler 已提交
107
{
T
Tomas Winkler 已提交
108 109 110 111 112 113
	u32 reg;

	reg = mei_me_reg_read(to_me_hw(dev), H_CSR);
	trace_mei_reg_read(dev->dev, "H_CSR", H_CSR, reg);

	return reg;
114 115 116 117 118 119 120 121 122 123
}

/**
 * mei_hcsr_write - writes H_CSR register to the mei device
 *
 * @dev: the device structure
 * @reg: new register value
 */
static inline void mei_hcsr_write(struct mei_device *dev, u32 reg)
{
T
Tomas Winkler 已提交
124
	trace_mei_reg_write(dev->dev, "H_CSR", H_CSR, reg);
125
	mei_me_reg_write(to_me_hw(dev), H_CSR, reg);
T
Tomas Winkler 已提交
126 127 128 129
}

/**
 * mei_hcsr_set - writes H_CSR register to the mei device,
O
Oren Weil 已提交
130 131
 * and ignores the H_IS bit for it is write-one-to-zero.
 *
132 133
 * @dev: the device structure
 * @reg: new register value
O
Oren Weil 已提交
134
 */
135
static inline void mei_hcsr_set(struct mei_device *dev, u32 reg)
O
Oren Weil 已提交
136
{
137
	reg &= ~H_CSR_IS_MASK;
138
	mei_hcsr_write(dev, reg);
O
Oren Weil 已提交
139 140
}

141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
/**
 * mei_me_d0i3c_read - Reads 32bit data from the D0I3C register
 *
 * @dev: the device structure
 *
 * Return: H_D0I3C register value (u32)
 */
static inline u32 mei_me_d0i3c_read(const struct mei_device *dev)
{
	u32 reg;

	reg = mei_me_reg_read(to_me_hw(dev), H_D0I3C);
	trace_mei_reg_read(dev->dev, "H_D0I3C", H_CSR, reg);

	return reg;
}

/**
 * mei_me_d0i3c_write - writes H_D0I3C register to device
 *
 * @dev: the device structure
 * @reg: new register value
 */
static inline void mei_me_d0i3c_write(struct mei_device *dev, u32 reg)
{
	trace_mei_reg_write(dev->dev, "H_D0I3C", H_CSR, reg);
	mei_me_reg_write(to_me_hw(dev), H_D0I3C, reg);
}

170 171 172 173 174
/**
 * mei_me_fw_status - read fw status register from pci config space
 *
 * @dev: mei device
 * @fw_status: fw status register values
A
Alexander Usyskin 已提交
175 176
 *
 * Return: 0 on success, error otherwise
177 178 179 180 181
 */
static int mei_me_fw_status(struct mei_device *dev,
			    struct mei_fw_status *fw_status)
{
	struct pci_dev *pdev = to_pci_dev(dev->dev);
182 183
	struct mei_me_hw *hw = to_me_hw(dev);
	const struct mei_fw_status *fw_src = &hw->cfg->fw_status;
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
	int ret;
	int i;

	if (!fw_status)
		return -EINVAL;

	fw_status->count = fw_src->count;
	for (i = 0; i < fw_src->count && i < MEI_FW_STATUS_MAX; i++) {
		ret = pci_read_config_dword(pdev,
			fw_src->status[i], &fw_status->status[i]);
		if (ret)
			return ret;
	}

	return 0;
}
200 201

/**
202
 * mei_me_hw_config - configure hw dependent settings
203 204 205
 *
 * @dev: mei device
 */
206
static void mei_me_hw_config(struct mei_device *dev)
207
{
208
	struct pci_dev *pdev = to_pci_dev(dev->dev);
209
	struct mei_me_hw *hw = to_me_hw(dev);
210 211
	u32 hcsr, reg;

212
	/* Doesn't change in runtime */
213
	hcsr = mei_hcsr_read(dev);
214
	dev->hbuf_depth = (hcsr & H_CBD) >> 24;
215

216 217 218 219
	reg = 0;
	pci_read_config_dword(pdev, PCI_CFG_HFS_1, &reg);
	hw->d0i3_supported =
		((reg & PCI_CFG_HFS_1_D0I3_MSK) == PCI_CFG_HFS_1_D0I3_MSK);
220 221 222 223 224 225 226

	hw->pg_state = MEI_PG_OFF;
	if (hw->d0i3_supported) {
		reg = mei_me_d0i3c_read(dev);
		if (reg & H_D0I3C_I3)
			hw->pg_state = MEI_PG_ON;
	}
227
}
228 229 230 231 232

/**
 * mei_me_pg_state  - translate internal pg state
 *   to the mei power gating state
 *
A
Alexander Usyskin 已提交
233 234 235
 * @dev:  mei device
 *
 * Return: MEI_PG_OFF if aliveness is on and MEI_PG_ON otherwise
236 237 238
 */
static inline enum mei_pg_state mei_me_pg_state(struct mei_device *dev)
{
239
	struct mei_me_hw *hw = to_me_hw(dev);
240

241
	return hw->pg_state;
242 243
}

O
Oren Weil 已提交
244
/**
A
Alexander Usyskin 已提交
245
 * mei_me_intr_clear - clear and stop interrupts
246 247 248
 *
 * @dev: the device structure
 */
249
static void mei_me_intr_clear(struct mei_device *dev)
250
{
251
	u32 hcsr = mei_hcsr_read(dev);
252

253
	if (hcsr & H_CSR_IS_MASK)
254
		mei_hcsr_write(dev, hcsr);
255 256
}
/**
257
 * mei_me_intr_enable - enables mei device interrupts
O
Oren Weil 已提交
258 259 260
 *
 * @dev: the device structure
 */
261
static void mei_me_intr_enable(struct mei_device *dev)
O
Oren Weil 已提交
262
{
263
	u32 hcsr = mei_hcsr_read(dev);
264

265
	hcsr |= H_CSR_IE_MASK;
266
	mei_hcsr_set(dev, hcsr);
O
Oren Weil 已提交
267 268 269
}

/**
A
Alexander Usyskin 已提交
270
 * mei_me_intr_disable - disables mei device interrupts
O
Oren Weil 已提交
271 272 273
 *
 * @dev: the device structure
 */
274
static void mei_me_intr_disable(struct mei_device *dev)
O
Oren Weil 已提交
275
{
276
	u32 hcsr = mei_hcsr_read(dev);
277

278
	hcsr  &= ~H_CSR_IE_MASK;
279
	mei_hcsr_set(dev, hcsr);
O
Oren Weil 已提交
280 281
}

282 283 284 285 286 287 288
/**
 * mei_me_hw_reset_release - release device from the reset
 *
 * @dev: the device structure
 */
static void mei_me_hw_reset_release(struct mei_device *dev)
{
289
	u32 hcsr = mei_hcsr_read(dev);
290 291 292

	hcsr |= H_IG;
	hcsr &= ~H_RST;
293
	mei_hcsr_set(dev, hcsr);
T
Tomas Winkler 已提交
294 295 296

	/* complete this write before we set host ready on another CPU */
	mmiowb();
297
}
298

299
/**
300
 * mei_me_host_set_ready - enable device
301
 *
A
Alexander Usyskin 已提交
302
 * @dev: mei device
303
 */
304
static void mei_me_host_set_ready(struct mei_device *dev)
305
{
306
	u32 hcsr = mei_hcsr_read(dev);
307

308
	hcsr |= H_CSR_IE_MASK | H_IG | H_RDY;
309
	mei_hcsr_set(dev, hcsr);
310
}
A
Alexander Usyskin 已提交
311

312
/**
313
 * mei_me_host_is_ready - check whether the host has turned ready
314
 *
315 316
 * @dev: mei device
 * Return: bool
317
 */
318
static bool mei_me_host_is_ready(struct mei_device *dev)
319
{
320
	u32 hcsr = mei_hcsr_read(dev);
321

322
	return (hcsr & H_RDY) == H_RDY;
323 324 325
}

/**
326
 * mei_me_hw_is_ready - check whether the me(hw) has turned ready
327
 *
328 329
 * @dev: mei device
 * Return: bool
330
 */
331
static bool mei_me_hw_is_ready(struct mei_device *dev)
332
{
333
	u32 mecsr = mei_me_mecsr_read(dev);
334

335
	return (mecsr & ME_RDY_HRA) == ME_RDY_HRA;
336
}
337

A
Alexander Usyskin 已提交
338 339 340 341 342 343 344
/**
 * mei_me_hw_ready_wait - wait until the me(hw) has turned ready
 *  or timeout is reached
 *
 * @dev: mei device
 * Return: 0 on success, error otherwise
 */
T
Tomas Winkler 已提交
345 346 347
static int mei_me_hw_ready_wait(struct mei_device *dev)
{
	mutex_unlock(&dev->device_lock);
348
	wait_event_timeout(dev->wait_hw_ready,
349
			dev->recvd_hw_ready,
350
			mei_secs_to_jiffies(MEI_HW_READY_TIMEOUT));
T
Tomas Winkler 已提交
351
	mutex_lock(&dev->device_lock);
352
	if (!dev->recvd_hw_ready) {
353
		dev_err(dev->dev, "wait hw ready failed\n");
354
		return -ETIME;
T
Tomas Winkler 已提交
355 356
	}

357
	mei_me_hw_reset_release(dev);
T
Tomas Winkler 已提交
358 359 360 361
	dev->recvd_hw_ready = false;
	return 0;
}

A
Alexander Usyskin 已提交
362 363 364 365 366 367
/**
 * mei_me_hw_start - hw start routine
 *
 * @dev: mei device
 * Return: 0 on success, error otherwise
 */
T
Tomas Winkler 已提交
368 369 370
static int mei_me_hw_start(struct mei_device *dev)
{
	int ret = mei_me_hw_ready_wait(dev);
371

T
Tomas Winkler 已提交
372 373
	if (ret)
		return ret;
374
	dev_dbg(dev->dev, "hw is ready\n");
T
Tomas Winkler 已提交
375 376 377 378 379 380

	mei_me_host_set_ready(dev);
	return ret;
}


O
Oren Weil 已提交
381
/**
382
 * mei_hbuf_filled_slots - gets number of device filled buffer slots
O
Oren Weil 已提交
383
 *
384
 * @dev: the device structure
O
Oren Weil 已提交
385
 *
386
 * Return: number of filled slots
O
Oren Weil 已提交
387
 */
388
static unsigned char mei_hbuf_filled_slots(struct mei_device *dev)
O
Oren Weil 已提交
389
{
390
	u32 hcsr;
O
Oren Weil 已提交
391 392
	char read_ptr, write_ptr;

393
	hcsr = mei_hcsr_read(dev);
394

395 396
	read_ptr = (char) ((hcsr & H_CBRP) >> 8);
	write_ptr = (char) ((hcsr & H_CBWP) >> 16);
O
Oren Weil 已提交
397 398 399 400 401

	return (unsigned char) (write_ptr - read_ptr);
}

/**
402
 * mei_me_hbuf_is_empty - checks if host buffer is empty.
O
Oren Weil 已提交
403 404 405
 *
 * @dev: the device structure
 *
406
 * Return: true if empty, false - otherwise.
O
Oren Weil 已提交
407
 */
408
static bool mei_me_hbuf_is_empty(struct mei_device *dev)
O
Oren Weil 已提交
409
{
410
	return mei_hbuf_filled_slots(dev) == 0;
O
Oren Weil 已提交
411 412 413
}

/**
414
 * mei_me_hbuf_empty_slots - counts write empty slots.
O
Oren Weil 已提交
415 416 417
 *
 * @dev: the device structure
 *
418
 * Return: -EOVERFLOW if overflow, otherwise empty slots count
O
Oren Weil 已提交
419
 */
420
static int mei_me_hbuf_empty_slots(struct mei_device *dev)
O
Oren Weil 已提交
421
{
422
	unsigned char filled_slots, empty_slots;
O
Oren Weil 已提交
423

424
	filled_slots = mei_hbuf_filled_slots(dev);
425
	empty_slots = dev->hbuf_depth - filled_slots;
O
Oren Weil 已提交
426 427

	/* check for overflow */
428
	if (filled_slots > dev->hbuf_depth)
O
Oren Weil 已提交
429 430 431 432 433
		return -EOVERFLOW;

	return empty_slots;
}

A
Alexander Usyskin 已提交
434 435 436 437 438 439 440
/**
 * mei_me_hbuf_max_len - returns size of hw buffer.
 *
 * @dev: the device structure
 *
 * Return: size of hw buffer in bytes
 */
441 442 443 444 445 446
static size_t mei_me_hbuf_max_len(const struct mei_device *dev)
{
	return dev->hbuf_depth * sizeof(u32) - sizeof(struct mei_msg_hdr);
}


O
Oren Weil 已提交
447
/**
448
 * mei_me_write_message - writes a message to mei device.
O
Oren Weil 已提交
449 450
 *
 * @dev: the device structure
451
 * @header: mei HECI header of message
452
 * @buf: message payload will be written
O
Oren Weil 已提交
453
 *
454
 * Return: -EIO if write has failed
O
Oren Weil 已提交
455
 */
456 457 458
static int mei_me_write_message(struct mei_device *dev,
			struct mei_msg_hdr *header,
			unsigned char *buf)
O
Oren Weil 已提交
459
{
T
Tomas Winkler 已提交
460
	unsigned long rem;
461
	unsigned long length = header->length;
462
	u32 *reg_buf = (u32 *)buf;
463
	u32 hcsr;
T
Tomas Winkler 已提交
464
	u32 dw_cnt;
465 466
	int i;
	int empty_slots;
O
Oren Weil 已提交
467

468
	dev_dbg(dev->dev, MEI_HDR_FMT, MEI_HDR_PRM(header));
O
Oren Weil 已提交
469

470
	empty_slots = mei_hbuf_empty_slots(dev);
471
	dev_dbg(dev->dev, "empty slots = %hu.\n", empty_slots);
O
Oren Weil 已提交
472

473
	dw_cnt = mei_data2slots(length);
474
	if (empty_slots < 0 || dw_cnt > empty_slots)
475
		return -EMSGSIZE;
O
Oren Weil 已提交
476

477
	mei_me_hcbww_write(dev, *((u32 *) header));
O
Oren Weil 已提交
478

479
	for (i = 0; i < length / 4; i++)
480
		mei_me_hcbww_write(dev, reg_buf[i]);
O
Oren Weil 已提交
481

482 483 484
	rem = length & 0x3;
	if (rem > 0) {
		u32 reg = 0;
485

486
		memcpy(&reg, &buf[length - rem], rem);
487
		mei_me_hcbww_write(dev, reg);
O
Oren Weil 已提交
488 489
	}

490 491
	hcsr = mei_hcsr_read(dev) | H_IG;
	mei_hcsr_set(dev, hcsr);
492
	if (!mei_me_hw_is_ready(dev))
493
		return -EIO;
O
Oren Weil 已提交
494

495
	return 0;
O
Oren Weil 已提交
496 497 498
}

/**
499
 * mei_me_count_full_read_slots - counts read full slots.
O
Oren Weil 已提交
500 501 502
 *
 * @dev: the device structure
 *
503
 * Return: -EOVERFLOW if overflow, otherwise filled slots count
O
Oren Weil 已提交
504
 */
505
static int mei_me_count_full_read_slots(struct mei_device *dev)
O
Oren Weil 已提交
506
{
507
	u32 me_csr;
O
Oren Weil 已提交
508 509 510
	char read_ptr, write_ptr;
	unsigned char buffer_depth, filled_slots;

511
	me_csr = mei_me_mecsr_read(dev);
512 513 514
	buffer_depth = (unsigned char)((me_csr & ME_CBD_HRA) >> 24);
	read_ptr = (char) ((me_csr & ME_CBRP_HRA) >> 8);
	write_ptr = (char) ((me_csr & ME_CBWP_HRA) >> 16);
O
Oren Weil 已提交
515 516 517 518 519 520
	filled_slots = (unsigned char) (write_ptr - read_ptr);

	/* check for overflow */
	if (filled_slots > buffer_depth)
		return -EOVERFLOW;

521
	dev_dbg(dev->dev, "filled_slots =%08x\n", filled_slots);
O
Oren Weil 已提交
522 523 524 525
	return (int)filled_slots;
}

/**
526
 * mei_me_read_slots - reads a message from mei device.
O
Oren Weil 已提交
527 528 529 530
 *
 * @dev: the device structure
 * @buffer: message buffer will be written
 * @buffer_length: message size will be read
A
Alexander Usyskin 已提交
531 532
 *
 * Return: always 0
O
Oren Weil 已提交
533
 */
534
static int mei_me_read_slots(struct mei_device *dev, unsigned char *buffer,
535
		    unsigned long buffer_length)
O
Oren Weil 已提交
536
{
537
	u32 *reg_buf = (u32 *)buffer;
538
	u32 hcsr;
O
Oren Weil 已提交
539

540
	for (; buffer_length >= sizeof(u32); buffer_length -= sizeof(u32))
541
		*reg_buf++ = mei_me_mecbrw_read(dev);
O
Oren Weil 已提交
542 543

	if (buffer_length > 0) {
544
		u32 reg = mei_me_mecbrw_read(dev);
545

546
		memcpy(reg_buf, &reg, buffer_length);
O
Oren Weil 已提交
547 548
	}

549 550
	hcsr = mei_hcsr_read(dev) | H_IG;
	mei_hcsr_set(dev, hcsr);
551
	return 0;
O
Oren Weil 已提交
552 553
}

554
/**
555
 * mei_me_pg_set - write pg enter register
556 557 558
 *
 * @dev: the device structure
 */
559
static void mei_me_pg_set(struct mei_device *dev)
560 561
{
	struct mei_me_hw *hw = to_me_hw(dev);
T
Tomas Winkler 已提交
562 563 564 565
	u32 reg;

	reg = mei_me_reg_read(hw, H_HPG_CSR);
	trace_mei_reg_read(dev->dev, "H_HPG_CSR", H_HPG_CSR, reg);
566

567
	reg |= H_HPG_CSR_PGI;
T
Tomas Winkler 已提交
568 569

	trace_mei_reg_write(dev->dev, "H_HPG_CSR", H_HPG_CSR, reg);
570 571 572 573
	mei_me_reg_write(hw, H_HPG_CSR, reg);
}

/**
574
 * mei_me_pg_unset - write pg exit register
575 576 577
 *
 * @dev: the device structure
 */
578
static void mei_me_pg_unset(struct mei_device *dev)
579 580
{
	struct mei_me_hw *hw = to_me_hw(dev);
T
Tomas Winkler 已提交
581 582 583 584
	u32 reg;

	reg = mei_me_reg_read(hw, H_HPG_CSR);
	trace_mei_reg_read(dev->dev, "H_HPG_CSR", H_HPG_CSR, reg);
585 586 587 588

	WARN(!(reg & H_HPG_CSR_PGI), "PGI is not set\n");

	reg |= H_HPG_CSR_PGIHEXR;
T
Tomas Winkler 已提交
589 590

	trace_mei_reg_write(dev->dev, "H_HPG_CSR", H_HPG_CSR, reg);
591 592 593
	mei_me_reg_write(hw, H_HPG_CSR, reg);
}

594
/**
595
 * mei_me_pg_legacy_enter_sync - perform legacy pg entry procedure
596 597 598
 *
 * @dev: the device structure
 *
599
 * Return: 0 on success an error code otherwise
600
 */
601
static int mei_me_pg_legacy_enter_sync(struct mei_device *dev)
602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
{
	struct mei_me_hw *hw = to_me_hw(dev);
	unsigned long timeout = mei_secs_to_jiffies(MEI_PGI_TIMEOUT);
	int ret;

	dev->pg_event = MEI_PG_EVENT_WAIT;

	ret = mei_hbm_pg(dev, MEI_PG_ISOLATION_ENTRY_REQ_CMD);
	if (ret)
		return ret;

	mutex_unlock(&dev->device_lock);
	wait_event_timeout(dev->wait_pg,
		dev->pg_event == MEI_PG_EVENT_RECEIVED, timeout);
	mutex_lock(&dev->device_lock);

	if (dev->pg_event == MEI_PG_EVENT_RECEIVED) {
619
		mei_me_pg_set(dev);
620 621 622 623 624 625 626 627 628 629 630 631
		ret = 0;
	} else {
		ret = -ETIME;
	}

	dev->pg_event = MEI_PG_EVENT_IDLE;
	hw->pg_state = MEI_PG_ON;

	return ret;
}

/**
632
 * mei_me_pg_legacy_exit_sync - perform legacy pg exit procedure
633 634 635
 *
 * @dev: the device structure
 *
636
 * Return: 0 on success an error code otherwise
637
 */
638
static int mei_me_pg_legacy_exit_sync(struct mei_device *dev)
639 640 641 642 643 644 645 646 647 648
{
	struct mei_me_hw *hw = to_me_hw(dev);
	unsigned long timeout = mei_secs_to_jiffies(MEI_PGI_TIMEOUT);
	int ret;

	if (dev->pg_event == MEI_PG_EVENT_RECEIVED)
		goto reply;

	dev->pg_event = MEI_PG_EVENT_WAIT;

649
	mei_me_pg_unset(dev);
650 651 652 653 654 655 656

	mutex_unlock(&dev->device_lock);
	wait_event_timeout(dev->wait_pg,
		dev->pg_event == MEI_PG_EVENT_RECEIVED, timeout);
	mutex_lock(&dev->device_lock);

reply:
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673
	if (dev->pg_event != MEI_PG_EVENT_RECEIVED) {
		ret = -ETIME;
		goto out;
	}

	dev->pg_event = MEI_PG_EVENT_INTR_WAIT;
	ret = mei_hbm_pg(dev, MEI_PG_ISOLATION_EXIT_RES_CMD);
	if (ret)
		return ret;

	mutex_unlock(&dev->device_lock);
	wait_event_timeout(dev->wait_pg,
		dev->pg_event == MEI_PG_EVENT_INTR_RECEIVED, timeout);
	mutex_lock(&dev->device_lock);

	if (dev->pg_event == MEI_PG_EVENT_INTR_RECEIVED)
		ret = 0;
674 675 676
	else
		ret = -ETIME;

677
out:
678 679 680 681 682 683
	dev->pg_event = MEI_PG_EVENT_IDLE;
	hw->pg_state = MEI_PG_OFF;

	return ret;
}

684 685 686 687 688 689 690 691 692 693 694 695 696
/**
 * mei_me_pg_in_transition - is device now in pg transition
 *
 * @dev: the device structure
 *
 * Return: true if in pg transition, false otherwise
 */
static bool mei_me_pg_in_transition(struct mei_device *dev)
{
	return dev->pg_event >= MEI_PG_EVENT_WAIT &&
	       dev->pg_event <= MEI_PG_EVENT_INTR_WAIT;
}

697 698 699 700 701
/**
 * mei_me_pg_is_enabled - detect if PG is supported by HW
 *
 * @dev: the device structure
 *
702
 * Return: true is pg supported, false otherwise
703 704 705
 */
static bool mei_me_pg_is_enabled(struct mei_device *dev)
{
706
	struct mei_me_hw *hw = to_me_hw(dev);
707
	u32 reg = mei_me_mecsr_read(dev);
708

709 710 711
	if (hw->d0i3_supported)
		return true;

712 713 714
	if ((reg & ME_PGIC_HRA) == 0)
		goto notsupported;

715
	if (!dev->hbm_f_pg_supported)
716 717 718 719 720
		goto notsupported;

	return true;

notsupported:
721 722
	dev_dbg(dev->dev, "pg: not supported: d0i3 = %d HGP = %d hbm version %d.%d ?= %d.%d\n",
		hw->d0i3_supported,
723 724 725 726 727 728 729 730 731
		!!(reg & ME_PGIC_HRA),
		dev->version.major_version,
		dev->version.minor_version,
		HBM_MAJOR_VERSION_PGI,
		HBM_MINOR_VERSION_PGI);

	return false;
}

732
/**
733
 * mei_me_d0i3_set - write d0i3 register bit on mei device.
734 735
 *
 * @dev: the device structure
736 737 738
 * @intr: ask for interrupt
 *
 * Return: D0I3C register value
739
 */
740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937
static u32 mei_me_d0i3_set(struct mei_device *dev, bool intr)
{
	u32 reg = mei_me_d0i3c_read(dev);

	reg |= H_D0I3C_I3;
	if (intr)
		reg |= H_D0I3C_IR;
	else
		reg &= ~H_D0I3C_IR;
	mei_me_d0i3c_write(dev, reg);
	/* read it to ensure HW consistency */
	reg = mei_me_d0i3c_read(dev);
	return reg;
}

/**
 * mei_me_d0i3_unset - clean d0i3 register bit on mei device.
 *
 * @dev: the device structure
 *
 * Return: D0I3C register value
 */
static u32 mei_me_d0i3_unset(struct mei_device *dev)
{
	u32 reg = mei_me_d0i3c_read(dev);

	reg &= ~H_D0I3C_I3;
	reg |= H_D0I3C_IR;
	mei_me_d0i3c_write(dev, reg);
	/* read it to ensure HW consistency */
	reg = mei_me_d0i3c_read(dev);
	return reg;
}

/**
 * mei_me_d0i3_enter_sync - perform d0i3 entry procedure
 *
 * @dev: the device structure
 *
 * Return: 0 on success an error code otherwise
 */
static int mei_me_d0i3_enter_sync(struct mei_device *dev)
{
	struct mei_me_hw *hw = to_me_hw(dev);
	unsigned long d0i3_timeout = mei_secs_to_jiffies(MEI_D0I3_TIMEOUT);
	unsigned long pgi_timeout = mei_secs_to_jiffies(MEI_PGI_TIMEOUT);
	int ret;
	u32 reg;

	reg = mei_me_d0i3c_read(dev);
	if (reg & H_D0I3C_I3) {
		/* we are in d0i3, nothing to do */
		dev_dbg(dev->dev, "d0i3 set not needed\n");
		ret = 0;
		goto on;
	}

	/* PGI entry procedure */
	dev->pg_event = MEI_PG_EVENT_WAIT;

	ret = mei_hbm_pg(dev, MEI_PG_ISOLATION_ENTRY_REQ_CMD);
	if (ret)
		/* FIXME: should we reset here? */
		goto out;

	mutex_unlock(&dev->device_lock);
	wait_event_timeout(dev->wait_pg,
		dev->pg_event == MEI_PG_EVENT_RECEIVED, pgi_timeout);
	mutex_lock(&dev->device_lock);

	if (dev->pg_event != MEI_PG_EVENT_RECEIVED) {
		ret = -ETIME;
		goto out;
	}
	/* end PGI entry procedure */

	dev->pg_event = MEI_PG_EVENT_INTR_WAIT;

	reg = mei_me_d0i3_set(dev, true);
	if (!(reg & H_D0I3C_CIP)) {
		dev_dbg(dev->dev, "d0i3 enter wait not needed\n");
		ret = 0;
		goto on;
	}

	mutex_unlock(&dev->device_lock);
	wait_event_timeout(dev->wait_pg,
		dev->pg_event == MEI_PG_EVENT_INTR_RECEIVED, d0i3_timeout);
	mutex_lock(&dev->device_lock);

	if (dev->pg_event != MEI_PG_EVENT_INTR_RECEIVED) {
		reg = mei_me_d0i3c_read(dev);
		if (!(reg & H_D0I3C_I3)) {
			ret = -ETIME;
			goto out;
		}
	}

	ret = 0;
on:
	hw->pg_state = MEI_PG_ON;
out:
	dev->pg_event = MEI_PG_EVENT_IDLE;
	dev_dbg(dev->dev, "d0i3 enter ret = %d\n", ret);
	return ret;
}

/**
 * mei_me_d0i3_enter - perform d0i3 entry procedure
 *   no hbm PG handshake
 *   no waiting for confirmation; runs with interrupts
 *   disabled
 *
 * @dev: the device structure
 *
 * Return: 0 on success an error code otherwise
 */
static int mei_me_d0i3_enter(struct mei_device *dev)
{
	struct mei_me_hw *hw = to_me_hw(dev);
	u32 reg;

	reg = mei_me_d0i3c_read(dev);
	if (reg & H_D0I3C_I3) {
		/* we are in d0i3, nothing to do */
		dev_dbg(dev->dev, "already d0i3 : set not needed\n");
		goto on;
	}

	mei_me_d0i3_set(dev, false);
on:
	hw->pg_state = MEI_PG_ON;
	dev->pg_event = MEI_PG_EVENT_IDLE;
	dev_dbg(dev->dev, "d0i3 enter\n");
	return 0;
}

/**
 * mei_me_d0i3_exit_sync - perform d0i3 exit procedure
 *
 * @dev: the device structure
 *
 * Return: 0 on success an error code otherwise
 */
static int mei_me_d0i3_exit_sync(struct mei_device *dev)
{
	struct mei_me_hw *hw = to_me_hw(dev);
	unsigned long timeout = mei_secs_to_jiffies(MEI_D0I3_TIMEOUT);
	int ret;
	u32 reg;

	dev->pg_event = MEI_PG_EVENT_INTR_WAIT;

	reg = mei_me_d0i3c_read(dev);
	if (!(reg & H_D0I3C_I3)) {
		/* we are not in d0i3, nothing to do */
		dev_dbg(dev->dev, "d0i3 exit not needed\n");
		ret = 0;
		goto off;
	}

	reg = mei_me_d0i3_unset(dev);
	if (!(reg & H_D0I3C_CIP)) {
		dev_dbg(dev->dev, "d0i3 exit wait not needed\n");
		ret = 0;
		goto off;
	}

	mutex_unlock(&dev->device_lock);
	wait_event_timeout(dev->wait_pg,
		dev->pg_event == MEI_PG_EVENT_INTR_RECEIVED, timeout);
	mutex_lock(&dev->device_lock);

	if (dev->pg_event != MEI_PG_EVENT_INTR_RECEIVED) {
		reg = mei_me_d0i3c_read(dev);
		if (reg & H_D0I3C_I3) {
			ret = -ETIME;
			goto out;
		}
	}

	ret = 0;
off:
	hw->pg_state = MEI_PG_OFF;
out:
	dev->pg_event = MEI_PG_EVENT_IDLE;

	dev_dbg(dev->dev, "d0i3 exit ret = %d\n", ret);
	return ret;
}

/**
 * mei_me_pg_legacy_intr - perform legacy pg processing
 *			   in interrupt thread handler
 *
 * @dev: the device structure
 */
static void mei_me_pg_legacy_intr(struct mei_device *dev)
938 939 940 941 942 943 944 945 946 947 948 949
{
	struct mei_me_hw *hw = to_me_hw(dev);

	if (dev->pg_event != MEI_PG_EVENT_INTR_WAIT)
		return;

	dev->pg_event = MEI_PG_EVENT_INTR_RECEIVED;
	hw->pg_state = MEI_PG_OFF;
	if (waitqueue_active(&dev->wait_pg))
		wake_up(&dev->wait_pg);
}

950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
/**
 * mei_me_d0i3_intr - perform d0i3 processing in interrupt thread handler
 *
 * @dev: the device structure
 */
static void mei_me_d0i3_intr(struct mei_device *dev)
{
	struct mei_me_hw *hw = to_me_hw(dev);

	if (dev->pg_event == MEI_PG_EVENT_INTR_WAIT &&
	    (hw->intr_source & H_D0I3C_IS)) {
		dev->pg_event = MEI_PG_EVENT_INTR_RECEIVED;
		if (hw->pg_state == MEI_PG_ON) {
			hw->pg_state = MEI_PG_OFF;
			if (dev->hbm_state != MEI_HBM_IDLE) {
				/*
				 * force H_RDY because it could be
				 * wiped off during PG
				 */
				dev_dbg(dev->dev, "d0i3 set host ready\n");
				mei_me_host_set_ready(dev);
			}
		} else {
			hw->pg_state = MEI_PG_ON;
		}

		wake_up(&dev->wait_pg);
	}

	if (hw->pg_state == MEI_PG_ON && (hw->intr_source & H_IS)) {
		/*
		 * HW sent some data and we are in D0i3, so
		 * we got here because of HW initiated exit from D0i3.
		 * Start runtime pm resume sequence to exit low power state.
		 */
		dev_dbg(dev->dev, "d0i3 want resume\n");
		mei_hbm_pg_resume(dev);
	}
}

/**
 * mei_me_pg_intr - perform pg processing in interrupt thread handler
 *
 * @dev: the device structure
 */
static void mei_me_pg_intr(struct mei_device *dev)
{
	struct mei_me_hw *hw = to_me_hw(dev);

	if (hw->d0i3_supported)
		mei_me_d0i3_intr(dev);
	else
		mei_me_pg_legacy_intr(dev);
}

/**
 * mei_me_pg_enter_sync - perform runtime pm entry procedure
 *
 * @dev: the device structure
 *
 * Return: 0 on success an error code otherwise
 */
int mei_me_pg_enter_sync(struct mei_device *dev)
{
	struct mei_me_hw *hw = to_me_hw(dev);

	if (hw->d0i3_supported)
		return mei_me_d0i3_enter_sync(dev);
	else
		return mei_me_pg_legacy_enter_sync(dev);
}

/**
 * mei_me_pg_exit_sync - perform runtime pm exit procedure
 *
 * @dev: the device structure
 *
 * Return: 0 on success an error code otherwise
 */
int mei_me_pg_exit_sync(struct mei_device *dev)
{
	struct mei_me_hw *hw = to_me_hw(dev);

	if (hw->d0i3_supported)
		return mei_me_d0i3_exit_sync(dev);
	else
		return mei_me_pg_legacy_exit_sync(dev);
}

1039 1040 1041 1042 1043 1044
/**
 * mei_me_hw_reset - resets fw via mei csr register.
 *
 * @dev: the device structure
 * @intr_enable: if interrupt should be enabled after reset.
 *
1045
 * Return: 0 on success an error code otherwise
1046 1047 1048
 */
static int mei_me_hw_reset(struct mei_device *dev, bool intr_enable)
{
1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
	struct mei_me_hw *hw = to_me_hw(dev);
	int ret;
	u32 hcsr;

	if (intr_enable) {
		mei_me_intr_enable(dev);
		if (hw->d0i3_supported) {
			ret = mei_me_d0i3_exit_sync(dev);
			if (ret)
				return ret;
		}
	}
1061

1062
	hcsr = mei_hcsr_read(dev);
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
	/* H_RST may be found lit before reset is started,
	 * for example if preceding reset flow hasn't completed.
	 * In that case asserting H_RST will be ignored, therefore
	 * we need to clean H_RST bit to start a successful reset sequence.
	 */
	if ((hcsr & H_RST) == H_RST) {
		dev_warn(dev->dev, "H_RST is set = 0x%08X", hcsr);
		hcsr &= ~H_RST;
		mei_hcsr_set(dev, hcsr);
		hcsr = mei_hcsr_read(dev);
	}

	hcsr |= H_RST | H_IG | H_CSR_IS_MASK;

1077
	if (!intr_enable)
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
		hcsr &= ~H_CSR_IE_MASK;

	dev->recvd_hw_ready = false;
	mei_hcsr_write(dev, hcsr);

	/*
	 * Host reads the H_CSR once to ensure that the
	 * posted write to H_CSR completes.
	 */
	hcsr = mei_hcsr_read(dev);

	if ((hcsr & H_RST) == 0)
		dev_warn(dev->dev, "H_RST is not set = 0x%08X", hcsr);

	if ((hcsr & H_RDY) == H_RDY)
		dev_warn(dev->dev, "H_RDY is not cleared 0x%08X", hcsr);

1095
	if (!intr_enable) {
1096
		mei_me_hw_reset_release(dev);
1097 1098 1099 1100 1101 1102
		if (hw->d0i3_supported) {
			ret = mei_me_d0i3_enter(dev);
			if (ret)
				return ret;
		}
	}
1103 1104 1105
	return 0;
}

1106 1107 1108 1109 1110 1111
/**
 * mei_me_irq_quick_handler - The ISR of the MEI device
 *
 * @irq: The irq number
 * @dev_id: pointer to the device structure
 *
1112
 * Return: irqreturn_t
1113 1114 1115
 */
irqreturn_t mei_me_irq_quick_handler(int irq, void *dev_id)
{
1116 1117 1118
	struct mei_device *dev = (struct mei_device *)dev_id;
	struct mei_me_hw *hw = to_me_hw(dev);
	u32 hcsr;
1119

1120 1121
	hcsr = mei_hcsr_read(dev);
	if (!(hcsr & H_CSR_IS_MASK))
1122 1123
		return IRQ_NONE;

1124 1125 1126 1127
	hw->intr_source = hcsr & H_CSR_IS_MASK;
	dev_dbg(dev->dev, "interrupt source 0x%08X.\n", hw->intr_source);

	/* clear H_IS and H_D0I3C_IS bits in H_CSR to clear the interrupts */
1128
	mei_hcsr_write(dev, hcsr);
1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139

	return IRQ_WAKE_THREAD;
}

/**
 * mei_me_irq_thread_handler - function called after ISR to handle the interrupt
 * processing.
 *
 * @irq: The irq number
 * @dev_id: pointer to the device structure
 *
1140
 * Return: irqreturn_t
1141 1142 1143 1144 1145 1146 1147
 *
 */
irqreturn_t mei_me_irq_thread_handler(int irq, void *dev_id)
{
	struct mei_device *dev = (struct mei_device *) dev_id;
	struct mei_cl_cb complete_list;
	s32 slots;
1148
	int rets = 0;
1149

1150
	dev_dbg(dev->dev, "function called after ISR to handle the interrupt processing.\n");
1151 1152 1153 1154 1155
	/* initialize our complete list */
	mutex_lock(&dev->device_lock);
	mei_io_list_init(&complete_list);

	/* check if ME wants a reset */
1156
	if (!mei_hw_is_ready(dev) && dev->dev_state != MEI_DEV_RESETTING) {
1157
		dev_warn(dev->dev, "FW not ready: resetting.\n");
1158 1159
		schedule_work(&dev->reset_work);
		goto end;
1160 1161
	}

1162 1163
	mei_me_pg_intr(dev);

1164 1165 1166
	/*  check if we need to start the dev */
	if (!mei_host_is_ready(dev)) {
		if (mei_hw_is_ready(dev)) {
1167
			dev_dbg(dev->dev, "we need to start the dev.\n");
T
Tomas Winkler 已提交
1168
			dev->recvd_hw_ready = true;
1169
			wake_up(&dev->wait_hw_ready);
1170
		} else {
1171
			dev_dbg(dev->dev, "Spurious Interrupt\n");
1172
		}
1173
		goto end;
1174 1175 1176 1177
	}
	/* check slots available for reading */
	slots = mei_count_full_read_slots(dev);
	while (slots > 0) {
1178
		dev_dbg(dev->dev, "slots to read = %08x\n", slots);
1179
		rets = mei_irq_read_handler(dev, &complete_list, &slots);
1180 1181 1182 1183 1184 1185 1186
		/* There is a race between ME write and interrupt delivery:
		 * Not all data is always available immediately after the
		 * interrupt, so try to read again on the next interrupt.
		 */
		if (rets == -ENODATA)
			break;

1187
		if (rets && dev->dev_state != MEI_DEV_RESETTING) {
1188
			dev_err(dev->dev, "mei_irq_read_handler ret = %d.\n",
1189
						rets);
1190
			schedule_work(&dev->reset_work);
1191
			goto end;
1192
		}
1193
	}
1194

1195 1196
	dev->hbuf_is_ready = mei_hbuf_is_ready(dev);

1197 1198 1199
	/*
	 * During PG handshake only allowed write is the replay to the
	 * PG exit message, so block calling write function
1200
	 * if the pg event is in PG handshake
1201
	 */
1202 1203
	if (dev->pg_event != MEI_PG_EVENT_WAIT &&
	    dev->pg_event != MEI_PG_EVENT_RECEIVED) {
1204 1205 1206
		rets = mei_irq_write_handler(dev, &complete_list);
		dev->hbuf_is_ready = mei_hbuf_is_ready(dev);
	}
1207

1208
	mei_irq_compl_handler(dev, &complete_list);
1209

1210
end:
1211
	dev_dbg(dev->dev, "interrupt thread end ret = %d\n", rets);
1212
	mutex_unlock(&dev->device_lock);
1213 1214
	return IRQ_HANDLED;
}
1215

1216 1217
static const struct mei_hw_ops mei_me_hw_ops = {

1218
	.fw_status = mei_me_fw_status,
1219 1220
	.pg_state  = mei_me_pg_state,

1221 1222 1223 1224
	.host_is_ready = mei_me_host_is_ready,

	.hw_is_ready = mei_me_hw_is_ready,
	.hw_reset = mei_me_hw_reset,
T
Tomas Winkler 已提交
1225 1226
	.hw_config = mei_me_hw_config,
	.hw_start = mei_me_hw_start,
1227

1228
	.pg_in_transition = mei_me_pg_in_transition,
1229 1230
	.pg_is_enabled = mei_me_pg_is_enabled,

1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
	.intr_clear = mei_me_intr_clear,
	.intr_enable = mei_me_intr_enable,
	.intr_disable = mei_me_intr_disable,

	.hbuf_free_slots = mei_me_hbuf_empty_slots,
	.hbuf_is_ready = mei_me_hbuf_is_empty,
	.hbuf_max_len = mei_me_hbuf_max_len,

	.write = mei_me_write_message,

	.rdbuf_full_slots = mei_me_count_full_read_slots,
	.read_hdr = mei_me_mecbrw_read,
	.read = mei_me_read_slots
};

1246 1247 1248
static bool mei_me_fw_type_nm(struct pci_dev *pdev)
{
	u32 reg;
1249

1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
	pci_read_config_dword(pdev, PCI_CFG_HFS_2, &reg);
	/* make sure that bit 9 (NM) is up and bit 10 (DM) is down */
	return (reg & 0x600) == 0x200;
}

#define MEI_CFG_FW_NM                           \
	.quirk_probe = mei_me_fw_type_nm

static bool mei_me_fw_type_sps(struct pci_dev *pdev)
{
	u32 reg;
	/* Read ME FW Status check for SPS Firmware */
	pci_read_config_dword(pdev, PCI_CFG_HFS_1, &reg);
	/* if bits [19:16] = 15, running SPS Firmware */
	return (reg & 0xf0000) == 0xf0000;
}

#define MEI_CFG_FW_SPS                           \
	.quirk_probe = mei_me_fw_type_sps


1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
#define MEI_CFG_LEGACY_HFS                      \
	.fw_status.count = 0

#define MEI_CFG_ICH_HFS                        \
	.fw_status.count = 1,                   \
	.fw_status.status[0] = PCI_CFG_HFS_1

#define MEI_CFG_PCH_HFS                         \
	.fw_status.count = 2,                   \
	.fw_status.status[0] = PCI_CFG_HFS_1,   \
	.fw_status.status[1] = PCI_CFG_HFS_2

1283 1284 1285 1286 1287 1288 1289 1290
#define MEI_CFG_PCH8_HFS                        \
	.fw_status.count = 6,                   \
	.fw_status.status[0] = PCI_CFG_HFS_1,   \
	.fw_status.status[1] = PCI_CFG_HFS_2,   \
	.fw_status.status[2] = PCI_CFG_HFS_3,   \
	.fw_status.status[3] = PCI_CFG_HFS_4,   \
	.fw_status.status[4] = PCI_CFG_HFS_5,   \
	.fw_status.status[5] = PCI_CFG_HFS_6
1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306

/* ICH Legacy devices */
const struct mei_cfg mei_me_legacy_cfg = {
	MEI_CFG_LEGACY_HFS,
};

/* ICH devices */
const struct mei_cfg mei_me_ich_cfg = {
	MEI_CFG_ICH_HFS,
};

/* PCH devices */
const struct mei_cfg mei_me_pch_cfg = {
	MEI_CFG_PCH_HFS,
};

1307 1308 1309 1310 1311 1312 1313

/* PCH Cougar Point and Patsburg with quirk for Node Manager exclusion */
const struct mei_cfg mei_me_pch_cpt_pbg_cfg = {
	MEI_CFG_PCH_HFS,
	MEI_CFG_FW_NM,
};

1314 1315 1316 1317 1318 1319 1320 1321
/* PCH8 Lynx Point and newer devices */
const struct mei_cfg mei_me_pch8_cfg = {
	MEI_CFG_PCH8_HFS,
};

/* PCH8 Lynx Point with quirk for SPS Firmware exclusion */
const struct mei_cfg mei_me_pch8_sps_cfg = {
	MEI_CFG_PCH8_HFS,
1322 1323 1324
	MEI_CFG_FW_SPS,
};

1325
/**
1326
 * mei_me_dev_init - allocates and initializes the mei device structure
1327 1328
 *
 * @pdev: The pci device structure
1329
 * @cfg: per device generation config
1330
 *
1331
 * Return: The mei_device_device pointer on success, NULL on failure.
1332
 */
1333 1334
struct mei_device *mei_me_dev_init(struct pci_dev *pdev,
				   const struct mei_cfg *cfg)
1335 1336
{
	struct mei_device *dev;
1337
	struct mei_me_hw *hw;
1338 1339 1340 1341 1342

	dev = kzalloc(sizeof(struct mei_device) +
			 sizeof(struct mei_me_hw), GFP_KERNEL);
	if (!dev)
		return NULL;
1343
	hw = to_me_hw(dev);
1344

1345
	mei_device_init(dev, &pdev->dev, &mei_me_hw_ops);
1346
	hw->cfg = cfg;
1347 1348
	return dev;
}
1349