intel_ddi.c 92.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright © 2012 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
 *
 */

#include "i915_drv.h"
#include "intel_drv.h"

31 32 33
struct ddi_buf_trans {
	u32 trans1;	/* balance leg enable, de-emph level */
	u32 trans2;	/* vref sel, vswing */
34
	u8 i_boost;	/* SKL: I_boost; valid: 0x0, 0x1, 0x3, 0x7 */
35 36
};

37 38 39 40
/* HDMI/DVI modes ignore everything but the last 2 items. So we share
 * them for both DP and FDI transports, allowing those ports to
 * automatically adapt to HDMI connections as well
 */
41
static const struct ddi_buf_trans hsw_ddi_translations_dp[] = {
42 43 44 45 46 47 48 49 50
	{ 0x00FFFFFF, 0x0006000E, 0x0 },
	{ 0x00D75FFF, 0x0005000A, 0x0 },
	{ 0x00C30FFF, 0x00040006, 0x0 },
	{ 0x80AAAFFF, 0x000B0000, 0x0 },
	{ 0x00FFFFFF, 0x0005000A, 0x0 },
	{ 0x00D75FFF, 0x000C0004, 0x0 },
	{ 0x80C30FFF, 0x000B0000, 0x0 },
	{ 0x00FFFFFF, 0x00040006, 0x0 },
	{ 0x80D75FFF, 0x000B0000, 0x0 },
51 52
};

53
static const struct ddi_buf_trans hsw_ddi_translations_fdi[] = {
54 55 56 57 58 59 60 61 62
	{ 0x00FFFFFF, 0x0007000E, 0x0 },
	{ 0x00D75FFF, 0x000F000A, 0x0 },
	{ 0x00C30FFF, 0x00060006, 0x0 },
	{ 0x00AAAFFF, 0x001E0000, 0x0 },
	{ 0x00FFFFFF, 0x000F000A, 0x0 },
	{ 0x00D75FFF, 0x00160004, 0x0 },
	{ 0x00C30FFF, 0x001E0000, 0x0 },
	{ 0x00FFFFFF, 0x00060006, 0x0 },
	{ 0x00D75FFF, 0x001E0000, 0x0 },
63 64
};

65 66
static const struct ddi_buf_trans hsw_ddi_translations_hdmi[] = {
					/* Idx	NT mV d	T mV d	db	*/
67 68 69 70 71 72 73 74 75 76 77 78
	{ 0x00FFFFFF, 0x0006000E, 0x0 },/* 0:	400	400	0	*/
	{ 0x00E79FFF, 0x000E000C, 0x0 },/* 1:	400	500	2	*/
	{ 0x00D75FFF, 0x0005000A, 0x0 },/* 2:	400	600	3.5	*/
	{ 0x00FFFFFF, 0x0005000A, 0x0 },/* 3:	600	600	0	*/
	{ 0x00E79FFF, 0x001D0007, 0x0 },/* 4:	600	750	2	*/
	{ 0x00D75FFF, 0x000C0004, 0x0 },/* 5:	600	900	3.5	*/
	{ 0x00FFFFFF, 0x00040006, 0x0 },/* 6:	800	800	0	*/
	{ 0x80E79FFF, 0x00030002, 0x0 },/* 7:	800	1000	2	*/
	{ 0x00FFFFFF, 0x00140005, 0x0 },/* 8:	850	850	0	*/
	{ 0x00FFFFFF, 0x000C0004, 0x0 },/* 9:	900	900	0	*/
	{ 0x00FFFFFF, 0x001C0003, 0x0 },/* 10:	950	950	0	*/
	{ 0x80FFFFFF, 0x00030002, 0x0 },/* 11:	1000	1000	0	*/
79 80
};

81
static const struct ddi_buf_trans bdw_ddi_translations_edp[] = {
82 83 84 85 86 87 88 89 90
	{ 0x00FFFFFF, 0x00000012, 0x0 },
	{ 0x00EBAFFF, 0x00020011, 0x0 },
	{ 0x00C71FFF, 0x0006000F, 0x0 },
	{ 0x00AAAFFF, 0x000E000A, 0x0 },
	{ 0x00FFFFFF, 0x00020011, 0x0 },
	{ 0x00DB6FFF, 0x0005000F, 0x0 },
	{ 0x00BEEFFF, 0x000A000C, 0x0 },
	{ 0x00FFFFFF, 0x0005000F, 0x0 },
	{ 0x00DB6FFF, 0x000A000C, 0x0 },
91 92
};

93
static const struct ddi_buf_trans bdw_ddi_translations_dp[] = {
94 95 96 97 98 99 100 101 102
	{ 0x00FFFFFF, 0x0007000E, 0x0 },
	{ 0x00D75FFF, 0x000E000A, 0x0 },
	{ 0x00BEFFFF, 0x00140006, 0x0 },
	{ 0x80B2CFFF, 0x001B0002, 0x0 },
	{ 0x00FFFFFF, 0x000E000A, 0x0 },
	{ 0x00DB6FFF, 0x00160005, 0x0 },
	{ 0x80C71FFF, 0x001A0002, 0x0 },
	{ 0x00F7DFFF, 0x00180004, 0x0 },
	{ 0x80D75FFF, 0x001B0002, 0x0 },
103 104
};

105
static const struct ddi_buf_trans bdw_ddi_translations_fdi[] = {
106 107 108 109 110 111 112 113 114
	{ 0x00FFFFFF, 0x0001000E, 0x0 },
	{ 0x00D75FFF, 0x0004000A, 0x0 },
	{ 0x00C30FFF, 0x00070006, 0x0 },
	{ 0x00AAAFFF, 0x000C0000, 0x0 },
	{ 0x00FFFFFF, 0x0004000A, 0x0 },
	{ 0x00D75FFF, 0x00090004, 0x0 },
	{ 0x00C30FFF, 0x000C0000, 0x0 },
	{ 0x00FFFFFF, 0x00070006, 0x0 },
	{ 0x00D75FFF, 0x000C0000, 0x0 },
115 116
};

117 118
static const struct ddi_buf_trans bdw_ddi_translations_hdmi[] = {
					/* Idx	NT mV d	T mV df	db	*/
119 120 121 122 123 124 125 126 127 128
	{ 0x00FFFFFF, 0x0007000E, 0x0 },/* 0:	400	400	0	*/
	{ 0x00D75FFF, 0x000E000A, 0x0 },/* 1:	400	600	3.5	*/
	{ 0x00BEFFFF, 0x00140006, 0x0 },/* 2:	400	800	6	*/
	{ 0x00FFFFFF, 0x0009000D, 0x0 },/* 3:	450	450	0	*/
	{ 0x00FFFFFF, 0x000E000A, 0x0 },/* 4:	600	600	0	*/
	{ 0x00D7FFFF, 0x00140006, 0x0 },/* 5:	600	800	2.5	*/
	{ 0x80CB2FFF, 0x001B0002, 0x0 },/* 6:	600	1000	4.5	*/
	{ 0x00FFFFFF, 0x00140006, 0x0 },/* 7:	800	800	0	*/
	{ 0x80E79FFF, 0x001B0002, 0x0 },/* 8:	800	1000	2	*/
	{ 0x80FFFFFF, 0x001B0002, 0x0 },/* 9:	1000	1000	0	*/
129 130
};

131
/* Skylake H and S */
132
static const struct ddi_buf_trans skl_ddi_translations_dp[] = {
133 134 135
	{ 0x00002016, 0x000000A0, 0x0 },
	{ 0x00005012, 0x0000009B, 0x0 },
	{ 0x00007011, 0x00000088, 0x0 },
136
	{ 0x80009010, 0x000000C0, 0x1 },
137 138
	{ 0x00002016, 0x0000009B, 0x0 },
	{ 0x00005012, 0x00000088, 0x0 },
139
	{ 0x80007011, 0x000000C0, 0x1 },
140
	{ 0x00002016, 0x000000DF, 0x0 },
141
	{ 0x80005012, 0x000000C0, 0x1 },
142 143
};

144 145
/* Skylake U */
static const struct ddi_buf_trans skl_u_ddi_translations_dp[] = {
146
	{ 0x0000201B, 0x000000A2, 0x0 },
147
	{ 0x00005012, 0x00000088, 0x0 },
148
	{ 0x80007011, 0x000000CD, 0x0 },
149
	{ 0x80009010, 0x000000C0, 0x1 },
150
	{ 0x0000201B, 0x0000009D, 0x0 },
151 152
	{ 0x80005012, 0x000000C0, 0x1 },
	{ 0x80007011, 0x000000C0, 0x1 },
153
	{ 0x00002016, 0x00000088, 0x0 },
154
	{ 0x80005012, 0x000000C0, 0x1 },
155 156
};

157 158
/* Skylake Y */
static const struct ddi_buf_trans skl_y_ddi_translations_dp[] = {
159 160
	{ 0x00000018, 0x000000A2, 0x0 },
	{ 0x00005012, 0x00000088, 0x0 },
161
	{ 0x80007011, 0x000000CD, 0x0 },
162
	{ 0x80009010, 0x000000C0, 0x3 },
163
	{ 0x00000018, 0x0000009D, 0x0 },
164 165
	{ 0x80005012, 0x000000C0, 0x3 },
	{ 0x80007011, 0x000000C0, 0x3 },
166
	{ 0x00000018, 0x00000088, 0x0 },
167
	{ 0x80005012, 0x000000C0, 0x3 },
168 169 170
};

/*
171
 * Skylake H and S
172 173
 * eDP 1.4 low vswing translation parameters
 */
174
static const struct ddi_buf_trans skl_ddi_translations_edp[] = {
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
	{ 0x00000018, 0x000000A8, 0x0 },
	{ 0x00004013, 0x000000A9, 0x0 },
	{ 0x00007011, 0x000000A2, 0x0 },
	{ 0x00009010, 0x0000009C, 0x0 },
	{ 0x00000018, 0x000000A9, 0x0 },
	{ 0x00006013, 0x000000A2, 0x0 },
	{ 0x00007011, 0x000000A6, 0x0 },
	{ 0x00000018, 0x000000AB, 0x0 },
	{ 0x00007013, 0x0000009F, 0x0 },
	{ 0x00000018, 0x000000DF, 0x0 },
};

/*
 * Skylake U
 * eDP 1.4 low vswing translation parameters
 */
static const struct ddi_buf_trans skl_u_ddi_translations_edp[] = {
	{ 0x00000018, 0x000000A8, 0x0 },
	{ 0x00004013, 0x000000A9, 0x0 },
	{ 0x00007011, 0x000000A2, 0x0 },
	{ 0x00009010, 0x0000009C, 0x0 },
	{ 0x00000018, 0x000000A9, 0x0 },
	{ 0x00006013, 0x000000A2, 0x0 },
	{ 0x00007011, 0x000000A6, 0x0 },
	{ 0x00002016, 0x000000AB, 0x0 },
	{ 0x00005013, 0x0000009F, 0x0 },
	{ 0x00000018, 0x000000DF, 0x0 },
202 203
};

204
/*
205
 * Skylake Y
206 207
 * eDP 1.4 low vswing translation parameters
 */
208
static const struct ddi_buf_trans skl_y_ddi_translations_edp[] = {
209 210 211 212 213 214 215 216 217 218 219
	{ 0x00000018, 0x000000A8, 0x0 },
	{ 0x00004013, 0x000000AB, 0x0 },
	{ 0x00007011, 0x000000A4, 0x0 },
	{ 0x00009010, 0x000000DF, 0x0 },
	{ 0x00000018, 0x000000AA, 0x0 },
	{ 0x00006013, 0x000000A4, 0x0 },
	{ 0x00007011, 0x0000009D, 0x0 },
	{ 0x00000018, 0x000000A0, 0x0 },
	{ 0x00006012, 0x000000DF, 0x0 },
	{ 0x00000018, 0x0000008A, 0x0 },
};
220

221
/* Skylake U, H and S */
222
static const struct ddi_buf_trans skl_ddi_translations_hdmi[] = {
223 224 225 226 227 228
	{ 0x00000018, 0x000000AC, 0x0 },
	{ 0x00005012, 0x0000009D, 0x0 },
	{ 0x00007011, 0x00000088, 0x0 },
	{ 0x00000018, 0x000000A1, 0x0 },
	{ 0x00000018, 0x00000098, 0x0 },
	{ 0x00004013, 0x00000088, 0x0 },
229
	{ 0x80006012, 0x000000CD, 0x1 },
230
	{ 0x00000018, 0x000000DF, 0x0 },
231 232 233
	{ 0x80003015, 0x000000CD, 0x1 },	/* Default */
	{ 0x80003015, 0x000000C0, 0x1 },
	{ 0x80000018, 0x000000C0, 0x1 },
234 235
};

236 237
/* Skylake Y */
static const struct ddi_buf_trans skl_y_ddi_translations_hdmi[] = {
238 239
	{ 0x00000018, 0x000000A1, 0x0 },
	{ 0x00005012, 0x000000DF, 0x0 },
240
	{ 0x80007011, 0x000000CB, 0x3 },
241 242 243
	{ 0x00000018, 0x000000A4, 0x0 },
	{ 0x00000018, 0x0000009D, 0x0 },
	{ 0x00004013, 0x00000080, 0x0 },
244
	{ 0x80006013, 0x000000C0, 0x3 },
245
	{ 0x00000018, 0x0000008A, 0x0 },
246 247 248
	{ 0x80003015, 0x000000C0, 0x3 },	/* Default */
	{ 0x80003015, 0x000000C0, 0x3 },
	{ 0x80000018, 0x000000C0, 0x3 },
249 250
};

251 252 253 254 255 256 257 258 259 260
struct bxt_ddi_buf_trans {
	u32 margin;	/* swing value */
	u32 scale;	/* scale value */
	u32 enable;	/* scale enable */
	u32 deemphasis;
	bool default_index; /* true if the entry represents default value */
};

static const struct bxt_ddi_buf_trans bxt_ddi_translations_dp[] = {
					/* Idx	NT mV diff	db  */
261 262 263 264 265 266 267 268 269
	{ 52,  0x9A, 0, 128, true  },	/* 0:	400		0   */
	{ 78,  0x9A, 0, 85,  false },	/* 1:	400		3.5 */
	{ 104, 0x9A, 0, 64,  false },	/* 2:	400		6   */
	{ 154, 0x9A, 0, 43,  false },	/* 3:	400		9.5 */
	{ 77,  0x9A, 0, 128, false },	/* 4:	600		0   */
	{ 116, 0x9A, 0, 85,  false },	/* 5:	600		3.5 */
	{ 154, 0x9A, 0, 64,  false },	/* 6:	600		6   */
	{ 102, 0x9A, 0, 128, false },	/* 7:	800		0   */
	{ 154, 0x9A, 0, 85,  false },	/* 8:	800		3.5 */
270
	{ 154, 0x9A, 1, 128, false },	/* 9:	1200		0   */
271 272
};

273 274 275 276 277 278 279 280 281 282 283 284 285 286
static const struct bxt_ddi_buf_trans bxt_ddi_translations_edp[] = {
					/* Idx	NT mV diff	db  */
	{ 26, 0, 0, 128, false },	/* 0:	200		0   */
	{ 38, 0, 0, 112, false },	/* 1:	200		1.5 */
	{ 48, 0, 0, 96,  false },	/* 2:	200		4   */
	{ 54, 0, 0, 69,  false },	/* 3:	200		6   */
	{ 32, 0, 0, 128, false },	/* 4:	250		0   */
	{ 48, 0, 0, 104, false },	/* 5:	250		1.5 */
	{ 54, 0, 0, 85,  false },	/* 6:	250		4   */
	{ 43, 0, 0, 128, false },	/* 7:	300		0   */
	{ 54, 0, 0, 101, false },	/* 8:	300		1.5 */
	{ 48, 0, 0, 128, false },	/* 9:	300		0   */
};

287 288 289 290 291
/* BSpec has 2 recommended values - entries 0 and 8.
 * Using the entry with higher vswing.
 */
static const struct bxt_ddi_buf_trans bxt_ddi_translations_hdmi[] = {
					/* Idx	NT mV diff	db  */
292 293 294 295 296 297 298 299 300
	{ 52,  0x9A, 0, 128, false },	/* 0:	400		0   */
	{ 52,  0x9A, 0, 85,  false },	/* 1:	400		3.5 */
	{ 52,  0x9A, 0, 64,  false },	/* 2:	400		6   */
	{ 42,  0x9A, 0, 43,  false },	/* 3:	400		9.5 */
	{ 77,  0x9A, 0, 128, false },	/* 4:	600		0   */
	{ 77,  0x9A, 0, 85,  false },	/* 5:	600		3.5 */
	{ 77,  0x9A, 0, 64,  false },	/* 6:	600		6   */
	{ 102, 0x9A, 0, 128, false },	/* 7:	800		0   */
	{ 102, 0x9A, 0, 85,  false },	/* 8:	800		3.5 */
301 302 303
	{ 154, 0x9A, 1, 128, true },	/* 9:	1200		0   */
};

304 305 306
static void bxt_ddi_vswing_sequence(struct drm_device *dev, u32 level,
				    enum port port, int type);

307 308 309
static void ddi_get_encoder_port(struct intel_encoder *intel_encoder,
				 struct intel_digital_port **dig_port,
				 enum port *port)
310
{
311
	struct drm_encoder *encoder = &intel_encoder->base;
312

313 314
	switch (intel_encoder->type) {
	case INTEL_OUTPUT_DP_MST:
315 316
		*dig_port = enc_to_mst(encoder)->primary;
		*port = (*dig_port)->port;
317 318 319 320 321
		break;
	case INTEL_OUTPUT_DISPLAYPORT:
	case INTEL_OUTPUT_EDP:
	case INTEL_OUTPUT_HDMI:
	case INTEL_OUTPUT_UNKNOWN:
322 323
		*dig_port = enc_to_dig_port(encoder);
		*port = (*dig_port)->port;
324 325
		break;
	case INTEL_OUTPUT_ANALOG:
326 327
		*dig_port = NULL;
		*port = PORT_E;
328 329 330 331
		break;
	default:
		WARN(1, "Invalid DDI encoder type %d\n", intel_encoder->type);
		break;
332 333 334
	}
}

335 336 337 338 339 340 341 342 343 344
enum port intel_ddi_get_encoder_port(struct intel_encoder *intel_encoder)
{
	struct intel_digital_port *dig_port;
	enum port port;

	ddi_get_encoder_port(intel_encoder, &dig_port, &port);

	return port;
}

345 346 347
static bool
intel_dig_port_supports_hdmi(const struct intel_digital_port *intel_dig_port)
{
348
	return i915_mmio_reg_valid(intel_dig_port->hdmi.hdmi_reg);
349 350
}

351 352
static const struct ddi_buf_trans *
skl_get_buf_trans_dp(struct drm_device *dev, int *n_entries)
353
{
354
	if (IS_SKL_ULX(dev) || IS_KBL_ULX(dev)) {
355
		*n_entries = ARRAY_SIZE(skl_y_ddi_translations_dp);
356
		return skl_y_ddi_translations_dp;
357
	} else if (IS_SKL_ULT(dev) || IS_KBL_ULT(dev)) {
358
		*n_entries = ARRAY_SIZE(skl_u_ddi_translations_dp);
359
		return skl_u_ddi_translations_dp;
360 361
	} else {
		*n_entries = ARRAY_SIZE(skl_ddi_translations_dp);
362
		return skl_ddi_translations_dp;
363 364 365
	}
}

366 367
static const struct ddi_buf_trans *
skl_get_buf_trans_edp(struct drm_device *dev, int *n_entries)
368 369 370
{
	struct drm_i915_private *dev_priv = dev->dev_private;

371
	if (IS_SKL_ULX(dev) || IS_KBL_ULX(dev)) {
372
		if (dev_priv->edp_low_vswing) {
373
			*n_entries = ARRAY_SIZE(skl_y_ddi_translations_edp);
374
			return skl_y_ddi_translations_edp;
375
		} else {
376
			*n_entries = ARRAY_SIZE(skl_y_ddi_translations_dp);
377
			return skl_y_ddi_translations_dp;
378
		}
379
	} else if (IS_SKL_ULT(dev) || IS_KBL_ULT(dev)) {
380 381
		if (dev_priv->edp_low_vswing) {
			*n_entries = ARRAY_SIZE(skl_u_ddi_translations_edp);
382
			return skl_u_ddi_translations_edp;
383 384
		} else {
			*n_entries = ARRAY_SIZE(skl_u_ddi_translations_dp);
385
			return skl_u_ddi_translations_dp;
386 387 388 389
		}
	} else {
		if (dev_priv->edp_low_vswing) {
			*n_entries = ARRAY_SIZE(skl_ddi_translations_edp);
390
			return skl_ddi_translations_edp;
391 392
		} else {
			*n_entries = ARRAY_SIZE(skl_ddi_translations_dp);
393
			return skl_ddi_translations_dp;
394 395 396 397 398
		}
	}
}

static const struct ddi_buf_trans *
399
skl_get_buf_trans_hdmi(struct drm_device *dev, int *n_entries)
400
{
401
	if (IS_SKL_ULX(dev) || IS_KBL_ULX(dev)) {
402
		*n_entries = ARRAY_SIZE(skl_y_ddi_translations_hdmi);
403
		return skl_y_ddi_translations_hdmi;
404 405
	} else {
		*n_entries = ARRAY_SIZE(skl_ddi_translations_hdmi);
406
		return skl_ddi_translations_hdmi;
407 408 409
	}
}

410 411 412
/*
 * Starting with Haswell, DDI port buffers must be programmed with correct
 * values in advance. The buffer values are different for FDI and DP modes,
413 414 415 416
 * but the HDMI/DVI fields are shared among those. So we program the DDI
 * in either FDI or DP modes only, as HDMI connections will work with both
 * of those
 */
I
Imre Deak 已提交
417 418
static void intel_prepare_ddi_buffers(struct drm_device *dev, enum port port,
				      bool supports_hdmi)
419 420
{
	struct drm_i915_private *dev_priv = dev->dev_private;
421
	u32 iboost_bit = 0;
422
	int i, n_hdmi_entries, n_dp_entries, n_edp_entries, hdmi_default_entry,
423
	    size;
424
	int hdmi_level = dev_priv->vbt.ddi_port_info[port].hdmi_level_shift;
425 426 427 428 429
	const struct ddi_buf_trans *ddi_translations_fdi;
	const struct ddi_buf_trans *ddi_translations_dp;
	const struct ddi_buf_trans *ddi_translations_edp;
	const struct ddi_buf_trans *ddi_translations_hdmi;
	const struct ddi_buf_trans *ddi_translations;
430

431
	if (IS_BROXTON(dev)) {
I
Imre Deak 已提交
432
		if (!supports_hdmi)
433 434 435 436 437 438
			return;

		/* Vswing programming for HDMI */
		bxt_ddi_vswing_sequence(dev, hdmi_level, port,
					INTEL_OUTPUT_HDMI);
		return;
439
	} else if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
440
		ddi_translations_fdi = NULL;
441 442 443 444 445 446 447
		ddi_translations_dp =
				skl_get_buf_trans_dp(dev, &n_dp_entries);
		ddi_translations_edp =
				skl_get_buf_trans_edp(dev, &n_edp_entries);
		ddi_translations_hdmi =
				skl_get_buf_trans_hdmi(dev, &n_hdmi_entries);
		hdmi_default_entry = 8;
448 449 450 451
		/* If we're boosting the current, set bit 31 of trans1 */
		if (dev_priv->vbt.ddi_port_info[port].hdmi_boost_level ||
		    dev_priv->vbt.ddi_port_info[port].dp_boost_level)
			iboost_bit = 1<<31;
452
	} else if (IS_BROADWELL(dev)) {
453 454
		ddi_translations_fdi = bdw_ddi_translations_fdi;
		ddi_translations_dp = bdw_ddi_translations_dp;
455
		ddi_translations_edp = bdw_ddi_translations_edp;
456
		ddi_translations_hdmi = bdw_ddi_translations_hdmi;
457 458
		n_edp_entries = ARRAY_SIZE(bdw_ddi_translations_edp);
		n_dp_entries = ARRAY_SIZE(bdw_ddi_translations_dp);
459
		n_hdmi_entries = ARRAY_SIZE(bdw_ddi_translations_hdmi);
460
		hdmi_default_entry = 7;
461 462 463
	} else if (IS_HASWELL(dev)) {
		ddi_translations_fdi = hsw_ddi_translations_fdi;
		ddi_translations_dp = hsw_ddi_translations_dp;
464
		ddi_translations_edp = hsw_ddi_translations_dp;
465
		ddi_translations_hdmi = hsw_ddi_translations_hdmi;
466
		n_dp_entries = n_edp_entries = ARRAY_SIZE(hsw_ddi_translations_dp);
467
		n_hdmi_entries = ARRAY_SIZE(hsw_ddi_translations_hdmi);
468
		hdmi_default_entry = 6;
469 470
	} else {
		WARN(1, "ddi translation table missing\n");
471
		ddi_translations_edp = bdw_ddi_translations_dp;
472 473
		ddi_translations_fdi = bdw_ddi_translations_fdi;
		ddi_translations_dp = bdw_ddi_translations_dp;
474
		ddi_translations_hdmi = bdw_ddi_translations_hdmi;
475 476
		n_edp_entries = ARRAY_SIZE(bdw_ddi_translations_edp);
		n_dp_entries = ARRAY_SIZE(bdw_ddi_translations_dp);
477
		n_hdmi_entries = ARRAY_SIZE(bdw_ddi_translations_hdmi);
478
		hdmi_default_entry = 7;
479 480
	}

481 482 483
	switch (port) {
	case PORT_A:
		ddi_translations = ddi_translations_edp;
484
		size = n_edp_entries;
485 486 487 488
		break;
	case PORT_B:
	case PORT_C:
		ddi_translations = ddi_translations_dp;
489
		size = n_dp_entries;
490
		break;
491
	case PORT_D:
492
		if (intel_dp_is_edp(dev, PORT_D)) {
493
			ddi_translations = ddi_translations_edp;
494 495
			size = n_edp_entries;
		} else {
496
			ddi_translations = ddi_translations_dp;
497 498
			size = n_dp_entries;
		}
499
		break;
500
	case PORT_E:
501 502 503 504
		if (ddi_translations_fdi)
			ddi_translations = ddi_translations_fdi;
		else
			ddi_translations = ddi_translations_dp;
505
		size = n_dp_entries;
506 507 508 509
		break;
	default:
		BUG();
	}
510

511 512 513 514 515
	for (i = 0; i < size; i++) {
		I915_WRITE(DDI_BUF_TRANS_LO(port, i),
			   ddi_translations[i].trans1 | iboost_bit);
		I915_WRITE(DDI_BUF_TRANS_HI(port, i),
			   ddi_translations[i].trans2);
516
	}
517

I
Imre Deak 已提交
518
	if (!supports_hdmi)
519 520
		return;

521 522 523
	/* Choose a good default if VBT is badly populated */
	if (hdmi_level == HDMI_LEVEL_SHIFT_UNKNOWN ||
	    hdmi_level >= n_hdmi_entries)
524
		hdmi_level = hdmi_default_entry;
525

526
	/* Entry 9 is for HDMI: */
527 528 529 530
	I915_WRITE(DDI_BUF_TRANS_LO(port, i),
		   ddi_translations_hdmi[hdmi_level].trans1 | iboost_bit);
	I915_WRITE(DDI_BUF_TRANS_HI(port, i),
		   ddi_translations_hdmi[hdmi_level].trans2);
531 532 533 534 535 536 537
}

/* Program DDI buffers translations for DP. By default, program ports A-D in DP
 * mode and port E for FDI.
 */
void intel_prepare_ddi(struct drm_device *dev)
{
I
Imre Deak 已提交
538
	struct intel_encoder *intel_encoder;
539
	bool visited[I915_MAX_PORTS] = { 0, };
540

541 542
	if (!HAS_DDI(dev))
		return;
543

I
Imre Deak 已提交
544 545 546 547 548
	for_each_intel_encoder(dev, intel_encoder) {
		struct intel_digital_port *intel_dig_port;
		enum port port;
		bool supports_hdmi;

549 550
		if (intel_encoder->type == INTEL_OUTPUT_DSI)
			continue;
I
Imre Deak 已提交
551

552
		ddi_get_encoder_port(intel_encoder, &intel_dig_port, &port);
I
Imre Deak 已提交
553
		if (visited[port])
554 555
			continue;

I
Imre Deak 已提交
556 557 558 559 560
		supports_hdmi = intel_dig_port &&
				intel_dig_port_supports_hdmi(intel_dig_port);

		intel_prepare_ddi_buffers(dev, port, supports_hdmi);
		visited[port] = true;
561
	}
562
}
563

564 565 566
static void intel_wait_ddi_buf_idle(struct drm_i915_private *dev_priv,
				    enum port port)
{
567
	i915_reg_t reg = DDI_BUF_CTL(port);
568 569
	int i;

570
	for (i = 0; i < 16; i++) {
571 572 573 574 575 576
		udelay(1);
		if (I915_READ(reg) & DDI_BUF_IS_IDLE)
			return;
	}
	DRM_ERROR("Timeout waiting for DDI BUF %c idle bit\n", port_name(port));
}
577 578 579 580 581 582 583 584 585 586 587 588 589 590 591

/* Starting with Haswell, different DDI ports can work in FDI mode for
 * connection to the PCH-located connectors. For this, it is necessary to train
 * both the DDI port and PCH receiver for the desired DDI buffer settings.
 *
 * The recommended port to work in FDI mode is DDI E, which we use here. Also,
 * please note that when FDI mode is active on DDI E, it shares 2 lines with
 * DDI A (which is used for eDP)
 */

void hsw_fdi_link_train(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
592
	u32 temp, i, rx_ctl_val;
593

594 595 596 597
	/* Set the FDI_RX_MISC pwrdn lanes and the 2 workarounds listed at the
	 * mode set "sequence for CRT port" document:
	 * - TP1 to TP2 time with the default value
	 * - FDI delay to 90h
598 599
	 *
	 * WaFDIAutoLinkSetTimingOverrride:hsw
600
	 */
601
	I915_WRITE(FDI_RX_MISC(PIPE_A), FDI_RX_PWRDN_LANE1_VAL(2) |
602 603 604 605
				  FDI_RX_PWRDN_LANE0_VAL(2) |
				  FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);

	/* Enable the PCH Receiver FDI PLL */
606
	rx_ctl_val = dev_priv->fdi_rx_config | FDI_RX_ENHANCE_FRAME_ENABLE |
607
		     FDI_RX_PLL_ENABLE |
608
		     FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
609 610
	I915_WRITE(FDI_RX_CTL(PIPE_A), rx_ctl_val);
	POSTING_READ(FDI_RX_CTL(PIPE_A));
611 612 613 614
	udelay(220);

	/* Switch from Rawclk to PCDclk */
	rx_ctl_val |= FDI_PCDCLK;
615
	I915_WRITE(FDI_RX_CTL(PIPE_A), rx_ctl_val);
616 617

	/* Configure Port Clock Select */
618 619
	I915_WRITE(PORT_CLK_SEL(PORT_E), intel_crtc->config->ddi_pll_sel);
	WARN_ON(intel_crtc->config->ddi_pll_sel != PORT_CLK_SEL_SPLL);
620 621 622

	/* Start the training iterating through available voltages and emphasis,
	 * testing each value twice. */
623
	for (i = 0; i < ARRAY_SIZE(hsw_ddi_translations_fdi) * 2; i++) {
624 625 626 627 628 629 630
		/* Configure DP_TP_CTL with auto-training */
		I915_WRITE(DP_TP_CTL(PORT_E),
					DP_TP_CTL_FDI_AUTOTRAIN |
					DP_TP_CTL_ENHANCED_FRAME_ENABLE |
					DP_TP_CTL_LINK_TRAIN_PAT1 |
					DP_TP_CTL_ENABLE);

631 632 633 634
		/* Configure and enable DDI_BUF_CTL for DDI E with next voltage.
		 * DDI E does not support port reversal, the functionality is
		 * achieved on the PCH side in FDI_RX_CTL, so no need to set the
		 * port reversal bit */
635
		I915_WRITE(DDI_BUF_CTL(PORT_E),
636
			   DDI_BUF_CTL_ENABLE |
637
			   ((intel_crtc->config->fdi_lanes - 1) << 1) |
638
			   DDI_BUF_TRANS_SELECT(i / 2));
639
		POSTING_READ(DDI_BUF_CTL(PORT_E));
640 641 642

		udelay(600);

643
		/* Program PCH FDI Receiver TU */
644
		I915_WRITE(FDI_RX_TUSIZE1(PIPE_A), TU_SIZE(64));
645 646 647

		/* Enable PCH FDI Receiver with auto-training */
		rx_ctl_val |= FDI_RX_ENABLE | FDI_LINK_TRAIN_AUTO;
648 649
		I915_WRITE(FDI_RX_CTL(PIPE_A), rx_ctl_val);
		POSTING_READ(FDI_RX_CTL(PIPE_A));
650 651 652 653 654

		/* Wait for FDI receiver lane calibration */
		udelay(30);

		/* Unset FDI_RX_MISC pwrdn lanes */
655
		temp = I915_READ(FDI_RX_MISC(PIPE_A));
656
		temp &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
657 658
		I915_WRITE(FDI_RX_MISC(PIPE_A), temp);
		POSTING_READ(FDI_RX_MISC(PIPE_A));
659 660 661

		/* Wait for FDI auto training time */
		udelay(5);
662 663 664

		temp = I915_READ(DP_TP_STATUS(PORT_E));
		if (temp & DP_TP_STATUS_AUTOTRAIN_DONE) {
665
			DRM_DEBUG_KMS("FDI link training done on step %d\n", i);
666 667
			break;
		}
668

669 670 671 672 673 674 675
		/*
		 * Leave things enabled even if we failed to train FDI.
		 * Results in less fireworks from the state checker.
		 */
		if (i == ARRAY_SIZE(hsw_ddi_translations_fdi) * 2 - 1) {
			DRM_ERROR("FDI link training failed!\n");
			break;
676
		}
677

678 679 680 681 682
		temp = I915_READ(DDI_BUF_CTL(PORT_E));
		temp &= ~DDI_BUF_CTL_ENABLE;
		I915_WRITE(DDI_BUF_CTL(PORT_E), temp);
		POSTING_READ(DDI_BUF_CTL(PORT_E));

683
		/* Disable DP_TP_CTL and FDI_RX_CTL and retry */
684 685 686 687 688 689 690
		temp = I915_READ(DP_TP_CTL(PORT_E));
		temp &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
		temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
		I915_WRITE(DP_TP_CTL(PORT_E), temp);
		POSTING_READ(DP_TP_CTL(PORT_E));

		intel_wait_ddi_buf_idle(dev_priv, PORT_E);
691 692

		rx_ctl_val &= ~FDI_RX_ENABLE;
693 694
		I915_WRITE(FDI_RX_CTL(PIPE_A), rx_ctl_val);
		POSTING_READ(FDI_RX_CTL(PIPE_A));
695 696

		/* Reset FDI_RX_MISC pwrdn lanes */
697
		temp = I915_READ(FDI_RX_MISC(PIPE_A));
698 699
		temp &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
		temp |= FDI_RX_PWRDN_LANE1_VAL(2) | FDI_RX_PWRDN_LANE0_VAL(2);
700 701
		I915_WRITE(FDI_RX_MISC(PIPE_A), temp);
		POSTING_READ(FDI_RX_MISC(PIPE_A));
702 703
	}

704 705 706 707 708 709
	/* Enable normal pixel sending for FDI */
	I915_WRITE(DP_TP_CTL(PORT_E),
		   DP_TP_CTL_FDI_AUTOTRAIN |
		   DP_TP_CTL_LINK_TRAIN_NORMAL |
		   DP_TP_CTL_ENHANCED_FRAME_ENABLE |
		   DP_TP_CTL_ENABLE);
710
}
711

712 713 714 715 716 717 718
void intel_ddi_init_dp_buf_reg(struct intel_encoder *encoder)
{
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
	struct intel_digital_port *intel_dig_port =
		enc_to_dig_port(&encoder->base);

	intel_dp->DP = intel_dig_port->saved_port_bits |
719
		DDI_BUF_CTL_ENABLE | DDI_BUF_TRANS_SELECT(0);
720
	intel_dp->DP |= DDI_PORT_WIDTH(intel_dp->lane_count);
721 722
}

723 724 725 726 727 728 729 730 731 732 733 734 735 736
static struct intel_encoder *
intel_ddi_get_crtc_encoder(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct intel_encoder *intel_encoder, *ret = NULL;
	int num_encoders = 0;

	for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
		ret = intel_encoder;
		num_encoders++;
	}

	if (num_encoders != 1)
737 738
		WARN(1, "%d encoders on crtc for pipe %c\n", num_encoders,
		     pipe_name(intel_crtc->pipe));
739 740 741 742 743

	BUG_ON(ret == NULL);
	return ret;
}

744
struct intel_encoder *
745
intel_ddi_get_crtc_new_encoder(struct intel_crtc_state *crtc_state)
746
{
747 748 749
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
	struct intel_encoder *ret = NULL;
	struct drm_atomic_state *state;
750 751
	struct drm_connector *connector;
	struct drm_connector_state *connector_state;
752
	int num_encoders = 0;
753
	int i;
754

755 756
	state = crtc_state->base.state;

757 758
	for_each_connector_in_state(state, connector, connector_state, i) {
		if (connector_state->crtc != crtc_state->base.crtc)
759 760
			continue;

761
		ret = to_intel_encoder(connector_state->best_encoder);
762
		num_encoders++;
763 764 765 766 767 768 769 770 771
	}

	WARN(num_encoders != 1, "%d encoders on crtc for pipe %c\n", num_encoders,
	     pipe_name(crtc->pipe));

	BUG_ON(ret == NULL);
	return ret;
}

772
#define LC_FREQ 2700
773
#define LC_FREQ_2K U64_C(LC_FREQ * 2000)
774 775 776 777 778 779 780 781 782 783 784

#define P_MIN 2
#define P_MAX 64
#define P_INC 2

/* Constraints for PLL good behavior */
#define REF_MIN 48
#define REF_MAX 400
#define VCO_MIN 2400
#define VCO_MAX 4800

785 786 787 788 789
#define abs_diff(a, b) ({			\
	typeof(a) __a = (a);			\
	typeof(b) __b = (b);			\
	(void) (&__a == &__b);			\
	__a > __b ? (__a - __b) : (__b - __a); })
790

791
struct hsw_wrpll_rnp {
792 793 794
	unsigned p, n2, r2;
};

795
static unsigned hsw_wrpll_get_budget_for_freq(int clock)
796
{
797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864
	unsigned budget;

	switch (clock) {
	case 25175000:
	case 25200000:
	case 27000000:
	case 27027000:
	case 37762500:
	case 37800000:
	case 40500000:
	case 40541000:
	case 54000000:
	case 54054000:
	case 59341000:
	case 59400000:
	case 72000000:
	case 74176000:
	case 74250000:
	case 81000000:
	case 81081000:
	case 89012000:
	case 89100000:
	case 108000000:
	case 108108000:
	case 111264000:
	case 111375000:
	case 148352000:
	case 148500000:
	case 162000000:
	case 162162000:
	case 222525000:
	case 222750000:
	case 296703000:
	case 297000000:
		budget = 0;
		break;
	case 233500000:
	case 245250000:
	case 247750000:
	case 253250000:
	case 298000000:
		budget = 1500;
		break;
	case 169128000:
	case 169500000:
	case 179500000:
	case 202000000:
		budget = 2000;
		break;
	case 256250000:
	case 262500000:
	case 270000000:
	case 272500000:
	case 273750000:
	case 280750000:
	case 281250000:
	case 286000000:
	case 291750000:
		budget = 4000;
		break;
	case 267250000:
	case 268500000:
		budget = 5000;
		break;
	default:
		budget = 1000;
		break;
	}
865

866 867 868
	return budget;
}

869 870 871
static void hsw_wrpll_update_rnp(uint64_t freq2k, unsigned budget,
				 unsigned r2, unsigned n2, unsigned p,
				 struct hsw_wrpll_rnp *best)
872 873
{
	uint64_t a, b, c, d, diff, diff_best;
874

875 876 877 878 879 880 881
	/* No best (r,n,p) yet */
	if (best->p == 0) {
		best->p = p;
		best->n2 = n2;
		best->r2 = r2;
		return;
	}
882

883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898
	/*
	 * Output clock is (LC_FREQ_2K / 2000) * N / (P * R), which compares to
	 * freq2k.
	 *
	 * delta = 1e6 *
	 *	   abs(freq2k - (LC_FREQ_2K * n2/(p * r2))) /
	 *	   freq2k;
	 *
	 * and we would like delta <= budget.
	 *
	 * If the discrepancy is above the PPM-based budget, always prefer to
	 * improve upon the previous solution.  However, if you're within the
	 * budget, try to maximize Ref * VCO, that is N / (P * R^2).
	 */
	a = freq2k * budget * p * r2;
	b = freq2k * budget * best->p * best->r2;
899 900 901
	diff = abs_diff(freq2k * p * r2, LC_FREQ_2K * n2);
	diff_best = abs_diff(freq2k * best->p * best->r2,
			     LC_FREQ_2K * best->n2);
902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927
	c = 1000000 * diff;
	d = 1000000 * diff_best;

	if (a < c && b < d) {
		/* If both are above the budget, pick the closer */
		if (best->p * best->r2 * diff < p * r2 * diff_best) {
			best->p = p;
			best->n2 = n2;
			best->r2 = r2;
		}
	} else if (a >= c && b < d) {
		/* If A is below the threshold but B is above it?  Update. */
		best->p = p;
		best->n2 = n2;
		best->r2 = r2;
	} else if (a >= c && b >= d) {
		/* Both are below the limit, so pick the higher n2/(r2*r2) */
		if (n2 * best->r2 * best->r2 > best->n2 * r2 * r2) {
			best->p = p;
			best->n2 = n2;
			best->r2 = r2;
		}
	}
	/* Otherwise a < c && b >= d, do nothing */
}

928 929
static int hsw_ddi_calc_wrpll_link(struct drm_i915_private *dev_priv,
				   i915_reg_t reg)
930 931 932 933 934 935
{
	int refclk = LC_FREQ;
	int n, p, r;
	u32 wrpll;

	wrpll = I915_READ(reg);
936 937 938
	switch (wrpll & WRPLL_PLL_REF_MASK) {
	case WRPLL_PLL_SSC:
	case WRPLL_PLL_NON_SSC:
939 940 941 942 943 944 945
		/*
		 * We could calculate spread here, but our checking
		 * code only cares about 5% accuracy, and spread is a max of
		 * 0.5% downspread.
		 */
		refclk = 135;
		break;
946
	case WRPLL_PLL_LCPLL:
947 948 949 950 951 952 953 954 955 956 957
		refclk = LC_FREQ;
		break;
	default:
		WARN(1, "bad wrpll refclk\n");
		return 0;
	}

	r = wrpll & WRPLL_DIVIDER_REF_MASK;
	p = (wrpll & WRPLL_DIVIDER_POST_MASK) >> WRPLL_DIVIDER_POST_SHIFT;
	n = (wrpll & WRPLL_DIVIDER_FB_MASK) >> WRPLL_DIVIDER_FB_SHIFT;

958 959
	/* Convert to KHz, p & r have a fixed point portion */
	return (refclk * n * 100) / (p * r);
960 961
}

962 963 964
static int skl_calc_wrpll_link(struct drm_i915_private *dev_priv,
			       uint32_t dpll)
{
965
	i915_reg_t cfgcr1_reg, cfgcr2_reg;
966 967 968
	uint32_t cfgcr1_val, cfgcr2_val;
	uint32_t p0, p1, p2, dco_freq;

969 970
	cfgcr1_reg = DPLL_CFGCR1(dpll);
	cfgcr2_reg = DPLL_CFGCR2(dpll);
971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021

	cfgcr1_val = I915_READ(cfgcr1_reg);
	cfgcr2_val = I915_READ(cfgcr2_reg);

	p0 = cfgcr2_val & DPLL_CFGCR2_PDIV_MASK;
	p2 = cfgcr2_val & DPLL_CFGCR2_KDIV_MASK;

	if (cfgcr2_val &  DPLL_CFGCR2_QDIV_MODE(1))
		p1 = (cfgcr2_val & DPLL_CFGCR2_QDIV_RATIO_MASK) >> 8;
	else
		p1 = 1;


	switch (p0) {
	case DPLL_CFGCR2_PDIV_1:
		p0 = 1;
		break;
	case DPLL_CFGCR2_PDIV_2:
		p0 = 2;
		break;
	case DPLL_CFGCR2_PDIV_3:
		p0 = 3;
		break;
	case DPLL_CFGCR2_PDIV_7:
		p0 = 7;
		break;
	}

	switch (p2) {
	case DPLL_CFGCR2_KDIV_5:
		p2 = 5;
		break;
	case DPLL_CFGCR2_KDIV_2:
		p2 = 2;
		break;
	case DPLL_CFGCR2_KDIV_3:
		p2 = 3;
		break;
	case DPLL_CFGCR2_KDIV_1:
		p2 = 1;
		break;
	}

	dco_freq = (cfgcr1_val & DPLL_CFGCR1_DCO_INTEGER_MASK) * 24 * 1000;

	dco_freq += (((cfgcr1_val & DPLL_CFGCR1_DCO_FRACTION_MASK) >> 9) * 24 *
		1000) / 0x8000;

	return dco_freq / (p0 * p1 * p2 * 5);
}

1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
static void ddi_dotclock_get(struct intel_crtc_state *pipe_config)
{
	int dotclock;

	if (pipe_config->has_pch_encoder)
		dotclock = intel_dotclock_calculate(pipe_config->port_clock,
						    &pipe_config->fdi_m_n);
	else if (pipe_config->has_dp_encoder)
		dotclock = intel_dotclock_calculate(pipe_config->port_clock,
						    &pipe_config->dp_m_n);
	else if (pipe_config->has_hdmi_sink && pipe_config->pipe_bpp == 36)
		dotclock = pipe_config->port_clock * 2 / 3;
	else
		dotclock = pipe_config->port_clock;

	if (pipe_config->pixel_multiplier)
		dotclock /= pipe_config->pixel_multiplier;

	pipe_config->base.adjusted_mode.crtc_clock = dotclock;
}
1042 1043

static void skl_ddi_clock_get(struct intel_encoder *encoder,
1044
				struct intel_crtc_state *pipe_config)
1045 1046 1047 1048 1049
{
	struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
	int link_clock = 0;
	uint32_t dpll_ctl1, dpll;

1050
	dpll = pipe_config->ddi_pll_sel;
1051 1052 1053 1054 1055 1056

	dpll_ctl1 = I915_READ(DPLL_CTRL1);

	if (dpll_ctl1 & DPLL_CTRL1_HDMI_MODE(dpll)) {
		link_clock = skl_calc_wrpll_link(dev_priv, dpll);
	} else {
1057 1058
		link_clock = dpll_ctl1 & DPLL_CTRL1_LINK_RATE_MASK(dpll);
		link_clock >>= DPLL_CTRL1_LINK_RATE_SHIFT(dpll);
1059 1060

		switch (link_clock) {
1061
		case DPLL_CTRL1_LINK_RATE_810:
1062 1063
			link_clock = 81000;
			break;
1064
		case DPLL_CTRL1_LINK_RATE_1080:
1065 1066
			link_clock = 108000;
			break;
1067
		case DPLL_CTRL1_LINK_RATE_1350:
1068 1069
			link_clock = 135000;
			break;
1070
		case DPLL_CTRL1_LINK_RATE_1620:
1071 1072
			link_clock = 162000;
			break;
1073
		case DPLL_CTRL1_LINK_RATE_2160:
1074 1075
			link_clock = 216000;
			break;
1076
		case DPLL_CTRL1_LINK_RATE_2700:
1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
			link_clock = 270000;
			break;
		default:
			WARN(1, "Unsupported link rate\n");
			break;
		}
		link_clock *= 2;
	}

	pipe_config->port_clock = link_clock;

1088
	ddi_dotclock_get(pipe_config);
1089 1090
}

1091
static void hsw_ddi_clock_get(struct intel_encoder *encoder,
1092
			      struct intel_crtc_state *pipe_config)
1093 1094 1095 1096 1097
{
	struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
	int link_clock = 0;
	u32 val, pll;

1098
	val = pipe_config->ddi_pll_sel;
1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
	switch (val & PORT_CLK_SEL_MASK) {
	case PORT_CLK_SEL_LCPLL_810:
		link_clock = 81000;
		break;
	case PORT_CLK_SEL_LCPLL_1350:
		link_clock = 135000;
		break;
	case PORT_CLK_SEL_LCPLL_2700:
		link_clock = 270000;
		break;
	case PORT_CLK_SEL_WRPLL1:
1110
		link_clock = hsw_ddi_calc_wrpll_link(dev_priv, WRPLL_CTL(0));
1111 1112
		break;
	case PORT_CLK_SEL_WRPLL2:
1113
		link_clock = hsw_ddi_calc_wrpll_link(dev_priv, WRPLL_CTL(1));
1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
		break;
	case PORT_CLK_SEL_SPLL:
		pll = I915_READ(SPLL_CTL) & SPLL_PLL_FREQ_MASK;
		if (pll == SPLL_PLL_FREQ_810MHz)
			link_clock = 81000;
		else if (pll == SPLL_PLL_FREQ_1350MHz)
			link_clock = 135000;
		else if (pll == SPLL_PLL_FREQ_2700MHz)
			link_clock = 270000;
		else {
			WARN(1, "bad spll freq\n");
			return;
		}
		break;
	default:
		WARN(1, "bad port clock sel\n");
		return;
	}

	pipe_config->port_clock = link_clock * 2;

1135
	ddi_dotclock_get(pipe_config);
1136 1137
}

1138 1139 1140
static int bxt_calc_pll_link(struct drm_i915_private *dev_priv,
				enum intel_dpll_id dpll)
{
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
	struct intel_shared_dpll *pll;
	struct intel_dpll_hw_state *state;
	intel_clock_t clock;

	/* For DDI ports we always use a shared PLL. */
	if (WARN_ON(dpll == DPLL_ID_PRIVATE))
		return 0;

	pll = &dev_priv->shared_dplls[dpll];
	state = &pll->config.hw_state;

	clock.m1 = 2;
	clock.m2 = (state->pll0 & PORT_PLL_M2_MASK) << 22;
	if (state->pll3 & PORT_PLL_M2_FRAC_ENABLE)
		clock.m2 |= state->pll2 & PORT_PLL_M2_FRAC_MASK;
	clock.n = (state->pll1 & PORT_PLL_N_MASK) >> PORT_PLL_N_SHIFT;
	clock.p1 = (state->ebb0 & PORT_PLL_P1_MASK) >> PORT_PLL_P1_SHIFT;
	clock.p2 = (state->ebb0 & PORT_PLL_P2_MASK) >> PORT_PLL_P2_SHIFT;

	return chv_calc_dpll_params(100000, &clock);
1161 1162 1163 1164 1165 1166 1167 1168 1169
}

static void bxt_ddi_clock_get(struct intel_encoder *encoder,
				struct intel_crtc_state *pipe_config)
{
	struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
	enum port port = intel_ddi_get_encoder_port(encoder);
	uint32_t dpll = port;

1170
	pipe_config->port_clock = bxt_calc_pll_link(dev_priv, dpll);
1171

1172
	ddi_dotclock_get(pipe_config);
1173 1174
}

1175
void intel_ddi_clock_get(struct intel_encoder *encoder,
1176
			 struct intel_crtc_state *pipe_config)
1177
{
1178 1179 1180 1181
	struct drm_device *dev = encoder->base.dev;

	if (INTEL_INFO(dev)->gen <= 8)
		hsw_ddi_clock_get(encoder, pipe_config);
1182
	else if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
1183
		skl_ddi_clock_get(encoder, pipe_config);
1184 1185
	else if (IS_BROXTON(dev))
		bxt_ddi_clock_get(encoder, pipe_config);
1186 1187
}

1188
static void
1189 1190
hsw_ddi_calculate_wrpll(int clock /* in Hz */,
			unsigned *r2_out, unsigned *n2_out, unsigned *p_out)
1191 1192 1193
{
	uint64_t freq2k;
	unsigned p, n2, r2;
1194
	struct hsw_wrpll_rnp best = { 0, 0, 0 };
1195 1196 1197 1198
	unsigned budget;

	freq2k = clock / 100;

1199
	budget = hsw_wrpll_get_budget_for_freq(clock);
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242

	/* Special case handling for 540 pixel clock: bypass WR PLL entirely
	 * and directly pass the LC PLL to it. */
	if (freq2k == 5400000) {
		*n2_out = 2;
		*p_out = 1;
		*r2_out = 2;
		return;
	}

	/*
	 * Ref = LC_FREQ / R, where Ref is the actual reference input seen by
	 * the WR PLL.
	 *
	 * We want R so that REF_MIN <= Ref <= REF_MAX.
	 * Injecting R2 = 2 * R gives:
	 *   REF_MAX * r2 > LC_FREQ * 2 and
	 *   REF_MIN * r2 < LC_FREQ * 2
	 *
	 * Which means the desired boundaries for r2 are:
	 *  LC_FREQ * 2 / REF_MAX < r2 < LC_FREQ * 2 / REF_MIN
	 *
	 */
	for (r2 = LC_FREQ * 2 / REF_MAX + 1;
	     r2 <= LC_FREQ * 2 / REF_MIN;
	     r2++) {

		/*
		 * VCO = N * Ref, that is: VCO = N * LC_FREQ / R
		 *
		 * Once again we want VCO_MIN <= VCO <= VCO_MAX.
		 * Injecting R2 = 2 * R and N2 = 2 * N, we get:
		 *   VCO_MAX * r2 > n2 * LC_FREQ and
		 *   VCO_MIN * r2 < n2 * LC_FREQ)
		 *
		 * Which means the desired boundaries for n2 are:
		 * VCO_MIN * r2 / LC_FREQ < n2 < VCO_MAX * r2 / LC_FREQ
		 */
		for (n2 = VCO_MIN * r2 / LC_FREQ + 1;
		     n2 <= VCO_MAX * r2 / LC_FREQ;
		     n2++) {

			for (p = P_MIN; p <= P_MAX; p += P_INC)
1243 1244
				hsw_wrpll_update_rnp(freq2k, budget,
						     r2, n2, p, &best);
1245 1246
		}
	}
1247

1248 1249 1250
	*n2_out = best.n2;
	*p_out = best.p;
	*r2_out = best.r2;
1251 1252
}

1253
static bool
1254
hsw_ddi_pll_select(struct intel_crtc *intel_crtc,
1255
		   struct intel_crtc_state *crtc_state,
1256
		   struct intel_encoder *intel_encoder)
1257
{
1258 1259
	int clock = crtc_state->port_clock;

1260
	if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
1261
		struct intel_shared_dpll *pll;
1262
		uint32_t val;
1263
		unsigned p, n2, r2;
1264

1265
		hsw_ddi_calculate_wrpll(clock * 1000, &r2, &n2, &p);
P
Paulo Zanoni 已提交
1266

1267
		val = WRPLL_PLL_ENABLE | WRPLL_PLL_LCPLL |
P
Paulo Zanoni 已提交
1268 1269 1270
		      WRPLL_DIVIDER_REFERENCE(r2) | WRPLL_DIVIDER_FEEDBACK(n2) |
		      WRPLL_DIVIDER_POST(p);

1271 1272 1273
		memset(&crtc_state->dpll_hw_state, 0,
		       sizeof(crtc_state->dpll_hw_state));

1274
		crtc_state->dpll_hw_state.wrpll = val;
1275

1276
		pll = intel_get_shared_dpll(intel_crtc, crtc_state);
1277 1278 1279 1280
		if (pll == NULL) {
			DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
					 pipe_name(intel_crtc->pipe));
			return false;
P
Paulo Zanoni 已提交
1281
		}
1282

1283
		crtc_state->ddi_pll_sel = PORT_CLK_SEL_WRPLL(pll->id);
1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
	} else if (crtc_state->ddi_pll_sel == PORT_CLK_SEL_SPLL) {
		struct drm_atomic_state *state = crtc_state->base.state;
		struct intel_shared_dpll_config *spll =
			&intel_atomic_get_shared_dpll_state(state)[DPLL_ID_SPLL];

		if (spll->crtc_mask &&
		    WARN_ON(spll->hw_state.spll != crtc_state->dpll_hw_state.spll))
			return false;

		crtc_state->shared_dpll = DPLL_ID_SPLL;
		spll->hw_state.spll = crtc_state->dpll_hw_state.spll;
		spll->crtc_mask |= 1 << intel_crtc->pipe;
1296 1297 1298 1299 1300
	}

	return true;
}

1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
struct skl_wrpll_context {
	uint64_t min_deviation;		/* current minimal deviation */
	uint64_t central_freq;		/* chosen central freq */
	uint64_t dco_freq;		/* chosen dco freq */
	unsigned int p;			/* chosen divider */
};

static void skl_wrpll_context_init(struct skl_wrpll_context *ctx)
{
	memset(ctx, 0, sizeof(*ctx));

	ctx->min_deviation = U64_MAX;
}

/* DCO freq must be within +1%/-6%  of the DCO central freq */
#define SKL_DCO_MAX_PDEVIATION	100
#define SKL_DCO_MAX_NDEVIATION	600

static void skl_wrpll_try_divider(struct skl_wrpll_context *ctx,
				  uint64_t central_freq,
				  uint64_t dco_freq,
				  unsigned int divider)
{
	uint64_t deviation;

	deviation = div64_u64(10000 * abs_diff(dco_freq, central_freq),
			      central_freq);

	/* positive deviation */
	if (dco_freq >= central_freq) {
		if (deviation < SKL_DCO_MAX_PDEVIATION &&
		    deviation < ctx->min_deviation) {
			ctx->min_deviation = deviation;
			ctx->central_freq = central_freq;
			ctx->dco_freq = dco_freq;
			ctx->p = divider;
		}
	/* negative deviation */
	} else if (deviation < SKL_DCO_MAX_NDEVIATION &&
		   deviation < ctx->min_deviation) {
		ctx->min_deviation = deviation;
		ctx->central_freq = central_freq;
		ctx->dco_freq = dco_freq;
		ctx->p = divider;
	}
}

static void skl_wrpll_get_multipliers(unsigned int p,
				      unsigned int *p0 /* out */,
				      unsigned int *p1 /* out */,
				      unsigned int *p2 /* out */)
{
	/* even dividers */
	if (p % 2 == 0) {
		unsigned int half = p / 2;

		if (half == 1 || half == 2 || half == 3 || half == 5) {
			*p0 = 2;
			*p1 = 1;
			*p2 = half;
		} else if (half % 2 == 0) {
			*p0 = 2;
			*p1 = half / 2;
			*p2 = 2;
		} else if (half % 3 == 0) {
			*p0 = 3;
			*p1 = half / 3;
			*p2 = 2;
		} else if (half % 7 == 0) {
			*p0 = 7;
			*p1 = half / 7;
			*p2 = 2;
		}
	} else if (p == 3 || p == 9) {  /* 3, 5, 7, 9, 15, 21, 35 */
		*p0 = 3;
		*p1 = 1;
		*p2 = p / 3;
	} else if (p == 5 || p == 7) {
		*p0 = p;
		*p1 = 1;
		*p2 = 1;
	} else if (p == 15) {
		*p0 = 3;
		*p1 = 1;
		*p2 = 5;
	} else if (p == 21) {
		*p0 = 7;
		*p1 = 1;
		*p2 = 3;
	} else if (p == 35) {
		*p0 = 7;
		*p1 = 1;
		*p2 = 5;
	}
}

1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
struct skl_wrpll_params {
	uint32_t        dco_fraction;
	uint32_t        dco_integer;
	uint32_t        qdiv_ratio;
	uint32_t        qdiv_mode;
	uint32_t        kdiv;
	uint32_t        pdiv;
	uint32_t        central_freq;
};

1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
static void skl_wrpll_params_populate(struct skl_wrpll_params *params,
				      uint64_t afe_clock,
				      uint64_t central_freq,
				      uint32_t p0, uint32_t p1, uint32_t p2)
{
	uint64_t dco_freq;

	switch (central_freq) {
	case 9600000000ULL:
		params->central_freq = 0;
		break;
	case 9000000000ULL:
		params->central_freq = 1;
		break;
	case 8400000000ULL:
		params->central_freq = 3;
	}

	switch (p0) {
	case 1:
		params->pdiv = 0;
		break;
	case 2:
		params->pdiv = 1;
		break;
	case 3:
		params->pdiv = 2;
		break;
	case 7:
		params->pdiv = 4;
		break;
	default:
		WARN(1, "Incorrect PDiv\n");
	}

	switch (p2) {
	case 5:
		params->kdiv = 0;
		break;
	case 2:
		params->kdiv = 1;
		break;
	case 3:
		params->kdiv = 2;
		break;
	case 1:
		params->kdiv = 3;
		break;
	default:
		WARN(1, "Incorrect KDiv\n");
	}

	params->qdiv_ratio = p1;
	params->qdiv_mode = (params->qdiv_ratio == 1) ? 0 : 1;

	dco_freq = p0 * p1 * p2 * afe_clock;

	/*
	 * Intermediate values are in Hz.
	 * Divide by MHz to match bsepc
	 */
1468
	params->dco_integer = div_u64(dco_freq, 24 * MHz(1));
1469
	params->dco_fraction =
1470 1471
		div_u64((div_u64(dco_freq, 24) -
			 params->dco_integer * MHz(1)) * 0x8000, MHz(1));
1472 1473
}

1474
static bool
1475 1476 1477 1478
skl_ddi_calculate_wrpll(int clock /* in Hz */,
			struct skl_wrpll_params *wrpll_params)
{
	uint64_t afe_clock = clock * 5; /* AFE Clock is 5x Pixel clock */
1479 1480 1481
	uint64_t dco_central_freq[3] = {8400000000ULL,
					9000000000ULL,
					9600000000ULL};
1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
	static const int even_dividers[] = {  4,  6,  8, 10, 12, 14, 16, 18, 20,
					     24, 28, 30, 32, 36, 40, 42, 44,
					     48, 52, 54, 56, 60, 64, 66, 68,
					     70, 72, 76, 78, 80, 84, 88, 90,
					     92, 96, 98 };
	static const int odd_dividers[] = { 3, 5, 7, 9, 15, 21, 35 };
	static const struct {
		const int *list;
		int n_dividers;
	} dividers[] = {
		{ even_dividers, ARRAY_SIZE(even_dividers) },
		{ odd_dividers, ARRAY_SIZE(odd_dividers) },
	};
	struct skl_wrpll_context ctx;
	unsigned int dco, d, i;
	unsigned int p0, p1, p2;

	skl_wrpll_context_init(&ctx);

	for (d = 0; d < ARRAY_SIZE(dividers); d++) {
		for (dco = 0; dco < ARRAY_SIZE(dco_central_freq); dco++) {
			for (i = 0; i < dividers[d].n_dividers; i++) {
				unsigned int p = dividers[d].list[i];
				uint64_t dco_freq = p * afe_clock;

				skl_wrpll_try_divider(&ctx,
						      dco_central_freq[dco],
						      dco_freq,
						      p);
1511 1512 1513 1514 1515 1516 1517
				/*
				 * Skip the remaining dividers if we're sure to
				 * have found the definitive divider, we can't
				 * improve a 0 deviation.
				 */
				if (ctx.min_deviation == 0)
					goto skip_remaining_dividers;
1518 1519
			}
		}
1520

1521
skip_remaining_dividers:
1522 1523 1524 1525 1526 1527
		/*
		 * If a solution is found with an even divider, prefer
		 * this one.
		 */
		if (d == 0 && ctx.p)
			break;
1528 1529
	}

1530 1531
	if (!ctx.p) {
		DRM_DEBUG_DRIVER("No valid divider found for %dHz\n", clock);
1532
		return false;
1533
	}
1534

1535 1536 1537 1538 1539 1540 1541 1542
	/*
	 * gcc incorrectly analyses that these can be used without being
	 * initialized. To be fair, it's hard to guess.
	 */
	p0 = p1 = p2 = 0;
	skl_wrpll_get_multipliers(ctx.p, &p0, &p1, &p2);
	skl_wrpll_params_populate(wrpll_params, afe_clock, ctx.central_freq,
				  p0, p1, p2);
1543 1544

	return true;
1545 1546 1547 1548
}

static bool
skl_ddi_pll_select(struct intel_crtc *intel_crtc,
1549
		   struct intel_crtc_state *crtc_state,
1550
		   struct intel_encoder *intel_encoder)
1551 1552 1553
{
	struct intel_shared_dpll *pll;
	uint32_t ctrl1, cfgcr1, cfgcr2;
1554
	int clock = crtc_state->port_clock;
1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567

	/*
	 * See comment in intel_dpll_hw_state to understand why we always use 0
	 * as the DPLL id in this function.
	 */

	ctrl1 = DPLL_CTRL1_OVERRIDE(0);

	if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
		struct skl_wrpll_params wrpll_params = { 0, };

		ctrl1 |= DPLL_CTRL1_HDMI_MODE(0);

1568 1569
		if (!skl_ddi_calculate_wrpll(clock * 1000, &wrpll_params))
			return false;
1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580

		cfgcr1 = DPLL_CFGCR1_FREQ_ENABLE |
			 DPLL_CFGCR1_DCO_FRACTION(wrpll_params.dco_fraction) |
			 wrpll_params.dco_integer;

		cfgcr2 = DPLL_CFGCR2_QDIV_RATIO(wrpll_params.qdiv_ratio) |
			 DPLL_CFGCR2_QDIV_MODE(wrpll_params.qdiv_mode) |
			 DPLL_CFGCR2_KDIV(wrpll_params.kdiv) |
			 DPLL_CFGCR2_PDIV(wrpll_params.pdiv) |
			 wrpll_params.central_freq;
	} else if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT) {
1581 1582
		switch (crtc_state->port_clock / 2) {
		case 81000:
1583
			ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810, 0);
1584
			break;
1585
		case 135000:
1586
			ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1350, 0);
1587
			break;
1588
		case 270000:
1589
			ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2700, 0);
1590 1591 1592 1593 1594 1595 1596
			break;
		}

		cfgcr1 = cfgcr2 = 0;
	} else /* eDP */
		return true;

1597 1598 1599
	memset(&crtc_state->dpll_hw_state, 0,
	       sizeof(crtc_state->dpll_hw_state));

1600 1601 1602
	crtc_state->dpll_hw_state.ctrl1 = ctrl1;
	crtc_state->dpll_hw_state.cfgcr1 = cfgcr1;
	crtc_state->dpll_hw_state.cfgcr2 = cfgcr2;
1603

1604
	pll = intel_get_shared_dpll(intel_crtc, crtc_state);
1605 1606 1607 1608 1609 1610 1611
	if (pll == NULL) {
		DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
				 pipe_name(intel_crtc->pipe));
		return false;
	}

	/* shared DPLL id 0 is DPLL 1 */
1612
	crtc_state->ddi_pll_sel = pll->id + 1;
1613 1614 1615

	return true;
}
1616

1617 1618
/* bxt clock parameters */
struct bxt_clk_div {
1619
	int clock;
1620 1621 1622 1623 1624 1625 1626 1627 1628
	uint32_t p1;
	uint32_t p2;
	uint32_t m2_int;
	uint32_t m2_frac;
	bool m2_frac_en;
	uint32_t n;
};

/* pre-calculated values for DP linkrates */
1629 1630 1631 1632 1633 1634 1635 1636
static const struct bxt_clk_div bxt_dp_clk_val[] = {
	{162000, 4, 2, 32, 1677722, 1, 1},
	{270000, 4, 1, 27,       0, 0, 1},
	{540000, 2, 1, 27,       0, 0, 1},
	{216000, 3, 2, 32, 1677722, 1, 1},
	{243000, 4, 1, 24, 1258291, 1, 1},
	{324000, 4, 1, 32, 1677722, 1, 1},
	{432000, 3, 1, 32, 1677722, 1, 1}
1637 1638 1639 1640 1641
};

static bool
bxt_ddi_pll_select(struct intel_crtc *intel_crtc,
		   struct intel_crtc_state *crtc_state,
1642
		   struct intel_encoder *intel_encoder)
1643 1644 1645
{
	struct intel_shared_dpll *pll;
	struct bxt_clk_div clk_div = {0};
1646 1647
	int vco = 0;
	uint32_t prop_coef, int_coef, gain_ctl, targ_cnt;
1648
	uint32_t lanestagger;
1649
	int clock = crtc_state->port_clock;
1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672

	if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
		intel_clock_t best_clock;

		/* Calculate HDMI div */
		/*
		 * FIXME: tie the following calculation into
		 * i9xx_crtc_compute_clock
		 */
		if (!bxt_find_best_dpll(crtc_state, clock, &best_clock)) {
			DRM_DEBUG_DRIVER("no PLL dividers found for clock %d pipe %c\n",
					 clock, pipe_name(intel_crtc->pipe));
			return false;
		}

		clk_div.p1 = best_clock.p1;
		clk_div.p2 = best_clock.p2;
		WARN_ON(best_clock.m1 != 2);
		clk_div.n = best_clock.n;
		clk_div.m2_int = best_clock.m2 >> 22;
		clk_div.m2_frac = best_clock.m2 & ((1 << 22) - 1);
		clk_div.m2_frac_en = clk_div.m2_frac != 0;

1673
		vco = best_clock.vco;
1674 1675
	} else if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
			intel_encoder->type == INTEL_OUTPUT_EDP) {
1676
		int i;
1677

1678 1679 1680 1681 1682 1683
		clk_div = bxt_dp_clk_val[0];
		for (i = 0; i < ARRAY_SIZE(bxt_dp_clk_val); ++i) {
			if (bxt_dp_clk_val[i].clock == clock) {
				clk_div = bxt_dp_clk_val[i];
				break;
			}
1684
		}
1685 1686 1687
		vco = clock * 10 / 2 * clk_div.p1 * clk_div.p2;
	}

1688
	if (vco >= 6200000 && vco <= 6700000) {
1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706
		prop_coef = 4;
		int_coef = 9;
		gain_ctl = 3;
		targ_cnt = 8;
	} else if ((vco > 5400000 && vco < 6200000) ||
			(vco >= 4800000 && vco < 5400000)) {
		prop_coef = 5;
		int_coef = 11;
		gain_ctl = 3;
		targ_cnt = 9;
	} else if (vco == 5400000) {
		prop_coef = 3;
		int_coef = 8;
		gain_ctl = 1;
		targ_cnt = 9;
	} else {
		DRM_ERROR("Invalid VCO\n");
		return false;
1707 1708
	}

1709 1710 1711
	memset(&crtc_state->dpll_hw_state, 0,
	       sizeof(crtc_state->dpll_hw_state));

1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722
	if (clock > 270000)
		lanestagger = 0x18;
	else if (clock > 135000)
		lanestagger = 0x0d;
	else if (clock > 67000)
		lanestagger = 0x07;
	else if (clock > 33000)
		lanestagger = 0x04;
	else
		lanestagger = 0x02;

1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733
	crtc_state->dpll_hw_state.ebb0 =
		PORT_PLL_P1(clk_div.p1) | PORT_PLL_P2(clk_div.p2);
	crtc_state->dpll_hw_state.pll0 = clk_div.m2_int;
	crtc_state->dpll_hw_state.pll1 = PORT_PLL_N(clk_div.n);
	crtc_state->dpll_hw_state.pll2 = clk_div.m2_frac;

	if (clk_div.m2_frac_en)
		crtc_state->dpll_hw_state.pll3 =
			PORT_PLL_M2_FRAC_ENABLE;

	crtc_state->dpll_hw_state.pll6 =
1734
		prop_coef | PORT_PLL_INT_COEFF(int_coef);
1735
	crtc_state->dpll_hw_state.pll6 |=
1736 1737 1738
		PORT_PLL_GAIN_CTL(gain_ctl);

	crtc_state->dpll_hw_state.pll8 = targ_cnt;
1739

1740 1741
	crtc_state->dpll_hw_state.pll9 = 5 << PORT_PLL_LOCK_THRESHOLD_SHIFT;

1742 1743 1744
	crtc_state->dpll_hw_state.pll10 =
		PORT_PLL_DCO_AMP(PORT_PLL_DCO_AMP_DEFAULT)
		| PORT_PLL_DCO_AMP_OVR_EN_H;
1745

1746 1747
	crtc_state->dpll_hw_state.ebb4 = PORT_PLL_10BIT_CLK_ENABLE;

1748
	crtc_state->dpll_hw_state.pcsdw12 =
1749
		LANESTAGGER_STRAP_OVRD | lanestagger;
1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763

	pll = intel_get_shared_dpll(intel_crtc, crtc_state);
	if (pll == NULL) {
		DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
			pipe_name(intel_crtc->pipe));
		return false;
	}

	/* shared DPLL id 0 is DPLL A */
	crtc_state->ddi_pll_sel = pll->id;

	return true;
}

1764 1765 1766 1767 1768 1769 1770
/*
 * Tries to find a *shared* PLL for the CRTC and store it in
 * intel_crtc->ddi_pll_sel.
 *
 * For private DPLLs, compute_config() should do the selection for us. This
 * function should be folded into compute_config() eventually.
 */
1771 1772
bool intel_ddi_pll_select(struct intel_crtc *intel_crtc,
			  struct intel_crtc_state *crtc_state)
1773
{
1774
	struct drm_device *dev = intel_crtc->base.dev;
1775
	struct intel_encoder *intel_encoder =
1776
		intel_ddi_get_crtc_new_encoder(crtc_state);
1777

1778
	if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
1779
		return skl_ddi_pll_select(intel_crtc, crtc_state,
1780
					  intel_encoder);
1781 1782
	else if (IS_BROXTON(dev))
		return bxt_ddi_pll_select(intel_crtc, crtc_state,
1783
					  intel_encoder);
1784
	else
1785
		return hsw_ddi_pll_select(intel_crtc, crtc_state,
1786
					  intel_encoder);
1787 1788
}

1789 1790 1791 1792 1793
void intel_ddi_set_pipe_settings(struct drm_crtc *crtc)
{
	struct drm_i915_private *dev_priv = crtc->dev->dev_private;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
1794
	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
1795 1796 1797
	int type = intel_encoder->type;
	uint32_t temp;

1798
	if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP || type == INTEL_OUTPUT_DP_MST) {
1799
		temp = TRANS_MSA_SYNC_CLK;
1800
		switch (intel_crtc->config->pipe_bpp) {
1801
		case 18:
1802
			temp |= TRANS_MSA_6_BPC;
1803 1804
			break;
		case 24:
1805
			temp |= TRANS_MSA_8_BPC;
1806 1807
			break;
		case 30:
1808
			temp |= TRANS_MSA_10_BPC;
1809 1810
			break;
		case 36:
1811
			temp |= TRANS_MSA_12_BPC;
1812 1813
			break;
		default:
1814
			BUG();
1815
		}
1816
		I915_WRITE(TRANS_MSA_MISC(cpu_transcoder), temp);
1817 1818 1819
	}
}

1820 1821 1822 1823 1824
void intel_ddi_set_vc_payload_alloc(struct drm_crtc *crtc, bool state)
{
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
1825
	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
1826 1827 1828 1829 1830 1831 1832 1833 1834
	uint32_t temp;
	temp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
	if (state == true)
		temp |= TRANS_DDI_DP_VC_PAYLOAD_ALLOC;
	else
		temp &= ~TRANS_DDI_DP_VC_PAYLOAD_ALLOC;
	I915_WRITE(TRANS_DDI_FUNC_CTL(cpu_transcoder), temp);
}

1835
void intel_ddi_enable_transcoder_func(struct drm_crtc *crtc)
1836 1837 1838
{
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
1839
	struct drm_encoder *encoder = &intel_encoder->base;
1840 1841
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
1842
	enum pipe pipe = intel_crtc->pipe;
1843
	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
1844
	enum port port = intel_ddi_get_encoder_port(intel_encoder);
1845
	int type = intel_encoder->type;
1846 1847
	uint32_t temp;

1848 1849
	/* Enable TRANS_DDI_FUNC_CTL for the pipe to work in HDMI mode */
	temp = TRANS_DDI_FUNC_ENABLE;
1850
	temp |= TRANS_DDI_SELECT_PORT(port);
1851

1852
	switch (intel_crtc->config->pipe_bpp) {
1853
	case 18:
1854
		temp |= TRANS_DDI_BPC_6;
1855 1856
		break;
	case 24:
1857
		temp |= TRANS_DDI_BPC_8;
1858 1859
		break;
	case 30:
1860
		temp |= TRANS_DDI_BPC_10;
1861 1862
		break;
	case 36:
1863
		temp |= TRANS_DDI_BPC_12;
1864 1865
		break;
	default:
1866
		BUG();
1867
	}
1868

1869
	if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_PVSYNC)
1870
		temp |= TRANS_DDI_PVSYNC;
1871
	if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_PHSYNC)
1872
		temp |= TRANS_DDI_PHSYNC;
1873

1874 1875 1876
	if (cpu_transcoder == TRANSCODER_EDP) {
		switch (pipe) {
		case PIPE_A:
1877 1878 1879 1880
			/* On Haswell, can only use the always-on power well for
			 * eDP when not using the panel fitter, and when not
			 * using motion blur mitigation (which we don't
			 * support). */
1881
			if (IS_HASWELL(dev) &&
1882 1883
			    (intel_crtc->config->pch_pfit.enabled ||
			     intel_crtc->config->pch_pfit.force_thru))
1884 1885 1886
				temp |= TRANS_DDI_EDP_INPUT_A_ONOFF;
			else
				temp |= TRANS_DDI_EDP_INPUT_A_ON;
1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899
			break;
		case PIPE_B:
			temp |= TRANS_DDI_EDP_INPUT_B_ONOFF;
			break;
		case PIPE_C:
			temp |= TRANS_DDI_EDP_INPUT_C_ONOFF;
			break;
		default:
			BUG();
			break;
		}
	}

1900
	if (type == INTEL_OUTPUT_HDMI) {
1901
		if (intel_crtc->config->has_hdmi_sink)
1902
			temp |= TRANS_DDI_MODE_SELECT_HDMI;
1903
		else
1904
			temp |= TRANS_DDI_MODE_SELECT_DVI;
1905

1906
	} else if (type == INTEL_OUTPUT_ANALOG) {
1907
		temp |= TRANS_DDI_MODE_SELECT_FDI;
1908
		temp |= (intel_crtc->config->fdi_lanes - 1) << 1;
1909 1910 1911 1912 1913

	} else if (type == INTEL_OUTPUT_DISPLAYPORT ||
		   type == INTEL_OUTPUT_EDP) {
		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);

1914 1915 1916 1917 1918
		if (intel_dp->is_mst) {
			temp |= TRANS_DDI_MODE_SELECT_DP_MST;
		} else
			temp |= TRANS_DDI_MODE_SELECT_DP_SST;

1919
		temp |= DDI_PORT_WIDTH(intel_crtc->config->lane_count);
1920 1921 1922 1923 1924 1925 1926
	} else if (type == INTEL_OUTPUT_DP_MST) {
		struct intel_dp *intel_dp = &enc_to_mst(encoder)->primary->dp;

		if (intel_dp->is_mst) {
			temp |= TRANS_DDI_MODE_SELECT_DP_MST;
		} else
			temp |= TRANS_DDI_MODE_SELECT_DP_SST;
1927

1928
		temp |= DDI_PORT_WIDTH(intel_crtc->config->lane_count);
1929
	} else {
1930 1931
		WARN(1, "Invalid encoder type %d for pipe %c\n",
		     intel_encoder->type, pipe_name(pipe));
1932 1933
	}

1934
	I915_WRITE(TRANS_DDI_FUNC_CTL(cpu_transcoder), temp);
1935
}
1936

1937 1938
void intel_ddi_disable_transcoder_func(struct drm_i915_private *dev_priv,
				       enum transcoder cpu_transcoder)
1939
{
1940
	i915_reg_t reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1941 1942
	uint32_t val = I915_READ(reg);

1943
	val &= ~(TRANS_DDI_FUNC_ENABLE | TRANS_DDI_PORT_MASK | TRANS_DDI_DP_VC_PAYLOAD_ALLOC);
1944
	val |= TRANS_DDI_PORT_NONE;
1945
	I915_WRITE(reg, val);
1946 1947
}

1948 1949 1950 1951 1952 1953 1954 1955 1956
bool intel_ddi_connector_get_hw_state(struct intel_connector *intel_connector)
{
	struct drm_device *dev = intel_connector->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_encoder *intel_encoder = intel_connector->encoder;
	int type = intel_connector->base.connector_type;
	enum port port = intel_ddi_get_encoder_port(intel_encoder);
	enum pipe pipe = 0;
	enum transcoder cpu_transcoder;
1957
	enum intel_display_power_domain power_domain;
1958 1959
	uint32_t tmp;

1960
	power_domain = intel_display_port_power_domain(intel_encoder);
1961
	if (!intel_display_power_is_enabled(dev_priv, power_domain))
1962 1963
		return false;

1964 1965 1966 1967 1968 1969
	if (!intel_encoder->get_hw_state(intel_encoder, &pipe))
		return false;

	if (port == PORT_A)
		cpu_transcoder = TRANSCODER_EDP;
	else
D
Daniel Vetter 已提交
1970
		cpu_transcoder = (enum transcoder) pipe;
1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982

	tmp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));

	switch (tmp & TRANS_DDI_MODE_SELECT_MASK) {
	case TRANS_DDI_MODE_SELECT_HDMI:
	case TRANS_DDI_MODE_SELECT_DVI:
		return (type == DRM_MODE_CONNECTOR_HDMIA);

	case TRANS_DDI_MODE_SELECT_DP_SST:
		if (type == DRM_MODE_CONNECTOR_eDP)
			return true;
		return (type == DRM_MODE_CONNECTOR_DisplayPort);
1983 1984 1985 1986
	case TRANS_DDI_MODE_SELECT_DP_MST:
		/* if the transcoder is in MST state then
		 * connector isn't connected */
		return false;
1987 1988 1989 1990 1991 1992 1993 1994 1995

	case TRANS_DDI_MODE_SELECT_FDI:
		return (type == DRM_MODE_CONNECTOR_VGA);

	default:
		return false;
	}
}

1996 1997 1998 1999 2000
bool intel_ddi_get_hw_state(struct intel_encoder *encoder,
			    enum pipe *pipe)
{
	struct drm_device *dev = encoder->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
2001
	enum port port = intel_ddi_get_encoder_port(encoder);
2002
	enum intel_display_power_domain power_domain;
2003 2004 2005
	u32 tmp;
	int i;

2006
	power_domain = intel_display_port_power_domain(encoder);
2007
	if (!intel_display_power_is_enabled(dev_priv, power_domain))
2008 2009
		return false;

2010
	tmp = I915_READ(DDI_BUF_CTL(port));
2011 2012 2013 2014

	if (!(tmp & DDI_BUF_CTL_ENABLE))
		return false;

2015 2016
	if (port == PORT_A) {
		tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
2017

2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037
		switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
		case TRANS_DDI_EDP_INPUT_A_ON:
		case TRANS_DDI_EDP_INPUT_A_ONOFF:
			*pipe = PIPE_A;
			break;
		case TRANS_DDI_EDP_INPUT_B_ONOFF:
			*pipe = PIPE_B;
			break;
		case TRANS_DDI_EDP_INPUT_C_ONOFF:
			*pipe = PIPE_C;
			break;
		}

		return true;
	} else {
		for (i = TRANSCODER_A; i <= TRANSCODER_C; i++) {
			tmp = I915_READ(TRANS_DDI_FUNC_CTL(i));

			if ((tmp & TRANS_DDI_PORT_MASK)
			    == TRANS_DDI_SELECT_PORT(port)) {
2038 2039 2040
				if ((tmp & TRANS_DDI_MODE_SELECT_MASK) == TRANS_DDI_MODE_SELECT_DP_MST)
					return false;

2041 2042 2043
				*pipe = i;
				return true;
			}
2044 2045 2046
		}
	}

2047
	DRM_DEBUG_KMS("No pipe for ddi port %c found\n", port_name(port));
2048

2049
	return false;
2050 2051
}

2052 2053 2054
void intel_ddi_enable_pipe_clock(struct intel_crtc *intel_crtc)
{
	struct drm_crtc *crtc = &intel_crtc->base;
2055 2056
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
2057 2058
	struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
	enum port port = intel_ddi_get_encoder_port(intel_encoder);
2059
	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
2060

2061 2062 2063
	if (cpu_transcoder != TRANSCODER_EDP)
		I915_WRITE(TRANS_CLK_SEL(cpu_transcoder),
			   TRANS_CLK_SEL_PORT(port));
2064 2065 2066 2067 2068
}

void intel_ddi_disable_pipe_clock(struct intel_crtc *intel_crtc)
{
	struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
2069
	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
2070

2071 2072 2073
	if (cpu_transcoder != TRANSCODER_EDP)
		I915_WRITE(TRANS_CLK_SEL(cpu_transcoder),
			   TRANS_CLK_SEL_DISABLED);
2074 2075
}

2076 2077 2078 2079 2080 2081
static void skl_ddi_set_iboost(struct drm_device *dev, u32 level,
			       enum port port, int type)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	const struct ddi_buf_trans *ddi_translations;
	uint8_t iboost;
2082
	uint8_t dp_iboost, hdmi_iboost;
2083 2084 2085
	int n_entries;
	u32 reg;

2086 2087 2088 2089
	/* VBT may override standard boost values */
	dp_iboost = dev_priv->vbt.ddi_port_info[port].dp_boost_level;
	hdmi_iboost = dev_priv->vbt.ddi_port_info[port].hdmi_boost_level;

2090
	if (type == INTEL_OUTPUT_DISPLAYPORT) {
2091 2092 2093 2094
		if (dp_iboost) {
			iboost = dp_iboost;
		} else {
			ddi_translations = skl_get_buf_trans_dp(dev, &n_entries);
2095
			iboost = ddi_translations[level].i_boost;
2096
		}
2097
	} else if (type == INTEL_OUTPUT_EDP) {
2098 2099 2100 2101
		if (dp_iboost) {
			iboost = dp_iboost;
		} else {
			ddi_translations = skl_get_buf_trans_edp(dev, &n_entries);
2102
			iboost = ddi_translations[level].i_boost;
2103
		}
2104
	} else if (type == INTEL_OUTPUT_HDMI) {
2105 2106 2107 2108
		if (hdmi_iboost) {
			iboost = hdmi_iboost;
		} else {
			ddi_translations = skl_get_buf_trans_hdmi(dev, &n_entries);
2109
			iboost = ddi_translations[level].i_boost;
2110
		}
2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134
	} else {
		return;
	}

	/* Make sure that the requested I_boost is valid */
	if (iboost && iboost != 0x1 && iboost != 0x3 && iboost != 0x7) {
		DRM_ERROR("Invalid I_boost value %u\n", iboost);
		return;
	}

	reg = I915_READ(DISPIO_CR_TX_BMU_CR0);
	reg &= ~BALANCE_LEG_MASK(port);
	reg &= ~(1 << (BALANCE_LEG_DISABLE_SHIFT + port));

	if (iboost)
		reg |= iboost << BALANCE_LEG_SHIFT(port);
	else
		reg |= 1 << (BALANCE_LEG_DISABLE_SHIFT + port);

	I915_WRITE(DISPIO_CR_TX_BMU_CR0, reg);
}

static void bxt_ddi_vswing_sequence(struct drm_device *dev, u32 level,
				    enum port port, int type)
2135 2136 2137 2138 2139 2140
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	const struct bxt_ddi_buf_trans *ddi_translations;
	u32 n_entries, i;
	uint32_t val;

2141 2142 2143 2144 2145
	if (type == INTEL_OUTPUT_EDP && dev_priv->edp_low_vswing) {
		n_entries = ARRAY_SIZE(bxt_ddi_translations_edp);
		ddi_translations = bxt_ddi_translations_edp;
	} else if (type == INTEL_OUTPUT_DISPLAYPORT
			|| type == INTEL_OUTPUT_EDP) {
2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182
		n_entries = ARRAY_SIZE(bxt_ddi_translations_dp);
		ddi_translations = bxt_ddi_translations_dp;
	} else if (type == INTEL_OUTPUT_HDMI) {
		n_entries = ARRAY_SIZE(bxt_ddi_translations_hdmi);
		ddi_translations = bxt_ddi_translations_hdmi;
	} else {
		DRM_DEBUG_KMS("Vswing programming not done for encoder %d\n",
				type);
		return;
	}

	/* Check if default value has to be used */
	if (level >= n_entries ||
	    (type == INTEL_OUTPUT_HDMI && level == HDMI_LEVEL_SHIFT_UNKNOWN)) {
		for (i = 0; i < n_entries; i++) {
			if (ddi_translations[i].default_index) {
				level = i;
				break;
			}
		}
	}

	/*
	 * While we write to the group register to program all lanes at once we
	 * can read only lane registers and we pick lanes 0/1 for that.
	 */
	val = I915_READ(BXT_PORT_PCS_DW10_LN01(port));
	val &= ~(TX2_SWING_CALC_INIT | TX1_SWING_CALC_INIT);
	I915_WRITE(BXT_PORT_PCS_DW10_GRP(port), val);

	val = I915_READ(BXT_PORT_TX_DW2_LN0(port));
	val &= ~(MARGIN_000 | UNIQ_TRANS_SCALE);
	val |= ddi_translations[level].margin << MARGIN_000_SHIFT |
	       ddi_translations[level].scale << UNIQ_TRANS_SCALE_SHIFT;
	I915_WRITE(BXT_PORT_TX_DW2_GRP(port), val);

	val = I915_READ(BXT_PORT_TX_DW3_LN0(port));
2183
	val &= ~SCALE_DCOMP_METHOD;
2184
	if (ddi_translations[level].enable)
2185 2186 2187 2188 2189
		val |= SCALE_DCOMP_METHOD;

	if ((val & UNIQUE_TRANGE_EN_METHOD) && !(val & SCALE_DCOMP_METHOD))
		DRM_ERROR("Disabled scaling while ouniqetrangenmethod was set");

2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201
	I915_WRITE(BXT_PORT_TX_DW3_GRP(port), val);

	val = I915_READ(BXT_PORT_TX_DW4_LN0(port));
	val &= ~DE_EMPHASIS;
	val |= ddi_translations[level].deemphasis << DEEMPH_SHIFT;
	I915_WRITE(BXT_PORT_TX_DW4_GRP(port), val);

	val = I915_READ(BXT_PORT_PCS_DW10_LN01(port));
	val |= TX2_SWING_CALC_INIT | TX1_SWING_CALC_INIT;
	I915_WRITE(BXT_PORT_PCS_DW10_GRP(port), val);
}

2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260
static uint32_t translate_signal_level(int signal_levels)
{
	uint32_t level;

	switch (signal_levels) {
	default:
		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level: 0x%x\n",
			      signal_levels);
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
		level = 0;
		break;
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
		level = 1;
		break;
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
		level = 2;
		break;
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_3:
		level = 3;
		break;

	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
		level = 4;
		break;
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
		level = 5;
		break;
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
		level = 6;
		break;

	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
		level = 7;
		break;
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
		level = 8;
		break;

	case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
		level = 9;
		break;
	}

	return level;
}

uint32_t ddi_signal_levels(struct intel_dp *intel_dp)
{
	struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
	struct drm_device *dev = dport->base.base.dev;
	struct intel_encoder *encoder = &dport->base;
	uint8_t train_set = intel_dp->train_set[0];
	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
					 DP_TRAIN_PRE_EMPHASIS_MASK);
	enum port port = dport->port;
	uint32_t level;

	level = translate_signal_level(signal_levels);

2261
	if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
2262 2263 2264 2265 2266 2267 2268
		skl_ddi_set_iboost(dev, level, port, encoder->type);
	else if (IS_BROXTON(dev))
		bxt_ddi_vswing_sequence(dev, level, port, encoder->type);

	return DDI_BUF_TRANS_SELECT(level);
}

2269 2270
void intel_ddi_clk_select(struct intel_encoder *encoder,
			  const struct intel_crtc_state *pipe_config)
2271
{
2272 2273
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	enum port port = intel_ddi_get_encoder_port(encoder);
2274

2275 2276
	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
		uint32_t dpll = pipe_config->ddi_pll_sel;
2277 2278
		uint32_t val;

2279 2280 2281 2282
		/*
		 * DPLL0 is used for eDP and is the only "private" DPLL (as
		 * opposed to shared) on SKL
		 */
2283
		if (encoder->type == INTEL_OUTPUT_EDP) {
2284 2285 2286 2287 2288 2289
			WARN_ON(dpll != SKL_DPLL0);

			val = I915_READ(DPLL_CTRL1);

			val &= ~(DPLL_CTRL1_HDMI_MODE(dpll) |
				 DPLL_CTRL1_SSC(dpll) |
2290
				 DPLL_CTRL1_LINK_RATE_MASK(dpll));
2291
			val |= pipe_config->dpll_hw_state.ctrl1 << (dpll * 6);
2292 2293 2294 2295 2296 2297

			I915_WRITE(DPLL_CTRL1, val);
			POSTING_READ(DPLL_CTRL1);
		}

		/* DDI -> PLL mapping  */
2298 2299 2300 2301 2302 2303 2304 2305
		val = I915_READ(DPLL_CTRL2);

		val &= ~(DPLL_CTRL2_DDI_CLK_OFF(port) |
			DPLL_CTRL2_DDI_CLK_SEL_MASK(port));
		val |= (DPLL_CTRL2_DDI_CLK_SEL(dpll, port) |
			DPLL_CTRL2_DDI_SEL_OVERRIDE(port));

		I915_WRITE(DPLL_CTRL2, val);
2306

2307 2308 2309
	} else if (INTEL_INFO(dev_priv)->gen < 9) {
		WARN_ON(pipe_config->ddi_pll_sel == PORT_CLK_SEL_NONE);
		I915_WRITE(PORT_CLK_SEL(port), pipe_config->ddi_pll_sel);
2310
	}
2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328
}

static void intel_ddi_pre_enable(struct intel_encoder *intel_encoder)
{
	struct drm_encoder *encoder = &intel_encoder->base;
	struct drm_device *dev = encoder->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_crtc *crtc = to_intel_crtc(encoder->crtc);
	enum port port = intel_ddi_get_encoder_port(intel_encoder);
	int type = intel_encoder->type;
	int hdmi_level;

	if (type == INTEL_OUTPUT_EDP) {
		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
		intel_edp_panel_on(intel_dp);
	}

	intel_ddi_clk_select(intel_encoder, crtc->config);
2329

2330
	if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) {
2331
		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2332

2333 2334
		intel_dp_set_link_params(intel_dp, crtc->config);

2335
		intel_ddi_init_dp_buf_reg(intel_encoder);
2336 2337 2338

		intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
		intel_dp_start_link_train(intel_dp);
2339
		if (port != PORT_A || INTEL_INFO(dev)->gen >= 9)
2340
			intel_dp_stop_link_train(intel_dp);
2341 2342 2343
	} else if (type == INTEL_OUTPUT_HDMI) {
		struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);

2344 2345 2346 2347 2348 2349
		if (IS_BROXTON(dev)) {
			hdmi_level = dev_priv->vbt.
				ddi_port_info[port].hdmi_level_shift;
			bxt_ddi_vswing_sequence(dev, hdmi_level, port,
					INTEL_OUTPUT_HDMI);
		}
2350
		intel_hdmi->set_infoframes(encoder,
2351 2352
					   crtc->config->has_hdmi_sink,
					   &crtc->config->base.adjusted_mode);
2353
	}
2354 2355
}

P
Paulo Zanoni 已提交
2356
static void intel_ddi_post_disable(struct intel_encoder *intel_encoder)
2357 2358
{
	struct drm_encoder *encoder = &intel_encoder->base;
2359 2360
	struct drm_device *dev = encoder->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
2361
	enum port port = intel_ddi_get_encoder_port(intel_encoder);
2362
	int type = intel_encoder->type;
2363
	uint32_t val;
2364
	bool wait = false;
2365 2366 2367 2368 2369

	val = I915_READ(DDI_BUF_CTL(port));
	if (val & DDI_BUF_CTL_ENABLE) {
		val &= ~DDI_BUF_CTL_ENABLE;
		I915_WRITE(DDI_BUF_CTL(port), val);
2370
		wait = true;
2371
	}
2372

2373 2374 2375 2376 2377 2378 2379 2380
	val = I915_READ(DP_TP_CTL(port));
	val &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
	val |= DP_TP_CTL_LINK_TRAIN_PAT1;
	I915_WRITE(DP_TP_CTL(port), val);

	if (wait)
		intel_wait_ddi_buf_idle(dev_priv, port);

2381
	if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) {
2382
		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2383
		intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
2384
		intel_edp_panel_vdd_on(intel_dp);
2385
		intel_edp_panel_off(intel_dp);
2386 2387
	}

2388
	if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
2389 2390
		I915_WRITE(DPLL_CTRL2, (I915_READ(DPLL_CTRL2) |
					DPLL_CTRL2_DDI_CLK_OFF(port)));
2391
	else if (INTEL_INFO(dev)->gen < 9)
2392
		I915_WRITE(PORT_CLK_SEL(port), PORT_CLK_SEL_NONE);
2393 2394
}

P
Paulo Zanoni 已提交
2395
static void intel_enable_ddi(struct intel_encoder *intel_encoder)
2396
{
2397
	struct drm_encoder *encoder = &intel_encoder->base;
2398 2399
	struct drm_crtc *crtc = encoder->crtc;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2400
	struct drm_device *dev = encoder->dev;
2401
	struct drm_i915_private *dev_priv = dev->dev_private;
2402 2403
	enum port port = intel_ddi_get_encoder_port(intel_encoder);
	int type = intel_encoder->type;
2404

2405
	if (type == INTEL_OUTPUT_HDMI) {
2406 2407 2408
		struct intel_digital_port *intel_dig_port =
			enc_to_dig_port(encoder);

2409 2410 2411 2412
		/* In HDMI/DVI mode, the port width, and swing/emphasis values
		 * are ignored so nothing special needs to be done besides
		 * enabling the port.
		 */
2413
		I915_WRITE(DDI_BUF_CTL(port),
2414 2415
			   intel_dig_port->saved_port_bits |
			   DDI_BUF_CTL_ENABLE);
2416 2417 2418
	} else if (type == INTEL_OUTPUT_EDP) {
		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);

2419
		if (port == PORT_A && INTEL_INFO(dev)->gen < 9)
2420 2421
			intel_dp_stop_link_train(intel_dp);

2422
		intel_edp_backlight_on(intel_dp);
R
Rodrigo Vivi 已提交
2423
		intel_psr_enable(intel_dp);
V
Vandana Kannan 已提交
2424
		intel_edp_drrs_enable(intel_dp);
2425
	}
2426

2427
	if (intel_crtc->config->has_audio) {
2428
		intel_display_power_get(dev_priv, POWER_DOMAIN_AUDIO);
2429
		intel_audio_codec_enable(intel_encoder);
2430
	}
2431 2432
}

P
Paulo Zanoni 已提交
2433
static void intel_disable_ddi(struct intel_encoder *intel_encoder)
2434
{
2435
	struct drm_encoder *encoder = &intel_encoder->base;
2436 2437
	struct drm_crtc *crtc = encoder->crtc;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2438
	int type = intel_encoder->type;
2439 2440
	struct drm_device *dev = encoder->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
2441

2442
	if (intel_crtc->config->has_audio) {
2443
		intel_audio_codec_disable(intel_encoder);
2444 2445
		intel_display_power_put(dev_priv, POWER_DOMAIN_AUDIO);
	}
2446

2447 2448 2449
	if (type == INTEL_OUTPUT_EDP) {
		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);

V
Vandana Kannan 已提交
2450
		intel_edp_drrs_disable(intel_dp);
R
Rodrigo Vivi 已提交
2451
		intel_psr_disable(intel_dp);
2452
		intel_edp_backlight_off(intel_dp);
2453
	}
2454
}
P
Paulo Zanoni 已提交
2455

2456
static void hsw_ddi_wrpll_enable(struct drm_i915_private *dev_priv,
2457 2458
			       struct intel_shared_dpll *pll)
{
2459
	I915_WRITE(WRPLL_CTL(pll->id), pll->config.hw_state.wrpll);
2460 2461 2462 2463
	POSTING_READ(WRPLL_CTL(pll->id));
	udelay(20);
}

2464
static void hsw_ddi_spll_enable(struct drm_i915_private *dev_priv,
2465
				struct intel_shared_dpll *pll)
2466 2467 2468 2469 2470 2471 2472 2473
{
	I915_WRITE(SPLL_CTL, pll->config.hw_state.spll);
	POSTING_READ(SPLL_CTL);
	udelay(20);
}

static void hsw_ddi_wrpll_disable(struct drm_i915_private *dev_priv,
				  struct intel_shared_dpll *pll)
2474 2475 2476 2477 2478 2479 2480 2481
{
	uint32_t val;

	val = I915_READ(WRPLL_CTL(pll->id));
	I915_WRITE(WRPLL_CTL(pll->id), val & ~WRPLL_PLL_ENABLE);
	POSTING_READ(WRPLL_CTL(pll->id));
}

2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494
static void hsw_ddi_spll_disable(struct drm_i915_private *dev_priv,
				 struct intel_shared_dpll *pll)
{
	uint32_t val;

	val = I915_READ(SPLL_CTL);
	I915_WRITE(SPLL_CTL, val & ~SPLL_PLL_ENABLE);
	POSTING_READ(SPLL_CTL);
}

static bool hsw_ddi_wrpll_get_hw_state(struct drm_i915_private *dev_priv,
				       struct intel_shared_dpll *pll,
				       struct intel_dpll_hw_state *hw_state)
2495 2496 2497
{
	uint32_t val;

2498
	if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
2499 2500 2501 2502 2503 2504 2505 2506
		return false;

	val = I915_READ(WRPLL_CTL(pll->id));
	hw_state->wrpll = val;

	return val & WRPLL_PLL_ENABLE;
}

2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522
static bool hsw_ddi_spll_get_hw_state(struct drm_i915_private *dev_priv,
				      struct intel_shared_dpll *pll,
				      struct intel_dpll_hw_state *hw_state)
{
	uint32_t val;

	if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
		return false;

	val = I915_READ(SPLL_CTL);
	hw_state->spll = val;

	return val & SPLL_PLL_ENABLE;
}


2523
static const char * const hsw_ddi_pll_names[] = {
2524 2525
	"WRPLL 1",
	"WRPLL 2",
2526
	"SPLL"
2527 2528
};

2529
static void hsw_shared_dplls_init(struct drm_i915_private *dev_priv)
P
Paulo Zanoni 已提交
2530
{
2531 2532
	int i;

2533
	dev_priv->num_shared_dpll = 3;
2534

2535
	for (i = 0; i < 2; i++) {
2536 2537
		dev_priv->shared_dplls[i].id = i;
		dev_priv->shared_dplls[i].name = hsw_ddi_pll_names[i];
2538 2539
		dev_priv->shared_dplls[i].disable = hsw_ddi_wrpll_disable;
		dev_priv->shared_dplls[i].enable = hsw_ddi_wrpll_enable;
2540
		dev_priv->shared_dplls[i].get_hw_state =
2541
			hsw_ddi_wrpll_get_hw_state;
2542
	}
2543 2544 2545 2546 2547 2548 2549 2550

	/* SPLL is special, but needs to be initialized anyway.. */
	dev_priv->shared_dplls[i].id = i;
	dev_priv->shared_dplls[i].name = hsw_ddi_pll_names[i];
	dev_priv->shared_dplls[i].disable = hsw_ddi_spll_disable;
	dev_priv->shared_dplls[i].enable = hsw_ddi_spll_enable;
	dev_priv->shared_dplls[i].get_hw_state = hsw_ddi_spll_get_hw_state;

2551 2552
}

2553 2554 2555 2556 2557 2558 2559
static const char * const skl_ddi_pll_names[] = {
	"DPLL 1",
	"DPLL 2",
	"DPLL 3",
};

struct skl_dpll_regs {
2560
	i915_reg_t ctl, cfgcr1, cfgcr2;
2561 2562 2563 2564 2565 2566 2567
};

/* this array is indexed by the *shared* pll id */
static const struct skl_dpll_regs skl_dpll_regs[3] = {
	{
		/* DPLL 1 */
		.ctl = LCPLL2_CTL,
2568 2569
		.cfgcr1 = DPLL_CFGCR1(SKL_DPLL1),
		.cfgcr2 = DPLL_CFGCR2(SKL_DPLL1),
2570 2571 2572
	},
	{
		/* DPLL 2 */
2573
		.ctl = WRPLL_CTL(0),
2574 2575
		.cfgcr1 = DPLL_CFGCR1(SKL_DPLL2),
		.cfgcr2 = DPLL_CFGCR2(SKL_DPLL2),
2576 2577 2578
	},
	{
		/* DPLL 3 */
2579
		.ctl = WRPLL_CTL(1),
2580 2581
		.cfgcr1 = DPLL_CFGCR1(SKL_DPLL3),
		.cfgcr2 = DPLL_CFGCR2(SKL_DPLL3),
2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597
	},
};

static void skl_ddi_pll_enable(struct drm_i915_private *dev_priv,
			       struct intel_shared_dpll *pll)
{
	uint32_t val;
	unsigned int dpll;
	const struct skl_dpll_regs *regs = skl_dpll_regs;

	/* DPLL0 is not part of the shared DPLLs, so pll->id is 0 for DPLL1 */
	dpll = pll->id + 1;

	val = I915_READ(DPLL_CTRL1);

	val &= ~(DPLL_CTRL1_HDMI_MODE(dpll) | DPLL_CTRL1_SSC(dpll) |
2598
		 DPLL_CTRL1_LINK_RATE_MASK(dpll));
2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673
	val |= pll->config.hw_state.ctrl1 << (dpll * 6);

	I915_WRITE(DPLL_CTRL1, val);
	POSTING_READ(DPLL_CTRL1);

	I915_WRITE(regs[pll->id].cfgcr1, pll->config.hw_state.cfgcr1);
	I915_WRITE(regs[pll->id].cfgcr2, pll->config.hw_state.cfgcr2);
	POSTING_READ(regs[pll->id].cfgcr1);
	POSTING_READ(regs[pll->id].cfgcr2);

	/* the enable bit is always bit 31 */
	I915_WRITE(regs[pll->id].ctl,
		   I915_READ(regs[pll->id].ctl) | LCPLL_PLL_ENABLE);

	if (wait_for(I915_READ(DPLL_STATUS) & DPLL_LOCK(dpll), 5))
		DRM_ERROR("DPLL %d not locked\n", dpll);
}

static void skl_ddi_pll_disable(struct drm_i915_private *dev_priv,
				struct intel_shared_dpll *pll)
{
	const struct skl_dpll_regs *regs = skl_dpll_regs;

	/* the enable bit is always bit 31 */
	I915_WRITE(regs[pll->id].ctl,
		   I915_READ(regs[pll->id].ctl) & ~LCPLL_PLL_ENABLE);
	POSTING_READ(regs[pll->id].ctl);
}

static bool skl_ddi_pll_get_hw_state(struct drm_i915_private *dev_priv,
				     struct intel_shared_dpll *pll,
				     struct intel_dpll_hw_state *hw_state)
{
	uint32_t val;
	unsigned int dpll;
	const struct skl_dpll_regs *regs = skl_dpll_regs;

	if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
		return false;

	/* DPLL0 is not part of the shared DPLLs, so pll->id is 0 for DPLL1 */
	dpll = pll->id + 1;

	val = I915_READ(regs[pll->id].ctl);
	if (!(val & LCPLL_PLL_ENABLE))
		return false;

	val = I915_READ(DPLL_CTRL1);
	hw_state->ctrl1 = (val >> (dpll * 6)) & 0x3f;

	/* avoid reading back stale values if HDMI mode is not enabled */
	if (val & DPLL_CTRL1_HDMI_MODE(dpll)) {
		hw_state->cfgcr1 = I915_READ(regs[pll->id].cfgcr1);
		hw_state->cfgcr2 = I915_READ(regs[pll->id].cfgcr2);
	}

	return true;
}

static void skl_shared_dplls_init(struct drm_i915_private *dev_priv)
{
	int i;

	dev_priv->num_shared_dpll = 3;

	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
		dev_priv->shared_dplls[i].id = i;
		dev_priv->shared_dplls[i].name = skl_ddi_pll_names[i];
		dev_priv->shared_dplls[i].disable = skl_ddi_pll_disable;
		dev_priv->shared_dplls[i].enable = skl_ddi_pll_enable;
		dev_priv->shared_dplls[i].get_hw_state =
			skl_ddi_pll_get_hw_state;
	}
}

2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797
static void broxton_phy_init(struct drm_i915_private *dev_priv,
			     enum dpio_phy phy)
{
	enum port port;
	uint32_t val;

	val = I915_READ(BXT_P_CR_GT_DISP_PWRON);
	val |= GT_DISPLAY_POWER_ON(phy);
	I915_WRITE(BXT_P_CR_GT_DISP_PWRON, val);

	/* Considering 10ms timeout until BSpec is updated */
	if (wait_for(I915_READ(BXT_PORT_CL1CM_DW0(phy)) & PHY_POWER_GOOD, 10))
		DRM_ERROR("timeout during PHY%d power on\n", phy);

	for (port =  (phy == DPIO_PHY0 ? PORT_B : PORT_A);
	     port <= (phy == DPIO_PHY0 ? PORT_C : PORT_A); port++) {
		int lane;

		for (lane = 0; lane < 4; lane++) {
			val = I915_READ(BXT_PORT_TX_DW14_LN(port, lane));
			/*
			 * Note that on CHV this flag is called UPAR, but has
			 * the same function.
			 */
			val &= ~LATENCY_OPTIM;
			if (lane != 1)
				val |= LATENCY_OPTIM;

			I915_WRITE(BXT_PORT_TX_DW14_LN(port, lane), val);
		}
	}

	/* Program PLL Rcomp code offset */
	val = I915_READ(BXT_PORT_CL1CM_DW9(phy));
	val &= ~IREF0RC_OFFSET_MASK;
	val |= 0xE4 << IREF0RC_OFFSET_SHIFT;
	I915_WRITE(BXT_PORT_CL1CM_DW9(phy), val);

	val = I915_READ(BXT_PORT_CL1CM_DW10(phy));
	val &= ~IREF1RC_OFFSET_MASK;
	val |= 0xE4 << IREF1RC_OFFSET_SHIFT;
	I915_WRITE(BXT_PORT_CL1CM_DW10(phy), val);

	/* Program power gating */
	val = I915_READ(BXT_PORT_CL1CM_DW28(phy));
	val |= OCL1_POWER_DOWN_EN | DW28_OLDO_DYN_PWR_DOWN_EN |
		SUS_CLK_CONFIG;
	I915_WRITE(BXT_PORT_CL1CM_DW28(phy), val);

	if (phy == DPIO_PHY0) {
		val = I915_READ(BXT_PORT_CL2CM_DW6_BC);
		val |= DW6_OLDO_DYN_PWR_DOWN_EN;
		I915_WRITE(BXT_PORT_CL2CM_DW6_BC, val);
	}

	val = I915_READ(BXT_PORT_CL1CM_DW30(phy));
	val &= ~OCL2_LDOFUSE_PWR_DIS;
	/*
	 * On PHY1 disable power on the second channel, since no port is
	 * connected there. On PHY0 both channels have a port, so leave it
	 * enabled.
	 * TODO: port C is only connected on BXT-P, so on BXT0/1 we should
	 * power down the second channel on PHY0 as well.
	 */
	if (phy == DPIO_PHY1)
		val |= OCL2_LDOFUSE_PWR_DIS;
	I915_WRITE(BXT_PORT_CL1CM_DW30(phy), val);

	if (phy == DPIO_PHY0) {
		uint32_t grc_code;
		/*
		 * PHY0 isn't connected to an RCOMP resistor so copy over
		 * the corresponding calibrated value from PHY1, and disable
		 * the automatic calibration on PHY0.
		 */
		if (wait_for(I915_READ(BXT_PORT_REF_DW3(DPIO_PHY1)) & GRC_DONE,
			     10))
			DRM_ERROR("timeout waiting for PHY1 GRC\n");

		val = I915_READ(BXT_PORT_REF_DW6(DPIO_PHY1));
		val = (val & GRC_CODE_MASK) >> GRC_CODE_SHIFT;
		grc_code = val << GRC_CODE_FAST_SHIFT |
			   val << GRC_CODE_SLOW_SHIFT |
			   val;
		I915_WRITE(BXT_PORT_REF_DW6(DPIO_PHY0), grc_code);

		val = I915_READ(BXT_PORT_REF_DW8(DPIO_PHY0));
		val |= GRC_DIS | GRC_RDY_OVRD;
		I915_WRITE(BXT_PORT_REF_DW8(DPIO_PHY0), val);
	}

	val = I915_READ(BXT_PHY_CTL_FAMILY(phy));
	val |= COMMON_RESET_DIS;
	I915_WRITE(BXT_PHY_CTL_FAMILY(phy), val);
}

void broxton_ddi_phy_init(struct drm_device *dev)
{
	/* Enable PHY1 first since it provides Rcomp for PHY0 */
	broxton_phy_init(dev->dev_private, DPIO_PHY1);
	broxton_phy_init(dev->dev_private, DPIO_PHY0);
}

static void broxton_phy_uninit(struct drm_i915_private *dev_priv,
			       enum dpio_phy phy)
{
	uint32_t val;

	val = I915_READ(BXT_PHY_CTL_FAMILY(phy));
	val &= ~COMMON_RESET_DIS;
	I915_WRITE(BXT_PHY_CTL_FAMILY(phy), val);
}

void broxton_ddi_phy_uninit(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	broxton_phy_uninit(dev_priv, DPIO_PHY1);
	broxton_phy_uninit(dev_priv, DPIO_PHY0);

	/* FIXME: do this in broxton_phy_uninit per phy */
	I915_WRITE(BXT_P_CR_GT_DISP_PWRON, 0);
}

2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863
static const char * const bxt_ddi_pll_names[] = {
	"PORT PLL A",
	"PORT PLL B",
	"PORT PLL C",
};

static void bxt_ddi_pll_enable(struct drm_i915_private *dev_priv,
				struct intel_shared_dpll *pll)
{
	uint32_t temp;
	enum port port = (enum port)pll->id;	/* 1:1 port->PLL mapping */

	temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
	temp &= ~PORT_PLL_REF_SEL;
	/* Non-SSC reference */
	I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);

	/* Disable 10 bit clock */
	temp = I915_READ(BXT_PORT_PLL_EBB_4(port));
	temp &= ~PORT_PLL_10BIT_CLK_ENABLE;
	I915_WRITE(BXT_PORT_PLL_EBB_4(port), temp);

	/* Write P1 & P2 */
	temp = I915_READ(BXT_PORT_PLL_EBB_0(port));
	temp &= ~(PORT_PLL_P1_MASK | PORT_PLL_P2_MASK);
	temp |= pll->config.hw_state.ebb0;
	I915_WRITE(BXT_PORT_PLL_EBB_0(port), temp);

	/* Write M2 integer */
	temp = I915_READ(BXT_PORT_PLL(port, 0));
	temp &= ~PORT_PLL_M2_MASK;
	temp |= pll->config.hw_state.pll0;
	I915_WRITE(BXT_PORT_PLL(port, 0), temp);

	/* Write N */
	temp = I915_READ(BXT_PORT_PLL(port, 1));
	temp &= ~PORT_PLL_N_MASK;
	temp |= pll->config.hw_state.pll1;
	I915_WRITE(BXT_PORT_PLL(port, 1), temp);

	/* Write M2 fraction */
	temp = I915_READ(BXT_PORT_PLL(port, 2));
	temp &= ~PORT_PLL_M2_FRAC_MASK;
	temp |= pll->config.hw_state.pll2;
	I915_WRITE(BXT_PORT_PLL(port, 2), temp);

	/* Write M2 fraction enable */
	temp = I915_READ(BXT_PORT_PLL(port, 3));
	temp &= ~PORT_PLL_M2_FRAC_ENABLE;
	temp |= pll->config.hw_state.pll3;
	I915_WRITE(BXT_PORT_PLL(port, 3), temp);

	/* Write coeff */
	temp = I915_READ(BXT_PORT_PLL(port, 6));
	temp &= ~PORT_PLL_PROP_COEFF_MASK;
	temp &= ~PORT_PLL_INT_COEFF_MASK;
	temp &= ~PORT_PLL_GAIN_CTL_MASK;
	temp |= pll->config.hw_state.pll6;
	I915_WRITE(BXT_PORT_PLL(port, 6), temp);

	/* Write calibration val */
	temp = I915_READ(BXT_PORT_PLL(port, 8));
	temp &= ~PORT_PLL_TARGET_CNT_MASK;
	temp |= pll->config.hw_state.pll8;
	I915_WRITE(BXT_PORT_PLL(port, 8), temp);

2864 2865
	temp = I915_READ(BXT_PORT_PLL(port, 9));
	temp &= ~PORT_PLL_LOCK_THRESHOLD_MASK;
2866
	temp |= pll->config.hw_state.pll9;
2867 2868 2869 2870 2871 2872 2873
	I915_WRITE(BXT_PORT_PLL(port, 9), temp);

	temp = I915_READ(BXT_PORT_PLL(port, 10));
	temp &= ~PORT_PLL_DCO_AMP_OVR_EN_H;
	temp &= ~PORT_PLL_DCO_AMP_MASK;
	temp |= pll->config.hw_state.pll10;
	I915_WRITE(BXT_PORT_PLL(port, 10), temp);
2874 2875 2876 2877 2878

	/* Recalibrate with new settings */
	temp = I915_READ(BXT_PORT_PLL_EBB_4(port));
	temp |= PORT_PLL_RECALIBRATE;
	I915_WRITE(BXT_PORT_PLL_EBB_4(port), temp);
2879 2880
	temp &= ~PORT_PLL_10BIT_CLK_ENABLE;
	temp |= pll->config.hw_state.ebb4;
2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930
	I915_WRITE(BXT_PORT_PLL_EBB_4(port), temp);

	/* Enable PLL */
	temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
	temp |= PORT_PLL_ENABLE;
	I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);
	POSTING_READ(BXT_PORT_PLL_ENABLE(port));

	if (wait_for_atomic_us((I915_READ(BXT_PORT_PLL_ENABLE(port)) &
			PORT_PLL_LOCK), 200))
		DRM_ERROR("PLL %d not locked\n", port);

	/*
	 * While we write to the group register to program all lanes at once we
	 * can read only lane registers and we pick lanes 0/1 for that.
	 */
	temp = I915_READ(BXT_PORT_PCS_DW12_LN01(port));
	temp &= ~LANE_STAGGER_MASK;
	temp &= ~LANESTAGGER_STRAP_OVRD;
	temp |= pll->config.hw_state.pcsdw12;
	I915_WRITE(BXT_PORT_PCS_DW12_GRP(port), temp);
}

static void bxt_ddi_pll_disable(struct drm_i915_private *dev_priv,
					struct intel_shared_dpll *pll)
{
	enum port port = (enum port)pll->id;	/* 1:1 port->PLL mapping */
	uint32_t temp;

	temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
	temp &= ~PORT_PLL_ENABLE;
	I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);
	POSTING_READ(BXT_PORT_PLL_ENABLE(port));
}

static bool bxt_ddi_pll_get_hw_state(struct drm_i915_private *dev_priv,
					struct intel_shared_dpll *pll,
					struct intel_dpll_hw_state *hw_state)
{
	enum port port = (enum port)pll->id;	/* 1:1 port->PLL mapping */
	uint32_t val;

	if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
		return false;

	val = I915_READ(BXT_PORT_PLL_ENABLE(port));
	if (!(val & PORT_PLL_ENABLE))
		return false;

	hw_state->ebb0 = I915_READ(BXT_PORT_PLL_EBB_0(port));
2931 2932
	hw_state->ebb0 &= PORT_PLL_P1_MASK | PORT_PLL_P2_MASK;

2933 2934 2935
	hw_state->ebb4 = I915_READ(BXT_PORT_PLL_EBB_4(port));
	hw_state->ebb4 &= PORT_PLL_10BIT_CLK_ENABLE;

2936
	hw_state->pll0 = I915_READ(BXT_PORT_PLL(port, 0));
2937 2938
	hw_state->pll0 &= PORT_PLL_M2_MASK;

2939
	hw_state->pll1 = I915_READ(BXT_PORT_PLL(port, 1));
2940 2941
	hw_state->pll1 &= PORT_PLL_N_MASK;

2942
	hw_state->pll2 = I915_READ(BXT_PORT_PLL(port, 2));
2943 2944
	hw_state->pll2 &= PORT_PLL_M2_FRAC_MASK;

2945
	hw_state->pll3 = I915_READ(BXT_PORT_PLL(port, 3));
2946 2947
	hw_state->pll3 &= PORT_PLL_M2_FRAC_ENABLE;

2948
	hw_state->pll6 = I915_READ(BXT_PORT_PLL(port, 6));
2949 2950 2951 2952
	hw_state->pll6 &= PORT_PLL_PROP_COEFF_MASK |
			  PORT_PLL_INT_COEFF_MASK |
			  PORT_PLL_GAIN_CTL_MASK;

2953
	hw_state->pll8 = I915_READ(BXT_PORT_PLL(port, 8));
2954 2955
	hw_state->pll8 &= PORT_PLL_TARGET_CNT_MASK;

2956 2957 2958
	hw_state->pll9 = I915_READ(BXT_PORT_PLL(port, 9));
	hw_state->pll9 &= PORT_PLL_LOCK_THRESHOLD_MASK;

2959
	hw_state->pll10 = I915_READ(BXT_PORT_PLL(port, 10));
2960 2961 2962
	hw_state->pll10 &= PORT_PLL_DCO_AMP_OVR_EN_H |
			   PORT_PLL_DCO_AMP_MASK;

2963 2964 2965 2966 2967 2968
	/*
	 * While we write to the group register to program all lanes at once we
	 * can read only lane registers. We configure all lanes the same way, so
	 * here just read out lanes 0/1 and output a note if lanes 2/3 differ.
	 */
	hw_state->pcsdw12 = I915_READ(BXT_PORT_PCS_DW12_LN01(port));
2969
	if (I915_READ(BXT_PORT_PCS_DW12_LN23(port)) != hw_state->pcsdw12)
2970 2971 2972
		DRM_DEBUG_DRIVER("lane stagger config different for lane 01 (%08x) and 23 (%08x)\n",
				 hw_state->pcsdw12,
				 I915_READ(BXT_PORT_PCS_DW12_LN23(port)));
2973
	hw_state->pcsdw12 &= LANE_STAGGER_MASK | LANESTAGGER_STRAP_OVRD;
2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993

	return true;
}

static void bxt_shared_dplls_init(struct drm_i915_private *dev_priv)
{
	int i;

	dev_priv->num_shared_dpll = 3;

	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
		dev_priv->shared_dplls[i].id = i;
		dev_priv->shared_dplls[i].name = bxt_ddi_pll_names[i];
		dev_priv->shared_dplls[i].disable = bxt_ddi_pll_disable;
		dev_priv->shared_dplls[i].enable = bxt_ddi_pll_enable;
		dev_priv->shared_dplls[i].get_hw_state =
			bxt_ddi_pll_get_hw_state;
	}
}

2994 2995 2996 2997 2998
void intel_ddi_pll_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t val = I915_READ(LCPLL_CTL);

2999
	if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
3000
		skl_shared_dplls_init(dev_priv);
3001 3002
	else if (IS_BROXTON(dev))
		bxt_shared_dplls_init(dev_priv);
3003 3004
	else
		hsw_shared_dplls_init(dev_priv);
P
Paulo Zanoni 已提交
3005

3006
	if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
3007 3008 3009
		int cdclk_freq;

		cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
3010
		dev_priv->skl_boot_cdclk = cdclk_freq;
3011 3012
		if (skl_sanitize_cdclk(dev_priv))
			DRM_DEBUG_KMS("Sanitized cdclk programmed by pre-os\n");
3013 3014
		if (!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_ENABLE))
			DRM_ERROR("LCPLL1 is disabled\n");
3015 3016
	} else if (IS_BROXTON(dev)) {
		broxton_init_cdclk(dev);
3017
		broxton_ddi_phy_init(dev);
3018 3019 3020 3021 3022 3023 3024 3025 3026
	} else {
		/*
		 * The LCPLL register should be turned on by the BIOS. For now
		 * let's just check its state and print errors in case
		 * something is wrong.  Don't even try to turn it on.
		 */

		if (val & LCPLL_CD_SOURCE_FCLK)
			DRM_ERROR("CDCLK source is not LCPLL\n");
P
Paulo Zanoni 已提交
3027

3028 3029 3030
		if (val & LCPLL_PLL_DISABLE)
			DRM_ERROR("LCPLL is disabled\n");
	}
P
Paulo Zanoni 已提交
3031
}
3032

3033
void intel_ddi_prepare_link_retrain(struct intel_dp *intel_dp)
3034
{
3035 3036 3037
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	struct drm_i915_private *dev_priv =
		to_i915(intel_dig_port->base.base.dev);
3038
	enum port port = intel_dig_port->port;
3039
	uint32_t val;
3040
	bool wait = false;
3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059

	if (I915_READ(DP_TP_CTL(port)) & DP_TP_CTL_ENABLE) {
		val = I915_READ(DDI_BUF_CTL(port));
		if (val & DDI_BUF_CTL_ENABLE) {
			val &= ~DDI_BUF_CTL_ENABLE;
			I915_WRITE(DDI_BUF_CTL(port), val);
			wait = true;
		}

		val = I915_READ(DP_TP_CTL(port));
		val &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
		val |= DP_TP_CTL_LINK_TRAIN_PAT1;
		I915_WRITE(DP_TP_CTL(port), val);
		POSTING_READ(DP_TP_CTL(port));

		if (wait)
			intel_wait_ddi_buf_idle(dev_priv, port);
	}

3060
	val = DP_TP_CTL_ENABLE |
3061
	      DP_TP_CTL_LINK_TRAIN_PAT1 | DP_TP_CTL_SCRAMBLE_DISABLE;
3062 3063 3064 3065 3066 3067 3068
	if (intel_dp->is_mst)
		val |= DP_TP_CTL_MODE_MST;
	else {
		val |= DP_TP_CTL_MODE_SST;
		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
			val |= DP_TP_CTL_ENHANCED_FRAME_ENABLE;
	}
3069 3070 3071 3072 3073 3074 3075 3076 3077
	I915_WRITE(DP_TP_CTL(port), val);
	POSTING_READ(DP_TP_CTL(port));

	intel_dp->DP |= DDI_BUF_CTL_ENABLE;
	I915_WRITE(DDI_BUF_CTL(port), intel_dp->DP);
	POSTING_READ(DDI_BUF_CTL(port));

	udelay(600);
}
P
Paulo Zanoni 已提交
3078

3079 3080 3081 3082 3083 3084 3085 3086
void intel_ddi_fdi_disable(struct drm_crtc *crtc)
{
	struct drm_i915_private *dev_priv = crtc->dev->dev_private;
	struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
	uint32_t val;

	intel_ddi_post_disable(intel_encoder);

3087
	val = I915_READ(FDI_RX_CTL(PIPE_A));
3088
	val &= ~FDI_RX_ENABLE;
3089
	I915_WRITE(FDI_RX_CTL(PIPE_A), val);
3090

3091
	val = I915_READ(FDI_RX_MISC(PIPE_A));
3092 3093
	val &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
	val |= FDI_RX_PWRDN_LANE1_VAL(2) | FDI_RX_PWRDN_LANE0_VAL(2);
3094
	I915_WRITE(FDI_RX_MISC(PIPE_A), val);
3095

3096
	val = I915_READ(FDI_RX_CTL(PIPE_A));
3097
	val &= ~FDI_PCDCLK;
3098
	I915_WRITE(FDI_RX_CTL(PIPE_A), val);
3099

3100
	val = I915_READ(FDI_RX_CTL(PIPE_A));
3101
	val &= ~FDI_RX_PLL_ENABLE;
3102
	I915_WRITE(FDI_RX_CTL(PIPE_A), val);
3103 3104
}

L
Libin Yang 已提交
3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117
bool intel_ddi_is_audio_enabled(struct drm_i915_private *dev_priv,
				 struct intel_crtc *intel_crtc)
{
	u32 temp;

	if (intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_AUDIO)) {
		temp = I915_READ(HSW_AUD_PIN_ELD_CP_VLD);
		if (temp & AUDIO_OUTPUT_ENABLE(intel_crtc->pipe))
			return true;
	}
	return false;
}

3118
void intel_ddi_get_config(struct intel_encoder *encoder,
3119
			  struct intel_crtc_state *pipe_config)
3120 3121 3122
{
	struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
	struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
3123
	enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
3124
	struct intel_hdmi *intel_hdmi;
3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136
	u32 temp, flags = 0;

	temp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
	if (temp & TRANS_DDI_PHSYNC)
		flags |= DRM_MODE_FLAG_PHSYNC;
	else
		flags |= DRM_MODE_FLAG_NHSYNC;
	if (temp & TRANS_DDI_PVSYNC)
		flags |= DRM_MODE_FLAG_PVSYNC;
	else
		flags |= DRM_MODE_FLAG_NVSYNC;

3137
	pipe_config->base.adjusted_mode.flags |= flags;
3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154

	switch (temp & TRANS_DDI_BPC_MASK) {
	case TRANS_DDI_BPC_6:
		pipe_config->pipe_bpp = 18;
		break;
	case TRANS_DDI_BPC_8:
		pipe_config->pipe_bpp = 24;
		break;
	case TRANS_DDI_BPC_10:
		pipe_config->pipe_bpp = 30;
		break;
	case TRANS_DDI_BPC_12:
		pipe_config->pipe_bpp = 36;
		break;
	default:
		break;
	}
3155 3156 3157

	switch (temp & TRANS_DDI_MODE_SELECT_MASK) {
	case TRANS_DDI_MODE_SELECT_HDMI:
3158
		pipe_config->has_hdmi_sink = true;
3159 3160
		intel_hdmi = enc_to_intel_hdmi(&encoder->base);

3161
		if (intel_hdmi->infoframe_enabled(&encoder->base, pipe_config))
3162
			pipe_config->has_infoframe = true;
3163
		break;
3164 3165 3166 3167 3168 3169
	case TRANS_DDI_MODE_SELECT_DVI:
	case TRANS_DDI_MODE_SELECT_FDI:
		break;
	case TRANS_DDI_MODE_SELECT_DP_SST:
	case TRANS_DDI_MODE_SELECT_DP_MST:
		pipe_config->has_dp_encoder = true;
3170 3171
		pipe_config->lane_count =
			((temp & DDI_PORT_WIDTH_MASK) >> DDI_PORT_WIDTH_SHIFT) + 1;
3172 3173 3174 3175 3176
		intel_dp_get_m_n(intel_crtc, pipe_config);
		break;
	default:
		break;
	}
3177

L
Libin Yang 已提交
3178 3179
	pipe_config->has_audio =
		intel_ddi_is_audio_enabled(dev_priv, intel_crtc);
3180

3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199
	if (encoder->type == INTEL_OUTPUT_EDP && dev_priv->vbt.edp_bpp &&
	    pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) {
		/*
		 * This is a big fat ugly hack.
		 *
		 * Some machines in UEFI boot mode provide us a VBT that has 18
		 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
		 * unknown we fail to light up. Yet the same BIOS boots up with
		 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
		 * max, not what it tells us to use.
		 *
		 * Note: This will still be broken if the eDP panel is not lit
		 * up by the BIOS, and thus we can't get the mode at module
		 * load.
		 */
		DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
			      pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp);
		dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp;
	}
3200

3201
	intel_ddi_clock_get(encoder, pipe_config);
3202 3203
}

P
Paulo Zanoni 已提交
3204 3205 3206 3207 3208 3209
static void intel_ddi_destroy(struct drm_encoder *encoder)
{
	/* HDMI has nothing special to destroy, so we can go with this. */
	intel_dp_encoder_destroy(encoder);
}

3210
static bool intel_ddi_compute_config(struct intel_encoder *encoder,
3211
				     struct intel_crtc_state *pipe_config)
P
Paulo Zanoni 已提交
3212
{
3213
	int type = encoder->type;
3214
	int port = intel_ddi_get_encoder_port(encoder);
P
Paulo Zanoni 已提交
3215

3216
	WARN(type == INTEL_OUTPUT_UNKNOWN, "compute_config() on unknown output!\n");
P
Paulo Zanoni 已提交
3217

3218 3219 3220
	if (port == PORT_A)
		pipe_config->cpu_transcoder = TRANSCODER_EDP;

P
Paulo Zanoni 已提交
3221
	if (type == INTEL_OUTPUT_HDMI)
3222
		return intel_hdmi_compute_config(encoder, pipe_config);
P
Paulo Zanoni 已提交
3223
	else
3224
		return intel_dp_compute_config(encoder, pipe_config);
P
Paulo Zanoni 已提交
3225 3226 3227 3228 3229 3230
}

static const struct drm_encoder_funcs intel_ddi_funcs = {
	.destroy = intel_ddi_destroy,
};

3231 3232 3233 3234 3235 3236
static struct intel_connector *
intel_ddi_init_dp_connector(struct intel_digital_port *intel_dig_port)
{
	struct intel_connector *connector;
	enum port port = intel_dig_port->port;

3237
	connector = intel_connector_alloc();
3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255
	if (!connector)
		return NULL;

	intel_dig_port->dp.output_reg = DDI_BUF_CTL(port);
	if (!intel_dp_init_connector(intel_dig_port, connector)) {
		kfree(connector);
		return NULL;
	}

	return connector;
}

static struct intel_connector *
intel_ddi_init_hdmi_connector(struct intel_digital_port *intel_dig_port)
{
	struct intel_connector *connector;
	enum port port = intel_dig_port->port;

3256
	connector = intel_connector_alloc();
3257 3258 3259 3260 3261 3262 3263 3264 3265
	if (!connector)
		return NULL;

	intel_dig_port->hdmi.hdmi_reg = DDI_BUF_CTL(port);
	intel_hdmi_init_connector(intel_dig_port, connector);

	return connector;
}

P
Paulo Zanoni 已提交
3266 3267
void intel_ddi_init(struct drm_device *dev, enum port port)
{
3268
	struct drm_i915_private *dev_priv = dev->dev_private;
P
Paulo Zanoni 已提交
3269 3270 3271
	struct intel_digital_port *intel_dig_port;
	struct intel_encoder *intel_encoder;
	struct drm_encoder *encoder;
3272
	bool init_hdmi, init_dp;
3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299
	int max_lanes;

	if (I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES) {
		switch (port) {
		case PORT_A:
			max_lanes = 4;
			break;
		case PORT_E:
			max_lanes = 0;
			break;
		default:
			max_lanes = 4;
			break;
		}
	} else {
		switch (port) {
		case PORT_A:
			max_lanes = 2;
			break;
		case PORT_E:
			max_lanes = 2;
			break;
		default:
			max_lanes = 4;
			break;
		}
	}
3300 3301 3302 3303 3304

	init_hdmi = (dev_priv->vbt.ddi_port_info[port].supports_dvi ||
		     dev_priv->vbt.ddi_port_info[port].supports_hdmi);
	init_dp = dev_priv->vbt.ddi_port_info[port].supports_dp;
	if (!init_dp && !init_hdmi) {
3305
		DRM_DEBUG_KMS("VBT says port %c is not DVI/HDMI/DP compatible, respect it\n",
3306
			      port_name(port));
3307
		return;
3308
	}
P
Paulo Zanoni 已提交
3309

3310
	intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
P
Paulo Zanoni 已提交
3311 3312 3313 3314 3315 3316 3317 3318 3319
	if (!intel_dig_port)
		return;

	intel_encoder = &intel_dig_port->base;
	encoder = &intel_encoder->base;

	drm_encoder_init(dev, encoder, &intel_ddi_funcs,
			 DRM_MODE_ENCODER_TMDS);

3320
	intel_encoder->compute_config = intel_ddi_compute_config;
P
Paulo Zanoni 已提交
3321 3322 3323 3324 3325
	intel_encoder->enable = intel_enable_ddi;
	intel_encoder->pre_enable = intel_ddi_pre_enable;
	intel_encoder->disable = intel_disable_ddi;
	intel_encoder->post_disable = intel_ddi_post_disable;
	intel_encoder->get_hw_state = intel_ddi_get_hw_state;
3326
	intel_encoder->get_config = intel_ddi_get_config;
P
Paulo Zanoni 已提交
3327 3328

	intel_dig_port->port = port;
3329
	dev_priv->dig_port_map[port] = intel_encoder;
3330 3331 3332
	intel_dig_port->saved_port_bits = I915_READ(DDI_BUF_CTL(port)) &
					  (DDI_BUF_PORT_REVERSAL |
					   DDI_A_4_LANES);
3333
	intel_dig_port->max_lanes = max_lanes;
P
Paulo Zanoni 已提交
3334

3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348
	/*
	 * Bspec says that DDI_A_4_LANES is the only supported configuration
	 * for Broxton.  Yet some BIOS fail to set this bit on port A if eDP
	 * wasn't lit up at boot.  Force this bit on in our internal
	 * configuration so that we use the proper lane count for our
	 * calculations.
	 */
	if (IS_BROXTON(dev) && port == PORT_A) {
		if (!(intel_dig_port->saved_port_bits & DDI_A_4_LANES)) {
			DRM_DEBUG_KMS("BXT BIOS forgot to set DDI_A_4_LANES for port A; fixing\n");
			intel_dig_port->saved_port_bits |= DDI_A_4_LANES;
		}
	}

P
Paulo Zanoni 已提交
3349
	intel_encoder->type = INTEL_OUTPUT_UNKNOWN;
3350
	intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
3351
	intel_encoder->cloneable = 0;
P
Paulo Zanoni 已提交
3352

3353 3354 3355
	if (init_dp) {
		if (!intel_ddi_init_dp_connector(intel_dig_port))
			goto err;
3356

3357
		intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
3358 3359 3360 3361
		/*
		 * On BXT A0/A1, sw needs to activate DDIA HPD logic and
		 * interrupts to check the external panel connection.
		 */
3362
		if (IS_BXT_REVID(dev, 0, BXT_REVID_A1) && port == PORT_B)
3363 3364 3365
			dev_priv->hotplug.irq_port[PORT_A] = intel_dig_port;
		else
			dev_priv->hotplug.irq_port[port] = intel_dig_port;
3366
	}
3367

3368 3369
	/* In theory we don't need the encoder->type check, but leave it just in
	 * case we have some really bad VBTs... */
3370 3371 3372
	if (intel_encoder->type != INTEL_OUTPUT_EDP && init_hdmi) {
		if (!intel_ddi_init_hdmi_connector(intel_dig_port))
			goto err;
3373
	}
3374 3375 3376 3377 3378 3379

	return;

err:
	drm_encoder_cleanup(encoder);
	kfree(intel_dig_port);
P
Paulo Zanoni 已提交
3380
}