intel_ddi.c 92.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright © 2012 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
 *
 */

#include "i915_drv.h"
#include "intel_drv.h"

31 32 33
struct ddi_buf_trans {
	u32 trans1;	/* balance leg enable, de-emph level */
	u32 trans2;	/* vref sel, vswing */
34
	u8 i_boost;	/* SKL: I_boost; valid: 0x0, 0x1, 0x3, 0x7 */
35 36
};

37 38 39 40
/* HDMI/DVI modes ignore everything but the last 2 items. So we share
 * them for both DP and FDI transports, allowing those ports to
 * automatically adapt to HDMI connections as well
 */
41
static const struct ddi_buf_trans hsw_ddi_translations_dp[] = {
42 43 44 45 46 47 48 49 50
	{ 0x00FFFFFF, 0x0006000E, 0x0 },
	{ 0x00D75FFF, 0x0005000A, 0x0 },
	{ 0x00C30FFF, 0x00040006, 0x0 },
	{ 0x80AAAFFF, 0x000B0000, 0x0 },
	{ 0x00FFFFFF, 0x0005000A, 0x0 },
	{ 0x00D75FFF, 0x000C0004, 0x0 },
	{ 0x80C30FFF, 0x000B0000, 0x0 },
	{ 0x00FFFFFF, 0x00040006, 0x0 },
	{ 0x80D75FFF, 0x000B0000, 0x0 },
51 52
};

53
static const struct ddi_buf_trans hsw_ddi_translations_fdi[] = {
54 55 56 57 58 59 60 61 62
	{ 0x00FFFFFF, 0x0007000E, 0x0 },
	{ 0x00D75FFF, 0x000F000A, 0x0 },
	{ 0x00C30FFF, 0x00060006, 0x0 },
	{ 0x00AAAFFF, 0x001E0000, 0x0 },
	{ 0x00FFFFFF, 0x000F000A, 0x0 },
	{ 0x00D75FFF, 0x00160004, 0x0 },
	{ 0x00C30FFF, 0x001E0000, 0x0 },
	{ 0x00FFFFFF, 0x00060006, 0x0 },
	{ 0x00D75FFF, 0x001E0000, 0x0 },
63 64
};

65 66
static const struct ddi_buf_trans hsw_ddi_translations_hdmi[] = {
					/* Idx	NT mV d	T mV d	db	*/
67 68 69 70 71 72 73 74 75 76 77 78
	{ 0x00FFFFFF, 0x0006000E, 0x0 },/* 0:	400	400	0	*/
	{ 0x00E79FFF, 0x000E000C, 0x0 },/* 1:	400	500	2	*/
	{ 0x00D75FFF, 0x0005000A, 0x0 },/* 2:	400	600	3.5	*/
	{ 0x00FFFFFF, 0x0005000A, 0x0 },/* 3:	600	600	0	*/
	{ 0x00E79FFF, 0x001D0007, 0x0 },/* 4:	600	750	2	*/
	{ 0x00D75FFF, 0x000C0004, 0x0 },/* 5:	600	900	3.5	*/
	{ 0x00FFFFFF, 0x00040006, 0x0 },/* 6:	800	800	0	*/
	{ 0x80E79FFF, 0x00030002, 0x0 },/* 7:	800	1000	2	*/
	{ 0x00FFFFFF, 0x00140005, 0x0 },/* 8:	850	850	0	*/
	{ 0x00FFFFFF, 0x000C0004, 0x0 },/* 9:	900	900	0	*/
	{ 0x00FFFFFF, 0x001C0003, 0x0 },/* 10:	950	950	0	*/
	{ 0x80FFFFFF, 0x00030002, 0x0 },/* 11:	1000	1000	0	*/
79 80
};

81
static const struct ddi_buf_trans bdw_ddi_translations_edp[] = {
82 83 84 85 86 87 88 89 90
	{ 0x00FFFFFF, 0x00000012, 0x0 },
	{ 0x00EBAFFF, 0x00020011, 0x0 },
	{ 0x00C71FFF, 0x0006000F, 0x0 },
	{ 0x00AAAFFF, 0x000E000A, 0x0 },
	{ 0x00FFFFFF, 0x00020011, 0x0 },
	{ 0x00DB6FFF, 0x0005000F, 0x0 },
	{ 0x00BEEFFF, 0x000A000C, 0x0 },
	{ 0x00FFFFFF, 0x0005000F, 0x0 },
	{ 0x00DB6FFF, 0x000A000C, 0x0 },
91 92
};

93
static const struct ddi_buf_trans bdw_ddi_translations_dp[] = {
94 95 96 97 98 99 100 101 102
	{ 0x00FFFFFF, 0x0007000E, 0x0 },
	{ 0x00D75FFF, 0x000E000A, 0x0 },
	{ 0x00BEFFFF, 0x00140006, 0x0 },
	{ 0x80B2CFFF, 0x001B0002, 0x0 },
	{ 0x00FFFFFF, 0x000E000A, 0x0 },
	{ 0x00DB6FFF, 0x00160005, 0x0 },
	{ 0x80C71FFF, 0x001A0002, 0x0 },
	{ 0x00F7DFFF, 0x00180004, 0x0 },
	{ 0x80D75FFF, 0x001B0002, 0x0 },
103 104
};

105
static const struct ddi_buf_trans bdw_ddi_translations_fdi[] = {
106 107 108 109 110 111 112 113 114
	{ 0x00FFFFFF, 0x0001000E, 0x0 },
	{ 0x00D75FFF, 0x0004000A, 0x0 },
	{ 0x00C30FFF, 0x00070006, 0x0 },
	{ 0x00AAAFFF, 0x000C0000, 0x0 },
	{ 0x00FFFFFF, 0x0004000A, 0x0 },
	{ 0x00D75FFF, 0x00090004, 0x0 },
	{ 0x00C30FFF, 0x000C0000, 0x0 },
	{ 0x00FFFFFF, 0x00070006, 0x0 },
	{ 0x00D75FFF, 0x000C0000, 0x0 },
115 116
};

117 118
static const struct ddi_buf_trans bdw_ddi_translations_hdmi[] = {
					/* Idx	NT mV d	T mV df	db	*/
119 120 121 122 123 124 125 126 127 128
	{ 0x00FFFFFF, 0x0007000E, 0x0 },/* 0:	400	400	0	*/
	{ 0x00D75FFF, 0x000E000A, 0x0 },/* 1:	400	600	3.5	*/
	{ 0x00BEFFFF, 0x00140006, 0x0 },/* 2:	400	800	6	*/
	{ 0x00FFFFFF, 0x0009000D, 0x0 },/* 3:	450	450	0	*/
	{ 0x00FFFFFF, 0x000E000A, 0x0 },/* 4:	600	600	0	*/
	{ 0x00D7FFFF, 0x00140006, 0x0 },/* 5:	600	800	2.5	*/
	{ 0x80CB2FFF, 0x001B0002, 0x0 },/* 6:	600	1000	4.5	*/
	{ 0x00FFFFFF, 0x00140006, 0x0 },/* 7:	800	800	0	*/
	{ 0x80E79FFF, 0x001B0002, 0x0 },/* 8:	800	1000	2	*/
	{ 0x80FFFFFF, 0x001B0002, 0x0 },/* 9:	1000	1000	0	*/
129 130
};

131
/* Skylake H and S */
132
static const struct ddi_buf_trans skl_ddi_translations_dp[] = {
133 134 135
	{ 0x00002016, 0x000000A0, 0x0 },
	{ 0x00005012, 0x0000009B, 0x0 },
	{ 0x00007011, 0x00000088, 0x0 },
136
	{ 0x80009010, 0x000000C0, 0x1 },
137 138
	{ 0x00002016, 0x0000009B, 0x0 },
	{ 0x00005012, 0x00000088, 0x0 },
139
	{ 0x80007011, 0x000000C0, 0x1 },
140
	{ 0x00002016, 0x000000DF, 0x0 },
141
	{ 0x80005012, 0x000000C0, 0x1 },
142 143
};

144 145
/* Skylake U */
static const struct ddi_buf_trans skl_u_ddi_translations_dp[] = {
146
	{ 0x0000201B, 0x000000A2, 0x0 },
147
	{ 0x00005012, 0x00000088, 0x0 },
148
	{ 0x80007011, 0x000000CD, 0x0 },
149
	{ 0x80009010, 0x000000C0, 0x1 },
150
	{ 0x0000201B, 0x0000009D, 0x0 },
151 152
	{ 0x80005012, 0x000000C0, 0x1 },
	{ 0x80007011, 0x000000C0, 0x1 },
153
	{ 0x00002016, 0x00000088, 0x0 },
154
	{ 0x80005012, 0x000000C0, 0x1 },
155 156
};

157 158
/* Skylake Y */
static const struct ddi_buf_trans skl_y_ddi_translations_dp[] = {
159 160
	{ 0x00000018, 0x000000A2, 0x0 },
	{ 0x00005012, 0x00000088, 0x0 },
161
	{ 0x80007011, 0x000000CD, 0x0 },
162
	{ 0x80009010, 0x000000C0, 0x3 },
163
	{ 0x00000018, 0x0000009D, 0x0 },
164 165
	{ 0x80005012, 0x000000C0, 0x3 },
	{ 0x80007011, 0x000000C0, 0x3 },
166
	{ 0x00000018, 0x00000088, 0x0 },
167
	{ 0x80005012, 0x000000C0, 0x3 },
168 169 170
};

/*
171
 * Skylake H and S
172 173
 * eDP 1.4 low vswing translation parameters
 */
174
static const struct ddi_buf_trans skl_ddi_translations_edp[] = {
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
	{ 0x00000018, 0x000000A8, 0x0 },
	{ 0x00004013, 0x000000A9, 0x0 },
	{ 0x00007011, 0x000000A2, 0x0 },
	{ 0x00009010, 0x0000009C, 0x0 },
	{ 0x00000018, 0x000000A9, 0x0 },
	{ 0x00006013, 0x000000A2, 0x0 },
	{ 0x00007011, 0x000000A6, 0x0 },
	{ 0x00000018, 0x000000AB, 0x0 },
	{ 0x00007013, 0x0000009F, 0x0 },
	{ 0x00000018, 0x000000DF, 0x0 },
};

/*
 * Skylake U
 * eDP 1.4 low vswing translation parameters
 */
static const struct ddi_buf_trans skl_u_ddi_translations_edp[] = {
	{ 0x00000018, 0x000000A8, 0x0 },
	{ 0x00004013, 0x000000A9, 0x0 },
	{ 0x00007011, 0x000000A2, 0x0 },
	{ 0x00009010, 0x0000009C, 0x0 },
	{ 0x00000018, 0x000000A9, 0x0 },
	{ 0x00006013, 0x000000A2, 0x0 },
	{ 0x00007011, 0x000000A6, 0x0 },
	{ 0x00002016, 0x000000AB, 0x0 },
	{ 0x00005013, 0x0000009F, 0x0 },
	{ 0x00000018, 0x000000DF, 0x0 },
202 203
};

204
/*
205
 * Skylake Y
206 207
 * eDP 1.4 low vswing translation parameters
 */
208
static const struct ddi_buf_trans skl_y_ddi_translations_edp[] = {
209 210 211 212 213 214 215 216 217 218 219
	{ 0x00000018, 0x000000A8, 0x0 },
	{ 0x00004013, 0x000000AB, 0x0 },
	{ 0x00007011, 0x000000A4, 0x0 },
	{ 0x00009010, 0x000000DF, 0x0 },
	{ 0x00000018, 0x000000AA, 0x0 },
	{ 0x00006013, 0x000000A4, 0x0 },
	{ 0x00007011, 0x0000009D, 0x0 },
	{ 0x00000018, 0x000000A0, 0x0 },
	{ 0x00006012, 0x000000DF, 0x0 },
	{ 0x00000018, 0x0000008A, 0x0 },
};
220

221
/* Skylake U, H and S */
222
static const struct ddi_buf_trans skl_ddi_translations_hdmi[] = {
223 224 225 226 227 228
	{ 0x00000018, 0x000000AC, 0x0 },
	{ 0x00005012, 0x0000009D, 0x0 },
	{ 0x00007011, 0x00000088, 0x0 },
	{ 0x00000018, 0x000000A1, 0x0 },
	{ 0x00000018, 0x00000098, 0x0 },
	{ 0x00004013, 0x00000088, 0x0 },
229
	{ 0x80006012, 0x000000CD, 0x1 },
230
	{ 0x00000018, 0x000000DF, 0x0 },
231 232 233
	{ 0x80003015, 0x000000CD, 0x1 },	/* Default */
	{ 0x80003015, 0x000000C0, 0x1 },
	{ 0x80000018, 0x000000C0, 0x1 },
234 235
};

236 237
/* Skylake Y */
static const struct ddi_buf_trans skl_y_ddi_translations_hdmi[] = {
238 239
	{ 0x00000018, 0x000000A1, 0x0 },
	{ 0x00005012, 0x000000DF, 0x0 },
240
	{ 0x80007011, 0x000000CB, 0x3 },
241 242 243
	{ 0x00000018, 0x000000A4, 0x0 },
	{ 0x00000018, 0x0000009D, 0x0 },
	{ 0x00004013, 0x00000080, 0x0 },
244
	{ 0x80006013, 0x000000C0, 0x3 },
245
	{ 0x00000018, 0x0000008A, 0x0 },
246 247 248
	{ 0x80003015, 0x000000C0, 0x3 },	/* Default */
	{ 0x80003015, 0x000000C0, 0x3 },
	{ 0x80000018, 0x000000C0, 0x3 },
249 250
};

251 252 253 254 255 256 257 258 259 260
struct bxt_ddi_buf_trans {
	u32 margin;	/* swing value */
	u32 scale;	/* scale value */
	u32 enable;	/* scale enable */
	u32 deemphasis;
	bool default_index; /* true if the entry represents default value */
};

static const struct bxt_ddi_buf_trans bxt_ddi_translations_dp[] = {
					/* Idx	NT mV diff	db  */
261 262 263 264 265 266 267 268 269
	{ 52,  0x9A, 0, 128, true  },	/* 0:	400		0   */
	{ 78,  0x9A, 0, 85,  false },	/* 1:	400		3.5 */
	{ 104, 0x9A, 0, 64,  false },	/* 2:	400		6   */
	{ 154, 0x9A, 0, 43,  false },	/* 3:	400		9.5 */
	{ 77,  0x9A, 0, 128, false },	/* 4:	600		0   */
	{ 116, 0x9A, 0, 85,  false },	/* 5:	600		3.5 */
	{ 154, 0x9A, 0, 64,  false },	/* 6:	600		6   */
	{ 102, 0x9A, 0, 128, false },	/* 7:	800		0   */
	{ 154, 0x9A, 0, 85,  false },	/* 8:	800		3.5 */
270
	{ 154, 0x9A, 1, 128, false },	/* 9:	1200		0   */
271 272
};

273 274 275 276 277 278 279 280 281 282 283 284 285 286
static const struct bxt_ddi_buf_trans bxt_ddi_translations_edp[] = {
					/* Idx	NT mV diff	db  */
	{ 26, 0, 0, 128, false },	/* 0:	200		0   */
	{ 38, 0, 0, 112, false },	/* 1:	200		1.5 */
	{ 48, 0, 0, 96,  false },	/* 2:	200		4   */
	{ 54, 0, 0, 69,  false },	/* 3:	200		6   */
	{ 32, 0, 0, 128, false },	/* 4:	250		0   */
	{ 48, 0, 0, 104, false },	/* 5:	250		1.5 */
	{ 54, 0, 0, 85,  false },	/* 6:	250		4   */
	{ 43, 0, 0, 128, false },	/* 7:	300		0   */
	{ 54, 0, 0, 101, false },	/* 8:	300		1.5 */
	{ 48, 0, 0, 128, false },	/* 9:	300		0   */
};

287 288 289 290 291
/* BSpec has 2 recommended values - entries 0 and 8.
 * Using the entry with higher vswing.
 */
static const struct bxt_ddi_buf_trans bxt_ddi_translations_hdmi[] = {
					/* Idx	NT mV diff	db  */
292 293 294 295 296 297 298 299 300
	{ 52,  0x9A, 0, 128, false },	/* 0:	400		0   */
	{ 52,  0x9A, 0, 85,  false },	/* 1:	400		3.5 */
	{ 52,  0x9A, 0, 64,  false },	/* 2:	400		6   */
	{ 42,  0x9A, 0, 43,  false },	/* 3:	400		9.5 */
	{ 77,  0x9A, 0, 128, false },	/* 4:	600		0   */
	{ 77,  0x9A, 0, 85,  false },	/* 5:	600		3.5 */
	{ 77,  0x9A, 0, 64,  false },	/* 6:	600		6   */
	{ 102, 0x9A, 0, 128, false },	/* 7:	800		0   */
	{ 102, 0x9A, 0, 85,  false },	/* 8:	800		3.5 */
301 302 303
	{ 154, 0x9A, 1, 128, true },	/* 9:	1200		0   */
};

304 305 306
static void bxt_ddi_vswing_sequence(struct drm_device *dev, u32 level,
				    enum port port, int type);

307 308 309
static void ddi_get_encoder_port(struct intel_encoder *intel_encoder,
				 struct intel_digital_port **dig_port,
				 enum port *port)
310
{
311
	struct drm_encoder *encoder = &intel_encoder->base;
312

313 314
	switch (intel_encoder->type) {
	case INTEL_OUTPUT_DP_MST:
315 316
		*dig_port = enc_to_mst(encoder)->primary;
		*port = (*dig_port)->port;
317 318 319 320 321
		break;
	case INTEL_OUTPUT_DISPLAYPORT:
	case INTEL_OUTPUT_EDP:
	case INTEL_OUTPUT_HDMI:
	case INTEL_OUTPUT_UNKNOWN:
322 323
		*dig_port = enc_to_dig_port(encoder);
		*port = (*dig_port)->port;
324 325
		break;
	case INTEL_OUTPUT_ANALOG:
326 327
		*dig_port = NULL;
		*port = PORT_E;
328 329 330 331
		break;
	default:
		WARN(1, "Invalid DDI encoder type %d\n", intel_encoder->type);
		break;
332 333 334
	}
}

335 336 337 338 339 340 341 342 343 344
enum port intel_ddi_get_encoder_port(struct intel_encoder *intel_encoder)
{
	struct intel_digital_port *dig_port;
	enum port port;

	ddi_get_encoder_port(intel_encoder, &dig_port, &port);

	return port;
}

345 346 347
static bool
intel_dig_port_supports_hdmi(const struct intel_digital_port *intel_dig_port)
{
348
	return i915_mmio_reg_valid(intel_dig_port->hdmi.hdmi_reg);
349 350
}

351 352 353 354 355
static const struct ddi_buf_trans *skl_get_buf_trans_dp(struct drm_device *dev,
							int *n_entries)
{
	const struct ddi_buf_trans *ddi_translations;

356
	if (IS_SKL_ULX(dev) || IS_KBL_ULX(dev)) {
357 358
		ddi_translations = skl_y_ddi_translations_dp;
		*n_entries = ARRAY_SIZE(skl_y_ddi_translations_dp);
359
	} else if (IS_SKL_ULT(dev) || IS_KBL_ULT(dev)) {
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
		ddi_translations = skl_u_ddi_translations_dp;
		*n_entries = ARRAY_SIZE(skl_u_ddi_translations_dp);
	} else {
		ddi_translations = skl_ddi_translations_dp;
		*n_entries = ARRAY_SIZE(skl_ddi_translations_dp);
	}

	return ddi_translations;
}

static const struct ddi_buf_trans *skl_get_buf_trans_edp(struct drm_device *dev,
							 int *n_entries)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	const struct ddi_buf_trans *ddi_translations;

376
	if (IS_SKL_ULX(dev) || IS_KBL_ULX(dev)) {
377
		if (dev_priv->edp_low_vswing) {
378 379
			ddi_translations = skl_y_ddi_translations_edp;
			*n_entries = ARRAY_SIZE(skl_y_ddi_translations_edp);
380
		} else {
381 382
			ddi_translations = skl_y_ddi_translations_dp;
			*n_entries = ARRAY_SIZE(skl_y_ddi_translations_dp);
383
		}
384
	} else if (IS_SKL_ULT(dev) || IS_KBL_ULT(dev)) {
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
		if (dev_priv->edp_low_vswing) {
			ddi_translations = skl_u_ddi_translations_edp;
			*n_entries = ARRAY_SIZE(skl_u_ddi_translations_edp);
		} else {
			ddi_translations = skl_u_ddi_translations_dp;
			*n_entries = ARRAY_SIZE(skl_u_ddi_translations_dp);
		}
	} else {
		if (dev_priv->edp_low_vswing) {
			ddi_translations = skl_ddi_translations_edp;
			*n_entries = ARRAY_SIZE(skl_ddi_translations_edp);
		} else {
			ddi_translations = skl_ddi_translations_dp;
			*n_entries = ARRAY_SIZE(skl_ddi_translations_dp);
		}
	}

	return ddi_translations;
}

static const struct ddi_buf_trans *
skl_get_buf_trans_hdmi(struct drm_device *dev,
		       int *n_entries)
{
	const struct ddi_buf_trans *ddi_translations;

411
	if (IS_SKL_ULX(dev) || IS_KBL_ULX(dev)) {
412 413
		ddi_translations = skl_y_ddi_translations_hdmi;
		*n_entries = ARRAY_SIZE(skl_y_ddi_translations_hdmi);
414 415 416 417 418 419 420 421
	} else {
		ddi_translations = skl_ddi_translations_hdmi;
		*n_entries = ARRAY_SIZE(skl_ddi_translations_hdmi);
	}

	return ddi_translations;
}

422 423 424
/*
 * Starting with Haswell, DDI port buffers must be programmed with correct
 * values in advance. The buffer values are different for FDI and DP modes,
425 426 427 428
 * but the HDMI/DVI fields are shared among those. So we program the DDI
 * in either FDI or DP modes only, as HDMI connections will work with both
 * of those
 */
I
Imre Deak 已提交
429 430
static void intel_prepare_ddi_buffers(struct drm_device *dev, enum port port,
				      bool supports_hdmi)
431 432
{
	struct drm_i915_private *dev_priv = dev->dev_private;
433
	u32 iboost_bit = 0;
434
	int i, n_hdmi_entries, n_dp_entries, n_edp_entries, hdmi_default_entry,
435
	    size;
436
	int hdmi_level = dev_priv->vbt.ddi_port_info[port].hdmi_level_shift;
437 438 439 440 441
	const struct ddi_buf_trans *ddi_translations_fdi;
	const struct ddi_buf_trans *ddi_translations_dp;
	const struct ddi_buf_trans *ddi_translations_edp;
	const struct ddi_buf_trans *ddi_translations_hdmi;
	const struct ddi_buf_trans *ddi_translations;
442

443
	if (IS_BROXTON(dev)) {
I
Imre Deak 已提交
444
		if (!supports_hdmi)
445 446 447 448 449 450
			return;

		/* Vswing programming for HDMI */
		bxt_ddi_vswing_sequence(dev, hdmi_level, port,
					INTEL_OUTPUT_HDMI);
		return;
451
	} else if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
452
		ddi_translations_fdi = NULL;
453 454 455 456 457 458 459
		ddi_translations_dp =
				skl_get_buf_trans_dp(dev, &n_dp_entries);
		ddi_translations_edp =
				skl_get_buf_trans_edp(dev, &n_edp_entries);
		ddi_translations_hdmi =
				skl_get_buf_trans_hdmi(dev, &n_hdmi_entries);
		hdmi_default_entry = 8;
460 461 462 463
		/* If we're boosting the current, set bit 31 of trans1 */
		if (dev_priv->vbt.ddi_port_info[port].hdmi_boost_level ||
		    dev_priv->vbt.ddi_port_info[port].dp_boost_level)
			iboost_bit = 1<<31;
464
	} else if (IS_BROADWELL(dev)) {
465 466
		ddi_translations_fdi = bdw_ddi_translations_fdi;
		ddi_translations_dp = bdw_ddi_translations_dp;
467
		ddi_translations_edp = bdw_ddi_translations_edp;
468
		ddi_translations_hdmi = bdw_ddi_translations_hdmi;
469 470
		n_edp_entries = ARRAY_SIZE(bdw_ddi_translations_edp);
		n_dp_entries = ARRAY_SIZE(bdw_ddi_translations_dp);
471
		n_hdmi_entries = ARRAY_SIZE(bdw_ddi_translations_hdmi);
472
		hdmi_default_entry = 7;
473 474 475
	} else if (IS_HASWELL(dev)) {
		ddi_translations_fdi = hsw_ddi_translations_fdi;
		ddi_translations_dp = hsw_ddi_translations_dp;
476
		ddi_translations_edp = hsw_ddi_translations_dp;
477
		ddi_translations_hdmi = hsw_ddi_translations_hdmi;
478
		n_dp_entries = n_edp_entries = ARRAY_SIZE(hsw_ddi_translations_dp);
479
		n_hdmi_entries = ARRAY_SIZE(hsw_ddi_translations_hdmi);
480
		hdmi_default_entry = 6;
481 482
	} else {
		WARN(1, "ddi translation table missing\n");
483
		ddi_translations_edp = bdw_ddi_translations_dp;
484 485
		ddi_translations_fdi = bdw_ddi_translations_fdi;
		ddi_translations_dp = bdw_ddi_translations_dp;
486
		ddi_translations_hdmi = bdw_ddi_translations_hdmi;
487 488
		n_edp_entries = ARRAY_SIZE(bdw_ddi_translations_edp);
		n_dp_entries = ARRAY_SIZE(bdw_ddi_translations_dp);
489
		n_hdmi_entries = ARRAY_SIZE(bdw_ddi_translations_hdmi);
490
		hdmi_default_entry = 7;
491 492
	}

493 494 495
	switch (port) {
	case PORT_A:
		ddi_translations = ddi_translations_edp;
496
		size = n_edp_entries;
497 498 499 500
		break;
	case PORT_B:
	case PORT_C:
		ddi_translations = ddi_translations_dp;
501
		size = n_dp_entries;
502
		break;
503
	case PORT_D:
504
		if (intel_dp_is_edp(dev, PORT_D)) {
505
			ddi_translations = ddi_translations_edp;
506 507
			size = n_edp_entries;
		} else {
508
			ddi_translations = ddi_translations_dp;
509 510
			size = n_dp_entries;
		}
511
		break;
512
	case PORT_E:
513 514 515 516
		if (ddi_translations_fdi)
			ddi_translations = ddi_translations_fdi;
		else
			ddi_translations = ddi_translations_dp;
517
		size = n_dp_entries;
518 519 520 521
		break;
	default:
		BUG();
	}
522

523 524 525 526 527
	for (i = 0; i < size; i++) {
		I915_WRITE(DDI_BUF_TRANS_LO(port, i),
			   ddi_translations[i].trans1 | iboost_bit);
		I915_WRITE(DDI_BUF_TRANS_HI(port, i),
			   ddi_translations[i].trans2);
528
	}
529

I
Imre Deak 已提交
530
	if (!supports_hdmi)
531 532
		return;

533 534 535
	/* Choose a good default if VBT is badly populated */
	if (hdmi_level == HDMI_LEVEL_SHIFT_UNKNOWN ||
	    hdmi_level >= n_hdmi_entries)
536
		hdmi_level = hdmi_default_entry;
537

538
	/* Entry 9 is for HDMI: */
539 540 541 542
	I915_WRITE(DDI_BUF_TRANS_LO(port, i),
		   ddi_translations_hdmi[hdmi_level].trans1 | iboost_bit);
	I915_WRITE(DDI_BUF_TRANS_HI(port, i),
		   ddi_translations_hdmi[hdmi_level].trans2);
543 544 545 546 547 548 549
}

/* Program DDI buffers translations for DP. By default, program ports A-D in DP
 * mode and port E for FDI.
 */
void intel_prepare_ddi(struct drm_device *dev)
{
I
Imre Deak 已提交
550
	struct intel_encoder *intel_encoder;
551
	bool visited[I915_MAX_PORTS] = { 0, };
552

553 554
	if (!HAS_DDI(dev))
		return;
555

I
Imre Deak 已提交
556 557 558 559 560
	for_each_intel_encoder(dev, intel_encoder) {
		struct intel_digital_port *intel_dig_port;
		enum port port;
		bool supports_hdmi;

561 562
		if (intel_encoder->type == INTEL_OUTPUT_DSI)
			continue;
I
Imre Deak 已提交
563

564
		ddi_get_encoder_port(intel_encoder, &intel_dig_port, &port);
I
Imre Deak 已提交
565
		if (visited[port])
566 567
			continue;

I
Imre Deak 已提交
568 569 570 571 572
		supports_hdmi = intel_dig_port &&
				intel_dig_port_supports_hdmi(intel_dig_port);

		intel_prepare_ddi_buffers(dev, port, supports_hdmi);
		visited[port] = true;
573
	}
574
}
575

576 577 578
static void intel_wait_ddi_buf_idle(struct drm_i915_private *dev_priv,
				    enum port port)
{
579
	i915_reg_t reg = DDI_BUF_CTL(port);
580 581
	int i;

582
	for (i = 0; i < 16; i++) {
583 584 585 586 587 588
		udelay(1);
		if (I915_READ(reg) & DDI_BUF_IS_IDLE)
			return;
	}
	DRM_ERROR("Timeout waiting for DDI BUF %c idle bit\n", port_name(port));
}
589 590 591 592 593 594 595 596 597 598 599 600 601 602 603

/* Starting with Haswell, different DDI ports can work in FDI mode for
 * connection to the PCH-located connectors. For this, it is necessary to train
 * both the DDI port and PCH receiver for the desired DDI buffer settings.
 *
 * The recommended port to work in FDI mode is DDI E, which we use here. Also,
 * please note that when FDI mode is active on DDI E, it shares 2 lines with
 * DDI A (which is used for eDP)
 */

void hsw_fdi_link_train(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
604
	u32 temp, i, rx_ctl_val;
605

606 607 608 609
	/* Set the FDI_RX_MISC pwrdn lanes and the 2 workarounds listed at the
	 * mode set "sequence for CRT port" document:
	 * - TP1 to TP2 time with the default value
	 * - FDI delay to 90h
610 611
	 *
	 * WaFDIAutoLinkSetTimingOverrride:hsw
612
	 */
613
	I915_WRITE(FDI_RX_MISC(PIPE_A), FDI_RX_PWRDN_LANE1_VAL(2) |
614 615 616 617
				  FDI_RX_PWRDN_LANE0_VAL(2) |
				  FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);

	/* Enable the PCH Receiver FDI PLL */
618
	rx_ctl_val = dev_priv->fdi_rx_config | FDI_RX_ENHANCE_FRAME_ENABLE |
619
		     FDI_RX_PLL_ENABLE |
620
		     FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
621 622
	I915_WRITE(FDI_RX_CTL(PIPE_A), rx_ctl_val);
	POSTING_READ(FDI_RX_CTL(PIPE_A));
623 624 625 626
	udelay(220);

	/* Switch from Rawclk to PCDclk */
	rx_ctl_val |= FDI_PCDCLK;
627
	I915_WRITE(FDI_RX_CTL(PIPE_A), rx_ctl_val);
628 629

	/* Configure Port Clock Select */
630 631
	I915_WRITE(PORT_CLK_SEL(PORT_E), intel_crtc->config->ddi_pll_sel);
	WARN_ON(intel_crtc->config->ddi_pll_sel != PORT_CLK_SEL_SPLL);
632 633 634

	/* Start the training iterating through available voltages and emphasis,
	 * testing each value twice. */
635
	for (i = 0; i < ARRAY_SIZE(hsw_ddi_translations_fdi) * 2; i++) {
636 637 638 639 640 641 642
		/* Configure DP_TP_CTL with auto-training */
		I915_WRITE(DP_TP_CTL(PORT_E),
					DP_TP_CTL_FDI_AUTOTRAIN |
					DP_TP_CTL_ENHANCED_FRAME_ENABLE |
					DP_TP_CTL_LINK_TRAIN_PAT1 |
					DP_TP_CTL_ENABLE);

643 644 645 646
		/* Configure and enable DDI_BUF_CTL for DDI E with next voltage.
		 * DDI E does not support port reversal, the functionality is
		 * achieved on the PCH side in FDI_RX_CTL, so no need to set the
		 * port reversal bit */
647
		I915_WRITE(DDI_BUF_CTL(PORT_E),
648
			   DDI_BUF_CTL_ENABLE |
649
			   ((intel_crtc->config->fdi_lanes - 1) << 1) |
650
			   DDI_BUF_TRANS_SELECT(i / 2));
651
		POSTING_READ(DDI_BUF_CTL(PORT_E));
652 653 654

		udelay(600);

655
		/* Program PCH FDI Receiver TU */
656
		I915_WRITE(FDI_RX_TUSIZE1(PIPE_A), TU_SIZE(64));
657 658 659

		/* Enable PCH FDI Receiver with auto-training */
		rx_ctl_val |= FDI_RX_ENABLE | FDI_LINK_TRAIN_AUTO;
660 661
		I915_WRITE(FDI_RX_CTL(PIPE_A), rx_ctl_val);
		POSTING_READ(FDI_RX_CTL(PIPE_A));
662 663 664 665 666

		/* Wait for FDI receiver lane calibration */
		udelay(30);

		/* Unset FDI_RX_MISC pwrdn lanes */
667
		temp = I915_READ(FDI_RX_MISC(PIPE_A));
668
		temp &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
669 670
		I915_WRITE(FDI_RX_MISC(PIPE_A), temp);
		POSTING_READ(FDI_RX_MISC(PIPE_A));
671 672 673

		/* Wait for FDI auto training time */
		udelay(5);
674 675 676

		temp = I915_READ(DP_TP_STATUS(PORT_E));
		if (temp & DP_TP_STATUS_AUTOTRAIN_DONE) {
677
			DRM_DEBUG_KMS("FDI link training done on step %d\n", i);
678 679
			break;
		}
680

681 682 683 684 685 686 687
		/*
		 * Leave things enabled even if we failed to train FDI.
		 * Results in less fireworks from the state checker.
		 */
		if (i == ARRAY_SIZE(hsw_ddi_translations_fdi) * 2 - 1) {
			DRM_ERROR("FDI link training failed!\n");
			break;
688
		}
689

690 691 692 693 694
		temp = I915_READ(DDI_BUF_CTL(PORT_E));
		temp &= ~DDI_BUF_CTL_ENABLE;
		I915_WRITE(DDI_BUF_CTL(PORT_E), temp);
		POSTING_READ(DDI_BUF_CTL(PORT_E));

695
		/* Disable DP_TP_CTL and FDI_RX_CTL and retry */
696 697 698 699 700 701 702
		temp = I915_READ(DP_TP_CTL(PORT_E));
		temp &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
		temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
		I915_WRITE(DP_TP_CTL(PORT_E), temp);
		POSTING_READ(DP_TP_CTL(PORT_E));

		intel_wait_ddi_buf_idle(dev_priv, PORT_E);
703 704

		rx_ctl_val &= ~FDI_RX_ENABLE;
705 706
		I915_WRITE(FDI_RX_CTL(PIPE_A), rx_ctl_val);
		POSTING_READ(FDI_RX_CTL(PIPE_A));
707 708

		/* Reset FDI_RX_MISC pwrdn lanes */
709
		temp = I915_READ(FDI_RX_MISC(PIPE_A));
710 711
		temp &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
		temp |= FDI_RX_PWRDN_LANE1_VAL(2) | FDI_RX_PWRDN_LANE0_VAL(2);
712 713
		I915_WRITE(FDI_RX_MISC(PIPE_A), temp);
		POSTING_READ(FDI_RX_MISC(PIPE_A));
714 715
	}

716 717 718 719 720 721
	/* Enable normal pixel sending for FDI */
	I915_WRITE(DP_TP_CTL(PORT_E),
		   DP_TP_CTL_FDI_AUTOTRAIN |
		   DP_TP_CTL_LINK_TRAIN_NORMAL |
		   DP_TP_CTL_ENHANCED_FRAME_ENABLE |
		   DP_TP_CTL_ENABLE);
722
}
723

724 725 726 727 728 729 730
void intel_ddi_init_dp_buf_reg(struct intel_encoder *encoder)
{
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
	struct intel_digital_port *intel_dig_port =
		enc_to_dig_port(&encoder->base);

	intel_dp->DP = intel_dig_port->saved_port_bits |
731
		DDI_BUF_CTL_ENABLE | DDI_BUF_TRANS_SELECT(0);
732
	intel_dp->DP |= DDI_PORT_WIDTH(intel_dp->lane_count);
733 734
}

735 736 737 738 739 740 741 742 743 744 745 746 747 748
static struct intel_encoder *
intel_ddi_get_crtc_encoder(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct intel_encoder *intel_encoder, *ret = NULL;
	int num_encoders = 0;

	for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
		ret = intel_encoder;
		num_encoders++;
	}

	if (num_encoders != 1)
749 750
		WARN(1, "%d encoders on crtc for pipe %c\n", num_encoders,
		     pipe_name(intel_crtc->pipe));
751 752 753 754 755

	BUG_ON(ret == NULL);
	return ret;
}

756
struct intel_encoder *
757
intel_ddi_get_crtc_new_encoder(struct intel_crtc_state *crtc_state)
758
{
759 760 761
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
	struct intel_encoder *ret = NULL;
	struct drm_atomic_state *state;
762 763
	struct drm_connector *connector;
	struct drm_connector_state *connector_state;
764
	int num_encoders = 0;
765
	int i;
766

767 768
	state = crtc_state->base.state;

769 770
	for_each_connector_in_state(state, connector, connector_state, i) {
		if (connector_state->crtc != crtc_state->base.crtc)
771 772
			continue;

773
		ret = to_intel_encoder(connector_state->best_encoder);
774
		num_encoders++;
775 776 777 778 779 780 781 782 783
	}

	WARN(num_encoders != 1, "%d encoders on crtc for pipe %c\n", num_encoders,
	     pipe_name(crtc->pipe));

	BUG_ON(ret == NULL);
	return ret;
}

784
#define LC_FREQ 2700
785
#define LC_FREQ_2K U64_C(LC_FREQ * 2000)
786 787 788 789 790 791 792 793 794 795 796

#define P_MIN 2
#define P_MAX 64
#define P_INC 2

/* Constraints for PLL good behavior */
#define REF_MIN 48
#define REF_MAX 400
#define VCO_MIN 2400
#define VCO_MAX 4800

797 798 799 800 801
#define abs_diff(a, b) ({			\
	typeof(a) __a = (a);			\
	typeof(b) __b = (b);			\
	(void) (&__a == &__b);			\
	__a > __b ? (__a - __b) : (__b - __a); })
802

803
struct hsw_wrpll_rnp {
804 805 806
	unsigned p, n2, r2;
};

807
static unsigned hsw_wrpll_get_budget_for_freq(int clock)
808
{
809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876
	unsigned budget;

	switch (clock) {
	case 25175000:
	case 25200000:
	case 27000000:
	case 27027000:
	case 37762500:
	case 37800000:
	case 40500000:
	case 40541000:
	case 54000000:
	case 54054000:
	case 59341000:
	case 59400000:
	case 72000000:
	case 74176000:
	case 74250000:
	case 81000000:
	case 81081000:
	case 89012000:
	case 89100000:
	case 108000000:
	case 108108000:
	case 111264000:
	case 111375000:
	case 148352000:
	case 148500000:
	case 162000000:
	case 162162000:
	case 222525000:
	case 222750000:
	case 296703000:
	case 297000000:
		budget = 0;
		break;
	case 233500000:
	case 245250000:
	case 247750000:
	case 253250000:
	case 298000000:
		budget = 1500;
		break;
	case 169128000:
	case 169500000:
	case 179500000:
	case 202000000:
		budget = 2000;
		break;
	case 256250000:
	case 262500000:
	case 270000000:
	case 272500000:
	case 273750000:
	case 280750000:
	case 281250000:
	case 286000000:
	case 291750000:
		budget = 4000;
		break;
	case 267250000:
	case 268500000:
		budget = 5000;
		break;
	default:
		budget = 1000;
		break;
	}
877

878 879 880
	return budget;
}

881 882 883
static void hsw_wrpll_update_rnp(uint64_t freq2k, unsigned budget,
				 unsigned r2, unsigned n2, unsigned p,
				 struct hsw_wrpll_rnp *best)
884 885
{
	uint64_t a, b, c, d, diff, diff_best;
886

887 888 889 890 891 892 893
	/* No best (r,n,p) yet */
	if (best->p == 0) {
		best->p = p;
		best->n2 = n2;
		best->r2 = r2;
		return;
	}
894

895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910
	/*
	 * Output clock is (LC_FREQ_2K / 2000) * N / (P * R), which compares to
	 * freq2k.
	 *
	 * delta = 1e6 *
	 *	   abs(freq2k - (LC_FREQ_2K * n2/(p * r2))) /
	 *	   freq2k;
	 *
	 * and we would like delta <= budget.
	 *
	 * If the discrepancy is above the PPM-based budget, always prefer to
	 * improve upon the previous solution.  However, if you're within the
	 * budget, try to maximize Ref * VCO, that is N / (P * R^2).
	 */
	a = freq2k * budget * p * r2;
	b = freq2k * budget * best->p * best->r2;
911 912 913
	diff = abs_diff(freq2k * p * r2, LC_FREQ_2K * n2);
	diff_best = abs_diff(freq2k * best->p * best->r2,
			     LC_FREQ_2K * best->n2);
914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939
	c = 1000000 * diff;
	d = 1000000 * diff_best;

	if (a < c && b < d) {
		/* If both are above the budget, pick the closer */
		if (best->p * best->r2 * diff < p * r2 * diff_best) {
			best->p = p;
			best->n2 = n2;
			best->r2 = r2;
		}
	} else if (a >= c && b < d) {
		/* If A is below the threshold but B is above it?  Update. */
		best->p = p;
		best->n2 = n2;
		best->r2 = r2;
	} else if (a >= c && b >= d) {
		/* Both are below the limit, so pick the higher n2/(r2*r2) */
		if (n2 * best->r2 * best->r2 > best->n2 * r2 * r2) {
			best->p = p;
			best->n2 = n2;
			best->r2 = r2;
		}
	}
	/* Otherwise a < c && b >= d, do nothing */
}

940 941
static int hsw_ddi_calc_wrpll_link(struct drm_i915_private *dev_priv,
				   i915_reg_t reg)
942 943 944 945 946 947
{
	int refclk = LC_FREQ;
	int n, p, r;
	u32 wrpll;

	wrpll = I915_READ(reg);
948 949 950
	switch (wrpll & WRPLL_PLL_REF_MASK) {
	case WRPLL_PLL_SSC:
	case WRPLL_PLL_NON_SSC:
951 952 953 954 955 956 957
		/*
		 * We could calculate spread here, but our checking
		 * code only cares about 5% accuracy, and spread is a max of
		 * 0.5% downspread.
		 */
		refclk = 135;
		break;
958
	case WRPLL_PLL_LCPLL:
959 960 961 962 963 964 965 966 967 968 969
		refclk = LC_FREQ;
		break;
	default:
		WARN(1, "bad wrpll refclk\n");
		return 0;
	}

	r = wrpll & WRPLL_DIVIDER_REF_MASK;
	p = (wrpll & WRPLL_DIVIDER_POST_MASK) >> WRPLL_DIVIDER_POST_SHIFT;
	n = (wrpll & WRPLL_DIVIDER_FB_MASK) >> WRPLL_DIVIDER_FB_SHIFT;

970 971
	/* Convert to KHz, p & r have a fixed point portion */
	return (refclk * n * 100) / (p * r);
972 973
}

974 975 976
static int skl_calc_wrpll_link(struct drm_i915_private *dev_priv,
			       uint32_t dpll)
{
977
	i915_reg_t cfgcr1_reg, cfgcr2_reg;
978 979 980
	uint32_t cfgcr1_val, cfgcr2_val;
	uint32_t p0, p1, p2, dco_freq;

981 982
	cfgcr1_reg = DPLL_CFGCR1(dpll);
	cfgcr2_reg = DPLL_CFGCR2(dpll);
983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033

	cfgcr1_val = I915_READ(cfgcr1_reg);
	cfgcr2_val = I915_READ(cfgcr2_reg);

	p0 = cfgcr2_val & DPLL_CFGCR2_PDIV_MASK;
	p2 = cfgcr2_val & DPLL_CFGCR2_KDIV_MASK;

	if (cfgcr2_val &  DPLL_CFGCR2_QDIV_MODE(1))
		p1 = (cfgcr2_val & DPLL_CFGCR2_QDIV_RATIO_MASK) >> 8;
	else
		p1 = 1;


	switch (p0) {
	case DPLL_CFGCR2_PDIV_1:
		p0 = 1;
		break;
	case DPLL_CFGCR2_PDIV_2:
		p0 = 2;
		break;
	case DPLL_CFGCR2_PDIV_3:
		p0 = 3;
		break;
	case DPLL_CFGCR2_PDIV_7:
		p0 = 7;
		break;
	}

	switch (p2) {
	case DPLL_CFGCR2_KDIV_5:
		p2 = 5;
		break;
	case DPLL_CFGCR2_KDIV_2:
		p2 = 2;
		break;
	case DPLL_CFGCR2_KDIV_3:
		p2 = 3;
		break;
	case DPLL_CFGCR2_KDIV_1:
		p2 = 1;
		break;
	}

	dco_freq = (cfgcr1_val & DPLL_CFGCR1_DCO_INTEGER_MASK) * 24 * 1000;

	dco_freq += (((cfgcr1_val & DPLL_CFGCR1_DCO_FRACTION_MASK) >> 9) * 24 *
		1000) / 0x8000;

	return dco_freq / (p0 * p1 * p2 * 5);
}

1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
static void ddi_dotclock_get(struct intel_crtc_state *pipe_config)
{
	int dotclock;

	if (pipe_config->has_pch_encoder)
		dotclock = intel_dotclock_calculate(pipe_config->port_clock,
						    &pipe_config->fdi_m_n);
	else if (pipe_config->has_dp_encoder)
		dotclock = intel_dotclock_calculate(pipe_config->port_clock,
						    &pipe_config->dp_m_n);
	else if (pipe_config->has_hdmi_sink && pipe_config->pipe_bpp == 36)
		dotclock = pipe_config->port_clock * 2 / 3;
	else
		dotclock = pipe_config->port_clock;

	if (pipe_config->pixel_multiplier)
		dotclock /= pipe_config->pixel_multiplier;

	pipe_config->base.adjusted_mode.crtc_clock = dotclock;
}
1054 1055

static void skl_ddi_clock_get(struct intel_encoder *encoder,
1056
				struct intel_crtc_state *pipe_config)
1057 1058 1059 1060 1061
{
	struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
	int link_clock = 0;
	uint32_t dpll_ctl1, dpll;

1062
	dpll = pipe_config->ddi_pll_sel;
1063 1064 1065 1066 1067 1068

	dpll_ctl1 = I915_READ(DPLL_CTRL1);

	if (dpll_ctl1 & DPLL_CTRL1_HDMI_MODE(dpll)) {
		link_clock = skl_calc_wrpll_link(dev_priv, dpll);
	} else {
1069 1070
		link_clock = dpll_ctl1 & DPLL_CTRL1_LINK_RATE_MASK(dpll);
		link_clock >>= DPLL_CTRL1_LINK_RATE_SHIFT(dpll);
1071 1072

		switch (link_clock) {
1073
		case DPLL_CTRL1_LINK_RATE_810:
1074 1075
			link_clock = 81000;
			break;
1076
		case DPLL_CTRL1_LINK_RATE_1080:
1077 1078
			link_clock = 108000;
			break;
1079
		case DPLL_CTRL1_LINK_RATE_1350:
1080 1081
			link_clock = 135000;
			break;
1082
		case DPLL_CTRL1_LINK_RATE_1620:
1083 1084
			link_clock = 162000;
			break;
1085
		case DPLL_CTRL1_LINK_RATE_2160:
1086 1087
			link_clock = 216000;
			break;
1088
		case DPLL_CTRL1_LINK_RATE_2700:
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
			link_clock = 270000;
			break;
		default:
			WARN(1, "Unsupported link rate\n");
			break;
		}
		link_clock *= 2;
	}

	pipe_config->port_clock = link_clock;

1100
	ddi_dotclock_get(pipe_config);
1101 1102
}

1103
static void hsw_ddi_clock_get(struct intel_encoder *encoder,
1104
			      struct intel_crtc_state *pipe_config)
1105 1106 1107 1108 1109
{
	struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
	int link_clock = 0;
	u32 val, pll;

1110
	val = pipe_config->ddi_pll_sel;
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
	switch (val & PORT_CLK_SEL_MASK) {
	case PORT_CLK_SEL_LCPLL_810:
		link_clock = 81000;
		break;
	case PORT_CLK_SEL_LCPLL_1350:
		link_clock = 135000;
		break;
	case PORT_CLK_SEL_LCPLL_2700:
		link_clock = 270000;
		break;
	case PORT_CLK_SEL_WRPLL1:
1122
		link_clock = hsw_ddi_calc_wrpll_link(dev_priv, WRPLL_CTL(0));
1123 1124
		break;
	case PORT_CLK_SEL_WRPLL2:
1125
		link_clock = hsw_ddi_calc_wrpll_link(dev_priv, WRPLL_CTL(1));
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
		break;
	case PORT_CLK_SEL_SPLL:
		pll = I915_READ(SPLL_CTL) & SPLL_PLL_FREQ_MASK;
		if (pll == SPLL_PLL_FREQ_810MHz)
			link_clock = 81000;
		else if (pll == SPLL_PLL_FREQ_1350MHz)
			link_clock = 135000;
		else if (pll == SPLL_PLL_FREQ_2700MHz)
			link_clock = 270000;
		else {
			WARN(1, "bad spll freq\n");
			return;
		}
		break;
	default:
		WARN(1, "bad port clock sel\n");
		return;
	}

	pipe_config->port_clock = link_clock * 2;

1147
	ddi_dotclock_get(pipe_config);
1148 1149
}

1150 1151 1152
static int bxt_calc_pll_link(struct drm_i915_private *dev_priv,
				enum intel_dpll_id dpll)
{
1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
	struct intel_shared_dpll *pll;
	struct intel_dpll_hw_state *state;
	intel_clock_t clock;

	/* For DDI ports we always use a shared PLL. */
	if (WARN_ON(dpll == DPLL_ID_PRIVATE))
		return 0;

	pll = &dev_priv->shared_dplls[dpll];
	state = &pll->config.hw_state;

	clock.m1 = 2;
	clock.m2 = (state->pll0 & PORT_PLL_M2_MASK) << 22;
	if (state->pll3 & PORT_PLL_M2_FRAC_ENABLE)
		clock.m2 |= state->pll2 & PORT_PLL_M2_FRAC_MASK;
	clock.n = (state->pll1 & PORT_PLL_N_MASK) >> PORT_PLL_N_SHIFT;
	clock.p1 = (state->ebb0 & PORT_PLL_P1_MASK) >> PORT_PLL_P1_SHIFT;
	clock.p2 = (state->ebb0 & PORT_PLL_P2_MASK) >> PORT_PLL_P2_SHIFT;

	return chv_calc_dpll_params(100000, &clock);
1173 1174 1175 1176 1177 1178 1179 1180 1181
}

static void bxt_ddi_clock_get(struct intel_encoder *encoder,
				struct intel_crtc_state *pipe_config)
{
	struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
	enum port port = intel_ddi_get_encoder_port(encoder);
	uint32_t dpll = port;

1182
	pipe_config->port_clock = bxt_calc_pll_link(dev_priv, dpll);
1183

1184
	ddi_dotclock_get(pipe_config);
1185 1186
}

1187
void intel_ddi_clock_get(struct intel_encoder *encoder,
1188
			 struct intel_crtc_state *pipe_config)
1189
{
1190 1191 1192 1193
	struct drm_device *dev = encoder->base.dev;

	if (INTEL_INFO(dev)->gen <= 8)
		hsw_ddi_clock_get(encoder, pipe_config);
1194
	else if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
1195
		skl_ddi_clock_get(encoder, pipe_config);
1196 1197
	else if (IS_BROXTON(dev))
		bxt_ddi_clock_get(encoder, pipe_config);
1198 1199
}

1200
static void
1201 1202
hsw_ddi_calculate_wrpll(int clock /* in Hz */,
			unsigned *r2_out, unsigned *n2_out, unsigned *p_out)
1203 1204 1205
{
	uint64_t freq2k;
	unsigned p, n2, r2;
1206
	struct hsw_wrpll_rnp best = { 0, 0, 0 };
1207 1208 1209 1210
	unsigned budget;

	freq2k = clock / 100;

1211
	budget = hsw_wrpll_get_budget_for_freq(clock);
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254

	/* Special case handling for 540 pixel clock: bypass WR PLL entirely
	 * and directly pass the LC PLL to it. */
	if (freq2k == 5400000) {
		*n2_out = 2;
		*p_out = 1;
		*r2_out = 2;
		return;
	}

	/*
	 * Ref = LC_FREQ / R, where Ref is the actual reference input seen by
	 * the WR PLL.
	 *
	 * We want R so that REF_MIN <= Ref <= REF_MAX.
	 * Injecting R2 = 2 * R gives:
	 *   REF_MAX * r2 > LC_FREQ * 2 and
	 *   REF_MIN * r2 < LC_FREQ * 2
	 *
	 * Which means the desired boundaries for r2 are:
	 *  LC_FREQ * 2 / REF_MAX < r2 < LC_FREQ * 2 / REF_MIN
	 *
	 */
	for (r2 = LC_FREQ * 2 / REF_MAX + 1;
	     r2 <= LC_FREQ * 2 / REF_MIN;
	     r2++) {

		/*
		 * VCO = N * Ref, that is: VCO = N * LC_FREQ / R
		 *
		 * Once again we want VCO_MIN <= VCO <= VCO_MAX.
		 * Injecting R2 = 2 * R and N2 = 2 * N, we get:
		 *   VCO_MAX * r2 > n2 * LC_FREQ and
		 *   VCO_MIN * r2 < n2 * LC_FREQ)
		 *
		 * Which means the desired boundaries for n2 are:
		 * VCO_MIN * r2 / LC_FREQ < n2 < VCO_MAX * r2 / LC_FREQ
		 */
		for (n2 = VCO_MIN * r2 / LC_FREQ + 1;
		     n2 <= VCO_MAX * r2 / LC_FREQ;
		     n2++) {

			for (p = P_MIN; p <= P_MAX; p += P_INC)
1255 1256
				hsw_wrpll_update_rnp(freq2k, budget,
						     r2, n2, p, &best);
1257 1258
		}
	}
1259

1260 1261 1262
	*n2_out = best.n2;
	*p_out = best.p;
	*r2_out = best.r2;
1263 1264
}

1265
static bool
1266
hsw_ddi_pll_select(struct intel_crtc *intel_crtc,
1267
		   struct intel_crtc_state *crtc_state,
1268
		   struct intel_encoder *intel_encoder)
1269
{
1270 1271
	int clock = crtc_state->port_clock;

1272
	if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
1273
		struct intel_shared_dpll *pll;
1274
		uint32_t val;
1275
		unsigned p, n2, r2;
1276

1277
		hsw_ddi_calculate_wrpll(clock * 1000, &r2, &n2, &p);
P
Paulo Zanoni 已提交
1278

1279
		val = WRPLL_PLL_ENABLE | WRPLL_PLL_LCPLL |
P
Paulo Zanoni 已提交
1280 1281 1282
		      WRPLL_DIVIDER_REFERENCE(r2) | WRPLL_DIVIDER_FEEDBACK(n2) |
		      WRPLL_DIVIDER_POST(p);

1283 1284 1285
		memset(&crtc_state->dpll_hw_state, 0,
		       sizeof(crtc_state->dpll_hw_state));

1286
		crtc_state->dpll_hw_state.wrpll = val;
1287

1288
		pll = intel_get_shared_dpll(intel_crtc, crtc_state);
1289 1290 1291 1292
		if (pll == NULL) {
			DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
					 pipe_name(intel_crtc->pipe));
			return false;
P
Paulo Zanoni 已提交
1293
		}
1294

1295
		crtc_state->ddi_pll_sel = PORT_CLK_SEL_WRPLL(pll->id);
1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
	} else if (crtc_state->ddi_pll_sel == PORT_CLK_SEL_SPLL) {
		struct drm_atomic_state *state = crtc_state->base.state;
		struct intel_shared_dpll_config *spll =
			&intel_atomic_get_shared_dpll_state(state)[DPLL_ID_SPLL];

		if (spll->crtc_mask &&
		    WARN_ON(spll->hw_state.spll != crtc_state->dpll_hw_state.spll))
			return false;

		crtc_state->shared_dpll = DPLL_ID_SPLL;
		spll->hw_state.spll = crtc_state->dpll_hw_state.spll;
		spll->crtc_mask |= 1 << intel_crtc->pipe;
1308 1309 1310 1311 1312
	}

	return true;
}

1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
struct skl_wrpll_context {
	uint64_t min_deviation;		/* current minimal deviation */
	uint64_t central_freq;		/* chosen central freq */
	uint64_t dco_freq;		/* chosen dco freq */
	unsigned int p;			/* chosen divider */
};

static void skl_wrpll_context_init(struct skl_wrpll_context *ctx)
{
	memset(ctx, 0, sizeof(*ctx));

	ctx->min_deviation = U64_MAX;
}

/* DCO freq must be within +1%/-6%  of the DCO central freq */
#define SKL_DCO_MAX_PDEVIATION	100
#define SKL_DCO_MAX_NDEVIATION	600

static void skl_wrpll_try_divider(struct skl_wrpll_context *ctx,
				  uint64_t central_freq,
				  uint64_t dco_freq,
				  unsigned int divider)
{
	uint64_t deviation;

	deviation = div64_u64(10000 * abs_diff(dco_freq, central_freq),
			      central_freq);

	/* positive deviation */
	if (dco_freq >= central_freq) {
		if (deviation < SKL_DCO_MAX_PDEVIATION &&
		    deviation < ctx->min_deviation) {
			ctx->min_deviation = deviation;
			ctx->central_freq = central_freq;
			ctx->dco_freq = dco_freq;
			ctx->p = divider;
		}
	/* negative deviation */
	} else if (deviation < SKL_DCO_MAX_NDEVIATION &&
		   deviation < ctx->min_deviation) {
		ctx->min_deviation = deviation;
		ctx->central_freq = central_freq;
		ctx->dco_freq = dco_freq;
		ctx->p = divider;
	}
}

static void skl_wrpll_get_multipliers(unsigned int p,
				      unsigned int *p0 /* out */,
				      unsigned int *p1 /* out */,
				      unsigned int *p2 /* out */)
{
	/* even dividers */
	if (p % 2 == 0) {
		unsigned int half = p / 2;

		if (half == 1 || half == 2 || half == 3 || half == 5) {
			*p0 = 2;
			*p1 = 1;
			*p2 = half;
		} else if (half % 2 == 0) {
			*p0 = 2;
			*p1 = half / 2;
			*p2 = 2;
		} else if (half % 3 == 0) {
			*p0 = 3;
			*p1 = half / 3;
			*p2 = 2;
		} else if (half % 7 == 0) {
			*p0 = 7;
			*p1 = half / 7;
			*p2 = 2;
		}
	} else if (p == 3 || p == 9) {  /* 3, 5, 7, 9, 15, 21, 35 */
		*p0 = 3;
		*p1 = 1;
		*p2 = p / 3;
	} else if (p == 5 || p == 7) {
		*p0 = p;
		*p1 = 1;
		*p2 = 1;
	} else if (p == 15) {
		*p0 = 3;
		*p1 = 1;
		*p2 = 5;
	} else if (p == 21) {
		*p0 = 7;
		*p1 = 1;
		*p2 = 3;
	} else if (p == 35) {
		*p0 = 7;
		*p1 = 1;
		*p2 = 5;
	}
}

1409 1410 1411 1412 1413 1414 1415 1416 1417 1418
struct skl_wrpll_params {
	uint32_t        dco_fraction;
	uint32_t        dco_integer;
	uint32_t        qdiv_ratio;
	uint32_t        qdiv_mode;
	uint32_t        kdiv;
	uint32_t        pdiv;
	uint32_t        central_freq;
};

1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479
static void skl_wrpll_params_populate(struct skl_wrpll_params *params,
				      uint64_t afe_clock,
				      uint64_t central_freq,
				      uint32_t p0, uint32_t p1, uint32_t p2)
{
	uint64_t dco_freq;

	switch (central_freq) {
	case 9600000000ULL:
		params->central_freq = 0;
		break;
	case 9000000000ULL:
		params->central_freq = 1;
		break;
	case 8400000000ULL:
		params->central_freq = 3;
	}

	switch (p0) {
	case 1:
		params->pdiv = 0;
		break;
	case 2:
		params->pdiv = 1;
		break;
	case 3:
		params->pdiv = 2;
		break;
	case 7:
		params->pdiv = 4;
		break;
	default:
		WARN(1, "Incorrect PDiv\n");
	}

	switch (p2) {
	case 5:
		params->kdiv = 0;
		break;
	case 2:
		params->kdiv = 1;
		break;
	case 3:
		params->kdiv = 2;
		break;
	case 1:
		params->kdiv = 3;
		break;
	default:
		WARN(1, "Incorrect KDiv\n");
	}

	params->qdiv_ratio = p1;
	params->qdiv_mode = (params->qdiv_ratio == 1) ? 0 : 1;

	dco_freq = p0 * p1 * p2 * afe_clock;

	/*
	 * Intermediate values are in Hz.
	 * Divide by MHz to match bsepc
	 */
1480
	params->dco_integer = div_u64(dco_freq, 24 * MHz(1));
1481
	params->dco_fraction =
1482 1483
		div_u64((div_u64(dco_freq, 24) -
			 params->dco_integer * MHz(1)) * 0x8000, MHz(1));
1484 1485
}

1486
static bool
1487 1488 1489 1490
skl_ddi_calculate_wrpll(int clock /* in Hz */,
			struct skl_wrpll_params *wrpll_params)
{
	uint64_t afe_clock = clock * 5; /* AFE Clock is 5x Pixel clock */
1491 1492 1493
	uint64_t dco_central_freq[3] = {8400000000ULL,
					9000000000ULL,
					9600000000ULL};
1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
	static const int even_dividers[] = {  4,  6,  8, 10, 12, 14, 16, 18, 20,
					     24, 28, 30, 32, 36, 40, 42, 44,
					     48, 52, 54, 56, 60, 64, 66, 68,
					     70, 72, 76, 78, 80, 84, 88, 90,
					     92, 96, 98 };
	static const int odd_dividers[] = { 3, 5, 7, 9, 15, 21, 35 };
	static const struct {
		const int *list;
		int n_dividers;
	} dividers[] = {
		{ even_dividers, ARRAY_SIZE(even_dividers) },
		{ odd_dividers, ARRAY_SIZE(odd_dividers) },
	};
	struct skl_wrpll_context ctx;
	unsigned int dco, d, i;
	unsigned int p0, p1, p2;

	skl_wrpll_context_init(&ctx);

	for (d = 0; d < ARRAY_SIZE(dividers); d++) {
		for (dco = 0; dco < ARRAY_SIZE(dco_central_freq); dco++) {
			for (i = 0; i < dividers[d].n_dividers; i++) {
				unsigned int p = dividers[d].list[i];
				uint64_t dco_freq = p * afe_clock;

				skl_wrpll_try_divider(&ctx,
						      dco_central_freq[dco],
						      dco_freq,
						      p);
1523 1524 1525 1526 1527 1528 1529
				/*
				 * Skip the remaining dividers if we're sure to
				 * have found the definitive divider, we can't
				 * improve a 0 deviation.
				 */
				if (ctx.min_deviation == 0)
					goto skip_remaining_dividers;
1530 1531
			}
		}
1532

1533
skip_remaining_dividers:
1534 1535 1536 1537 1538 1539
		/*
		 * If a solution is found with an even divider, prefer
		 * this one.
		 */
		if (d == 0 && ctx.p)
			break;
1540 1541
	}

1542 1543
	if (!ctx.p) {
		DRM_DEBUG_DRIVER("No valid divider found for %dHz\n", clock);
1544
		return false;
1545
	}
1546

1547 1548 1549 1550 1551 1552 1553 1554
	/*
	 * gcc incorrectly analyses that these can be used without being
	 * initialized. To be fair, it's hard to guess.
	 */
	p0 = p1 = p2 = 0;
	skl_wrpll_get_multipliers(ctx.p, &p0, &p1, &p2);
	skl_wrpll_params_populate(wrpll_params, afe_clock, ctx.central_freq,
				  p0, p1, p2);
1555 1556

	return true;
1557 1558 1559 1560
}

static bool
skl_ddi_pll_select(struct intel_crtc *intel_crtc,
1561
		   struct intel_crtc_state *crtc_state,
1562
		   struct intel_encoder *intel_encoder)
1563 1564 1565
{
	struct intel_shared_dpll *pll;
	uint32_t ctrl1, cfgcr1, cfgcr2;
1566
	int clock = crtc_state->port_clock;
1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579

	/*
	 * See comment in intel_dpll_hw_state to understand why we always use 0
	 * as the DPLL id in this function.
	 */

	ctrl1 = DPLL_CTRL1_OVERRIDE(0);

	if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
		struct skl_wrpll_params wrpll_params = { 0, };

		ctrl1 |= DPLL_CTRL1_HDMI_MODE(0);

1580 1581
		if (!skl_ddi_calculate_wrpll(clock * 1000, &wrpll_params))
			return false;
1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592

		cfgcr1 = DPLL_CFGCR1_FREQ_ENABLE |
			 DPLL_CFGCR1_DCO_FRACTION(wrpll_params.dco_fraction) |
			 wrpll_params.dco_integer;

		cfgcr2 = DPLL_CFGCR2_QDIV_RATIO(wrpll_params.qdiv_ratio) |
			 DPLL_CFGCR2_QDIV_MODE(wrpll_params.qdiv_mode) |
			 DPLL_CFGCR2_KDIV(wrpll_params.kdiv) |
			 DPLL_CFGCR2_PDIV(wrpll_params.pdiv) |
			 wrpll_params.central_freq;
	} else if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT) {
1593 1594
		switch (crtc_state->port_clock / 2) {
		case 81000:
1595
			ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810, 0);
1596
			break;
1597
		case 135000:
1598
			ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1350, 0);
1599
			break;
1600
		case 270000:
1601
			ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2700, 0);
1602 1603 1604 1605 1606 1607 1608
			break;
		}

		cfgcr1 = cfgcr2 = 0;
	} else /* eDP */
		return true;

1609 1610 1611
	memset(&crtc_state->dpll_hw_state, 0,
	       sizeof(crtc_state->dpll_hw_state));

1612 1613 1614
	crtc_state->dpll_hw_state.ctrl1 = ctrl1;
	crtc_state->dpll_hw_state.cfgcr1 = cfgcr1;
	crtc_state->dpll_hw_state.cfgcr2 = cfgcr2;
1615

1616
	pll = intel_get_shared_dpll(intel_crtc, crtc_state);
1617 1618 1619 1620 1621 1622 1623
	if (pll == NULL) {
		DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
				 pipe_name(intel_crtc->pipe));
		return false;
	}

	/* shared DPLL id 0 is DPLL 1 */
1624
	crtc_state->ddi_pll_sel = pll->id + 1;
1625 1626 1627

	return true;
}
1628

1629 1630
/* bxt clock parameters */
struct bxt_clk_div {
1631
	int clock;
1632 1633 1634 1635 1636 1637 1638 1639 1640
	uint32_t p1;
	uint32_t p2;
	uint32_t m2_int;
	uint32_t m2_frac;
	bool m2_frac_en;
	uint32_t n;
};

/* pre-calculated values for DP linkrates */
1641 1642 1643 1644 1645 1646 1647 1648
static const struct bxt_clk_div bxt_dp_clk_val[] = {
	{162000, 4, 2, 32, 1677722, 1, 1},
	{270000, 4, 1, 27,       0, 0, 1},
	{540000, 2, 1, 27,       0, 0, 1},
	{216000, 3, 2, 32, 1677722, 1, 1},
	{243000, 4, 1, 24, 1258291, 1, 1},
	{324000, 4, 1, 32, 1677722, 1, 1},
	{432000, 3, 1, 32, 1677722, 1, 1}
1649 1650 1651 1652 1653
};

static bool
bxt_ddi_pll_select(struct intel_crtc *intel_crtc,
		   struct intel_crtc_state *crtc_state,
1654
		   struct intel_encoder *intel_encoder)
1655 1656 1657
{
	struct intel_shared_dpll *pll;
	struct bxt_clk_div clk_div = {0};
1658 1659
	int vco = 0;
	uint32_t prop_coef, int_coef, gain_ctl, targ_cnt;
1660
	uint32_t lanestagger;
1661
	int clock = crtc_state->port_clock;
1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684

	if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
		intel_clock_t best_clock;

		/* Calculate HDMI div */
		/*
		 * FIXME: tie the following calculation into
		 * i9xx_crtc_compute_clock
		 */
		if (!bxt_find_best_dpll(crtc_state, clock, &best_clock)) {
			DRM_DEBUG_DRIVER("no PLL dividers found for clock %d pipe %c\n",
					 clock, pipe_name(intel_crtc->pipe));
			return false;
		}

		clk_div.p1 = best_clock.p1;
		clk_div.p2 = best_clock.p2;
		WARN_ON(best_clock.m1 != 2);
		clk_div.n = best_clock.n;
		clk_div.m2_int = best_clock.m2 >> 22;
		clk_div.m2_frac = best_clock.m2 & ((1 << 22) - 1);
		clk_div.m2_frac_en = clk_div.m2_frac != 0;

1685
		vco = best_clock.vco;
1686 1687
	} else if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
			intel_encoder->type == INTEL_OUTPUT_EDP) {
1688
		int i;
1689

1690 1691 1692 1693 1694 1695
		clk_div = bxt_dp_clk_val[0];
		for (i = 0; i < ARRAY_SIZE(bxt_dp_clk_val); ++i) {
			if (bxt_dp_clk_val[i].clock == clock) {
				clk_div = bxt_dp_clk_val[i];
				break;
			}
1696
		}
1697 1698 1699
		vco = clock * 10 / 2 * clk_div.p1 * clk_div.p2;
	}

1700
	if (vco >= 6200000 && vco <= 6700000) {
1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718
		prop_coef = 4;
		int_coef = 9;
		gain_ctl = 3;
		targ_cnt = 8;
	} else if ((vco > 5400000 && vco < 6200000) ||
			(vco >= 4800000 && vco < 5400000)) {
		prop_coef = 5;
		int_coef = 11;
		gain_ctl = 3;
		targ_cnt = 9;
	} else if (vco == 5400000) {
		prop_coef = 3;
		int_coef = 8;
		gain_ctl = 1;
		targ_cnt = 9;
	} else {
		DRM_ERROR("Invalid VCO\n");
		return false;
1719 1720
	}

1721 1722 1723
	memset(&crtc_state->dpll_hw_state, 0,
	       sizeof(crtc_state->dpll_hw_state));

1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734
	if (clock > 270000)
		lanestagger = 0x18;
	else if (clock > 135000)
		lanestagger = 0x0d;
	else if (clock > 67000)
		lanestagger = 0x07;
	else if (clock > 33000)
		lanestagger = 0x04;
	else
		lanestagger = 0x02;

1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745
	crtc_state->dpll_hw_state.ebb0 =
		PORT_PLL_P1(clk_div.p1) | PORT_PLL_P2(clk_div.p2);
	crtc_state->dpll_hw_state.pll0 = clk_div.m2_int;
	crtc_state->dpll_hw_state.pll1 = PORT_PLL_N(clk_div.n);
	crtc_state->dpll_hw_state.pll2 = clk_div.m2_frac;

	if (clk_div.m2_frac_en)
		crtc_state->dpll_hw_state.pll3 =
			PORT_PLL_M2_FRAC_ENABLE;

	crtc_state->dpll_hw_state.pll6 =
1746
		prop_coef | PORT_PLL_INT_COEFF(int_coef);
1747
	crtc_state->dpll_hw_state.pll6 |=
1748 1749 1750
		PORT_PLL_GAIN_CTL(gain_ctl);

	crtc_state->dpll_hw_state.pll8 = targ_cnt;
1751

1752 1753
	crtc_state->dpll_hw_state.pll9 = 5 << PORT_PLL_LOCK_THRESHOLD_SHIFT;

1754 1755 1756
	crtc_state->dpll_hw_state.pll10 =
		PORT_PLL_DCO_AMP(PORT_PLL_DCO_AMP_DEFAULT)
		| PORT_PLL_DCO_AMP_OVR_EN_H;
1757

1758 1759
	crtc_state->dpll_hw_state.ebb4 = PORT_PLL_10BIT_CLK_ENABLE;

1760
	crtc_state->dpll_hw_state.pcsdw12 =
1761
		LANESTAGGER_STRAP_OVRD | lanestagger;
1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775

	pll = intel_get_shared_dpll(intel_crtc, crtc_state);
	if (pll == NULL) {
		DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
			pipe_name(intel_crtc->pipe));
		return false;
	}

	/* shared DPLL id 0 is DPLL A */
	crtc_state->ddi_pll_sel = pll->id;

	return true;
}

1776 1777 1778 1779 1780 1781 1782
/*
 * Tries to find a *shared* PLL for the CRTC and store it in
 * intel_crtc->ddi_pll_sel.
 *
 * For private DPLLs, compute_config() should do the selection for us. This
 * function should be folded into compute_config() eventually.
 */
1783 1784
bool intel_ddi_pll_select(struct intel_crtc *intel_crtc,
			  struct intel_crtc_state *crtc_state)
1785
{
1786
	struct drm_device *dev = intel_crtc->base.dev;
1787
	struct intel_encoder *intel_encoder =
1788
		intel_ddi_get_crtc_new_encoder(crtc_state);
1789

1790
	if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
1791
		return skl_ddi_pll_select(intel_crtc, crtc_state,
1792
					  intel_encoder);
1793 1794
	else if (IS_BROXTON(dev))
		return bxt_ddi_pll_select(intel_crtc, crtc_state,
1795
					  intel_encoder);
1796
	else
1797
		return hsw_ddi_pll_select(intel_crtc, crtc_state,
1798
					  intel_encoder);
1799 1800
}

1801 1802 1803 1804 1805
void intel_ddi_set_pipe_settings(struct drm_crtc *crtc)
{
	struct drm_i915_private *dev_priv = crtc->dev->dev_private;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
1806
	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
1807 1808 1809
	int type = intel_encoder->type;
	uint32_t temp;

1810
	if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP || type == INTEL_OUTPUT_DP_MST) {
1811
		temp = TRANS_MSA_SYNC_CLK;
1812
		switch (intel_crtc->config->pipe_bpp) {
1813
		case 18:
1814
			temp |= TRANS_MSA_6_BPC;
1815 1816
			break;
		case 24:
1817
			temp |= TRANS_MSA_8_BPC;
1818 1819
			break;
		case 30:
1820
			temp |= TRANS_MSA_10_BPC;
1821 1822
			break;
		case 36:
1823
			temp |= TRANS_MSA_12_BPC;
1824 1825
			break;
		default:
1826
			BUG();
1827
		}
1828
		I915_WRITE(TRANS_MSA_MISC(cpu_transcoder), temp);
1829 1830 1831
	}
}

1832 1833 1834 1835 1836
void intel_ddi_set_vc_payload_alloc(struct drm_crtc *crtc, bool state)
{
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
1837
	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
1838 1839 1840 1841 1842 1843 1844 1845 1846
	uint32_t temp;
	temp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
	if (state == true)
		temp |= TRANS_DDI_DP_VC_PAYLOAD_ALLOC;
	else
		temp &= ~TRANS_DDI_DP_VC_PAYLOAD_ALLOC;
	I915_WRITE(TRANS_DDI_FUNC_CTL(cpu_transcoder), temp);
}

1847
void intel_ddi_enable_transcoder_func(struct drm_crtc *crtc)
1848 1849 1850
{
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
1851
	struct drm_encoder *encoder = &intel_encoder->base;
1852 1853
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
1854
	enum pipe pipe = intel_crtc->pipe;
1855
	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
1856
	enum port port = intel_ddi_get_encoder_port(intel_encoder);
1857
	int type = intel_encoder->type;
1858 1859
	uint32_t temp;

1860 1861
	/* Enable TRANS_DDI_FUNC_CTL for the pipe to work in HDMI mode */
	temp = TRANS_DDI_FUNC_ENABLE;
1862
	temp |= TRANS_DDI_SELECT_PORT(port);
1863

1864
	switch (intel_crtc->config->pipe_bpp) {
1865
	case 18:
1866
		temp |= TRANS_DDI_BPC_6;
1867 1868
		break;
	case 24:
1869
		temp |= TRANS_DDI_BPC_8;
1870 1871
		break;
	case 30:
1872
		temp |= TRANS_DDI_BPC_10;
1873 1874
		break;
	case 36:
1875
		temp |= TRANS_DDI_BPC_12;
1876 1877
		break;
	default:
1878
		BUG();
1879
	}
1880

1881
	if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_PVSYNC)
1882
		temp |= TRANS_DDI_PVSYNC;
1883
	if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_PHSYNC)
1884
		temp |= TRANS_DDI_PHSYNC;
1885

1886 1887 1888
	if (cpu_transcoder == TRANSCODER_EDP) {
		switch (pipe) {
		case PIPE_A:
1889 1890 1891 1892
			/* On Haswell, can only use the always-on power well for
			 * eDP when not using the panel fitter, and when not
			 * using motion blur mitigation (which we don't
			 * support). */
1893
			if (IS_HASWELL(dev) &&
1894 1895
			    (intel_crtc->config->pch_pfit.enabled ||
			     intel_crtc->config->pch_pfit.force_thru))
1896 1897 1898
				temp |= TRANS_DDI_EDP_INPUT_A_ONOFF;
			else
				temp |= TRANS_DDI_EDP_INPUT_A_ON;
1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911
			break;
		case PIPE_B:
			temp |= TRANS_DDI_EDP_INPUT_B_ONOFF;
			break;
		case PIPE_C:
			temp |= TRANS_DDI_EDP_INPUT_C_ONOFF;
			break;
		default:
			BUG();
			break;
		}
	}

1912
	if (type == INTEL_OUTPUT_HDMI) {
1913
		if (intel_crtc->config->has_hdmi_sink)
1914
			temp |= TRANS_DDI_MODE_SELECT_HDMI;
1915
		else
1916
			temp |= TRANS_DDI_MODE_SELECT_DVI;
1917

1918
	} else if (type == INTEL_OUTPUT_ANALOG) {
1919
		temp |= TRANS_DDI_MODE_SELECT_FDI;
1920
		temp |= (intel_crtc->config->fdi_lanes - 1) << 1;
1921 1922 1923 1924 1925

	} else if (type == INTEL_OUTPUT_DISPLAYPORT ||
		   type == INTEL_OUTPUT_EDP) {
		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);

1926 1927 1928 1929 1930
		if (intel_dp->is_mst) {
			temp |= TRANS_DDI_MODE_SELECT_DP_MST;
		} else
			temp |= TRANS_DDI_MODE_SELECT_DP_SST;

1931
		temp |= DDI_PORT_WIDTH(intel_crtc->config->lane_count);
1932 1933 1934 1935 1936 1937 1938
	} else if (type == INTEL_OUTPUT_DP_MST) {
		struct intel_dp *intel_dp = &enc_to_mst(encoder)->primary->dp;

		if (intel_dp->is_mst) {
			temp |= TRANS_DDI_MODE_SELECT_DP_MST;
		} else
			temp |= TRANS_DDI_MODE_SELECT_DP_SST;
1939

1940
		temp |= DDI_PORT_WIDTH(intel_crtc->config->lane_count);
1941
	} else {
1942 1943
		WARN(1, "Invalid encoder type %d for pipe %c\n",
		     intel_encoder->type, pipe_name(pipe));
1944 1945
	}

1946
	I915_WRITE(TRANS_DDI_FUNC_CTL(cpu_transcoder), temp);
1947
}
1948

1949 1950
void intel_ddi_disable_transcoder_func(struct drm_i915_private *dev_priv,
				       enum transcoder cpu_transcoder)
1951
{
1952
	i915_reg_t reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1953 1954
	uint32_t val = I915_READ(reg);

1955
	val &= ~(TRANS_DDI_FUNC_ENABLE | TRANS_DDI_PORT_MASK | TRANS_DDI_DP_VC_PAYLOAD_ALLOC);
1956
	val |= TRANS_DDI_PORT_NONE;
1957
	I915_WRITE(reg, val);
1958 1959
}

1960 1961 1962 1963 1964 1965 1966 1967 1968
bool intel_ddi_connector_get_hw_state(struct intel_connector *intel_connector)
{
	struct drm_device *dev = intel_connector->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_encoder *intel_encoder = intel_connector->encoder;
	int type = intel_connector->base.connector_type;
	enum port port = intel_ddi_get_encoder_port(intel_encoder);
	enum pipe pipe = 0;
	enum transcoder cpu_transcoder;
1969
	enum intel_display_power_domain power_domain;
1970 1971
	uint32_t tmp;

1972
	power_domain = intel_display_port_power_domain(intel_encoder);
1973
	if (!intel_display_power_is_enabled(dev_priv, power_domain))
1974 1975
		return false;

1976 1977 1978 1979 1980 1981
	if (!intel_encoder->get_hw_state(intel_encoder, &pipe))
		return false;

	if (port == PORT_A)
		cpu_transcoder = TRANSCODER_EDP;
	else
D
Daniel Vetter 已提交
1982
		cpu_transcoder = (enum transcoder) pipe;
1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994

	tmp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));

	switch (tmp & TRANS_DDI_MODE_SELECT_MASK) {
	case TRANS_DDI_MODE_SELECT_HDMI:
	case TRANS_DDI_MODE_SELECT_DVI:
		return (type == DRM_MODE_CONNECTOR_HDMIA);

	case TRANS_DDI_MODE_SELECT_DP_SST:
		if (type == DRM_MODE_CONNECTOR_eDP)
			return true;
		return (type == DRM_MODE_CONNECTOR_DisplayPort);
1995 1996 1997 1998
	case TRANS_DDI_MODE_SELECT_DP_MST:
		/* if the transcoder is in MST state then
		 * connector isn't connected */
		return false;
1999 2000 2001 2002 2003 2004 2005 2006 2007

	case TRANS_DDI_MODE_SELECT_FDI:
		return (type == DRM_MODE_CONNECTOR_VGA);

	default:
		return false;
	}
}

2008 2009 2010 2011 2012
bool intel_ddi_get_hw_state(struct intel_encoder *encoder,
			    enum pipe *pipe)
{
	struct drm_device *dev = encoder->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
2013
	enum port port = intel_ddi_get_encoder_port(encoder);
2014
	enum intel_display_power_domain power_domain;
2015 2016 2017
	u32 tmp;
	int i;

2018
	power_domain = intel_display_port_power_domain(encoder);
2019
	if (!intel_display_power_is_enabled(dev_priv, power_domain))
2020 2021
		return false;

2022
	tmp = I915_READ(DDI_BUF_CTL(port));
2023 2024 2025 2026

	if (!(tmp & DDI_BUF_CTL_ENABLE))
		return false;

2027 2028
	if (port == PORT_A) {
		tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
2029

2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049
		switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
		case TRANS_DDI_EDP_INPUT_A_ON:
		case TRANS_DDI_EDP_INPUT_A_ONOFF:
			*pipe = PIPE_A;
			break;
		case TRANS_DDI_EDP_INPUT_B_ONOFF:
			*pipe = PIPE_B;
			break;
		case TRANS_DDI_EDP_INPUT_C_ONOFF:
			*pipe = PIPE_C;
			break;
		}

		return true;
	} else {
		for (i = TRANSCODER_A; i <= TRANSCODER_C; i++) {
			tmp = I915_READ(TRANS_DDI_FUNC_CTL(i));

			if ((tmp & TRANS_DDI_PORT_MASK)
			    == TRANS_DDI_SELECT_PORT(port)) {
2050 2051 2052
				if ((tmp & TRANS_DDI_MODE_SELECT_MASK) == TRANS_DDI_MODE_SELECT_DP_MST)
					return false;

2053 2054 2055
				*pipe = i;
				return true;
			}
2056 2057 2058
		}
	}

2059
	DRM_DEBUG_KMS("No pipe for ddi port %c found\n", port_name(port));
2060

2061
	return false;
2062 2063
}

2064 2065 2066
void intel_ddi_enable_pipe_clock(struct intel_crtc *intel_crtc)
{
	struct drm_crtc *crtc = &intel_crtc->base;
2067 2068
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
2069 2070
	struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
	enum port port = intel_ddi_get_encoder_port(intel_encoder);
2071
	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
2072

2073 2074 2075
	if (cpu_transcoder != TRANSCODER_EDP)
		I915_WRITE(TRANS_CLK_SEL(cpu_transcoder),
			   TRANS_CLK_SEL_PORT(port));
2076 2077 2078 2079 2080
}

void intel_ddi_disable_pipe_clock(struct intel_crtc *intel_crtc)
{
	struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
2081
	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
2082

2083 2084 2085
	if (cpu_transcoder != TRANSCODER_EDP)
		I915_WRITE(TRANS_CLK_SEL(cpu_transcoder),
			   TRANS_CLK_SEL_DISABLED);
2086 2087
}

2088 2089 2090 2091 2092 2093
static void skl_ddi_set_iboost(struct drm_device *dev, u32 level,
			       enum port port, int type)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	const struct ddi_buf_trans *ddi_translations;
	uint8_t iboost;
2094
	uint8_t dp_iboost, hdmi_iboost;
2095 2096 2097
	int n_entries;
	u32 reg;

2098 2099 2100 2101
	/* VBT may override standard boost values */
	dp_iboost = dev_priv->vbt.ddi_port_info[port].dp_boost_level;
	hdmi_iboost = dev_priv->vbt.ddi_port_info[port].hdmi_boost_level;

2102
	if (type == INTEL_OUTPUT_DISPLAYPORT) {
2103 2104 2105 2106
		if (dp_iboost) {
			iboost = dp_iboost;
		} else {
			ddi_translations = skl_get_buf_trans_dp(dev, &n_entries);
2107
			iboost = ddi_translations[level].i_boost;
2108
		}
2109
	} else if (type == INTEL_OUTPUT_EDP) {
2110 2111 2112 2113
		if (dp_iboost) {
			iboost = dp_iboost;
		} else {
			ddi_translations = skl_get_buf_trans_edp(dev, &n_entries);
2114
			iboost = ddi_translations[level].i_boost;
2115
		}
2116
	} else if (type == INTEL_OUTPUT_HDMI) {
2117 2118 2119 2120
		if (hdmi_iboost) {
			iboost = hdmi_iboost;
		} else {
			ddi_translations = skl_get_buf_trans_hdmi(dev, &n_entries);
2121
			iboost = ddi_translations[level].i_boost;
2122
		}
2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146
	} else {
		return;
	}

	/* Make sure that the requested I_boost is valid */
	if (iboost && iboost != 0x1 && iboost != 0x3 && iboost != 0x7) {
		DRM_ERROR("Invalid I_boost value %u\n", iboost);
		return;
	}

	reg = I915_READ(DISPIO_CR_TX_BMU_CR0);
	reg &= ~BALANCE_LEG_MASK(port);
	reg &= ~(1 << (BALANCE_LEG_DISABLE_SHIFT + port));

	if (iboost)
		reg |= iboost << BALANCE_LEG_SHIFT(port);
	else
		reg |= 1 << (BALANCE_LEG_DISABLE_SHIFT + port);

	I915_WRITE(DISPIO_CR_TX_BMU_CR0, reg);
}

static void bxt_ddi_vswing_sequence(struct drm_device *dev, u32 level,
				    enum port port, int type)
2147 2148 2149 2150 2151 2152
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	const struct bxt_ddi_buf_trans *ddi_translations;
	u32 n_entries, i;
	uint32_t val;

2153 2154 2155 2156 2157
	if (type == INTEL_OUTPUT_EDP && dev_priv->edp_low_vswing) {
		n_entries = ARRAY_SIZE(bxt_ddi_translations_edp);
		ddi_translations = bxt_ddi_translations_edp;
	} else if (type == INTEL_OUTPUT_DISPLAYPORT
			|| type == INTEL_OUTPUT_EDP) {
2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194
		n_entries = ARRAY_SIZE(bxt_ddi_translations_dp);
		ddi_translations = bxt_ddi_translations_dp;
	} else if (type == INTEL_OUTPUT_HDMI) {
		n_entries = ARRAY_SIZE(bxt_ddi_translations_hdmi);
		ddi_translations = bxt_ddi_translations_hdmi;
	} else {
		DRM_DEBUG_KMS("Vswing programming not done for encoder %d\n",
				type);
		return;
	}

	/* Check if default value has to be used */
	if (level >= n_entries ||
	    (type == INTEL_OUTPUT_HDMI && level == HDMI_LEVEL_SHIFT_UNKNOWN)) {
		for (i = 0; i < n_entries; i++) {
			if (ddi_translations[i].default_index) {
				level = i;
				break;
			}
		}
	}

	/*
	 * While we write to the group register to program all lanes at once we
	 * can read only lane registers and we pick lanes 0/1 for that.
	 */
	val = I915_READ(BXT_PORT_PCS_DW10_LN01(port));
	val &= ~(TX2_SWING_CALC_INIT | TX1_SWING_CALC_INIT);
	I915_WRITE(BXT_PORT_PCS_DW10_GRP(port), val);

	val = I915_READ(BXT_PORT_TX_DW2_LN0(port));
	val &= ~(MARGIN_000 | UNIQ_TRANS_SCALE);
	val |= ddi_translations[level].margin << MARGIN_000_SHIFT |
	       ddi_translations[level].scale << UNIQ_TRANS_SCALE_SHIFT;
	I915_WRITE(BXT_PORT_TX_DW2_GRP(port), val);

	val = I915_READ(BXT_PORT_TX_DW3_LN0(port));
2195
	val &= ~SCALE_DCOMP_METHOD;
2196
	if (ddi_translations[level].enable)
2197 2198 2199 2200 2201
		val |= SCALE_DCOMP_METHOD;

	if ((val & UNIQUE_TRANGE_EN_METHOD) && !(val & SCALE_DCOMP_METHOD))
		DRM_ERROR("Disabled scaling while ouniqetrangenmethod was set");

2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213
	I915_WRITE(BXT_PORT_TX_DW3_GRP(port), val);

	val = I915_READ(BXT_PORT_TX_DW4_LN0(port));
	val &= ~DE_EMPHASIS;
	val |= ddi_translations[level].deemphasis << DEEMPH_SHIFT;
	I915_WRITE(BXT_PORT_TX_DW4_GRP(port), val);

	val = I915_READ(BXT_PORT_PCS_DW10_LN01(port));
	val |= TX2_SWING_CALC_INIT | TX1_SWING_CALC_INIT;
	I915_WRITE(BXT_PORT_PCS_DW10_GRP(port), val);
}

2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272
static uint32_t translate_signal_level(int signal_levels)
{
	uint32_t level;

	switch (signal_levels) {
	default:
		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level: 0x%x\n",
			      signal_levels);
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
		level = 0;
		break;
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
		level = 1;
		break;
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
		level = 2;
		break;
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_3:
		level = 3;
		break;

	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
		level = 4;
		break;
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
		level = 5;
		break;
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
		level = 6;
		break;

	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
		level = 7;
		break;
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
		level = 8;
		break;

	case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
		level = 9;
		break;
	}

	return level;
}

uint32_t ddi_signal_levels(struct intel_dp *intel_dp)
{
	struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
	struct drm_device *dev = dport->base.base.dev;
	struct intel_encoder *encoder = &dport->base;
	uint8_t train_set = intel_dp->train_set[0];
	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
					 DP_TRAIN_PRE_EMPHASIS_MASK);
	enum port port = dport->port;
	uint32_t level;

	level = translate_signal_level(signal_levels);

2273
	if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
2274 2275 2276 2277 2278 2279 2280
		skl_ddi_set_iboost(dev, level, port, encoder->type);
	else if (IS_BROXTON(dev))
		bxt_ddi_vswing_sequence(dev, level, port, encoder->type);

	return DDI_BUF_TRANS_SELECT(level);
}

2281 2282
void intel_ddi_clk_select(struct intel_encoder *encoder,
			  const struct intel_crtc_state *pipe_config)
2283
{
2284 2285
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	enum port port = intel_ddi_get_encoder_port(encoder);
2286

2287 2288
	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
		uint32_t dpll = pipe_config->ddi_pll_sel;
2289 2290
		uint32_t val;

2291 2292 2293 2294
		/*
		 * DPLL0 is used for eDP and is the only "private" DPLL (as
		 * opposed to shared) on SKL
		 */
2295
		if (encoder->type == INTEL_OUTPUT_EDP) {
2296 2297 2298 2299 2300 2301
			WARN_ON(dpll != SKL_DPLL0);

			val = I915_READ(DPLL_CTRL1);

			val &= ~(DPLL_CTRL1_HDMI_MODE(dpll) |
				 DPLL_CTRL1_SSC(dpll) |
2302
				 DPLL_CTRL1_LINK_RATE_MASK(dpll));
2303
			val |= pipe_config->dpll_hw_state.ctrl1 << (dpll * 6);
2304 2305 2306 2307 2308 2309

			I915_WRITE(DPLL_CTRL1, val);
			POSTING_READ(DPLL_CTRL1);
		}

		/* DDI -> PLL mapping  */
2310 2311 2312 2313 2314 2315 2316 2317
		val = I915_READ(DPLL_CTRL2);

		val &= ~(DPLL_CTRL2_DDI_CLK_OFF(port) |
			DPLL_CTRL2_DDI_CLK_SEL_MASK(port));
		val |= (DPLL_CTRL2_DDI_CLK_SEL(dpll, port) |
			DPLL_CTRL2_DDI_SEL_OVERRIDE(port));

		I915_WRITE(DPLL_CTRL2, val);
2318

2319 2320 2321
	} else if (INTEL_INFO(dev_priv)->gen < 9) {
		WARN_ON(pipe_config->ddi_pll_sel == PORT_CLK_SEL_NONE);
		I915_WRITE(PORT_CLK_SEL(port), pipe_config->ddi_pll_sel);
2322
	}
2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340
}

static void intel_ddi_pre_enable(struct intel_encoder *intel_encoder)
{
	struct drm_encoder *encoder = &intel_encoder->base;
	struct drm_device *dev = encoder->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_crtc *crtc = to_intel_crtc(encoder->crtc);
	enum port port = intel_ddi_get_encoder_port(intel_encoder);
	int type = intel_encoder->type;
	int hdmi_level;

	if (type == INTEL_OUTPUT_EDP) {
		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
		intel_edp_panel_on(intel_dp);
	}

	intel_ddi_clk_select(intel_encoder, crtc->config);
2341

2342
	if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) {
2343
		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2344

2345 2346
		intel_dp_set_link_params(intel_dp, crtc->config);

2347
		intel_ddi_init_dp_buf_reg(intel_encoder);
2348 2349 2350

		intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
		intel_dp_start_link_train(intel_dp);
2351
		if (port != PORT_A || INTEL_INFO(dev)->gen >= 9)
2352
			intel_dp_stop_link_train(intel_dp);
2353 2354 2355
	} else if (type == INTEL_OUTPUT_HDMI) {
		struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);

2356 2357 2358 2359 2360 2361
		if (IS_BROXTON(dev)) {
			hdmi_level = dev_priv->vbt.
				ddi_port_info[port].hdmi_level_shift;
			bxt_ddi_vswing_sequence(dev, hdmi_level, port,
					INTEL_OUTPUT_HDMI);
		}
2362
		intel_hdmi->set_infoframes(encoder,
2363 2364
					   crtc->config->has_hdmi_sink,
					   &crtc->config->base.adjusted_mode);
2365
	}
2366 2367
}

P
Paulo Zanoni 已提交
2368
static void intel_ddi_post_disable(struct intel_encoder *intel_encoder)
2369 2370
{
	struct drm_encoder *encoder = &intel_encoder->base;
2371 2372
	struct drm_device *dev = encoder->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
2373
	enum port port = intel_ddi_get_encoder_port(intel_encoder);
2374
	int type = intel_encoder->type;
2375
	uint32_t val;
2376
	bool wait = false;
2377 2378 2379 2380 2381

	val = I915_READ(DDI_BUF_CTL(port));
	if (val & DDI_BUF_CTL_ENABLE) {
		val &= ~DDI_BUF_CTL_ENABLE;
		I915_WRITE(DDI_BUF_CTL(port), val);
2382
		wait = true;
2383
	}
2384

2385 2386 2387 2388 2389 2390 2391 2392
	val = I915_READ(DP_TP_CTL(port));
	val &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
	val |= DP_TP_CTL_LINK_TRAIN_PAT1;
	I915_WRITE(DP_TP_CTL(port), val);

	if (wait)
		intel_wait_ddi_buf_idle(dev_priv, port);

2393
	if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) {
2394
		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2395
		intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
2396
		intel_edp_panel_vdd_on(intel_dp);
2397
		intel_edp_panel_off(intel_dp);
2398 2399
	}

2400
	if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
2401 2402
		I915_WRITE(DPLL_CTRL2, (I915_READ(DPLL_CTRL2) |
					DPLL_CTRL2_DDI_CLK_OFF(port)));
2403
	else if (INTEL_INFO(dev)->gen < 9)
2404
		I915_WRITE(PORT_CLK_SEL(port), PORT_CLK_SEL_NONE);
2405 2406
}

P
Paulo Zanoni 已提交
2407
static void intel_enable_ddi(struct intel_encoder *intel_encoder)
2408
{
2409
	struct drm_encoder *encoder = &intel_encoder->base;
2410 2411
	struct drm_crtc *crtc = encoder->crtc;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2412
	struct drm_device *dev = encoder->dev;
2413
	struct drm_i915_private *dev_priv = dev->dev_private;
2414 2415
	enum port port = intel_ddi_get_encoder_port(intel_encoder);
	int type = intel_encoder->type;
2416

2417
	if (type == INTEL_OUTPUT_HDMI) {
2418 2419 2420
		struct intel_digital_port *intel_dig_port =
			enc_to_dig_port(encoder);

2421 2422 2423 2424
		/* In HDMI/DVI mode, the port width, and swing/emphasis values
		 * are ignored so nothing special needs to be done besides
		 * enabling the port.
		 */
2425
		I915_WRITE(DDI_BUF_CTL(port),
2426 2427
			   intel_dig_port->saved_port_bits |
			   DDI_BUF_CTL_ENABLE);
2428 2429 2430
	} else if (type == INTEL_OUTPUT_EDP) {
		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);

2431
		if (port == PORT_A && INTEL_INFO(dev)->gen < 9)
2432 2433
			intel_dp_stop_link_train(intel_dp);

2434
		intel_edp_backlight_on(intel_dp);
R
Rodrigo Vivi 已提交
2435
		intel_psr_enable(intel_dp);
V
Vandana Kannan 已提交
2436
		intel_edp_drrs_enable(intel_dp);
2437
	}
2438

2439
	if (intel_crtc->config->has_audio) {
2440
		intel_display_power_get(dev_priv, POWER_DOMAIN_AUDIO);
2441
		intel_audio_codec_enable(intel_encoder);
2442
	}
2443 2444
}

P
Paulo Zanoni 已提交
2445
static void intel_disable_ddi(struct intel_encoder *intel_encoder)
2446
{
2447
	struct drm_encoder *encoder = &intel_encoder->base;
2448 2449
	struct drm_crtc *crtc = encoder->crtc;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2450
	int type = intel_encoder->type;
2451 2452
	struct drm_device *dev = encoder->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
2453

2454
	if (intel_crtc->config->has_audio) {
2455
		intel_audio_codec_disable(intel_encoder);
2456 2457
		intel_display_power_put(dev_priv, POWER_DOMAIN_AUDIO);
	}
2458

2459 2460 2461
	if (type == INTEL_OUTPUT_EDP) {
		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);

V
Vandana Kannan 已提交
2462
		intel_edp_drrs_disable(intel_dp);
R
Rodrigo Vivi 已提交
2463
		intel_psr_disable(intel_dp);
2464
		intel_edp_backlight_off(intel_dp);
2465
	}
2466
}
P
Paulo Zanoni 已提交
2467

2468
static void hsw_ddi_wrpll_enable(struct drm_i915_private *dev_priv,
2469 2470
			       struct intel_shared_dpll *pll)
{
2471
	I915_WRITE(WRPLL_CTL(pll->id), pll->config.hw_state.wrpll);
2472 2473 2474 2475
	POSTING_READ(WRPLL_CTL(pll->id));
	udelay(20);
}

2476
static void hsw_ddi_spll_enable(struct drm_i915_private *dev_priv,
2477
				struct intel_shared_dpll *pll)
2478 2479 2480 2481 2482 2483 2484 2485
{
	I915_WRITE(SPLL_CTL, pll->config.hw_state.spll);
	POSTING_READ(SPLL_CTL);
	udelay(20);
}

static void hsw_ddi_wrpll_disable(struct drm_i915_private *dev_priv,
				  struct intel_shared_dpll *pll)
2486 2487 2488 2489 2490 2491 2492 2493
{
	uint32_t val;

	val = I915_READ(WRPLL_CTL(pll->id));
	I915_WRITE(WRPLL_CTL(pll->id), val & ~WRPLL_PLL_ENABLE);
	POSTING_READ(WRPLL_CTL(pll->id));
}

2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506
static void hsw_ddi_spll_disable(struct drm_i915_private *dev_priv,
				 struct intel_shared_dpll *pll)
{
	uint32_t val;

	val = I915_READ(SPLL_CTL);
	I915_WRITE(SPLL_CTL, val & ~SPLL_PLL_ENABLE);
	POSTING_READ(SPLL_CTL);
}

static bool hsw_ddi_wrpll_get_hw_state(struct drm_i915_private *dev_priv,
				       struct intel_shared_dpll *pll,
				       struct intel_dpll_hw_state *hw_state)
2507 2508 2509
{
	uint32_t val;

2510
	if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
2511 2512 2513 2514 2515 2516 2517 2518
		return false;

	val = I915_READ(WRPLL_CTL(pll->id));
	hw_state->wrpll = val;

	return val & WRPLL_PLL_ENABLE;
}

2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534
static bool hsw_ddi_spll_get_hw_state(struct drm_i915_private *dev_priv,
				      struct intel_shared_dpll *pll,
				      struct intel_dpll_hw_state *hw_state)
{
	uint32_t val;

	if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
		return false;

	val = I915_READ(SPLL_CTL);
	hw_state->spll = val;

	return val & SPLL_PLL_ENABLE;
}


2535
static const char * const hsw_ddi_pll_names[] = {
2536 2537
	"WRPLL 1",
	"WRPLL 2",
2538
	"SPLL"
2539 2540
};

2541
static void hsw_shared_dplls_init(struct drm_i915_private *dev_priv)
P
Paulo Zanoni 已提交
2542
{
2543 2544
	int i;

2545
	dev_priv->num_shared_dpll = 3;
2546

2547
	for (i = 0; i < 2; i++) {
2548 2549
		dev_priv->shared_dplls[i].id = i;
		dev_priv->shared_dplls[i].name = hsw_ddi_pll_names[i];
2550 2551
		dev_priv->shared_dplls[i].disable = hsw_ddi_wrpll_disable;
		dev_priv->shared_dplls[i].enable = hsw_ddi_wrpll_enable;
2552
		dev_priv->shared_dplls[i].get_hw_state =
2553
			hsw_ddi_wrpll_get_hw_state;
2554
	}
2555 2556 2557 2558 2559 2560 2561 2562

	/* SPLL is special, but needs to be initialized anyway.. */
	dev_priv->shared_dplls[i].id = i;
	dev_priv->shared_dplls[i].name = hsw_ddi_pll_names[i];
	dev_priv->shared_dplls[i].disable = hsw_ddi_spll_disable;
	dev_priv->shared_dplls[i].enable = hsw_ddi_spll_enable;
	dev_priv->shared_dplls[i].get_hw_state = hsw_ddi_spll_get_hw_state;

2563 2564
}

2565 2566 2567 2568 2569 2570 2571
static const char * const skl_ddi_pll_names[] = {
	"DPLL 1",
	"DPLL 2",
	"DPLL 3",
};

struct skl_dpll_regs {
2572
	i915_reg_t ctl, cfgcr1, cfgcr2;
2573 2574 2575 2576 2577 2578 2579
};

/* this array is indexed by the *shared* pll id */
static const struct skl_dpll_regs skl_dpll_regs[3] = {
	{
		/* DPLL 1 */
		.ctl = LCPLL2_CTL,
2580 2581
		.cfgcr1 = DPLL_CFGCR1(SKL_DPLL1),
		.cfgcr2 = DPLL_CFGCR2(SKL_DPLL1),
2582 2583 2584
	},
	{
		/* DPLL 2 */
2585
		.ctl = WRPLL_CTL(0),
2586 2587
		.cfgcr1 = DPLL_CFGCR1(SKL_DPLL2),
		.cfgcr2 = DPLL_CFGCR2(SKL_DPLL2),
2588 2589 2590
	},
	{
		/* DPLL 3 */
2591
		.ctl = WRPLL_CTL(1),
2592 2593
		.cfgcr1 = DPLL_CFGCR1(SKL_DPLL3),
		.cfgcr2 = DPLL_CFGCR2(SKL_DPLL3),
2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609
	},
};

static void skl_ddi_pll_enable(struct drm_i915_private *dev_priv,
			       struct intel_shared_dpll *pll)
{
	uint32_t val;
	unsigned int dpll;
	const struct skl_dpll_regs *regs = skl_dpll_regs;

	/* DPLL0 is not part of the shared DPLLs, so pll->id is 0 for DPLL1 */
	dpll = pll->id + 1;

	val = I915_READ(DPLL_CTRL1);

	val &= ~(DPLL_CTRL1_HDMI_MODE(dpll) | DPLL_CTRL1_SSC(dpll) |
2610
		 DPLL_CTRL1_LINK_RATE_MASK(dpll));
2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685
	val |= pll->config.hw_state.ctrl1 << (dpll * 6);

	I915_WRITE(DPLL_CTRL1, val);
	POSTING_READ(DPLL_CTRL1);

	I915_WRITE(regs[pll->id].cfgcr1, pll->config.hw_state.cfgcr1);
	I915_WRITE(regs[pll->id].cfgcr2, pll->config.hw_state.cfgcr2);
	POSTING_READ(regs[pll->id].cfgcr1);
	POSTING_READ(regs[pll->id].cfgcr2);

	/* the enable bit is always bit 31 */
	I915_WRITE(regs[pll->id].ctl,
		   I915_READ(regs[pll->id].ctl) | LCPLL_PLL_ENABLE);

	if (wait_for(I915_READ(DPLL_STATUS) & DPLL_LOCK(dpll), 5))
		DRM_ERROR("DPLL %d not locked\n", dpll);
}

static void skl_ddi_pll_disable(struct drm_i915_private *dev_priv,
				struct intel_shared_dpll *pll)
{
	const struct skl_dpll_regs *regs = skl_dpll_regs;

	/* the enable bit is always bit 31 */
	I915_WRITE(regs[pll->id].ctl,
		   I915_READ(regs[pll->id].ctl) & ~LCPLL_PLL_ENABLE);
	POSTING_READ(regs[pll->id].ctl);
}

static bool skl_ddi_pll_get_hw_state(struct drm_i915_private *dev_priv,
				     struct intel_shared_dpll *pll,
				     struct intel_dpll_hw_state *hw_state)
{
	uint32_t val;
	unsigned int dpll;
	const struct skl_dpll_regs *regs = skl_dpll_regs;

	if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
		return false;

	/* DPLL0 is not part of the shared DPLLs, so pll->id is 0 for DPLL1 */
	dpll = pll->id + 1;

	val = I915_READ(regs[pll->id].ctl);
	if (!(val & LCPLL_PLL_ENABLE))
		return false;

	val = I915_READ(DPLL_CTRL1);
	hw_state->ctrl1 = (val >> (dpll * 6)) & 0x3f;

	/* avoid reading back stale values if HDMI mode is not enabled */
	if (val & DPLL_CTRL1_HDMI_MODE(dpll)) {
		hw_state->cfgcr1 = I915_READ(regs[pll->id].cfgcr1);
		hw_state->cfgcr2 = I915_READ(regs[pll->id].cfgcr2);
	}

	return true;
}

static void skl_shared_dplls_init(struct drm_i915_private *dev_priv)
{
	int i;

	dev_priv->num_shared_dpll = 3;

	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
		dev_priv->shared_dplls[i].id = i;
		dev_priv->shared_dplls[i].name = skl_ddi_pll_names[i];
		dev_priv->shared_dplls[i].disable = skl_ddi_pll_disable;
		dev_priv->shared_dplls[i].enable = skl_ddi_pll_enable;
		dev_priv->shared_dplls[i].get_hw_state =
			skl_ddi_pll_get_hw_state;
	}
}

2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809
static void broxton_phy_init(struct drm_i915_private *dev_priv,
			     enum dpio_phy phy)
{
	enum port port;
	uint32_t val;

	val = I915_READ(BXT_P_CR_GT_DISP_PWRON);
	val |= GT_DISPLAY_POWER_ON(phy);
	I915_WRITE(BXT_P_CR_GT_DISP_PWRON, val);

	/* Considering 10ms timeout until BSpec is updated */
	if (wait_for(I915_READ(BXT_PORT_CL1CM_DW0(phy)) & PHY_POWER_GOOD, 10))
		DRM_ERROR("timeout during PHY%d power on\n", phy);

	for (port =  (phy == DPIO_PHY0 ? PORT_B : PORT_A);
	     port <= (phy == DPIO_PHY0 ? PORT_C : PORT_A); port++) {
		int lane;

		for (lane = 0; lane < 4; lane++) {
			val = I915_READ(BXT_PORT_TX_DW14_LN(port, lane));
			/*
			 * Note that on CHV this flag is called UPAR, but has
			 * the same function.
			 */
			val &= ~LATENCY_OPTIM;
			if (lane != 1)
				val |= LATENCY_OPTIM;

			I915_WRITE(BXT_PORT_TX_DW14_LN(port, lane), val);
		}
	}

	/* Program PLL Rcomp code offset */
	val = I915_READ(BXT_PORT_CL1CM_DW9(phy));
	val &= ~IREF0RC_OFFSET_MASK;
	val |= 0xE4 << IREF0RC_OFFSET_SHIFT;
	I915_WRITE(BXT_PORT_CL1CM_DW9(phy), val);

	val = I915_READ(BXT_PORT_CL1CM_DW10(phy));
	val &= ~IREF1RC_OFFSET_MASK;
	val |= 0xE4 << IREF1RC_OFFSET_SHIFT;
	I915_WRITE(BXT_PORT_CL1CM_DW10(phy), val);

	/* Program power gating */
	val = I915_READ(BXT_PORT_CL1CM_DW28(phy));
	val |= OCL1_POWER_DOWN_EN | DW28_OLDO_DYN_PWR_DOWN_EN |
		SUS_CLK_CONFIG;
	I915_WRITE(BXT_PORT_CL1CM_DW28(phy), val);

	if (phy == DPIO_PHY0) {
		val = I915_READ(BXT_PORT_CL2CM_DW6_BC);
		val |= DW6_OLDO_DYN_PWR_DOWN_EN;
		I915_WRITE(BXT_PORT_CL2CM_DW6_BC, val);
	}

	val = I915_READ(BXT_PORT_CL1CM_DW30(phy));
	val &= ~OCL2_LDOFUSE_PWR_DIS;
	/*
	 * On PHY1 disable power on the second channel, since no port is
	 * connected there. On PHY0 both channels have a port, so leave it
	 * enabled.
	 * TODO: port C is only connected on BXT-P, so on BXT0/1 we should
	 * power down the second channel on PHY0 as well.
	 */
	if (phy == DPIO_PHY1)
		val |= OCL2_LDOFUSE_PWR_DIS;
	I915_WRITE(BXT_PORT_CL1CM_DW30(phy), val);

	if (phy == DPIO_PHY0) {
		uint32_t grc_code;
		/*
		 * PHY0 isn't connected to an RCOMP resistor so copy over
		 * the corresponding calibrated value from PHY1, and disable
		 * the automatic calibration on PHY0.
		 */
		if (wait_for(I915_READ(BXT_PORT_REF_DW3(DPIO_PHY1)) & GRC_DONE,
			     10))
			DRM_ERROR("timeout waiting for PHY1 GRC\n");

		val = I915_READ(BXT_PORT_REF_DW6(DPIO_PHY1));
		val = (val & GRC_CODE_MASK) >> GRC_CODE_SHIFT;
		grc_code = val << GRC_CODE_FAST_SHIFT |
			   val << GRC_CODE_SLOW_SHIFT |
			   val;
		I915_WRITE(BXT_PORT_REF_DW6(DPIO_PHY0), grc_code);

		val = I915_READ(BXT_PORT_REF_DW8(DPIO_PHY0));
		val |= GRC_DIS | GRC_RDY_OVRD;
		I915_WRITE(BXT_PORT_REF_DW8(DPIO_PHY0), val);
	}

	val = I915_READ(BXT_PHY_CTL_FAMILY(phy));
	val |= COMMON_RESET_DIS;
	I915_WRITE(BXT_PHY_CTL_FAMILY(phy), val);
}

void broxton_ddi_phy_init(struct drm_device *dev)
{
	/* Enable PHY1 first since it provides Rcomp for PHY0 */
	broxton_phy_init(dev->dev_private, DPIO_PHY1);
	broxton_phy_init(dev->dev_private, DPIO_PHY0);
}

static void broxton_phy_uninit(struct drm_i915_private *dev_priv,
			       enum dpio_phy phy)
{
	uint32_t val;

	val = I915_READ(BXT_PHY_CTL_FAMILY(phy));
	val &= ~COMMON_RESET_DIS;
	I915_WRITE(BXT_PHY_CTL_FAMILY(phy), val);
}

void broxton_ddi_phy_uninit(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	broxton_phy_uninit(dev_priv, DPIO_PHY1);
	broxton_phy_uninit(dev_priv, DPIO_PHY0);

	/* FIXME: do this in broxton_phy_uninit per phy */
	I915_WRITE(BXT_P_CR_GT_DISP_PWRON, 0);
}

2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875
static const char * const bxt_ddi_pll_names[] = {
	"PORT PLL A",
	"PORT PLL B",
	"PORT PLL C",
};

static void bxt_ddi_pll_enable(struct drm_i915_private *dev_priv,
				struct intel_shared_dpll *pll)
{
	uint32_t temp;
	enum port port = (enum port)pll->id;	/* 1:1 port->PLL mapping */

	temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
	temp &= ~PORT_PLL_REF_SEL;
	/* Non-SSC reference */
	I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);

	/* Disable 10 bit clock */
	temp = I915_READ(BXT_PORT_PLL_EBB_4(port));
	temp &= ~PORT_PLL_10BIT_CLK_ENABLE;
	I915_WRITE(BXT_PORT_PLL_EBB_4(port), temp);

	/* Write P1 & P2 */
	temp = I915_READ(BXT_PORT_PLL_EBB_0(port));
	temp &= ~(PORT_PLL_P1_MASK | PORT_PLL_P2_MASK);
	temp |= pll->config.hw_state.ebb0;
	I915_WRITE(BXT_PORT_PLL_EBB_0(port), temp);

	/* Write M2 integer */
	temp = I915_READ(BXT_PORT_PLL(port, 0));
	temp &= ~PORT_PLL_M2_MASK;
	temp |= pll->config.hw_state.pll0;
	I915_WRITE(BXT_PORT_PLL(port, 0), temp);

	/* Write N */
	temp = I915_READ(BXT_PORT_PLL(port, 1));
	temp &= ~PORT_PLL_N_MASK;
	temp |= pll->config.hw_state.pll1;
	I915_WRITE(BXT_PORT_PLL(port, 1), temp);

	/* Write M2 fraction */
	temp = I915_READ(BXT_PORT_PLL(port, 2));
	temp &= ~PORT_PLL_M2_FRAC_MASK;
	temp |= pll->config.hw_state.pll2;
	I915_WRITE(BXT_PORT_PLL(port, 2), temp);

	/* Write M2 fraction enable */
	temp = I915_READ(BXT_PORT_PLL(port, 3));
	temp &= ~PORT_PLL_M2_FRAC_ENABLE;
	temp |= pll->config.hw_state.pll3;
	I915_WRITE(BXT_PORT_PLL(port, 3), temp);

	/* Write coeff */
	temp = I915_READ(BXT_PORT_PLL(port, 6));
	temp &= ~PORT_PLL_PROP_COEFF_MASK;
	temp &= ~PORT_PLL_INT_COEFF_MASK;
	temp &= ~PORT_PLL_GAIN_CTL_MASK;
	temp |= pll->config.hw_state.pll6;
	I915_WRITE(BXT_PORT_PLL(port, 6), temp);

	/* Write calibration val */
	temp = I915_READ(BXT_PORT_PLL(port, 8));
	temp &= ~PORT_PLL_TARGET_CNT_MASK;
	temp |= pll->config.hw_state.pll8;
	I915_WRITE(BXT_PORT_PLL(port, 8), temp);

2876 2877
	temp = I915_READ(BXT_PORT_PLL(port, 9));
	temp &= ~PORT_PLL_LOCK_THRESHOLD_MASK;
2878
	temp |= pll->config.hw_state.pll9;
2879 2880 2881 2882 2883 2884 2885
	I915_WRITE(BXT_PORT_PLL(port, 9), temp);

	temp = I915_READ(BXT_PORT_PLL(port, 10));
	temp &= ~PORT_PLL_DCO_AMP_OVR_EN_H;
	temp &= ~PORT_PLL_DCO_AMP_MASK;
	temp |= pll->config.hw_state.pll10;
	I915_WRITE(BXT_PORT_PLL(port, 10), temp);
2886 2887 2888 2889 2890

	/* Recalibrate with new settings */
	temp = I915_READ(BXT_PORT_PLL_EBB_4(port));
	temp |= PORT_PLL_RECALIBRATE;
	I915_WRITE(BXT_PORT_PLL_EBB_4(port), temp);
2891 2892
	temp &= ~PORT_PLL_10BIT_CLK_ENABLE;
	temp |= pll->config.hw_state.ebb4;
2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942
	I915_WRITE(BXT_PORT_PLL_EBB_4(port), temp);

	/* Enable PLL */
	temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
	temp |= PORT_PLL_ENABLE;
	I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);
	POSTING_READ(BXT_PORT_PLL_ENABLE(port));

	if (wait_for_atomic_us((I915_READ(BXT_PORT_PLL_ENABLE(port)) &
			PORT_PLL_LOCK), 200))
		DRM_ERROR("PLL %d not locked\n", port);

	/*
	 * While we write to the group register to program all lanes at once we
	 * can read only lane registers and we pick lanes 0/1 for that.
	 */
	temp = I915_READ(BXT_PORT_PCS_DW12_LN01(port));
	temp &= ~LANE_STAGGER_MASK;
	temp &= ~LANESTAGGER_STRAP_OVRD;
	temp |= pll->config.hw_state.pcsdw12;
	I915_WRITE(BXT_PORT_PCS_DW12_GRP(port), temp);
}

static void bxt_ddi_pll_disable(struct drm_i915_private *dev_priv,
					struct intel_shared_dpll *pll)
{
	enum port port = (enum port)pll->id;	/* 1:1 port->PLL mapping */
	uint32_t temp;

	temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
	temp &= ~PORT_PLL_ENABLE;
	I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);
	POSTING_READ(BXT_PORT_PLL_ENABLE(port));
}

static bool bxt_ddi_pll_get_hw_state(struct drm_i915_private *dev_priv,
					struct intel_shared_dpll *pll,
					struct intel_dpll_hw_state *hw_state)
{
	enum port port = (enum port)pll->id;	/* 1:1 port->PLL mapping */
	uint32_t val;

	if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
		return false;

	val = I915_READ(BXT_PORT_PLL_ENABLE(port));
	if (!(val & PORT_PLL_ENABLE))
		return false;

	hw_state->ebb0 = I915_READ(BXT_PORT_PLL_EBB_0(port));
2943 2944
	hw_state->ebb0 &= PORT_PLL_P1_MASK | PORT_PLL_P2_MASK;

2945 2946 2947
	hw_state->ebb4 = I915_READ(BXT_PORT_PLL_EBB_4(port));
	hw_state->ebb4 &= PORT_PLL_10BIT_CLK_ENABLE;

2948
	hw_state->pll0 = I915_READ(BXT_PORT_PLL(port, 0));
2949 2950
	hw_state->pll0 &= PORT_PLL_M2_MASK;

2951
	hw_state->pll1 = I915_READ(BXT_PORT_PLL(port, 1));
2952 2953
	hw_state->pll1 &= PORT_PLL_N_MASK;

2954
	hw_state->pll2 = I915_READ(BXT_PORT_PLL(port, 2));
2955 2956
	hw_state->pll2 &= PORT_PLL_M2_FRAC_MASK;

2957
	hw_state->pll3 = I915_READ(BXT_PORT_PLL(port, 3));
2958 2959
	hw_state->pll3 &= PORT_PLL_M2_FRAC_ENABLE;

2960
	hw_state->pll6 = I915_READ(BXT_PORT_PLL(port, 6));
2961 2962 2963 2964
	hw_state->pll6 &= PORT_PLL_PROP_COEFF_MASK |
			  PORT_PLL_INT_COEFF_MASK |
			  PORT_PLL_GAIN_CTL_MASK;

2965
	hw_state->pll8 = I915_READ(BXT_PORT_PLL(port, 8));
2966 2967
	hw_state->pll8 &= PORT_PLL_TARGET_CNT_MASK;

2968 2969 2970
	hw_state->pll9 = I915_READ(BXT_PORT_PLL(port, 9));
	hw_state->pll9 &= PORT_PLL_LOCK_THRESHOLD_MASK;

2971
	hw_state->pll10 = I915_READ(BXT_PORT_PLL(port, 10));
2972 2973 2974
	hw_state->pll10 &= PORT_PLL_DCO_AMP_OVR_EN_H |
			   PORT_PLL_DCO_AMP_MASK;

2975 2976 2977 2978 2979 2980
	/*
	 * While we write to the group register to program all lanes at once we
	 * can read only lane registers. We configure all lanes the same way, so
	 * here just read out lanes 0/1 and output a note if lanes 2/3 differ.
	 */
	hw_state->pcsdw12 = I915_READ(BXT_PORT_PCS_DW12_LN01(port));
2981
	if (I915_READ(BXT_PORT_PCS_DW12_LN23(port)) != hw_state->pcsdw12)
2982 2983 2984
		DRM_DEBUG_DRIVER("lane stagger config different for lane 01 (%08x) and 23 (%08x)\n",
				 hw_state->pcsdw12,
				 I915_READ(BXT_PORT_PCS_DW12_LN23(port)));
2985
	hw_state->pcsdw12 &= LANE_STAGGER_MASK | LANESTAGGER_STRAP_OVRD;
2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005

	return true;
}

static void bxt_shared_dplls_init(struct drm_i915_private *dev_priv)
{
	int i;

	dev_priv->num_shared_dpll = 3;

	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
		dev_priv->shared_dplls[i].id = i;
		dev_priv->shared_dplls[i].name = bxt_ddi_pll_names[i];
		dev_priv->shared_dplls[i].disable = bxt_ddi_pll_disable;
		dev_priv->shared_dplls[i].enable = bxt_ddi_pll_enable;
		dev_priv->shared_dplls[i].get_hw_state =
			bxt_ddi_pll_get_hw_state;
	}
}

3006 3007 3008 3009 3010
void intel_ddi_pll_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t val = I915_READ(LCPLL_CTL);

3011
	if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
3012
		skl_shared_dplls_init(dev_priv);
3013 3014
	else if (IS_BROXTON(dev))
		bxt_shared_dplls_init(dev_priv);
3015 3016
	else
		hsw_shared_dplls_init(dev_priv);
P
Paulo Zanoni 已提交
3017

3018
	if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
3019 3020 3021
		int cdclk_freq;

		cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
3022
		dev_priv->skl_boot_cdclk = cdclk_freq;
3023 3024
		if (skl_sanitize_cdclk(dev_priv))
			DRM_DEBUG_KMS("Sanitized cdclk programmed by pre-os\n");
3025 3026
		if (!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_ENABLE))
			DRM_ERROR("LCPLL1 is disabled\n");
3027 3028
	} else if (IS_BROXTON(dev)) {
		broxton_init_cdclk(dev);
3029
		broxton_ddi_phy_init(dev);
3030 3031 3032 3033 3034 3035 3036 3037 3038
	} else {
		/*
		 * The LCPLL register should be turned on by the BIOS. For now
		 * let's just check its state and print errors in case
		 * something is wrong.  Don't even try to turn it on.
		 */

		if (val & LCPLL_CD_SOURCE_FCLK)
			DRM_ERROR("CDCLK source is not LCPLL\n");
P
Paulo Zanoni 已提交
3039

3040 3041 3042
		if (val & LCPLL_PLL_DISABLE)
			DRM_ERROR("LCPLL is disabled\n");
	}
P
Paulo Zanoni 已提交
3043
}
3044

3045
void intel_ddi_prepare_link_retrain(struct intel_dp *intel_dp)
3046
{
3047 3048 3049
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	struct drm_i915_private *dev_priv =
		to_i915(intel_dig_port->base.base.dev);
3050
	enum port port = intel_dig_port->port;
3051
	uint32_t val;
3052
	bool wait = false;
3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071

	if (I915_READ(DP_TP_CTL(port)) & DP_TP_CTL_ENABLE) {
		val = I915_READ(DDI_BUF_CTL(port));
		if (val & DDI_BUF_CTL_ENABLE) {
			val &= ~DDI_BUF_CTL_ENABLE;
			I915_WRITE(DDI_BUF_CTL(port), val);
			wait = true;
		}

		val = I915_READ(DP_TP_CTL(port));
		val &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
		val |= DP_TP_CTL_LINK_TRAIN_PAT1;
		I915_WRITE(DP_TP_CTL(port), val);
		POSTING_READ(DP_TP_CTL(port));

		if (wait)
			intel_wait_ddi_buf_idle(dev_priv, port);
	}

3072
	val = DP_TP_CTL_ENABLE |
3073
	      DP_TP_CTL_LINK_TRAIN_PAT1 | DP_TP_CTL_SCRAMBLE_DISABLE;
3074 3075 3076 3077 3078 3079 3080
	if (intel_dp->is_mst)
		val |= DP_TP_CTL_MODE_MST;
	else {
		val |= DP_TP_CTL_MODE_SST;
		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
			val |= DP_TP_CTL_ENHANCED_FRAME_ENABLE;
	}
3081 3082 3083 3084 3085 3086 3087 3088 3089
	I915_WRITE(DP_TP_CTL(port), val);
	POSTING_READ(DP_TP_CTL(port));

	intel_dp->DP |= DDI_BUF_CTL_ENABLE;
	I915_WRITE(DDI_BUF_CTL(port), intel_dp->DP);
	POSTING_READ(DDI_BUF_CTL(port));

	udelay(600);
}
P
Paulo Zanoni 已提交
3090

3091 3092 3093 3094 3095 3096 3097 3098
void intel_ddi_fdi_disable(struct drm_crtc *crtc)
{
	struct drm_i915_private *dev_priv = crtc->dev->dev_private;
	struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
	uint32_t val;

	intel_ddi_post_disable(intel_encoder);

3099
	val = I915_READ(FDI_RX_CTL(PIPE_A));
3100
	val &= ~FDI_RX_ENABLE;
3101
	I915_WRITE(FDI_RX_CTL(PIPE_A), val);
3102

3103
	val = I915_READ(FDI_RX_MISC(PIPE_A));
3104 3105
	val &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
	val |= FDI_RX_PWRDN_LANE1_VAL(2) | FDI_RX_PWRDN_LANE0_VAL(2);
3106
	I915_WRITE(FDI_RX_MISC(PIPE_A), val);
3107

3108
	val = I915_READ(FDI_RX_CTL(PIPE_A));
3109
	val &= ~FDI_PCDCLK;
3110
	I915_WRITE(FDI_RX_CTL(PIPE_A), val);
3111

3112
	val = I915_READ(FDI_RX_CTL(PIPE_A));
3113
	val &= ~FDI_RX_PLL_ENABLE;
3114
	I915_WRITE(FDI_RX_CTL(PIPE_A), val);
3115 3116
}

L
Libin Yang 已提交
3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129
bool intel_ddi_is_audio_enabled(struct drm_i915_private *dev_priv,
				 struct intel_crtc *intel_crtc)
{
	u32 temp;

	if (intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_AUDIO)) {
		temp = I915_READ(HSW_AUD_PIN_ELD_CP_VLD);
		if (temp & AUDIO_OUTPUT_ENABLE(intel_crtc->pipe))
			return true;
	}
	return false;
}

3130
void intel_ddi_get_config(struct intel_encoder *encoder,
3131
			  struct intel_crtc_state *pipe_config)
3132 3133 3134
{
	struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
	struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
3135
	enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
3136
	struct intel_hdmi *intel_hdmi;
3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148
	u32 temp, flags = 0;

	temp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
	if (temp & TRANS_DDI_PHSYNC)
		flags |= DRM_MODE_FLAG_PHSYNC;
	else
		flags |= DRM_MODE_FLAG_NHSYNC;
	if (temp & TRANS_DDI_PVSYNC)
		flags |= DRM_MODE_FLAG_PVSYNC;
	else
		flags |= DRM_MODE_FLAG_NVSYNC;

3149
	pipe_config->base.adjusted_mode.flags |= flags;
3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166

	switch (temp & TRANS_DDI_BPC_MASK) {
	case TRANS_DDI_BPC_6:
		pipe_config->pipe_bpp = 18;
		break;
	case TRANS_DDI_BPC_8:
		pipe_config->pipe_bpp = 24;
		break;
	case TRANS_DDI_BPC_10:
		pipe_config->pipe_bpp = 30;
		break;
	case TRANS_DDI_BPC_12:
		pipe_config->pipe_bpp = 36;
		break;
	default:
		break;
	}
3167 3168 3169

	switch (temp & TRANS_DDI_MODE_SELECT_MASK) {
	case TRANS_DDI_MODE_SELECT_HDMI:
3170
		pipe_config->has_hdmi_sink = true;
3171 3172
		intel_hdmi = enc_to_intel_hdmi(&encoder->base);

3173
		if (intel_hdmi->infoframe_enabled(&encoder->base, pipe_config))
3174
			pipe_config->has_infoframe = true;
3175
		break;
3176 3177 3178 3179 3180 3181
	case TRANS_DDI_MODE_SELECT_DVI:
	case TRANS_DDI_MODE_SELECT_FDI:
		break;
	case TRANS_DDI_MODE_SELECT_DP_SST:
	case TRANS_DDI_MODE_SELECT_DP_MST:
		pipe_config->has_dp_encoder = true;
3182 3183
		pipe_config->lane_count =
			((temp & DDI_PORT_WIDTH_MASK) >> DDI_PORT_WIDTH_SHIFT) + 1;
3184 3185 3186 3187 3188
		intel_dp_get_m_n(intel_crtc, pipe_config);
		break;
	default:
		break;
	}
3189

L
Libin Yang 已提交
3190 3191
	pipe_config->has_audio =
		intel_ddi_is_audio_enabled(dev_priv, intel_crtc);
3192

3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211
	if (encoder->type == INTEL_OUTPUT_EDP && dev_priv->vbt.edp_bpp &&
	    pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) {
		/*
		 * This is a big fat ugly hack.
		 *
		 * Some machines in UEFI boot mode provide us a VBT that has 18
		 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
		 * unknown we fail to light up. Yet the same BIOS boots up with
		 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
		 * max, not what it tells us to use.
		 *
		 * Note: This will still be broken if the eDP panel is not lit
		 * up by the BIOS, and thus we can't get the mode at module
		 * load.
		 */
		DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
			      pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp);
		dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp;
	}
3212

3213
	intel_ddi_clock_get(encoder, pipe_config);
3214 3215
}

P
Paulo Zanoni 已提交
3216 3217 3218 3219 3220 3221
static void intel_ddi_destroy(struct drm_encoder *encoder)
{
	/* HDMI has nothing special to destroy, so we can go with this. */
	intel_dp_encoder_destroy(encoder);
}

3222
static bool intel_ddi_compute_config(struct intel_encoder *encoder,
3223
				     struct intel_crtc_state *pipe_config)
P
Paulo Zanoni 已提交
3224
{
3225
	int type = encoder->type;
3226
	int port = intel_ddi_get_encoder_port(encoder);
P
Paulo Zanoni 已提交
3227

3228
	WARN(type == INTEL_OUTPUT_UNKNOWN, "compute_config() on unknown output!\n");
P
Paulo Zanoni 已提交
3229

3230 3231 3232
	if (port == PORT_A)
		pipe_config->cpu_transcoder = TRANSCODER_EDP;

P
Paulo Zanoni 已提交
3233
	if (type == INTEL_OUTPUT_HDMI)
3234
		return intel_hdmi_compute_config(encoder, pipe_config);
P
Paulo Zanoni 已提交
3235
	else
3236
		return intel_dp_compute_config(encoder, pipe_config);
P
Paulo Zanoni 已提交
3237 3238 3239 3240 3241 3242
}

static const struct drm_encoder_funcs intel_ddi_funcs = {
	.destroy = intel_ddi_destroy,
};

3243 3244 3245 3246 3247 3248
static struct intel_connector *
intel_ddi_init_dp_connector(struct intel_digital_port *intel_dig_port)
{
	struct intel_connector *connector;
	enum port port = intel_dig_port->port;

3249
	connector = intel_connector_alloc();
3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267
	if (!connector)
		return NULL;

	intel_dig_port->dp.output_reg = DDI_BUF_CTL(port);
	if (!intel_dp_init_connector(intel_dig_port, connector)) {
		kfree(connector);
		return NULL;
	}

	return connector;
}

static struct intel_connector *
intel_ddi_init_hdmi_connector(struct intel_digital_port *intel_dig_port)
{
	struct intel_connector *connector;
	enum port port = intel_dig_port->port;

3268
	connector = intel_connector_alloc();
3269 3270 3271 3272 3273 3274 3275 3276 3277
	if (!connector)
		return NULL;

	intel_dig_port->hdmi.hdmi_reg = DDI_BUF_CTL(port);
	intel_hdmi_init_connector(intel_dig_port, connector);

	return connector;
}

P
Paulo Zanoni 已提交
3278 3279
void intel_ddi_init(struct drm_device *dev, enum port port)
{
3280
	struct drm_i915_private *dev_priv = dev->dev_private;
P
Paulo Zanoni 已提交
3281 3282 3283
	struct intel_digital_port *intel_dig_port;
	struct intel_encoder *intel_encoder;
	struct drm_encoder *encoder;
3284 3285 3286 3287 3288 3289
	bool init_hdmi, init_dp;

	init_hdmi = (dev_priv->vbt.ddi_port_info[port].supports_dvi ||
		     dev_priv->vbt.ddi_port_info[port].supports_hdmi);
	init_dp = dev_priv->vbt.ddi_port_info[port].supports_dp;
	if (!init_dp && !init_hdmi) {
3290
		DRM_DEBUG_KMS("VBT says port %c is not DVI/HDMI/DP compatible, respect it\n",
3291
			      port_name(port));
3292
		return;
3293
	}
P
Paulo Zanoni 已提交
3294

3295
	intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
P
Paulo Zanoni 已提交
3296 3297 3298 3299 3300 3301 3302 3303 3304
	if (!intel_dig_port)
		return;

	intel_encoder = &intel_dig_port->base;
	encoder = &intel_encoder->base;

	drm_encoder_init(dev, encoder, &intel_ddi_funcs,
			 DRM_MODE_ENCODER_TMDS);

3305
	intel_encoder->compute_config = intel_ddi_compute_config;
P
Paulo Zanoni 已提交
3306 3307 3308 3309 3310
	intel_encoder->enable = intel_enable_ddi;
	intel_encoder->pre_enable = intel_ddi_pre_enable;
	intel_encoder->disable = intel_disable_ddi;
	intel_encoder->post_disable = intel_ddi_post_disable;
	intel_encoder->get_hw_state = intel_ddi_get_hw_state;
3311
	intel_encoder->get_config = intel_ddi_get_config;
P
Paulo Zanoni 已提交
3312 3313

	intel_dig_port->port = port;
3314
	dev_priv->dig_port_map[port] = intel_encoder;
3315 3316 3317
	intel_dig_port->saved_port_bits = I915_READ(DDI_BUF_CTL(port)) &
					  (DDI_BUF_PORT_REVERSAL |
					   DDI_A_4_LANES);
P
Paulo Zanoni 已提交
3318

3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332
	/*
	 * Bspec says that DDI_A_4_LANES is the only supported configuration
	 * for Broxton.  Yet some BIOS fail to set this bit on port A if eDP
	 * wasn't lit up at boot.  Force this bit on in our internal
	 * configuration so that we use the proper lane count for our
	 * calculations.
	 */
	if (IS_BROXTON(dev) && port == PORT_A) {
		if (!(intel_dig_port->saved_port_bits & DDI_A_4_LANES)) {
			DRM_DEBUG_KMS("BXT BIOS forgot to set DDI_A_4_LANES for port A; fixing\n");
			intel_dig_port->saved_port_bits |= DDI_A_4_LANES;
		}
	}

P
Paulo Zanoni 已提交
3333
	intel_encoder->type = INTEL_OUTPUT_UNKNOWN;
3334
	intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
3335
	intel_encoder->cloneable = 0;
P
Paulo Zanoni 已提交
3336

3337 3338 3339
	if (init_dp) {
		if (!intel_ddi_init_dp_connector(intel_dig_port))
			goto err;
3340

3341
		intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
3342 3343 3344 3345
		/*
		 * On BXT A0/A1, sw needs to activate DDIA HPD logic and
		 * interrupts to check the external panel connection.
		 */
3346
		if (IS_BXT_REVID(dev, 0, BXT_REVID_A1) && port == PORT_B)
3347 3348 3349
			dev_priv->hotplug.irq_port[PORT_A] = intel_dig_port;
		else
			dev_priv->hotplug.irq_port[port] = intel_dig_port;
3350
	}
3351

3352 3353
	/* In theory we don't need the encoder->type check, but leave it just in
	 * case we have some really bad VBTs... */
3354 3355 3356
	if (intel_encoder->type != INTEL_OUTPUT_EDP && init_hdmi) {
		if (!intel_ddi_init_hdmi_connector(intel_dig_port))
			goto err;
3357
	}
3358 3359 3360 3361 3362 3363

	return;

err:
	drm_encoder_cleanup(encoder);
	kfree(intel_dig_port);
P
Paulo Zanoni 已提交
3364
}