intel_ddi.c 53.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright © 2012 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
 *
 */

#include "i915_drv.h"
#include "intel_drv.h"

31 32 33 34 35
struct ddi_buf_trans {
	u32 trans1;	/* balance leg enable, de-emph level */
	u32 trans2;	/* vref sel, vswing */
};

36 37 38 39
/* HDMI/DVI modes ignore everything but the last 2 items. So we share
 * them for both DP and FDI transports, allowing those ports to
 * automatically adapt to HDMI connections as well
 */
40 41 42 43 44 45 46 47 48 49
static const struct ddi_buf_trans hsw_ddi_translations_dp[] = {
	{ 0x00FFFFFF, 0x0006000E },
	{ 0x00D75FFF, 0x0005000A },
	{ 0x00C30FFF, 0x00040006 },
	{ 0x80AAAFFF, 0x000B0000 },
	{ 0x00FFFFFF, 0x0005000A },
	{ 0x00D75FFF, 0x000C0004 },
	{ 0x80C30FFF, 0x000B0000 },
	{ 0x00FFFFFF, 0x00040006 },
	{ 0x80D75FFF, 0x000B0000 },
50 51
};

52 53 54 55 56 57 58 59 60 61
static const struct ddi_buf_trans hsw_ddi_translations_fdi[] = {
	{ 0x00FFFFFF, 0x0007000E },
	{ 0x00D75FFF, 0x000F000A },
	{ 0x00C30FFF, 0x00060006 },
	{ 0x00AAAFFF, 0x001E0000 },
	{ 0x00FFFFFF, 0x000F000A },
	{ 0x00D75FFF, 0x00160004 },
	{ 0x00C30FFF, 0x001E0000 },
	{ 0x00FFFFFF, 0x00060006 },
	{ 0x00D75FFF, 0x001E0000 },
62 63
};

64 65 66 67 68 69 70 71 72 73 74 75 76 77
static const struct ddi_buf_trans hsw_ddi_translations_hdmi[] = {
					/* Idx	NT mV d	T mV d	db	*/
	{ 0x00FFFFFF, 0x0006000E },	/* 0:	400	400	0	*/
	{ 0x00E79FFF, 0x000E000C },	/* 1:	400	500	2	*/
	{ 0x00D75FFF, 0x0005000A },	/* 2:	400	600	3.5	*/
	{ 0x00FFFFFF, 0x0005000A },	/* 3:	600	600	0	*/
	{ 0x00E79FFF, 0x001D0007 },	/* 4:	600	750	2	*/
	{ 0x00D75FFF, 0x000C0004 },	/* 5:	600	900	3.5	*/
	{ 0x00FFFFFF, 0x00040006 },	/* 6:	800	800	0	*/
	{ 0x80E79FFF, 0x00030002 },	/* 7:	800	1000	2	*/
	{ 0x00FFFFFF, 0x00140005 },	/* 8:	850	850	0	*/
	{ 0x00FFFFFF, 0x000C0004 },	/* 9:	900	900	0	*/
	{ 0x00FFFFFF, 0x001C0003 },	/* 10:	950	950	0	*/
	{ 0x80FFFFFF, 0x00030002 },	/* 11:	1000	1000	0	*/
78 79
};

80 81 82 83 84 85 86 87 88 89
static const struct ddi_buf_trans bdw_ddi_translations_edp[] = {
	{ 0x00FFFFFF, 0x00000012 },
	{ 0x00EBAFFF, 0x00020011 },
	{ 0x00C71FFF, 0x0006000F },
	{ 0x00AAAFFF, 0x000E000A },
	{ 0x00FFFFFF, 0x00020011 },
	{ 0x00DB6FFF, 0x0005000F },
	{ 0x00BEEFFF, 0x000A000C },
	{ 0x00FFFFFF, 0x0005000F },
	{ 0x00DB6FFF, 0x000A000C },
90 91
};

92 93 94 95 96 97
static const struct ddi_buf_trans bdw_ddi_translations_dp[] = {
	{ 0x00FFFFFF, 0x0007000E },
	{ 0x00D75FFF, 0x000E000A },
	{ 0x00BEFFFF, 0x00140006 },
	{ 0x80B2CFFF, 0x001B0002 },
	{ 0x00FFFFFF, 0x000E000A },
98
	{ 0x00DB6FFF, 0x00160005 },
99
	{ 0x80C71FFF, 0x001A0002 },
100 101
	{ 0x00F7DFFF, 0x00180004 },
	{ 0x80D75FFF, 0x001B0002 },
102 103
};

104 105 106 107 108 109 110 111 112 113
static const struct ddi_buf_trans bdw_ddi_translations_fdi[] = {
	{ 0x00FFFFFF, 0x0001000E },
	{ 0x00D75FFF, 0x0004000A },
	{ 0x00C30FFF, 0x00070006 },
	{ 0x00AAAFFF, 0x000C0000 },
	{ 0x00FFFFFF, 0x0004000A },
	{ 0x00D75FFF, 0x00090004 },
	{ 0x00C30FFF, 0x000C0000 },
	{ 0x00FFFFFF, 0x00070006 },
	{ 0x00D75FFF, 0x000C0000 },
114 115
};

116 117 118 119 120 121 122 123 124 125 126 127
static const struct ddi_buf_trans bdw_ddi_translations_hdmi[] = {
					/* Idx	NT mV d	T mV df	db	*/
	{ 0x00FFFFFF, 0x0007000E },	/* 0:	400	400	0	*/
	{ 0x00D75FFF, 0x000E000A },	/* 1:	400	600	3.5	*/
	{ 0x00BEFFFF, 0x00140006 },	/* 2:	400	800	6	*/
	{ 0x00FFFFFF, 0x0009000D },	/* 3:	450	450	0	*/
	{ 0x00FFFFFF, 0x000E000A },	/* 4:	600	600	0	*/
	{ 0x00D7FFFF, 0x00140006 },	/* 5:	600	800	2.5	*/
	{ 0x80CB2FFF, 0x001B0002 },	/* 6:	600	1000	4.5	*/
	{ 0x00FFFFFF, 0x00140006 },	/* 7:	800	800	0	*/
	{ 0x80E79FFF, 0x001B0002 },	/* 8:	800	1000	2	*/
	{ 0x80FFFFFF, 0x001B0002 },	/* 9:	1000	1000	0	*/
128 129
};

130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
static const struct ddi_buf_trans skl_ddi_translations_dp[] = {
	{ 0x00000018, 0x000000a0 },
	{ 0x00004014, 0x00000098 },
	{ 0x00006012, 0x00000088 },
	{ 0x00008010, 0x00000080 },
	{ 0x00000018, 0x00000098 },
	{ 0x00004014, 0x00000088 },
	{ 0x00006012, 0x00000080 },
	{ 0x00000018, 0x00000088 },
	{ 0x00004014, 0x00000080 },
};

static const struct ddi_buf_trans skl_ddi_translations_hdmi[] = {
					/* Idx	NT mV   T mV    db  */
	{ 0x00000018, 0x000000a0 },	/* 0:	400	400	0   */
	{ 0x00004014, 0x00000098 },	/* 1:	400	600	3.5 */
	{ 0x00006012, 0x00000088 },	/* 2:	400	800	6   */
	{ 0x00000018, 0x0000003c },	/* 3:	450	450	0   */
	{ 0x00000018, 0x00000098 },	/* 4:	600	600	0   */
	{ 0x00003015, 0x00000088 },	/* 5:	600	800	2.5 */
	{ 0x00005013, 0x00000080 },	/* 6:	600	1000	4.5 */
	{ 0x00000018, 0x00000088 },	/* 7:	800	800	0   */
	{ 0x00000096, 0x00000080 },	/* 8:	800	1000	2   */
	{ 0x00000018, 0x00000080 },	/* 9:	1200	1200	0   */
};

156
enum port intel_ddi_get_encoder_port(struct intel_encoder *intel_encoder)
157
{
158
	struct drm_encoder *encoder = &intel_encoder->base;
159 160
	int type = intel_encoder->type;

161 162 163 164
	if (type == INTEL_OUTPUT_DP_MST) {
		struct intel_digital_port *intel_dig_port = enc_to_mst(encoder)->primary;
		return intel_dig_port->port;
	} else if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP ||
P
Paulo Zanoni 已提交
165
	    type == INTEL_OUTPUT_HDMI || type == INTEL_OUTPUT_UNKNOWN) {
166 167 168
		struct intel_digital_port *intel_dig_port =
			enc_to_dig_port(encoder);
		return intel_dig_port->port;
169

170 171
	} else if (type == INTEL_OUTPUT_ANALOG) {
		return PORT_E;
172

173 174 175 176 177 178
	} else {
		DRM_ERROR("Invalid DDI encoder type %d\n", type);
		BUG();
	}
}

179 180 181
/*
 * Starting with Haswell, DDI port buffers must be programmed with correct
 * values in advance. The buffer values are different for FDI and DP modes,
182 183 184 185
 * but the HDMI/DVI fields are shared among those. So we program the DDI
 * in either FDI or DP modes only, as HDMI connections will work with both
 * of those
 */
186
static void intel_prepare_ddi_buffers(struct drm_device *dev, enum port port)
187 188 189
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 reg;
190
	int i, n_hdmi_entries, hdmi_800mV_0dB;
191
	int hdmi_level = dev_priv->vbt.ddi_port_info[port].hdmi_level_shift;
192 193 194 195 196
	const struct ddi_buf_trans *ddi_translations_fdi;
	const struct ddi_buf_trans *ddi_translations_dp;
	const struct ddi_buf_trans *ddi_translations_edp;
	const struct ddi_buf_trans *ddi_translations_hdmi;
	const struct ddi_buf_trans *ddi_translations;
197

198 199 200 201 202 203 204 205
	if (IS_SKYLAKE(dev)) {
		ddi_translations_fdi = NULL;
		ddi_translations_dp = skl_ddi_translations_dp;
		ddi_translations_edp = skl_ddi_translations_dp;
		ddi_translations_hdmi = skl_ddi_translations_hdmi;
		n_hdmi_entries = ARRAY_SIZE(skl_ddi_translations_hdmi);
		hdmi_800mV_0dB = 7;
	} else if (IS_BROADWELL(dev)) {
206 207
		ddi_translations_fdi = bdw_ddi_translations_fdi;
		ddi_translations_dp = bdw_ddi_translations_dp;
208
		ddi_translations_edp = bdw_ddi_translations_edp;
209
		ddi_translations_hdmi = bdw_ddi_translations_hdmi;
210
		n_hdmi_entries = ARRAY_SIZE(bdw_ddi_translations_hdmi);
211
		hdmi_800mV_0dB = 7;
212 213 214
	} else if (IS_HASWELL(dev)) {
		ddi_translations_fdi = hsw_ddi_translations_fdi;
		ddi_translations_dp = hsw_ddi_translations_dp;
215
		ddi_translations_edp = hsw_ddi_translations_dp;
216
		ddi_translations_hdmi = hsw_ddi_translations_hdmi;
217
		n_hdmi_entries = ARRAY_SIZE(hsw_ddi_translations_hdmi);
218
		hdmi_800mV_0dB = 6;
219 220
	} else {
		WARN(1, "ddi translation table missing\n");
221
		ddi_translations_edp = bdw_ddi_translations_dp;
222 223
		ddi_translations_fdi = bdw_ddi_translations_fdi;
		ddi_translations_dp = bdw_ddi_translations_dp;
224
		ddi_translations_hdmi = bdw_ddi_translations_hdmi;
225
		n_hdmi_entries = ARRAY_SIZE(bdw_ddi_translations_hdmi);
226
		hdmi_800mV_0dB = 7;
227 228
	}

229 230 231 232 233 234 235 236
	switch (port) {
	case PORT_A:
		ddi_translations = ddi_translations_edp;
		break;
	case PORT_B:
	case PORT_C:
		ddi_translations = ddi_translations_dp;
		break;
237
	case PORT_D:
238
		if (intel_dp_is_edp(dev, PORT_D))
239 240 241 242
			ddi_translations = ddi_translations_edp;
		else
			ddi_translations = ddi_translations_dp;
		break;
243
	case PORT_E:
244 245 246 247
		if (ddi_translations_fdi)
			ddi_translations = ddi_translations_fdi;
		else
			ddi_translations = ddi_translations_dp;
248 249 250 251
		break;
	default:
		BUG();
	}
252

253 254
	for (i = 0, reg = DDI_BUF_TRANS(port);
	     i < ARRAY_SIZE(hsw_ddi_translations_fdi); i++) {
255 256 257
		I915_WRITE(reg, ddi_translations[i].trans1);
		reg += 4;
		I915_WRITE(reg, ddi_translations[i].trans2);
258 259
		reg += 4;
	}
260 261 262 263 264 265

	/* Choose a good default if VBT is badly populated */
	if (hdmi_level == HDMI_LEVEL_SHIFT_UNKNOWN ||
	    hdmi_level >= n_hdmi_entries)
		hdmi_level = hdmi_800mV_0dB;

266
	/* Entry 9 is for HDMI: */
267 268 269 270
	I915_WRITE(reg, ddi_translations_hdmi[hdmi_level].trans1);
	reg += 4;
	I915_WRITE(reg, ddi_translations_hdmi[hdmi_level].trans2);
	reg += 4;
271 272 273 274 275 276 277 278 279
}

/* Program DDI buffers translations for DP. By default, program ports A-D in DP
 * mode and port E for FDI.
 */
void intel_prepare_ddi(struct drm_device *dev)
{
	int port;

280 281
	if (!HAS_DDI(dev))
		return;
282

283 284
	for (port = PORT_A; port <= PORT_E; port++)
		intel_prepare_ddi_buffers(dev, port);
285
}
286

287 288 289 290 291 292 293 294 295 296 297 298 299
static void intel_wait_ddi_buf_idle(struct drm_i915_private *dev_priv,
				    enum port port)
{
	uint32_t reg = DDI_BUF_CTL(port);
	int i;

	for (i = 0; i < 8; i++) {
		udelay(1);
		if (I915_READ(reg) & DDI_BUF_IS_IDLE)
			return;
	}
	DRM_ERROR("Timeout waiting for DDI BUF %c idle bit\n", port_name(port));
}
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314

/* Starting with Haswell, different DDI ports can work in FDI mode for
 * connection to the PCH-located connectors. For this, it is necessary to train
 * both the DDI port and PCH receiver for the desired DDI buffer settings.
 *
 * The recommended port to work in FDI mode is DDI E, which we use here. Also,
 * please note that when FDI mode is active on DDI E, it shares 2 lines with
 * DDI A (which is used for eDP)
 */

void hsw_fdi_link_train(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
315
	u32 temp, i, rx_ctl_val;
316

317 318 319 320
	/* Set the FDI_RX_MISC pwrdn lanes and the 2 workarounds listed at the
	 * mode set "sequence for CRT port" document:
	 * - TP1 to TP2 time with the default value
	 * - FDI delay to 90h
321 322
	 *
	 * WaFDIAutoLinkSetTimingOverrride:hsw
323 324 325 326 327 328
	 */
	I915_WRITE(_FDI_RXA_MISC, FDI_RX_PWRDN_LANE1_VAL(2) |
				  FDI_RX_PWRDN_LANE0_VAL(2) |
				  FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);

	/* Enable the PCH Receiver FDI PLL */
329
	rx_ctl_val = dev_priv->fdi_rx_config | FDI_RX_ENHANCE_FRAME_ENABLE |
330
		     FDI_RX_PLL_ENABLE |
331
		     FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
332 333 334 335 336 337 338 339 340
	I915_WRITE(_FDI_RXA_CTL, rx_ctl_val);
	POSTING_READ(_FDI_RXA_CTL);
	udelay(220);

	/* Switch from Rawclk to PCDclk */
	rx_ctl_val |= FDI_PCDCLK;
	I915_WRITE(_FDI_RXA_CTL, rx_ctl_val);

	/* Configure Port Clock Select */
341 342
	I915_WRITE(PORT_CLK_SEL(PORT_E), intel_crtc->config.ddi_pll_sel);
	WARN_ON(intel_crtc->config.ddi_pll_sel != PORT_CLK_SEL_SPLL);
343 344 345

	/* Start the training iterating through available voltages and emphasis,
	 * testing each value twice. */
346
	for (i = 0; i < ARRAY_SIZE(hsw_ddi_translations_fdi) * 2; i++) {
347 348 349 350 351 352 353
		/* Configure DP_TP_CTL with auto-training */
		I915_WRITE(DP_TP_CTL(PORT_E),
					DP_TP_CTL_FDI_AUTOTRAIN |
					DP_TP_CTL_ENHANCED_FRAME_ENABLE |
					DP_TP_CTL_LINK_TRAIN_PAT1 |
					DP_TP_CTL_ENABLE);

354 355 356 357
		/* Configure and enable DDI_BUF_CTL for DDI E with next voltage.
		 * DDI E does not support port reversal, the functionality is
		 * achieved on the PCH side in FDI_RX_CTL, so no need to set the
		 * port reversal bit */
358
		I915_WRITE(DDI_BUF_CTL(PORT_E),
359
			   DDI_BUF_CTL_ENABLE |
360
			   ((intel_crtc->config.fdi_lanes - 1) << 1) |
361
			   DDI_BUF_TRANS_SELECT(i / 2));
362
		POSTING_READ(DDI_BUF_CTL(PORT_E));
363 364 365

		udelay(600);

366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
		/* Program PCH FDI Receiver TU */
		I915_WRITE(_FDI_RXA_TUSIZE1, TU_SIZE(64));

		/* Enable PCH FDI Receiver with auto-training */
		rx_ctl_val |= FDI_RX_ENABLE | FDI_LINK_TRAIN_AUTO;
		I915_WRITE(_FDI_RXA_CTL, rx_ctl_val);
		POSTING_READ(_FDI_RXA_CTL);

		/* Wait for FDI receiver lane calibration */
		udelay(30);

		/* Unset FDI_RX_MISC pwrdn lanes */
		temp = I915_READ(_FDI_RXA_MISC);
		temp &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
		I915_WRITE(_FDI_RXA_MISC, temp);
		POSTING_READ(_FDI_RXA_MISC);

		/* Wait for FDI auto training time */
		udelay(5);
385 386 387

		temp = I915_READ(DP_TP_STATUS(PORT_E));
		if (temp & DP_TP_STATUS_AUTOTRAIN_DONE) {
388
			DRM_DEBUG_KMS("FDI link training done on step %d\n", i);
389 390 391

			/* Enable normal pixel sending for FDI */
			I915_WRITE(DP_TP_CTL(PORT_E),
392 393 394 395
				   DP_TP_CTL_FDI_AUTOTRAIN |
				   DP_TP_CTL_LINK_TRAIN_NORMAL |
				   DP_TP_CTL_ENHANCED_FRAME_ENABLE |
				   DP_TP_CTL_ENABLE);
396

397
			return;
398
		}
399

400 401 402 403 404
		temp = I915_READ(DDI_BUF_CTL(PORT_E));
		temp &= ~DDI_BUF_CTL_ENABLE;
		I915_WRITE(DDI_BUF_CTL(PORT_E), temp);
		POSTING_READ(DDI_BUF_CTL(PORT_E));

405
		/* Disable DP_TP_CTL and FDI_RX_CTL and retry */
406 407 408 409 410 411 412
		temp = I915_READ(DP_TP_CTL(PORT_E));
		temp &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
		temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
		I915_WRITE(DP_TP_CTL(PORT_E), temp);
		POSTING_READ(DP_TP_CTL(PORT_E));

		intel_wait_ddi_buf_idle(dev_priv, PORT_E);
413 414 415

		rx_ctl_val &= ~FDI_RX_ENABLE;
		I915_WRITE(_FDI_RXA_CTL, rx_ctl_val);
416
		POSTING_READ(_FDI_RXA_CTL);
417 418 419 420 421 422

		/* Reset FDI_RX_MISC pwrdn lanes */
		temp = I915_READ(_FDI_RXA_MISC);
		temp &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
		temp |= FDI_RX_PWRDN_LANE1_VAL(2) | FDI_RX_PWRDN_LANE0_VAL(2);
		I915_WRITE(_FDI_RXA_MISC, temp);
423
		POSTING_READ(_FDI_RXA_MISC);
424 425
	}

426
	DRM_ERROR("FDI link training failed!\n");
427
}
428

429 430 431 432 433 434 435
void intel_ddi_init_dp_buf_reg(struct intel_encoder *encoder)
{
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
	struct intel_digital_port *intel_dig_port =
		enc_to_dig_port(&encoder->base);

	intel_dp->DP = intel_dig_port->saved_port_bits |
436
		DDI_BUF_CTL_ENABLE | DDI_BUF_TRANS_SELECT(0);
437 438 439 440
	intel_dp->DP |= DDI_PORT_WIDTH(intel_dp->lane_count);

}

441 442 443 444 445 446 447 448 449 450 451 452 453 454
static struct intel_encoder *
intel_ddi_get_crtc_encoder(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct intel_encoder *intel_encoder, *ret = NULL;
	int num_encoders = 0;

	for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
		ret = intel_encoder;
		num_encoders++;
	}

	if (num_encoders != 1)
455 456
		WARN(1, "%d encoders on crtc for pipe %c\n", num_encoders,
		     pipe_name(intel_crtc->pipe));
457 458 459 460 461

	BUG_ON(ret == NULL);
	return ret;
}

462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
static struct intel_encoder *
intel_ddi_get_crtc_new_encoder(struct intel_crtc *crtc)
{
	struct drm_device *dev = crtc->base.dev;
	struct intel_encoder *intel_encoder, *ret = NULL;
	int num_encoders = 0;

	for_each_intel_encoder(dev, intel_encoder) {
		if (intel_encoder->new_crtc == crtc) {
			ret = intel_encoder;
			num_encoders++;
		}
	}

	WARN(num_encoders != 1, "%d encoders on crtc for pipe %c\n", num_encoders,
	     pipe_name(crtc->pipe));

	BUG_ON(ret == NULL);
	return ret;
}

483
#define LC_FREQ 2700
484
#define LC_FREQ_2K U64_C(LC_FREQ * 2000)
485 486 487 488 489 490 491 492 493 494 495

#define P_MIN 2
#define P_MAX 64
#define P_INC 2

/* Constraints for PLL good behavior */
#define REF_MIN 48
#define REF_MAX 400
#define VCO_MIN 2400
#define VCO_MAX 4800

496 497 498 499 500
#define abs_diff(a, b) ({			\
	typeof(a) __a = (a);			\
	typeof(b) __b = (b);			\
	(void) (&__a == &__b);			\
	__a > __b ? (__a - __b) : (__b - __a); })
501 502 503 504 505 506

struct wrpll_rnp {
	unsigned p, n2, r2;
};

static unsigned wrpll_get_budget_for_freq(int clock)
507
{
508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
	unsigned budget;

	switch (clock) {
	case 25175000:
	case 25200000:
	case 27000000:
	case 27027000:
	case 37762500:
	case 37800000:
	case 40500000:
	case 40541000:
	case 54000000:
	case 54054000:
	case 59341000:
	case 59400000:
	case 72000000:
	case 74176000:
	case 74250000:
	case 81000000:
	case 81081000:
	case 89012000:
	case 89100000:
	case 108000000:
	case 108108000:
	case 111264000:
	case 111375000:
	case 148352000:
	case 148500000:
	case 162000000:
	case 162162000:
	case 222525000:
	case 222750000:
	case 296703000:
	case 297000000:
		budget = 0;
		break;
	case 233500000:
	case 245250000:
	case 247750000:
	case 253250000:
	case 298000000:
		budget = 1500;
		break;
	case 169128000:
	case 169500000:
	case 179500000:
	case 202000000:
		budget = 2000;
		break;
	case 256250000:
	case 262500000:
	case 270000000:
	case 272500000:
	case 273750000:
	case 280750000:
	case 281250000:
	case 286000000:
	case 291750000:
		budget = 4000;
		break;
	case 267250000:
	case 268500000:
		budget = 5000;
		break;
	default:
		budget = 1000;
		break;
	}
576

577 578 579 580 581 582 583 584
	return budget;
}

static void wrpll_update_rnp(uint64_t freq2k, unsigned budget,
			     unsigned r2, unsigned n2, unsigned p,
			     struct wrpll_rnp *best)
{
	uint64_t a, b, c, d, diff, diff_best;
585

586 587 588 589 590 591 592
	/* No best (r,n,p) yet */
	if (best->p == 0) {
		best->p = p;
		best->n2 = n2;
		best->r2 = r2;
		return;
	}
593

594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609
	/*
	 * Output clock is (LC_FREQ_2K / 2000) * N / (P * R), which compares to
	 * freq2k.
	 *
	 * delta = 1e6 *
	 *	   abs(freq2k - (LC_FREQ_2K * n2/(p * r2))) /
	 *	   freq2k;
	 *
	 * and we would like delta <= budget.
	 *
	 * If the discrepancy is above the PPM-based budget, always prefer to
	 * improve upon the previous solution.  However, if you're within the
	 * budget, try to maximize Ref * VCO, that is N / (P * R^2).
	 */
	a = freq2k * budget * p * r2;
	b = freq2k * budget * best->p * best->r2;
610 611 612
	diff = abs_diff(freq2k * p * r2, LC_FREQ_2K * n2);
	diff_best = abs_diff(freq2k * best->p * best->r2,
			     LC_FREQ_2K * best->n2);
613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638
	c = 1000000 * diff;
	d = 1000000 * diff_best;

	if (a < c && b < d) {
		/* If both are above the budget, pick the closer */
		if (best->p * best->r2 * diff < p * r2 * diff_best) {
			best->p = p;
			best->n2 = n2;
			best->r2 = r2;
		}
	} else if (a >= c && b < d) {
		/* If A is below the threshold but B is above it?  Update. */
		best->p = p;
		best->n2 = n2;
		best->r2 = r2;
	} else if (a >= c && b >= d) {
		/* Both are below the limit, so pick the higher n2/(r2*r2) */
		if (n2 * best->r2 * best->r2 > best->n2 * r2 * r2) {
			best->p = p;
			best->n2 = n2;
			best->r2 = r2;
		}
	}
	/* Otherwise a < c && b >= d, do nothing */
}

639 640 641 642 643 644 645 646
static int intel_ddi_calc_wrpll_link(struct drm_i915_private *dev_priv,
				     int reg)
{
	int refclk = LC_FREQ;
	int n, p, r;
	u32 wrpll;

	wrpll = I915_READ(reg);
647 648 649
	switch (wrpll & WRPLL_PLL_REF_MASK) {
	case WRPLL_PLL_SSC:
	case WRPLL_PLL_NON_SSC:
650 651 652 653 654 655 656
		/*
		 * We could calculate spread here, but our checking
		 * code only cares about 5% accuracy, and spread is a max of
		 * 0.5% downspread.
		 */
		refclk = 135;
		break;
657
	case WRPLL_PLL_LCPLL:
658 659 660 661 662 663 664 665 666 667 668
		refclk = LC_FREQ;
		break;
	default:
		WARN(1, "bad wrpll refclk\n");
		return 0;
	}

	r = wrpll & WRPLL_DIVIDER_REF_MASK;
	p = (wrpll & WRPLL_DIVIDER_POST_MASK) >> WRPLL_DIVIDER_POST_SHIFT;
	n = (wrpll & WRPLL_DIVIDER_FB_MASK) >> WRPLL_DIVIDER_FB_SHIFT;

669 670
	/* Convert to KHz, p & r have a fixed point portion */
	return (refclk * n * 100) / (p * r);
671 672
}

673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781
static int skl_calc_wrpll_link(struct drm_i915_private *dev_priv,
			       uint32_t dpll)
{
	uint32_t cfgcr1_reg, cfgcr2_reg;
	uint32_t cfgcr1_val, cfgcr2_val;
	uint32_t p0, p1, p2, dco_freq;

	cfgcr1_reg = GET_CFG_CR1_REG(dpll);
	cfgcr2_reg = GET_CFG_CR2_REG(dpll);

	cfgcr1_val = I915_READ(cfgcr1_reg);
	cfgcr2_val = I915_READ(cfgcr2_reg);

	p0 = cfgcr2_val & DPLL_CFGCR2_PDIV_MASK;
	p2 = cfgcr2_val & DPLL_CFGCR2_KDIV_MASK;

	if (cfgcr2_val &  DPLL_CFGCR2_QDIV_MODE(1))
		p1 = (cfgcr2_val & DPLL_CFGCR2_QDIV_RATIO_MASK) >> 8;
	else
		p1 = 1;


	switch (p0) {
	case DPLL_CFGCR2_PDIV_1:
		p0 = 1;
		break;
	case DPLL_CFGCR2_PDIV_2:
		p0 = 2;
		break;
	case DPLL_CFGCR2_PDIV_3:
		p0 = 3;
		break;
	case DPLL_CFGCR2_PDIV_7:
		p0 = 7;
		break;
	}

	switch (p2) {
	case DPLL_CFGCR2_KDIV_5:
		p2 = 5;
		break;
	case DPLL_CFGCR2_KDIV_2:
		p2 = 2;
		break;
	case DPLL_CFGCR2_KDIV_3:
		p2 = 3;
		break;
	case DPLL_CFGCR2_KDIV_1:
		p2 = 1;
		break;
	}

	dco_freq = (cfgcr1_val & DPLL_CFGCR1_DCO_INTEGER_MASK) * 24 * 1000;

	dco_freq += (((cfgcr1_val & DPLL_CFGCR1_DCO_FRACTION_MASK) >> 9) * 24 *
		1000) / 0x8000;

	return dco_freq / (p0 * p1 * p2 * 5);
}


static void skl_ddi_clock_get(struct intel_encoder *encoder,
				struct intel_crtc_config *pipe_config)
{
	struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
	enum port port = intel_ddi_get_encoder_port(encoder);
	int link_clock = 0;
	uint32_t dpll_ctl1, dpll;

	/* FIXME: This should be tracked in the pipe config. */
	dpll = I915_READ(DPLL_CTRL2);
	dpll &= DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
	dpll >>= DPLL_CTRL2_DDI_CLK_SEL_SHIFT(port);

	dpll_ctl1 = I915_READ(DPLL_CTRL1);

	if (dpll_ctl1 & DPLL_CTRL1_HDMI_MODE(dpll)) {
		link_clock = skl_calc_wrpll_link(dev_priv, dpll);
	} else {
		link_clock = dpll_ctl1 & DPLL_CRTL1_LINK_RATE_MASK(dpll);
		link_clock >>= DPLL_CRTL1_LINK_RATE_SHIFT(dpll);

		switch (link_clock) {
		case DPLL_CRTL1_LINK_RATE_810:
			link_clock = 81000;
			break;
		case DPLL_CRTL1_LINK_RATE_1350:
			link_clock = 135000;
			break;
		case DPLL_CRTL1_LINK_RATE_2700:
			link_clock = 270000;
			break;
		default:
			WARN(1, "Unsupported link rate\n");
			break;
		}
		link_clock *= 2;
	}

	pipe_config->port_clock = link_clock;

	if (pipe_config->has_dp_encoder)
		pipe_config->adjusted_mode.crtc_clock =
			intel_dotclock_calculate(pipe_config->port_clock,
						 &pipe_config->dp_m_n);
	else
		pipe_config->adjusted_mode.crtc_clock = pipe_config->port_clock;
}

782 783
static void hsw_ddi_clock_get(struct intel_encoder *encoder,
			      struct intel_crtc_config *pipe_config)
784 785 786 787 788
{
	struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
	int link_clock = 0;
	u32 val, pll;

789
	val = pipe_config->ddi_pll_sel;
790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837
	switch (val & PORT_CLK_SEL_MASK) {
	case PORT_CLK_SEL_LCPLL_810:
		link_clock = 81000;
		break;
	case PORT_CLK_SEL_LCPLL_1350:
		link_clock = 135000;
		break;
	case PORT_CLK_SEL_LCPLL_2700:
		link_clock = 270000;
		break;
	case PORT_CLK_SEL_WRPLL1:
		link_clock = intel_ddi_calc_wrpll_link(dev_priv, WRPLL_CTL1);
		break;
	case PORT_CLK_SEL_WRPLL2:
		link_clock = intel_ddi_calc_wrpll_link(dev_priv, WRPLL_CTL2);
		break;
	case PORT_CLK_SEL_SPLL:
		pll = I915_READ(SPLL_CTL) & SPLL_PLL_FREQ_MASK;
		if (pll == SPLL_PLL_FREQ_810MHz)
			link_clock = 81000;
		else if (pll == SPLL_PLL_FREQ_1350MHz)
			link_clock = 135000;
		else if (pll == SPLL_PLL_FREQ_2700MHz)
			link_clock = 270000;
		else {
			WARN(1, "bad spll freq\n");
			return;
		}
		break;
	default:
		WARN(1, "bad port clock sel\n");
		return;
	}

	pipe_config->port_clock = link_clock * 2;

	if (pipe_config->has_pch_encoder)
		pipe_config->adjusted_mode.crtc_clock =
			intel_dotclock_calculate(pipe_config->port_clock,
						 &pipe_config->fdi_m_n);
	else if (pipe_config->has_dp_encoder)
		pipe_config->adjusted_mode.crtc_clock =
			intel_dotclock_calculate(pipe_config->port_clock,
						 &pipe_config->dp_m_n);
	else
		pipe_config->adjusted_mode.crtc_clock = pipe_config->port_clock;
}

838 839 840 841 842 843
void intel_ddi_clock_get(struct intel_encoder *encoder,
			 struct intel_crtc_config *pipe_config)
{
	hsw_ddi_clock_get(encoder, pipe_config);
}

844
static void
845 846
hsw_ddi_calculate_wrpll(int clock /* in Hz */,
			unsigned *r2_out, unsigned *n2_out, unsigned *p_out)
847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902
{
	uint64_t freq2k;
	unsigned p, n2, r2;
	struct wrpll_rnp best = { 0, 0, 0 };
	unsigned budget;

	freq2k = clock / 100;

	budget = wrpll_get_budget_for_freq(clock);

	/* Special case handling for 540 pixel clock: bypass WR PLL entirely
	 * and directly pass the LC PLL to it. */
	if (freq2k == 5400000) {
		*n2_out = 2;
		*p_out = 1;
		*r2_out = 2;
		return;
	}

	/*
	 * Ref = LC_FREQ / R, where Ref is the actual reference input seen by
	 * the WR PLL.
	 *
	 * We want R so that REF_MIN <= Ref <= REF_MAX.
	 * Injecting R2 = 2 * R gives:
	 *   REF_MAX * r2 > LC_FREQ * 2 and
	 *   REF_MIN * r2 < LC_FREQ * 2
	 *
	 * Which means the desired boundaries for r2 are:
	 *  LC_FREQ * 2 / REF_MAX < r2 < LC_FREQ * 2 / REF_MIN
	 *
	 */
	for (r2 = LC_FREQ * 2 / REF_MAX + 1;
	     r2 <= LC_FREQ * 2 / REF_MIN;
	     r2++) {

		/*
		 * VCO = N * Ref, that is: VCO = N * LC_FREQ / R
		 *
		 * Once again we want VCO_MIN <= VCO <= VCO_MAX.
		 * Injecting R2 = 2 * R and N2 = 2 * N, we get:
		 *   VCO_MAX * r2 > n2 * LC_FREQ and
		 *   VCO_MIN * r2 < n2 * LC_FREQ)
		 *
		 * Which means the desired boundaries for n2 are:
		 * VCO_MIN * r2 / LC_FREQ < n2 < VCO_MAX * r2 / LC_FREQ
		 */
		for (n2 = VCO_MIN * r2 / LC_FREQ + 1;
		     n2 <= VCO_MAX * r2 / LC_FREQ;
		     n2++) {

			for (p = P_MIN; p <= P_MAX; p += P_INC)
				wrpll_update_rnp(freq2k, budget,
						 r2, n2, p, &best);
		}
	}
903

904 905 906
	*n2_out = best.n2;
	*p_out = best.p;
	*r2_out = best.r2;
907 908
}

909
static bool
910 911 912
hsw_ddi_pll_select(struct intel_crtc *intel_crtc,
		   struct intel_encoder *intel_encoder,
		   int clock)
913
{
914
	if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
915
		struct intel_shared_dpll *pll;
916
		uint32_t val;
917
		unsigned p, n2, r2;
918

919
		hsw_ddi_calculate_wrpll(clock * 1000, &r2, &n2, &p);
P
Paulo Zanoni 已提交
920

921
		val = WRPLL_PLL_ENABLE | WRPLL_PLL_LCPLL |
P
Paulo Zanoni 已提交
922 923 924
		      WRPLL_DIVIDER_REFERENCE(r2) | WRPLL_DIVIDER_FEEDBACK(n2) |
		      WRPLL_DIVIDER_POST(p);

925
		intel_crtc->new_config->dpll_hw_state.wrpll = val;
926

927 928 929 930 931
		pll = intel_get_shared_dpll(intel_crtc);
		if (pll == NULL) {
			DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
					 pipe_name(intel_crtc->pipe));
			return false;
P
Paulo Zanoni 已提交
932
		}
933

934
		intel_crtc->new_config->ddi_pll_sel = PORT_CLK_SEL_WRPLL(pll->id);
935 936 937 938 939
	}

	return true;
}

940 941 942 943 944 945 946 947 948 949

/*
 * Tries to find a *shared* PLL for the CRTC and store it in
 * intel_crtc->ddi_pll_sel.
 *
 * For private DPLLs, compute_config() should do the selection for us. This
 * function should be folded into compute_config() eventually.
 */
bool intel_ddi_pll_select(struct intel_crtc *intel_crtc)
{
950 951 952
	struct intel_encoder *intel_encoder =
		intel_ddi_get_crtc_new_encoder(intel_crtc);
	int clock = intel_crtc->new_config->port_clock;
953

954
	return hsw_ddi_pll_select(intel_crtc, intel_encoder, clock);
955 956
}

957 958 959 960 961
void intel_ddi_set_pipe_settings(struct drm_crtc *crtc)
{
	struct drm_i915_private *dev_priv = crtc->dev->dev_private;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
962
	enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
963 964 965
	int type = intel_encoder->type;
	uint32_t temp;

966
	if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP || type == INTEL_OUTPUT_DP_MST) {
967
		temp = TRANS_MSA_SYNC_CLK;
968
		switch (intel_crtc->config.pipe_bpp) {
969
		case 18:
970
			temp |= TRANS_MSA_6_BPC;
971 972
			break;
		case 24:
973
			temp |= TRANS_MSA_8_BPC;
974 975
			break;
		case 30:
976
			temp |= TRANS_MSA_10_BPC;
977 978
			break;
		case 36:
979
			temp |= TRANS_MSA_12_BPC;
980 981
			break;
		default:
982
			BUG();
983
		}
984
		I915_WRITE(TRANS_MSA_MISC(cpu_transcoder), temp);
985 986 987
	}
}

988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002
void intel_ddi_set_vc_payload_alloc(struct drm_crtc *crtc, bool state)
{
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
	uint32_t temp;
	temp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
	if (state == true)
		temp |= TRANS_DDI_DP_VC_PAYLOAD_ALLOC;
	else
		temp &= ~TRANS_DDI_DP_VC_PAYLOAD_ALLOC;
	I915_WRITE(TRANS_DDI_FUNC_CTL(cpu_transcoder), temp);
}

1003
void intel_ddi_enable_transcoder_func(struct drm_crtc *crtc)
1004 1005 1006
{
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
1007
	struct drm_encoder *encoder = &intel_encoder->base;
1008 1009
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
1010
	enum pipe pipe = intel_crtc->pipe;
1011
	enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
1012
	enum port port = intel_ddi_get_encoder_port(intel_encoder);
1013
	int type = intel_encoder->type;
1014 1015
	uint32_t temp;

1016 1017
	/* Enable TRANS_DDI_FUNC_CTL for the pipe to work in HDMI mode */
	temp = TRANS_DDI_FUNC_ENABLE;
1018
	temp |= TRANS_DDI_SELECT_PORT(port);
1019

1020
	switch (intel_crtc->config.pipe_bpp) {
1021
	case 18:
1022
		temp |= TRANS_DDI_BPC_6;
1023 1024
		break;
	case 24:
1025
		temp |= TRANS_DDI_BPC_8;
1026 1027
		break;
	case 30:
1028
		temp |= TRANS_DDI_BPC_10;
1029 1030
		break;
	case 36:
1031
		temp |= TRANS_DDI_BPC_12;
1032 1033
		break;
	default:
1034
		BUG();
1035
	}
1036

1037
	if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_PVSYNC)
1038
		temp |= TRANS_DDI_PVSYNC;
1039
	if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_PHSYNC)
1040
		temp |= TRANS_DDI_PHSYNC;
1041

1042 1043 1044
	if (cpu_transcoder == TRANSCODER_EDP) {
		switch (pipe) {
		case PIPE_A:
1045 1046 1047 1048
			/* On Haswell, can only use the always-on power well for
			 * eDP when not using the panel fitter, and when not
			 * using motion blur mitigation (which we don't
			 * support). */
1049 1050 1051
			if (IS_HASWELL(dev) &&
			    (intel_crtc->config.pch_pfit.enabled ||
			     intel_crtc->config.pch_pfit.force_thru))
1052 1053 1054
				temp |= TRANS_DDI_EDP_INPUT_A_ONOFF;
			else
				temp |= TRANS_DDI_EDP_INPUT_A_ON;
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
			break;
		case PIPE_B:
			temp |= TRANS_DDI_EDP_INPUT_B_ONOFF;
			break;
		case PIPE_C:
			temp |= TRANS_DDI_EDP_INPUT_C_ONOFF;
			break;
		default:
			BUG();
			break;
		}
	}

1068
	if (type == INTEL_OUTPUT_HDMI) {
1069
		if (intel_crtc->config.has_hdmi_sink)
1070
			temp |= TRANS_DDI_MODE_SELECT_HDMI;
1071
		else
1072
			temp |= TRANS_DDI_MODE_SELECT_DVI;
1073

1074
	} else if (type == INTEL_OUTPUT_ANALOG) {
1075
		temp |= TRANS_DDI_MODE_SELECT_FDI;
1076
		temp |= (intel_crtc->config.fdi_lanes - 1) << 1;
1077 1078 1079 1080 1081

	} else if (type == INTEL_OUTPUT_DISPLAYPORT ||
		   type == INTEL_OUTPUT_EDP) {
		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);

1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
		if (intel_dp->is_mst) {
			temp |= TRANS_DDI_MODE_SELECT_DP_MST;
		} else
			temp |= TRANS_DDI_MODE_SELECT_DP_SST;

		temp |= DDI_PORT_WIDTH(intel_dp->lane_count);
	} else if (type == INTEL_OUTPUT_DP_MST) {
		struct intel_dp *intel_dp = &enc_to_mst(encoder)->primary->dp;

		if (intel_dp->is_mst) {
			temp |= TRANS_DDI_MODE_SELECT_DP_MST;
		} else
			temp |= TRANS_DDI_MODE_SELECT_DP_SST;
1095

1096
		temp |= DDI_PORT_WIDTH(intel_dp->lane_count);
1097
	} else {
1098 1099
		WARN(1, "Invalid encoder type %d for pipe %c\n",
		     intel_encoder->type, pipe_name(pipe));
1100 1101
	}

1102
	I915_WRITE(TRANS_DDI_FUNC_CTL(cpu_transcoder), temp);
1103
}
1104

1105 1106
void intel_ddi_disable_transcoder_func(struct drm_i915_private *dev_priv,
				       enum transcoder cpu_transcoder)
1107
{
1108
	uint32_t reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1109 1110
	uint32_t val = I915_READ(reg);

1111
	val &= ~(TRANS_DDI_FUNC_ENABLE | TRANS_DDI_PORT_MASK | TRANS_DDI_DP_VC_PAYLOAD_ALLOC);
1112
	val |= TRANS_DDI_PORT_NONE;
1113
	I915_WRITE(reg, val);
1114 1115
}

1116 1117 1118 1119 1120 1121 1122 1123 1124
bool intel_ddi_connector_get_hw_state(struct intel_connector *intel_connector)
{
	struct drm_device *dev = intel_connector->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_encoder *intel_encoder = intel_connector->encoder;
	int type = intel_connector->base.connector_type;
	enum port port = intel_ddi_get_encoder_port(intel_encoder);
	enum pipe pipe = 0;
	enum transcoder cpu_transcoder;
1125
	enum intel_display_power_domain power_domain;
1126 1127
	uint32_t tmp;

1128
	power_domain = intel_display_port_power_domain(intel_encoder);
1129
	if (!intel_display_power_is_enabled(dev_priv, power_domain))
1130 1131
		return false;

1132 1133 1134 1135 1136 1137
	if (!intel_encoder->get_hw_state(intel_encoder, &pipe))
		return false;

	if (port == PORT_A)
		cpu_transcoder = TRANSCODER_EDP;
	else
D
Daniel Vetter 已提交
1138
		cpu_transcoder = (enum transcoder) pipe;
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150

	tmp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));

	switch (tmp & TRANS_DDI_MODE_SELECT_MASK) {
	case TRANS_DDI_MODE_SELECT_HDMI:
	case TRANS_DDI_MODE_SELECT_DVI:
		return (type == DRM_MODE_CONNECTOR_HDMIA);

	case TRANS_DDI_MODE_SELECT_DP_SST:
		if (type == DRM_MODE_CONNECTOR_eDP)
			return true;
		return (type == DRM_MODE_CONNECTOR_DisplayPort);
1151 1152 1153 1154
	case TRANS_DDI_MODE_SELECT_DP_MST:
		/* if the transcoder is in MST state then
		 * connector isn't connected */
		return false;
1155 1156 1157 1158 1159 1160 1161 1162 1163

	case TRANS_DDI_MODE_SELECT_FDI:
		return (type == DRM_MODE_CONNECTOR_VGA);

	default:
		return false;
	}
}

1164 1165 1166 1167 1168
bool intel_ddi_get_hw_state(struct intel_encoder *encoder,
			    enum pipe *pipe)
{
	struct drm_device *dev = encoder->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
1169
	enum port port = intel_ddi_get_encoder_port(encoder);
1170
	enum intel_display_power_domain power_domain;
1171 1172 1173
	u32 tmp;
	int i;

1174
	power_domain = intel_display_port_power_domain(encoder);
1175
	if (!intel_display_power_is_enabled(dev_priv, power_domain))
1176 1177
		return false;

1178
	tmp = I915_READ(DDI_BUF_CTL(port));
1179 1180 1181 1182

	if (!(tmp & DDI_BUF_CTL_ENABLE))
		return false;

1183 1184
	if (port == PORT_A) {
		tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
1185

1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
		switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
		case TRANS_DDI_EDP_INPUT_A_ON:
		case TRANS_DDI_EDP_INPUT_A_ONOFF:
			*pipe = PIPE_A;
			break;
		case TRANS_DDI_EDP_INPUT_B_ONOFF:
			*pipe = PIPE_B;
			break;
		case TRANS_DDI_EDP_INPUT_C_ONOFF:
			*pipe = PIPE_C;
			break;
		}

		return true;
	} else {
		for (i = TRANSCODER_A; i <= TRANSCODER_C; i++) {
			tmp = I915_READ(TRANS_DDI_FUNC_CTL(i));

			if ((tmp & TRANS_DDI_PORT_MASK)
			    == TRANS_DDI_SELECT_PORT(port)) {
1206 1207 1208
				if ((tmp & TRANS_DDI_MODE_SELECT_MASK) == TRANS_DDI_MODE_SELECT_DP_MST)
					return false;

1209 1210 1211
				*pipe = i;
				return true;
			}
1212 1213 1214
		}
	}

1215
	DRM_DEBUG_KMS("No pipe for ddi port %c found\n", port_name(port));
1216

1217
	return false;
1218 1219
}

1220 1221 1222 1223 1224 1225
void intel_ddi_enable_pipe_clock(struct intel_crtc *intel_crtc)
{
	struct drm_crtc *crtc = &intel_crtc->base;
	struct drm_i915_private *dev_priv = crtc->dev->dev_private;
	struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
	enum port port = intel_ddi_get_encoder_port(intel_encoder);
1226
	enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
1227

1228 1229 1230
	if (cpu_transcoder != TRANSCODER_EDP)
		I915_WRITE(TRANS_CLK_SEL(cpu_transcoder),
			   TRANS_CLK_SEL_PORT(port));
1231 1232 1233 1234 1235
}

void intel_ddi_disable_pipe_clock(struct intel_crtc *intel_crtc)
{
	struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1236
	enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
1237

1238 1239 1240
	if (cpu_transcoder != TRANSCODER_EDP)
		I915_WRITE(TRANS_CLK_SEL(cpu_transcoder),
			   TRANS_CLK_SEL_DISABLED);
1241 1242
}

P
Paulo Zanoni 已提交
1243
static void intel_ddi_pre_enable(struct intel_encoder *intel_encoder)
1244
{
1245
	struct drm_encoder *encoder = &intel_encoder->base;
1246 1247
	struct drm_device *dev = encoder->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
1248
	struct intel_crtc *crtc = to_intel_crtc(encoder->crtc);
1249
	enum port port = intel_ddi_get_encoder_port(intel_encoder);
1250
	int type = intel_encoder->type;
1251

1252 1253
	if (type == INTEL_OUTPUT_EDP) {
		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1254
		intel_edp_panel_on(intel_dp);
1255
	}
1256

1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
	if (IS_SKYLAKE(dev)) {
		uint32_t dpll = crtc->config.ddi_pll_sel;
		uint32_t val;

		val = I915_READ(DPLL_CTRL2);

		val &= ~(DPLL_CTRL2_DDI_CLK_OFF(port) |
			DPLL_CTRL2_DDI_CLK_SEL_MASK(port));
		val |= (DPLL_CTRL2_DDI_CLK_SEL(dpll, port) |
			DPLL_CTRL2_DDI_SEL_OVERRIDE(port));

		I915_WRITE(DPLL_CTRL2, val);
	} else {
		WARN_ON(crtc->config.ddi_pll_sel == PORT_CLK_SEL_NONE);
		I915_WRITE(PORT_CLK_SEL(port), crtc->config.ddi_pll_sel);
	}
1273

1274
	if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) {
1275
		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1276

1277
		intel_ddi_init_dp_buf_reg(intel_encoder);
1278 1279 1280 1281

		intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
		intel_dp_start_link_train(intel_dp);
		intel_dp_complete_link_train(intel_dp);
1282 1283
		if (port != PORT_A)
			intel_dp_stop_link_train(intel_dp);
1284 1285 1286 1287 1288 1289
	} else if (type == INTEL_OUTPUT_HDMI) {
		struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);

		intel_hdmi->set_infoframes(encoder,
					   crtc->config.has_hdmi_sink,
					   &crtc->config.adjusted_mode);
1290
	}
1291 1292
}

P
Paulo Zanoni 已提交
1293
static void intel_ddi_post_disable(struct intel_encoder *intel_encoder)
1294 1295
{
	struct drm_encoder *encoder = &intel_encoder->base;
1296 1297
	struct drm_device *dev = encoder->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
1298
	enum port port = intel_ddi_get_encoder_port(intel_encoder);
1299
	int type = intel_encoder->type;
1300
	uint32_t val;
1301
	bool wait = false;
1302 1303 1304 1305 1306

	val = I915_READ(DDI_BUF_CTL(port));
	if (val & DDI_BUF_CTL_ENABLE) {
		val &= ~DDI_BUF_CTL_ENABLE;
		I915_WRITE(DDI_BUF_CTL(port), val);
1307
		wait = true;
1308
	}
1309

1310 1311 1312 1313 1314 1315 1316 1317
	val = I915_READ(DP_TP_CTL(port));
	val &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
	val |= DP_TP_CTL_LINK_TRAIN_PAT1;
	I915_WRITE(DP_TP_CTL(port), val);

	if (wait)
		intel_wait_ddi_buf_idle(dev_priv, port);

1318
	if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) {
1319
		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1320
		intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
1321
		intel_edp_panel_vdd_on(intel_dp);
1322
		intel_edp_panel_off(intel_dp);
1323 1324
	}

1325 1326 1327 1328 1329
	if (IS_SKYLAKE(dev))
		I915_WRITE(DPLL_CTRL2, (I915_READ(DPLL_CTRL2) |
					DPLL_CTRL2_DDI_CLK_OFF(port)));
	else
		I915_WRITE(PORT_CLK_SEL(port), PORT_CLK_SEL_NONE);
1330 1331
}

P
Paulo Zanoni 已提交
1332
static void intel_enable_ddi(struct intel_encoder *intel_encoder)
1333
{
1334
	struct drm_encoder *encoder = &intel_encoder->base;
1335 1336
	struct drm_crtc *crtc = encoder->crtc;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1337
	struct drm_device *dev = encoder->dev;
1338
	struct drm_i915_private *dev_priv = dev->dev_private;
1339 1340
	enum port port = intel_ddi_get_encoder_port(intel_encoder);
	int type = intel_encoder->type;
1341

1342
	if (type == INTEL_OUTPUT_HDMI) {
1343 1344 1345
		struct intel_digital_port *intel_dig_port =
			enc_to_dig_port(encoder);

1346 1347 1348 1349
		/* In HDMI/DVI mode, the port width, and swing/emphasis values
		 * are ignored so nothing special needs to be done besides
		 * enabling the port.
		 */
1350
		I915_WRITE(DDI_BUF_CTL(port),
1351 1352
			   intel_dig_port->saved_port_bits |
			   DDI_BUF_CTL_ENABLE);
1353 1354 1355
	} else if (type == INTEL_OUTPUT_EDP) {
		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);

1356 1357 1358
		if (port == PORT_A)
			intel_dp_stop_link_train(intel_dp);

1359
		intel_edp_backlight_on(intel_dp);
R
Rodrigo Vivi 已提交
1360
		intel_edp_psr_enable(intel_dp);
1361
	}
1362

1363
	if (intel_crtc->config.has_audio) {
1364
		intel_display_power_get(dev_priv, POWER_DOMAIN_AUDIO);
1365
		intel_audio_codec_enable(intel_encoder);
1366
	}
1367 1368
}

P
Paulo Zanoni 已提交
1369
static void intel_disable_ddi(struct intel_encoder *intel_encoder)
1370
{
1371
	struct drm_encoder *encoder = &intel_encoder->base;
1372 1373
	struct drm_crtc *crtc = encoder->crtc;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1374
	int type = intel_encoder->type;
1375 1376
	struct drm_device *dev = encoder->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
1377

1378
	if (intel_crtc->config.has_audio) {
1379
		intel_audio_codec_disable(intel_encoder);
1380 1381
		intel_display_power_put(dev_priv, POWER_DOMAIN_AUDIO);
	}
1382

1383 1384 1385
	if (type == INTEL_OUTPUT_EDP) {
		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);

R
Rodrigo Vivi 已提交
1386
		intel_edp_psr_disable(intel_dp);
1387
		intel_edp_backlight_off(intel_dp);
1388
	}
1389
}
P
Paulo Zanoni 已提交
1390

1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438
static int skl_get_cdclk_freq(struct drm_i915_private *dev_priv)
{
	uint32_t lcpll1 = I915_READ(LCPLL1_CTL);
	uint32_t cdctl = I915_READ(CDCLK_CTL);
	uint32_t linkrate;

	if (!(lcpll1 & LCPLL_PLL_ENABLE)) {
		WARN(1, "LCPLL1 not enabled\n");
		return 24000; /* 24MHz is the cd freq with NSSC ref */
	}

	if ((cdctl & CDCLK_FREQ_SEL_MASK) == CDCLK_FREQ_540)
		return 540000;

	linkrate = (I915_READ(DPLL_CTRL1) &
		    DPLL_CRTL1_LINK_RATE_MASK(SKL_DPLL0)) >> 1;

	if (linkrate == DPLL_CRTL1_LINK_RATE_2160 ||
	    linkrate == DPLL_CRTL1_LINK_RATE_1080) {
		/* vco 8640 */
		switch (cdctl & CDCLK_FREQ_SEL_MASK) {
		case CDCLK_FREQ_450_432:
			return 432000;
		case CDCLK_FREQ_337_308:
			return 308570;
		case CDCLK_FREQ_675_617:
			return 617140;
		default:
			WARN(1, "Unknown cd freq selection\n");
		}
	} else {
		/* vco 8100 */
		switch (cdctl & CDCLK_FREQ_SEL_MASK) {
		case CDCLK_FREQ_450_432:
			return 450000;
		case CDCLK_FREQ_337_308:
			return 337500;
		case CDCLK_FREQ_675_617:
			return 675000;
		default:
			WARN(1, "Unknown cd freq selection\n");
		}
	}

	/* error case, do as if DPLL0 isn't enabled */
	return 24000;
}

1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
static int bdw_get_cdclk_freq(struct drm_i915_private *dev_priv)
{
	uint32_t lcpll = I915_READ(LCPLL_CTL);
	uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;

	if (lcpll & LCPLL_CD_SOURCE_FCLK)
		return 800000;
	else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
		return 450000;
	else if (freq == LCPLL_CLK_FREQ_450)
		return 450000;
	else if (freq == LCPLL_CLK_FREQ_54O_BDW)
		return 540000;
	else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
		return 337500;
	else
		return 675000;
}

static int hsw_get_cdclk_freq(struct drm_i915_private *dev_priv)
P
Paulo Zanoni 已提交
1459
{
1460
	struct drm_device *dev = dev_priv->dev;
1461
	uint32_t lcpll = I915_READ(LCPLL_CTL);
1462
	uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
1463

1464
	if (lcpll & LCPLL_CD_SOURCE_FCLK)
1465
		return 800000;
1466
	else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
1467
		return 450000;
1468
	else if (freq == LCPLL_CLK_FREQ_450)
1469
		return 450000;
1470
	else if (IS_HSW_ULT(dev))
1471 1472 1473 1474 1475 1476 1477 1478 1479
		return 337500;
	else
		return 540000;
}

int intel_ddi_get_cdclk_freq(struct drm_i915_private *dev_priv)
{
	struct drm_device *dev = dev_priv->dev;

1480 1481 1482
	if (IS_SKYLAKE(dev))
		return skl_get_cdclk_freq(dev_priv);

1483 1484 1485 1486 1487
	if (IS_BROADWELL(dev))
		return bdw_get_cdclk_freq(dev_priv);

	/* Haswell */
	return hsw_get_cdclk_freq(dev_priv);
P
Paulo Zanoni 已提交
1488 1489
}

1490 1491 1492
static void hsw_ddi_pll_enable(struct drm_i915_private *dev_priv,
			       struct intel_shared_dpll *pll)
{
1493
	I915_WRITE(WRPLL_CTL(pll->id), pll->config.hw_state.wrpll);
1494 1495 1496 1497
	POSTING_READ(WRPLL_CTL(pll->id));
	udelay(20);
}

1498 1499 1500 1501 1502 1503 1504 1505 1506 1507
static void hsw_ddi_pll_disable(struct drm_i915_private *dev_priv,
				struct intel_shared_dpll *pll)
{
	uint32_t val;

	val = I915_READ(WRPLL_CTL(pll->id));
	I915_WRITE(WRPLL_CTL(pll->id), val & ~WRPLL_PLL_ENABLE);
	POSTING_READ(WRPLL_CTL(pll->id));
}

1508 1509 1510 1511 1512 1513
static bool hsw_ddi_pll_get_hw_state(struct drm_i915_private *dev_priv,
				     struct intel_shared_dpll *pll,
				     struct intel_dpll_hw_state *hw_state)
{
	uint32_t val;

1514
	if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
1515 1516 1517 1518 1519 1520 1521 1522
		return false;

	val = I915_READ(WRPLL_CTL(pll->id));
	hw_state->wrpll = val;

	return val & WRPLL_PLL_ENABLE;
}

1523
static const char * const hsw_ddi_pll_names[] = {
1524 1525 1526 1527
	"WRPLL 1",
	"WRPLL 2",
};

1528
static void hsw_shared_dplls_init(struct drm_i915_private *dev_priv)
P
Paulo Zanoni 已提交
1529
{
1530 1531
	int i;

1532
	dev_priv->num_shared_dpll = 2;
1533

1534
	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
1535 1536
		dev_priv->shared_dplls[i].id = i;
		dev_priv->shared_dplls[i].name = hsw_ddi_pll_names[i];
1537
		dev_priv->shared_dplls[i].disable = hsw_ddi_pll_disable;
1538
		dev_priv->shared_dplls[i].enable = hsw_ddi_pll_enable;
1539 1540
		dev_priv->shared_dplls[i].get_hw_state =
			hsw_ddi_pll_get_hw_state;
1541
	}
1542 1543
}

1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664
static const char * const skl_ddi_pll_names[] = {
	"DPLL 1",
	"DPLL 2",
	"DPLL 3",
};

struct skl_dpll_regs {
	u32 ctl, cfgcr1, cfgcr2;
};

/* this array is indexed by the *shared* pll id */
static const struct skl_dpll_regs skl_dpll_regs[3] = {
	{
		/* DPLL 1 */
		.ctl = LCPLL2_CTL,
		.cfgcr1 = DPLL1_CFGCR1,
		.cfgcr2 = DPLL1_CFGCR2,
	},
	{
		/* DPLL 2 */
		.ctl = WRPLL_CTL1,
		.cfgcr1 = DPLL2_CFGCR1,
		.cfgcr2 = DPLL2_CFGCR2,
	},
	{
		/* DPLL 3 */
		.ctl = WRPLL_CTL2,
		.cfgcr1 = DPLL3_CFGCR1,
		.cfgcr2 = DPLL3_CFGCR2,
	},
};

static void skl_ddi_pll_enable(struct drm_i915_private *dev_priv,
			       struct intel_shared_dpll *pll)
{
	uint32_t val;
	unsigned int dpll;
	const struct skl_dpll_regs *regs = skl_dpll_regs;

	/* DPLL0 is not part of the shared DPLLs, so pll->id is 0 for DPLL1 */
	dpll = pll->id + 1;

	val = I915_READ(DPLL_CTRL1);

	val &= ~(DPLL_CTRL1_HDMI_MODE(dpll) | DPLL_CTRL1_SSC(dpll) |
		 DPLL_CRTL1_LINK_RATE_MASK(dpll));
	val |= pll->config.hw_state.ctrl1 << (dpll * 6);

	I915_WRITE(DPLL_CTRL1, val);
	POSTING_READ(DPLL_CTRL1);

	I915_WRITE(regs[pll->id].cfgcr1, pll->config.hw_state.cfgcr1);
	I915_WRITE(regs[pll->id].cfgcr2, pll->config.hw_state.cfgcr2);
	POSTING_READ(regs[pll->id].cfgcr1);
	POSTING_READ(regs[pll->id].cfgcr2);

	/* the enable bit is always bit 31 */
	I915_WRITE(regs[pll->id].ctl,
		   I915_READ(regs[pll->id].ctl) | LCPLL_PLL_ENABLE);

	if (wait_for(I915_READ(DPLL_STATUS) & DPLL_LOCK(dpll), 5))
		DRM_ERROR("DPLL %d not locked\n", dpll);
}

static void skl_ddi_pll_disable(struct drm_i915_private *dev_priv,
				struct intel_shared_dpll *pll)
{
	const struct skl_dpll_regs *regs = skl_dpll_regs;

	/* the enable bit is always bit 31 */
	I915_WRITE(regs[pll->id].ctl,
		   I915_READ(regs[pll->id].ctl) & ~LCPLL_PLL_ENABLE);
	POSTING_READ(regs[pll->id].ctl);
}

static bool skl_ddi_pll_get_hw_state(struct drm_i915_private *dev_priv,
				     struct intel_shared_dpll *pll,
				     struct intel_dpll_hw_state *hw_state)
{
	uint32_t val;
	unsigned int dpll;
	const struct skl_dpll_regs *regs = skl_dpll_regs;

	if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
		return false;

	/* DPLL0 is not part of the shared DPLLs, so pll->id is 0 for DPLL1 */
	dpll = pll->id + 1;

	val = I915_READ(regs[pll->id].ctl);
	if (!(val & LCPLL_PLL_ENABLE))
		return false;

	val = I915_READ(DPLL_CTRL1);
	hw_state->ctrl1 = (val >> (dpll * 6)) & 0x3f;

	/* avoid reading back stale values if HDMI mode is not enabled */
	if (val & DPLL_CTRL1_HDMI_MODE(dpll)) {
		hw_state->cfgcr1 = I915_READ(regs[pll->id].cfgcr1);
		hw_state->cfgcr2 = I915_READ(regs[pll->id].cfgcr2);
	}

	return true;
}

static void skl_shared_dplls_init(struct drm_i915_private *dev_priv)
{
	int i;

	dev_priv->num_shared_dpll = 3;

	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
		dev_priv->shared_dplls[i].id = i;
		dev_priv->shared_dplls[i].name = skl_ddi_pll_names[i];
		dev_priv->shared_dplls[i].disable = skl_ddi_pll_disable;
		dev_priv->shared_dplls[i].enable = skl_ddi_pll_enable;
		dev_priv->shared_dplls[i].get_hw_state =
			skl_ddi_pll_get_hw_state;
	}
}

1665 1666 1667 1668 1669
void intel_ddi_pll_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t val = I915_READ(LCPLL_CTL);

1670 1671 1672 1673
	if (IS_SKYLAKE(dev))
		skl_shared_dplls_init(dev_priv);
	else
		hsw_shared_dplls_init(dev_priv);
P
Paulo Zanoni 已提交
1674

1675
	DRM_DEBUG_KMS("CDCLK running at %dKHz\n",
P
Paulo Zanoni 已提交
1676 1677
		      intel_ddi_get_cdclk_freq(dev_priv));

1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689
	if (IS_SKYLAKE(dev)) {
		if (!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_ENABLE))
			DRM_ERROR("LCPLL1 is disabled\n");
	} else {
		/*
		 * The LCPLL register should be turned on by the BIOS. For now
		 * let's just check its state and print errors in case
		 * something is wrong.  Don't even try to turn it on.
		 */

		if (val & LCPLL_CD_SOURCE_FCLK)
			DRM_ERROR("CDCLK source is not LCPLL\n");
P
Paulo Zanoni 已提交
1690

1691 1692 1693
		if (val & LCPLL_PLL_DISABLE)
			DRM_ERROR("LCPLL is disabled\n");
	}
P
Paulo Zanoni 已提交
1694
}
1695 1696 1697

void intel_ddi_prepare_link_retrain(struct drm_encoder *encoder)
{
1698 1699
	struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
	struct intel_dp *intel_dp = &intel_dig_port->dp;
1700
	struct drm_i915_private *dev_priv = encoder->dev->dev_private;
1701
	enum port port = intel_dig_port->port;
1702
	uint32_t val;
1703
	bool wait = false;
1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722

	if (I915_READ(DP_TP_CTL(port)) & DP_TP_CTL_ENABLE) {
		val = I915_READ(DDI_BUF_CTL(port));
		if (val & DDI_BUF_CTL_ENABLE) {
			val &= ~DDI_BUF_CTL_ENABLE;
			I915_WRITE(DDI_BUF_CTL(port), val);
			wait = true;
		}

		val = I915_READ(DP_TP_CTL(port));
		val &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
		val |= DP_TP_CTL_LINK_TRAIN_PAT1;
		I915_WRITE(DP_TP_CTL(port), val);
		POSTING_READ(DP_TP_CTL(port));

		if (wait)
			intel_wait_ddi_buf_idle(dev_priv, port);
	}

1723
	val = DP_TP_CTL_ENABLE |
1724
	      DP_TP_CTL_LINK_TRAIN_PAT1 | DP_TP_CTL_SCRAMBLE_DISABLE;
1725 1726 1727 1728 1729 1730 1731
	if (intel_dp->is_mst)
		val |= DP_TP_CTL_MODE_MST;
	else {
		val |= DP_TP_CTL_MODE_SST;
		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
			val |= DP_TP_CTL_ENHANCED_FRAME_ENABLE;
	}
1732 1733 1734 1735 1736 1737 1738 1739 1740
	I915_WRITE(DP_TP_CTL(port), val);
	POSTING_READ(DP_TP_CTL(port));

	intel_dp->DP |= DDI_BUF_CTL_ENABLE;
	I915_WRITE(DDI_BUF_CTL(port), intel_dp->DP);
	POSTING_READ(DDI_BUF_CTL(port));

	udelay(600);
}
P
Paulo Zanoni 已提交
1741

1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767
void intel_ddi_fdi_disable(struct drm_crtc *crtc)
{
	struct drm_i915_private *dev_priv = crtc->dev->dev_private;
	struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
	uint32_t val;

	intel_ddi_post_disable(intel_encoder);

	val = I915_READ(_FDI_RXA_CTL);
	val &= ~FDI_RX_ENABLE;
	I915_WRITE(_FDI_RXA_CTL, val);

	val = I915_READ(_FDI_RXA_MISC);
	val &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
	val |= FDI_RX_PWRDN_LANE1_VAL(2) | FDI_RX_PWRDN_LANE0_VAL(2);
	I915_WRITE(_FDI_RXA_MISC, val);

	val = I915_READ(_FDI_RXA_CTL);
	val &= ~FDI_PCDCLK;
	I915_WRITE(_FDI_RXA_CTL, val);

	val = I915_READ(_FDI_RXA_CTL);
	val &= ~FDI_RX_PLL_ENABLE;
	I915_WRITE(_FDI_RXA_CTL, val);
}

P
Paulo Zanoni 已提交
1768 1769
static void intel_ddi_hot_plug(struct intel_encoder *intel_encoder)
{
1770 1771 1772 1773 1774 1775 1776 1777
	struct intel_digital_port *intel_dig_port = enc_to_dig_port(&intel_encoder->base);
	int type = intel_dig_port->base.type;

	if (type != INTEL_OUTPUT_DISPLAYPORT &&
	    type != INTEL_OUTPUT_EDP &&
	    type != INTEL_OUTPUT_UNKNOWN) {
		return;
	}
P
Paulo Zanoni 已提交
1778

1779
	intel_dp_hot_plug(intel_encoder);
P
Paulo Zanoni 已提交
1780 1781
}

1782 1783
void intel_ddi_get_config(struct intel_encoder *encoder,
			  struct intel_crtc_config *pipe_config)
1784 1785 1786 1787 1788
{
	struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
	struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
	enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
	u32 temp, flags = 0;
1789
	struct drm_device *dev = dev_priv->dev;
1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801

	temp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
	if (temp & TRANS_DDI_PHSYNC)
		flags |= DRM_MODE_FLAG_PHSYNC;
	else
		flags |= DRM_MODE_FLAG_NHSYNC;
	if (temp & TRANS_DDI_PVSYNC)
		flags |= DRM_MODE_FLAG_PVSYNC;
	else
		flags |= DRM_MODE_FLAG_NVSYNC;

	pipe_config->adjusted_mode.flags |= flags;
1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818

	switch (temp & TRANS_DDI_BPC_MASK) {
	case TRANS_DDI_BPC_6:
		pipe_config->pipe_bpp = 18;
		break;
	case TRANS_DDI_BPC_8:
		pipe_config->pipe_bpp = 24;
		break;
	case TRANS_DDI_BPC_10:
		pipe_config->pipe_bpp = 30;
		break;
	case TRANS_DDI_BPC_12:
		pipe_config->pipe_bpp = 36;
		break;
	default:
		break;
	}
1819 1820 1821

	switch (temp & TRANS_DDI_MODE_SELECT_MASK) {
	case TRANS_DDI_MODE_SELECT_HDMI:
1822
		pipe_config->has_hdmi_sink = true;
1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833
	case TRANS_DDI_MODE_SELECT_DVI:
	case TRANS_DDI_MODE_SELECT_FDI:
		break;
	case TRANS_DDI_MODE_SELECT_DP_SST:
	case TRANS_DDI_MODE_SELECT_DP_MST:
		pipe_config->has_dp_encoder = true;
		intel_dp_get_m_n(intel_crtc, pipe_config);
		break;
	default:
		break;
	}
1834

1835
	if (intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_AUDIO)) {
1836
		temp = I915_READ(HSW_AUD_PIN_ELD_CP_VLD);
1837
		if (temp & AUDIO_OUTPUT_ENABLE(intel_crtc->pipe))
1838 1839
			pipe_config->has_audio = true;
	}
1840

1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859
	if (encoder->type == INTEL_OUTPUT_EDP && dev_priv->vbt.edp_bpp &&
	    pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) {
		/*
		 * This is a big fat ugly hack.
		 *
		 * Some machines in UEFI boot mode provide us a VBT that has 18
		 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
		 * unknown we fail to light up. Yet the same BIOS boots up with
		 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
		 * max, not what it tells us to use.
		 *
		 * Note: This will still be broken if the eDP panel is not lit
		 * up by the BIOS, and thus we can't get the mode at module
		 * load.
		 */
		DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
			      pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp);
		dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp;
	}
1860

1861 1862 1863 1864
	if (INTEL_INFO(dev)->gen <= 8)
		hsw_ddi_clock_get(encoder, pipe_config);
	else
		skl_ddi_clock_get(encoder, pipe_config);
1865 1866
}

P
Paulo Zanoni 已提交
1867 1868 1869 1870 1871 1872
static void intel_ddi_destroy(struct drm_encoder *encoder)
{
	/* HDMI has nothing special to destroy, so we can go with this. */
	intel_dp_encoder_destroy(encoder);
}

1873 1874
static bool intel_ddi_compute_config(struct intel_encoder *encoder,
				     struct intel_crtc_config *pipe_config)
P
Paulo Zanoni 已提交
1875
{
1876
	int type = encoder->type;
1877
	int port = intel_ddi_get_encoder_port(encoder);
P
Paulo Zanoni 已提交
1878

1879
	WARN(type == INTEL_OUTPUT_UNKNOWN, "compute_config() on unknown output!\n");
P
Paulo Zanoni 已提交
1880

1881 1882 1883
	if (port == PORT_A)
		pipe_config->cpu_transcoder = TRANSCODER_EDP;

P
Paulo Zanoni 已提交
1884
	if (type == INTEL_OUTPUT_HDMI)
1885
		return intel_hdmi_compute_config(encoder, pipe_config);
P
Paulo Zanoni 已提交
1886
	else
1887
		return intel_dp_compute_config(encoder, pipe_config);
P
Paulo Zanoni 已提交
1888 1889 1890 1891 1892 1893
}

static const struct drm_encoder_funcs intel_ddi_funcs = {
	.destroy = intel_ddi_destroy,
};

1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928
static struct intel_connector *
intel_ddi_init_dp_connector(struct intel_digital_port *intel_dig_port)
{
	struct intel_connector *connector;
	enum port port = intel_dig_port->port;

	connector = kzalloc(sizeof(*connector), GFP_KERNEL);
	if (!connector)
		return NULL;

	intel_dig_port->dp.output_reg = DDI_BUF_CTL(port);
	if (!intel_dp_init_connector(intel_dig_port, connector)) {
		kfree(connector);
		return NULL;
	}

	return connector;
}

static struct intel_connector *
intel_ddi_init_hdmi_connector(struct intel_digital_port *intel_dig_port)
{
	struct intel_connector *connector;
	enum port port = intel_dig_port->port;

	connector = kzalloc(sizeof(*connector), GFP_KERNEL);
	if (!connector)
		return NULL;

	intel_dig_port->hdmi.hdmi_reg = DDI_BUF_CTL(port);
	intel_hdmi_init_connector(intel_dig_port, connector);

	return connector;
}

P
Paulo Zanoni 已提交
1929 1930
void intel_ddi_init(struct drm_device *dev, enum port port)
{
1931
	struct drm_i915_private *dev_priv = dev->dev_private;
P
Paulo Zanoni 已提交
1932 1933 1934
	struct intel_digital_port *intel_dig_port;
	struct intel_encoder *intel_encoder;
	struct drm_encoder *encoder;
1935 1936 1937 1938 1939 1940
	bool init_hdmi, init_dp;

	init_hdmi = (dev_priv->vbt.ddi_port_info[port].supports_dvi ||
		     dev_priv->vbt.ddi_port_info[port].supports_hdmi);
	init_dp = dev_priv->vbt.ddi_port_info[port].supports_dp;
	if (!init_dp && !init_hdmi) {
1941
		DRM_DEBUG_KMS("VBT says port %c is not DVI/HDMI/DP compatible, assuming it is\n",
1942 1943 1944 1945
			      port_name(port));
		init_hdmi = true;
		init_dp = true;
	}
P
Paulo Zanoni 已提交
1946

1947
	intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
P
Paulo Zanoni 已提交
1948 1949 1950 1951 1952 1953 1954 1955 1956
	if (!intel_dig_port)
		return;

	intel_encoder = &intel_dig_port->base;
	encoder = &intel_encoder->base;

	drm_encoder_init(dev, encoder, &intel_ddi_funcs,
			 DRM_MODE_ENCODER_TMDS);

1957
	intel_encoder->compute_config = intel_ddi_compute_config;
P
Paulo Zanoni 已提交
1958 1959 1960 1961 1962
	intel_encoder->enable = intel_enable_ddi;
	intel_encoder->pre_enable = intel_ddi_pre_enable;
	intel_encoder->disable = intel_disable_ddi;
	intel_encoder->post_disable = intel_ddi_post_disable;
	intel_encoder->get_hw_state = intel_ddi_get_hw_state;
1963
	intel_encoder->get_config = intel_ddi_get_config;
P
Paulo Zanoni 已提交
1964 1965

	intel_dig_port->port = port;
1966 1967 1968
	intel_dig_port->saved_port_bits = I915_READ(DDI_BUF_CTL(port)) &
					  (DDI_BUF_PORT_REVERSAL |
					   DDI_A_4_LANES);
P
Paulo Zanoni 已提交
1969 1970

	intel_encoder->type = INTEL_OUTPUT_UNKNOWN;
1971
	intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
1972
	intel_encoder->cloneable = 0;
P
Paulo Zanoni 已提交
1973 1974
	intel_encoder->hot_plug = intel_ddi_hot_plug;

1975 1976 1977
	if (init_dp) {
		if (!intel_ddi_init_dp_connector(intel_dig_port))
			goto err;
1978

1979 1980 1981
		intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
		dev_priv->hpd_irq_port[port] = intel_dig_port;
	}
1982

1983 1984
	/* In theory we don't need the encoder->type check, but leave it just in
	 * case we have some really bad VBTs... */
1985 1986 1987
	if (intel_encoder->type != INTEL_OUTPUT_EDP && init_hdmi) {
		if (!intel_ddi_init_hdmi_connector(intel_dig_port))
			goto err;
1988
	}
1989 1990 1991 1992 1993 1994

	return;

err:
	drm_encoder_cleanup(encoder);
	kfree(intel_dig_port);
P
Paulo Zanoni 已提交
1995
}