uv_hub.h 21.9 KB
Newer Older
1 2 3 4 5 6 7
/*
 * This file is subject to the terms and conditions of the GNU General Public
 * License.  See the file "COPYING" in the main directory of this archive
 * for more details.
 *
 * SGI UV architectural definitions
 *
8
 * Copyright (C) 2007-2014 Silicon Graphics, Inc. All rights reserved.
9 10
 */

11 12
#ifndef _ASM_X86_UV_UV_HUB_H
#define _ASM_X86_UV_UV_HUB_H
13

14
#ifdef CONFIG_X86_64
15 16
#include <linux/numa.h>
#include <linux/percpu.h>
17
#include <linux/timer.h>
18
#include <linux/io.h>
19
#include <linux/topology.h>
20 21
#include <asm/types.h>
#include <asm/percpu.h>
22
#include <asm/uv/uv_mmrs.h>
23 24
#include <asm/irq_vectors.h>
#include <asm/io_apic.h>
25 26 27 28 29


/*
 * Addressing Terminology
 *
30 31 32 33
 *	M       - The low M bits of a physical address represent the offset
 *		  into the blade local memory. RAM memory on a blade is physically
 *		  contiguous (although various IO spaces may punch holes in
 *		  it)..
34
 *
35 36
 *	N	- Number of bits in the node portion of a socket physical
 *		  address.
37
 *
38 39 40 41 42
 *	NASID   - network ID of a router, Mbrick or Cbrick. Nasid values of
 *		  routers always have low bit of 1, C/MBricks have low bit
 *		  equal to 0. Most addressing macros that target UV hub chips
 *		  right shift the NASID by 1 to exclude the always-zero bit.
 *		  NASIDs contain up to 15 bits.
43 44 45 46
 *
 *	GNODE   - NASID right shifted by 1 bit. Most mmrs contain gnodes instead
 *		  of nasids.
 *
47 48
 *	PNODE   - the low N bits of the GNODE. The PNODE is the most useful variant
 *		  of the nasid for socket usage.
49
 *
50 51 52 53 54 55 56
 *	GPA	- (global physical address) a socket physical address converted
 *		  so that it can be used by the GRU as a global address. Socket
 *		  physical addresses 1) need additional NASID (node) bits added
 *		  to the high end of the address, and 2) unaliased if the
 *		  partition does not have a physical address 0. In addition, on
 *		  UV2 rev 1, GPAs need the gnode left shifted to bits 39 or 40.
 *
57 58 59 60 61 62 63 64
 *
 *  NumaLink Global Physical Address Format:
 *  +--------------------------------+---------------------+
 *  |00..000|      GNODE             |      NodeOffset     |
 *  +--------------------------------+---------------------+
 *          |<-------53 - M bits --->|<--------M bits ----->
 *
 *	M - number of node offset bits (35 .. 40)
65 66 67
 *
 *
 *  Memory/UV-HUB Processor Socket Address Format:
68 69 70 71
 *  +----------------+---------------+---------------------+
 *  |00..000000000000|   PNODE       |      NodeOffset     |
 *  +----------------+---------------+---------------------+
 *                   <--- N bits --->|<--------M bits ----->
72
 *
73 74
 *	M - number of node offset bits (35 .. 40)
 *	N - number of PNODE bits (0 .. 10)
75 76 77
 *
 *		Note: M + N cannot currently exceed 44 (x86_64) or 46 (IA64).
 *		The actual values are configuration dependent and are set at
78 79
 *		boot time. M & N values are set by the hardware/BIOS at boot.
 *
80 81
 *
 * APICID format
82 83 84
 *	NOTE!!!!!! This is the current format of the APICID. However, code
 *	should assume that this will change in the future. Use functions
 *	in this file for all APICID bit manipulations and conversion.
85
 *
86 87
 *		1111110000000000
 *		5432109876543210
88 89 90
 *		pppppppppplc0cch	Nehalem-EX (12 bits in hdw reg)
 *		ppppppppplcc0cch	Westmere-EX (12 bits in hdw reg)
 *		pppppppppppcccch	SandyBridge (15 bits in hdw reg)
91 92
 *		sssssssssss
 *
93
 *			p  = pnode bits
94 95 96
 *			l =  socket number on board
 *			c  = core
 *			h  = hyperthread
97
 *			s  = bits that are in the SOCKET_ID CSR
98
 *
99
 *	Note: Processor may support fewer bits in the APICID register. The ACPI
100 101
 *	      tables hold all 16 bits. Software needs to be aware of this.
 *
102 103 104
 *	      Unless otherwise specified, all references to APICID refer to
 *	      the FULL value contained in ACPI tables, not the subset in the
 *	      processor APICID register.
105 106 107 108 109 110 111 112 113 114 115
 */


/*
 * Maximum number of bricks in all partitions and in all coherency domains.
 * This is the total number of bricks accessible in the numalink fabric. It
 * includes all C & M bricks. Routers are NOT included.
 *
 * This value is also the value of the maximum number of non-router NASIDs
 * in the numalink fabric.
 *
116
 * NOTE: a brick may contain 1 or 2 OS nodes. Don't get these confused.
117 118 119 120 121 122 123 124 125 126 127 128
 */
#define UV_MAX_NUMALINK_BLADES	16384

/*
 * Maximum number of C/Mbricks within a software SSI (hardware may support
 * more).
 */
#define UV_MAX_SSI_BLADES	256

/*
 * The largest possible NASID of a C or M brick (+ 2)
 */
129
#define UV_MAX_NASID_VALUE	(UV_MAX_NUMALINK_BLADES * 2)
130

131
/* System Controller Interface Reg info */
132 133 134 135 136 137 138 139 140 141
struct uv_scir_s {
	struct timer_list timer;
	unsigned long	offset;
	unsigned long	last;
	unsigned long	idle_on;
	unsigned long	idle_off;
	unsigned char	state;
	unsigned char	enabled;
};

142 143
/*
 * The following defines attributes of the HUB chip. These attributes are
144 145 146
 * frequently referenced and are kept in a common per hub struct.
 * After setup, the struct is read only, so it should be readily
 * available in the L3 cache on the cpu socket for the node.
147 148
 */
struct uv_hub_info_s {
149 150
	unsigned long		global_mmr_base;
	unsigned long		gpa_mask;
151
	unsigned int		gnode_extra;
152 153
	unsigned char		hub_revision;
	unsigned char		apic_pnode_shift;
154 155
	unsigned char		m_shift;
	unsigned char		n_lshift;
156 157 158 159 160 161 162 163 164
	unsigned long		gnode_upper;
	unsigned long		lowmem_remap_top;
	unsigned long		lowmem_remap_base;
	unsigned short		pnode;
	unsigned short		pnode_mask;
	unsigned short		coherency_domain_number;
	unsigned short		numa_blade_id;
	unsigned char		m_val;
	unsigned char		n_val;
165 166 167
	unsigned short		nr_possible_cpus;
	unsigned short		nr_online_cpus;
	short			memory_nid;
168
};
169

170 171 172 173 174 175 176 177 178 179 180
/* CPU specific info with a pointer to the hub common info struct */
struct uv_cpu_info_s {
	void			*p_uv_hub_info;
	unsigned char		blade_cpu_id;
	struct uv_scir_s	scir;
};
DECLARE_PER_CPU(struct uv_cpu_info_s, __uv_cpu_info);

#define uv_cpu_info		this_cpu_ptr(&__uv_cpu_info)
#define uv_cpu_info_per(cpu)	(&per_cpu(__uv_cpu_info, cpu))

181 182 183
#define	uv_scir_info		(&uv_cpu_info->scir)
#define	uv_cpu_scir_info(cpu)	(&uv_cpu_info_per(cpu)->scir)

184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
/* Node specific hub common info struct */
extern void **__uv_hub_info_list;
static inline struct uv_hub_info_s *uv_hub_info_list(int node)
{
	return (struct uv_hub_info_s *)__uv_hub_info_list[node];
}

static inline struct uv_hub_info_s *_uv_hub_info(void)
{
	return (struct uv_hub_info_s *)uv_cpu_info->p_uv_hub_info;
}
#define	uv_hub_info	_uv_hub_info()

static inline struct uv_hub_info_s *uv_cpu_hub_info(int cpu)
{
	return (struct uv_hub_info_s *)uv_cpu_info_per(cpu)->p_uv_hub_info;
}

#define	UV_HUB_INFO_VERSION	0x7150
extern int uv_hub_info_version(void);
static inline int uv_hub_info_check(int version)
{
	if (uv_hub_info_version() == version)
		return 0;

	pr_crit("UV: uv_hub_info version(%x) mismatch, expecting(%x)\n",
		uv_hub_info_version(), version);

	BUG();	/* Catastrophic - cannot continue on unknown UV system */
}
#define	_uv_hub_info_check()	uv_hub_info_check(UV_HUB_INFO_VERSION)

216
/*
217
 * HUB revision ranges for each UV HUB architecture.
218 219 220 221 222
 * This is a software convention - NOT the hardware revision numbers in
 * the hub chip.
 */
#define UV1_HUB_REVISION_BASE		1
#define UV2_HUB_REVISION_BASE		3
223
#define UV3_HUB_REVISION_BASE		5
224
#define UV4_HUB_REVISION_BASE		7
225

226
#ifdef	UV1_HUB_IS_SUPPORTED
227 228 229 230
static inline int is_uv1_hub(void)
{
	return uv_hub_info->hub_revision < UV2_HUB_REVISION_BASE;
}
231 232 233 234 235 236
#else
static inline int is_uv1_hub(void)
{
	return 0;
}
#endif
237

238
#ifdef	UV2_HUB_IS_SUPPORTED
239
static inline int is_uv2_hub(void)
240 241 242 243
{
	return ((uv_hub_info->hub_revision >= UV2_HUB_REVISION_BASE) &&
		(uv_hub_info->hub_revision < UV3_HUB_REVISION_BASE));
}
244 245 246 247 248 249
#else
static inline int is_uv2_hub(void)
{
	return 0;
}
#endif
250

251
#ifdef	UV3_HUB_IS_SUPPORTED
252 253
static inline int is_uv3_hub(void)
{
254 255
	return ((uv_hub_info->hub_revision >= UV3_HUB_REVISION_BASE) &&
		(uv_hub_info->hub_revision < UV4_HUB_REVISION_BASE));
256
}
257 258 259 260 261 262
#else
static inline int is_uv3_hub(void)
{
	return 0;
}
#endif
263

264 265 266 267 268 269 270 271 272 273 274 275
#ifdef	UV4_HUB_IS_SUPPORTED
static inline int is_uv4_hub(void)
{
	return uv_hub_info->hub_revision >= UV4_HUB_REVISION_BASE;
}
#else
static inline int is_uv4_hub(void)
{
	return 0;
}
#endif

276
static inline int is_uvx_hub(void)
277
{
278 279 280 281
	if (uv_hub_info->hub_revision >= UV2_HUB_REVISION_BASE)
		return uv_hub_info->hub_revision;

	return 0;
282 283
}

284
static inline int is_uv_hub(void)
285
{
286 287 288 289
#ifdef	UV1_HUB_IS_SUPPORTED
	return uv_hub_info->hub_revision;
#endif
	return is_uvx_hub();
290 291
}

292 293 294 295 296 297 298 299 300 301 302 303
union uvh_apicid {
    unsigned long       v;
    struct uvh_apicid_s {
        unsigned long   local_apic_mask  : 24;
        unsigned long   local_apic_shift :  5;
        unsigned long   unused1          :  3;
        unsigned long   pnode_mask       : 24;
        unsigned long   pnode_shift      :  5;
        unsigned long   unused2          :  3;
    } s;
};

304 305
/*
 * Local & Global MMR space macros.
306 307 308 309 310
 *	Note: macros are intended to be used ONLY by inline functions
 *	in this file - not by other kernel code.
 *		n -  NASID (full 15-bit global nasid)
 *		g -  GNODE (full 15-bit global nasid, right shifted 1)
 *		p -  PNODE (local part of nsids, right shifted 1)
311
 */
312
#define UV_NASID_TO_PNODE(n)		(((n) >> 1) & uv_hub_info->pnode_mask)
313 314
#define UV_PNODE_TO_GNODE(p)		((p) |uv_hub_info->gnode_extra)
#define UV_PNODE_TO_NASID(p)		(UV_PNODE_TO_GNODE(p) << 1)
315

316 317 318 319 320 321 322 323 324 325
#define UV1_LOCAL_MMR_BASE		0xf4000000UL
#define UV1_GLOBAL_MMR32_BASE		0xf8000000UL
#define UV1_LOCAL_MMR_SIZE		(64UL * 1024 * 1024)
#define UV1_GLOBAL_MMR32_SIZE		(64UL * 1024 * 1024)

#define UV2_LOCAL_MMR_BASE		0xfa000000UL
#define UV2_GLOBAL_MMR32_BASE		0xfc000000UL
#define UV2_LOCAL_MMR_SIZE		(32UL * 1024 * 1024)
#define UV2_GLOBAL_MMR32_SIZE		(32UL * 1024 * 1024)

326 327 328 329 330
#define UV3_LOCAL_MMR_BASE		0xfa000000UL
#define UV3_GLOBAL_MMR32_BASE		0xfc000000UL
#define UV3_LOCAL_MMR_SIZE		(32UL * 1024 * 1024)
#define UV3_GLOBAL_MMR32_SIZE		(32UL * 1024 * 1024)

331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
#define UV4_LOCAL_MMR_BASE		0xfa000000UL
#define UV4_GLOBAL_MMR32_BASE		0xfc000000UL
#define UV4_LOCAL_MMR_SIZE		(32UL * 1024 * 1024)
#define UV4_GLOBAL_MMR32_SIZE		(16UL * 1024 * 1024)

#define UV_LOCAL_MMR_BASE		(				\
					is_uv1_hub() ? UV1_LOCAL_MMR_BASE : \
					is_uv2_hub() ? UV2_LOCAL_MMR_BASE : \
					is_uv3_hub() ? UV3_LOCAL_MMR_BASE : \
					/*is_uv4_hub*/ UV4_LOCAL_MMR_BASE)

#define UV_GLOBAL_MMR32_BASE		(				\
					is_uv1_hub() ? UV1_GLOBAL_MMR32_BASE : \
					is_uv2_hub() ? UV2_GLOBAL_MMR32_BASE : \
					is_uv3_hub() ? UV3_GLOBAL_MMR32_BASE : \
					/*is_uv4_hub*/ UV4_GLOBAL_MMR32_BASE)

#define UV_LOCAL_MMR_SIZE		(				\
					is_uv1_hub() ? UV1_LOCAL_MMR_SIZE : \
					is_uv2_hub() ? UV2_LOCAL_MMR_SIZE : \
					is_uv3_hub() ? UV3_LOCAL_MMR_SIZE : \
					/*is_uv4_hub*/ UV4_LOCAL_MMR_SIZE)

#define UV_GLOBAL_MMR32_SIZE		(				\
					is_uv1_hub() ? UV1_GLOBAL_MMR32_SIZE : \
					is_uv2_hub() ? UV2_GLOBAL_MMR32_SIZE : \
					is_uv3_hub() ? UV3_GLOBAL_MMR32_SIZE : \
					/*is_uv4_hub*/ UV4_GLOBAL_MMR32_SIZE)

360 361
#define UV_GLOBAL_MMR64_BASE		(uv_hub_info->global_mmr_base)

362 363
#define UV_GLOBAL_GRU_MMR_BASE		0x4000000

364 365
#define UV_GLOBAL_MMR32_PNODE_SHIFT	15
#define UV_GLOBAL_MMR64_PNODE_SHIFT	26
366

367
#define UV_GLOBAL_MMR32_PNODE_BITS(p)	((p) << (UV_GLOBAL_MMR32_PNODE_SHIFT))
368

369
#define UV_GLOBAL_MMR64_PNODE_BITS(p)					\
370
	(((unsigned long)(p)) << UV_GLOBAL_MMR64_PNODE_SHIFT)
371

372
#define UVH_APICID		0x002D0E00L
373 374
#define UV_APIC_PNODE_SHIFT	6

375 376
#define UV_APICID_HIBIT_MASK	0xffff0000

377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
/* Local Bus from cpu's perspective */
#define LOCAL_BUS_BASE		0x1c00000
#define LOCAL_BUS_SIZE		(4 * 1024 * 1024)

/*
 * System Controller Interface Reg
 *
 * Note there are NO leds on a UV system.  This register is only
 * used by the system controller to monitor system-wide operation.
 * There are 64 regs per node.  With Nahelem cpus (2 cores per node,
 * 8 cpus per core, 2 threads per cpu) there are 32 cpu threads on
 * a node.
 *
 * The window is located at top of ACPI MMR space
 */
#define SCIR_WINDOW_COUNT	64
#define SCIR_LOCAL_MMR_BASE	(LOCAL_BUS_BASE + \
				 LOCAL_BUS_SIZE - \
				 SCIR_WINDOW_COUNT)

#define SCIR_CPU_HEARTBEAT	0x01	/* timer interrupt */
#define SCIR_CPU_ACTIVITY	0x02	/* not idle */
#define SCIR_CPU_HB_INTERVAL	(HZ)	/* once per second */

401 402 403 404
/* Loop through all installed blades */
#define for_each_possible_blade(bid)		\
	for ((bid) = 0; (bid) < uv_num_possible_blades(); (bid)++)

405 406 407
/*
 * Macros for converting between kernel virtual addresses, socket local physical
 * addresses, and UV global physical addresses.
408 409
 *	Note: use the standard __pa() & __va() macros for converting
 *	      between socket virtual and socket physical addresses.
410 411 412 413 414 415
 */

/* socket phys RAM --> UV global physical address */
static inline unsigned long uv_soc_phys_ram_to_gpa(unsigned long paddr)
{
	if (paddr < uv_hub_info->lowmem_remap_top)
416
		paddr |= uv_hub_info->lowmem_remap_base;
417 418 419 420
	paddr |= uv_hub_info->gnode_upper;
	paddr = ((paddr << uv_hub_info->m_shift) >> uv_hub_info->m_shift) |
		((paddr >> uv_hub_info->m_val) << uv_hub_info->n_lshift);
	return paddr;
421 422 423 424 425 426
}


/* socket virtual --> UV global physical address */
static inline unsigned long uv_gpa(void *v)
{
427
	return uv_soc_phys_ram_to_gpa(__pa(v));
428
}
429

R
Robin Holt 已提交
430 431 432 433 434 435 436
/* Top two bits indicate the requested address is in MMR space.  */
static inline int
uv_gpa_in_mmr_space(unsigned long gpa)
{
	return (gpa >> 62) == 0x3UL;
}

437 438 439
/* UV global physical address --> socket phys RAM */
static inline unsigned long uv_gpa_to_soc_phys_ram(unsigned long gpa)
{
440
	unsigned long paddr;
441 442 443
	unsigned long remap_base = uv_hub_info->lowmem_remap_base;
	unsigned long remap_top =  uv_hub_info->lowmem_remap_top;

444 445
	gpa = ((gpa << uv_hub_info->m_shift) >> uv_hub_info->m_shift) |
		((gpa >> uv_hub_info->n_lshift) << uv_hub_info->m_val);
446
	paddr = gpa & uv_hub_info->gpa_mask;
447 448 449 450 451 452
	if (paddr >= remap_base && paddr < remap_base + remap_top)
		paddr -= remap_base;
	return paddr;
}


453
/* gpa -> gnode */
454 455
static inline unsigned long uv_gpa_to_gnode(unsigned long gpa)
{
456
	return gpa >> uv_hub_info->n_lshift;
457 458 459 460 461
}

/* gpa -> pnode */
static inline int uv_gpa_to_pnode(unsigned long gpa)
{
462
	return uv_gpa_to_gnode(gpa) & uv_hub_info->pnode_mask;
463
}
464

465
/* gpa -> node offset */
466 467 468 469 470
static inline unsigned long uv_gpa_to_offset(unsigned long gpa)
{
	return (gpa << uv_hub_info->m_shift) >> uv_hub_info->m_shift;
}

471 472 473 474 475
/* pnode, offset --> socket virtual */
static inline void *uv_pnode_offset_to_vaddr(int pnode, unsigned long offset)
{
	return __va(((unsigned long)pnode << uv_hub_info->m_val) | offset);
}
476

477
/* Extract a PNODE from an APICID (full apicid, not processor subset) */
478
static inline int uv_apicid_to_pnode(int apicid)
479
{
480
	return (apicid >> uv_hub_info->apic_pnode_shift);
481 482
}

483
/* Convert an apicid to the socket number on the blade */
484 485 486 487 488 489 490 491
static inline int uv_apicid_to_socket(int apicid)
{
	if (is_uv1_hub())
		return (apicid >> (uv_hub_info->apic_pnode_shift - 1)) & 1;
	else
		return 0;
}

492 493 494 495
/*
 * Access global MMRs using the low memory MMR32 space. This region supports
 * faster MMR access but not all MMRs are accessible in this space.
 */
496
static inline unsigned long *uv_global_mmr32_address(int pnode, unsigned long offset)
497 498
{
	return __va(UV_GLOBAL_MMR32_BASE |
499
		       UV_GLOBAL_MMR32_PNODE_BITS(pnode) | offset);
500 501
}

502
static inline void uv_write_global_mmr32(int pnode, unsigned long offset, unsigned long val)
503
{
504
	writeq(val, uv_global_mmr32_address(pnode, offset));
505 506
}

507
static inline unsigned long uv_read_global_mmr32(int pnode, unsigned long offset)
508
{
509
	return readq(uv_global_mmr32_address(pnode, offset));
510 511 512 513 514 515
}

/*
 * Access Global MMR space using the MMR space located at the top of physical
 * memory.
 */
516
static inline volatile void __iomem *uv_global_mmr64_address(int pnode, unsigned long offset)
517 518
{
	return __va(UV_GLOBAL_MMR64_BASE |
519
		    UV_GLOBAL_MMR64_PNODE_BITS(pnode) | offset);
520 521
}

522
static inline void uv_write_global_mmr64(int pnode, unsigned long offset, unsigned long val)
523
{
524
	writeq(val, uv_global_mmr64_address(pnode, offset));
525 526
}

527
static inline unsigned long uv_read_global_mmr64(int pnode, unsigned long offset)
528
{
529
	return readq(uv_global_mmr64_address(pnode, offset));
530 531
}

532 533 534 535 536 537
/*
 * Global MMR space addresses when referenced by the GRU. (GRU does
 * NOT use socket addressing).
 */
static inline unsigned long uv_global_gru_mmr_address(int pnode, unsigned long offset)
{
538 539
	return UV_GLOBAL_GRU_MMR_BASE | offset |
		((unsigned long)pnode << uv_hub_info->m_val);
540 541
}

542 543 544 545 546 547 548 549 550 551
static inline void uv_write_global_mmr8(int pnode, unsigned long offset, unsigned char val)
{
	writeb(val, uv_global_mmr64_address(pnode, offset));
}

static inline unsigned char uv_read_global_mmr8(int pnode, unsigned long offset)
{
	return readb(uv_global_mmr64_address(pnode, offset));
}

552
/*
553
 * Access hub local MMRs. Faster than using global space but only local MMRs
554 555 556 557 558 559 560 561 562
 * are accessible.
 */
static inline unsigned long *uv_local_mmr_address(unsigned long offset)
{
	return __va(UV_LOCAL_MMR_BASE | offset);
}

static inline unsigned long uv_read_local_mmr(unsigned long offset)
{
563
	return readq(uv_local_mmr_address(offset));
564 565 566 567
}

static inline void uv_write_local_mmr(unsigned long offset, unsigned long val)
{
568
	writeq(val, uv_local_mmr_address(offset));
569 570
}

571 572
static inline unsigned char uv_read_local_mmr8(unsigned long offset)
{
573
	return readb(uv_local_mmr_address(offset));
574 575 576 577
}

static inline void uv_write_local_mmr8(unsigned long offset, unsigned char val)
{
578
	writeb(val, uv_local_mmr_address(offset));
579 580
}

581 582 583
/* Blade-local cpu number of current cpu. Numbered 0 .. <# cpus on the blade> */
static inline int uv_blade_processor_id(void)
{
584
	return uv_cpu_info->blade_cpu_id;
585 586
}

587 588 589 590 591 592 593
/* Blade-local cpu number of cpu N. Numbered 0 .. <# cpus on the blade> */
static inline int uv_cpu_blade_processor_id(int cpu)
{
	return uv_cpu_info_per(cpu)->blade_cpu_id;
}
#define _uv_cpu_blade_processor_id 1	/* indicate function available */

594 595 596 597 598 599
/* Blade number to Node number (UV1..UV4 is 1:1) */
static inline int uv_blade_to_node(int blade)
{
	return blade;
}

600 601 602 603 604 605
/* Blade number of current cpu. Numnbered 0 .. <#blades -1> */
static inline int uv_numa_blade_id(void)
{
	return uv_hub_info->numa_blade_id;
}

606 607 608 609 610 611
/*
 * Convert linux node number to the UV blade number.
 * .. Currently for UV1 thru UV4 the node and the blade are identical.
 * .. If this changes then you MUST check references to this function!
 */
static inline int uv_node_to_blade_id(int nid)
612
{
613
	return nid;
614 615
}

616 617
/* Convert a cpu number to the the UV blade number */
static inline int uv_cpu_to_blade_id(int cpu)
618
{
619
	return uv_node_to_blade_id(cpu_to_node(cpu));
620 621
}

622 623
/* Convert a blade id to the PNODE of the blade */
static inline int uv_blade_to_pnode(int bid)
624
{
625
	return uv_hub_info_list(uv_blade_to_node(bid))->pnode;
626 627
}

628 629 630
/* Nid of memory node on blade. -1 if no blade-local memory */
static inline int uv_blade_to_memory_nid(int bid)
{
631
	return uv_hub_info_list(uv_blade_to_node(bid))->memory_nid;
632 633
}

634 635 636
/* Determine the number of possible cpus on a blade */
static inline int uv_blade_nr_possible_cpus(int bid)
{
637
	return uv_hub_info_list(uv_blade_to_node(bid))->nr_possible_cpus;
638 639 640 641 642
}

/* Determine the number of online cpus on a blade */
static inline int uv_blade_nr_online_cpus(int bid)
{
643
	return uv_hub_info_list(uv_blade_to_node(bid))->nr_online_cpus;
644 645
}

646 647
/* Convert a cpu id to the PNODE of the blade containing the cpu */
static inline int uv_cpu_to_pnode(int cpu)
648
{
649
	return uv_cpu_hub_info(cpu)->pnode;
650 651
}

652 653
/* Convert a linux node number to the PNODE of the blade */
static inline int uv_node_to_pnode(int nid)
654
{
655
	return uv_hub_info_list(nid)->pnode;
656 657 658
}

/* Maximum possible number of blades */
659
extern short uv_possible_blades;
660 661 662 663 664
static inline int uv_num_possible_blades(void)
{
	return uv_possible_blades;
}

665 666 667 668 669 670 671 672 673 674 675 676
/* Per Hub NMI support */
extern void uv_nmi_setup(void);

/* BMC sets a bit this MMR non-zero before sending an NMI */
#define UVH_NMI_MMR		UVH_SCRATCH5
#define UVH_NMI_MMR_CLEAR	UVH_SCRATCH5_ALIAS
#define UVH_NMI_MMR_SHIFT	63
#define	UVH_NMI_MMR_TYPE	"SCRATCH5"

/* Newer SMM NMI handler, not present in all systems */
#define UVH_NMI_MMRX		UVH_EVENT_OCCURRED0
#define UVH_NMI_MMRX_CLEAR	UVH_EVENT_OCCURRED0_ALIAS
677
#define UVH_NMI_MMRX_SHIFT	UVH_EVENT_OCCURRED0_EXTIO_INT0_SHFT
678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697
#define	UVH_NMI_MMRX_TYPE	"EXTIO_INT0"

/* Non-zero indicates newer SMM NMI handler present */
#define UVH_NMI_MMRX_SUPPORTED	UVH_EXTIO_INT0_BROADCAST

/* Indicates to BIOS that we want to use the newer SMM NMI handler */
#define UVH_NMI_MMRX_REQ	UVH_SCRATCH5_ALIAS_2
#define UVH_NMI_MMRX_REQ_SHIFT	62

struct uv_hub_nmi_s {
	raw_spinlock_t	nmi_lock;
	atomic_t	in_nmi;		/* flag this node in UV NMI IRQ */
	atomic_t	cpu_owner;	/* last locker of this struct */
	atomic_t	read_mmr_count;	/* count of MMR reads */
	atomic_t	nmi_count;	/* count of true UV NMIs */
	unsigned long	nmi_value;	/* last value read from NMI MMR */
};

struct uv_cpu_nmi_s {
	struct uv_hub_nmi_s	*hub;
C
Christoph Lameter 已提交
698 699
	int			state;
	int			pinging;
700 701 702 703
	int			queries;
	int			pings;
};

C
Christoph Lameter 已提交
704 705
DECLARE_PER_CPU(struct uv_cpu_nmi_s, uv_cpu_nmi);

706
#define uv_hub_nmi			this_cpu_read(uv_cpu_nmi.hub)
C
Christoph Lameter 已提交
707
#define uv_cpu_nmi_per(cpu)		(per_cpu(uv_cpu_nmi, cpu))
708 709 710 711 712 713 714 715
#define uv_hub_nmi_per(cpu)		(uv_cpu_nmi_per(cpu).hub)

/* uv_cpu_nmi_states */
#define	UV_NMI_STATE_OUT		0
#define	UV_NMI_STATE_IN			1
#define	UV_NMI_STATE_DUMP		2
#define	UV_NMI_STATE_DUMP_DONE		3

716 717 718
/* Update SCIR state */
static inline void uv_set_scir_bits(unsigned char value)
{
719 720 721
	if (uv_scir_info->state != value) {
		uv_scir_info->state = value;
		uv_write_local_mmr8(uv_scir_info->offset, value);
722 723
	}
}
724

725 726 727 728 729
static inline unsigned long uv_scir_offset(int apicid)
{
	return SCIR_LOCAL_MMR_BASE | (apicid & 0x3f);
}

730 731
static inline void uv_set_cpu_scir_bits(int cpu, unsigned char value)
{
732
	if (uv_cpu_scir_info(cpu)->state != value) {
733
		uv_write_global_mmr8(uv_cpu_to_pnode(cpu),
734 735
				uv_cpu_scir_info(cpu)->offset, value);
		uv_cpu_scir_info(cpu)->state = value;
736 737
	}
}
738

739
extern unsigned int uv_apicid_hibits;
740 741
static unsigned long uv_hub_ipi_value(int apicid, int vector, int mode)
{
742
	apicid |= uv_apicid_hibits;
743 744 745 746 747 748
	return (1UL << UVH_IPI_INT_SEND_SHFT) |
			((apicid) << UVH_IPI_INT_APIC_ID_SHFT) |
			(mode << UVH_IPI_INT_DELIVERY_MODE_SHFT) |
			(vector << UVH_IPI_INT_VECTOR_SHFT);
}

749 750 751
static inline void uv_hub_send_ipi(int pnode, int apicid, int vector)
{
	unsigned long val;
752 753 754 755
	unsigned long dmode = dest_Fixed;

	if (vector == NMI_VECTOR)
		dmode = dest_NMI;
756

757
	val = uv_hub_ipi_value(apicid, vector, dmode);
758 759 760
	uv_write_global_mmr64(pnode, UVH_IPI_INT, val);
}

761 762
/*
 * Get the minimum revision number of the hub chips within the partition.
763
 * (See UVx_HUB_REVISION_BASE above for specific values.)
764 765 766
 */
static inline int uv_get_min_hub_revision_id(void)
{
767
	return uv_hub_info->hub_revision;
768 769
}

770
#endif /* CONFIG_X86_64 */
771
#endif /* _ASM_X86_UV_UV_HUB_H */