uv_hub.h 10.1 KB
Newer Older
1 2 3 4 5 6 7
/*
 * This file is subject to the terms and conditions of the GNU General Public
 * License.  See the file "COPYING" in the main directory of this archive
 * for more details.
 *
 * SGI UV architectural definitions
 *
8
 * Copyright (C) 2007-2008 Silicon Graphics, Inc. All rights reserved.
9 10
 */

11 12
#ifndef _ASM_X86_UV_UV_HUB_H
#define _ASM_X86_UV_UV_HUB_H
13 14 15 16 17 18 19 20 21 22

#include <linux/numa.h>
#include <linux/percpu.h>
#include <asm/types.h>
#include <asm/percpu.h>


/*
 * Addressing Terminology
 *
23 24 25 26
 *	M       - The low M bits of a physical address represent the offset
 *		  into the blade local memory. RAM memory on a blade is physically
 *		  contiguous (although various IO spaces may punch holes in
 *		  it)..
27
 *
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
 * 	N	- Number of bits in the node portion of a socket physical
 * 		  address.
 *
 * 	NASID   - network ID of a router, Mbrick or Cbrick. Nasid values of
 * 	 	  routers always have low bit of 1, C/MBricks have low bit
 * 		  equal to 0. Most addressing macros that target UV hub chips
 * 		  right shift the NASID by 1 to exclude the always-zero bit.
 * 		  NASIDs contain up to 15 bits.
 *
 *	GNODE   - NASID right shifted by 1 bit. Most mmrs contain gnodes instead
 *		  of nasids.
 *
 * 	PNODE   - the low N bits of the GNODE. The PNODE is the most useful variant
 * 		  of the nasid for socket usage.
 *
 *
 *  NumaLink Global Physical Address Format:
 *  +--------------------------------+---------------------+
 *  |00..000|      GNODE             |      NodeOffset     |
 *  +--------------------------------+---------------------+
 *          |<-------53 - M bits --->|<--------M bits ----->
 *
 *	M - number of node offset bits (35 .. 40)
51 52 53
 *
 *
 *  Memory/UV-HUB Processor Socket Address Format:
54 55 56 57
 *  +----------------+---------------+---------------------+
 *  |00..000000000000|   PNODE       |      NodeOffset     |
 *  +----------------+---------------+---------------------+
 *                   <--- N bits --->|<--------M bits ----->
58
 *
59 60
 *	M - number of node offset bits (35 .. 40)
 *	N - number of PNODE bits (0 .. 10)
61 62 63
 *
 *		Note: M + N cannot currently exceed 44 (x86_64) or 46 (IA64).
 *		The actual values are configuration dependent and are set at
64 65
 *		boot time. M & N values are set by the hardware/BIOS at boot.
 *
66 67 68 69 70 71 72 73
 *
 * APICID format
 * 	NOTE!!!!!! This is the current format of the APICID. However, code
 * 	should assume that this will change in the future. Use functions
 * 	in this file for all APICID bit manipulations and conversion.
 *
 * 		1111110000000000
 * 		5432109876543210
74
 *		pppppppppplc0cch
75 76
 *		sssssssssss
 *
77
 *			p  = pnode bits
78 79 80
 *			l =  socket number on board
 *			c  = core
 *			h  = hyperthread
81
 *			s  = bits that are in the SOCKET_ID CSR
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
 *
 *	Note: Processor only supports 12 bits in the APICID register. The ACPI
 *	      tables hold all 16 bits. Software needs to be aware of this.
 *
 * 	      Unless otherwise specified, all references to APICID refer to
 * 	      the FULL value contained in ACPI tables, not the subset in the
 * 	      processor APICID register.
 */


/*
 * Maximum number of bricks in all partitions and in all coherency domains.
 * This is the total number of bricks accessible in the numalink fabric. It
 * includes all C & M bricks. Routers are NOT included.
 *
 * This value is also the value of the maximum number of non-router NASIDs
 * in the numalink fabric.
 *
100
 * NOTE: a brick may contain 1 or 2 OS nodes. Don't get these confused.
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
 */
#define UV_MAX_NUMALINK_BLADES	16384

/*
 * Maximum number of C/Mbricks within a software SSI (hardware may support
 * more).
 */
#define UV_MAX_SSI_BLADES	256

/*
 * The largest possible NASID of a C or M brick (+ 2)
 */
#define UV_MAX_NASID_VALUE	(UV_MAX_NUMALINK_NODES * 2)

/*
 * The following defines attributes of the HUB chip. These attributes are
 * frequently referenced and are kept in the per-cpu data areas of each cpu.
 * They are kept together in a struct to minimize cache misses.
 */
struct uv_hub_info_s {
	unsigned long	global_mmr_base;
122 123 124 125 126 127
	unsigned long	gpa_mask;
	unsigned long	gnode_upper;
	unsigned long	lowmem_remap_top;
	unsigned long	lowmem_remap_base;
	unsigned short	pnode;
	unsigned short	pnode_mask;
128 129 130 131 132 133 134 135 136 137 138 139 140 141
	unsigned short	coherency_domain_number;
	unsigned short	numa_blade_id;
	unsigned char	blade_processor_id;
	unsigned char	m_val;
	unsigned char	n_val;
};
DECLARE_PER_CPU(struct uv_hub_info_s, __uv_hub_info);
#define uv_hub_info 		(&__get_cpu_var(__uv_hub_info))
#define uv_cpu_hub_info(cpu)	(&per_cpu(__uv_hub_info, cpu))

/*
 * Local & Global MMR space macros.
 * 	Note: macros are intended to be used ONLY by inline functions
 * 	in this file - not by other kernel code.
142 143 144
 * 		n -  NASID (full 15-bit global nasid)
 * 		g -  GNODE (full 15-bit global nasid, right shifted 1)
 * 		p -  PNODE (local part of nsids, right shifted 1)
145
 */
146 147
#define UV_NASID_TO_PNODE(n)		(((n) >> 1) & uv_hub_info->pnode_mask)
#define UV_PNODE_TO_NASID(p)		(((p) << 1) | uv_hub_info->gnode_upper)
148 149 150 151

#define UV_LOCAL_MMR_BASE		0xf4000000UL
#define UV_GLOBAL_MMR32_BASE		0xf8000000UL
#define UV_GLOBAL_MMR64_BASE		(uv_hub_info->global_mmr_base)
152 153
#define UV_LOCAL_MMR_SIZE		(64UL * 1024 * 1024)
#define UV_GLOBAL_MMR32_SIZE		(64UL * 1024 * 1024)
154

155 156
#define UV_GLOBAL_MMR32_PNODE_SHIFT	15
#define UV_GLOBAL_MMR64_PNODE_SHIFT	26
157

158
#define UV_GLOBAL_MMR32_PNODE_BITS(p)	((p) << (UV_GLOBAL_MMR32_PNODE_SHIFT))
159

160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
#define UV_GLOBAL_MMR64_PNODE_BITS(p)					\
	((unsigned long)(p) << UV_GLOBAL_MMR64_PNODE_SHIFT)

#define UV_APIC_PNODE_SHIFT	6

/*
 * Macros for converting between kernel virtual addresses, socket local physical
 * addresses, and UV global physical addresses.
 * 	Note: use the standard __pa() & __va() macros for converting
 * 	      between socket virtual and socket physical addresses.
 */

/* socket phys RAM --> UV global physical address */
static inline unsigned long uv_soc_phys_ram_to_gpa(unsigned long paddr)
{
	if (paddr < uv_hub_info->lowmem_remap_top)
		paddr += uv_hub_info->lowmem_remap_base;
	return paddr | uv_hub_info->gnode_upper;
}


/* socket virtual --> UV global physical address */
static inline unsigned long uv_gpa(void *v)
{
	return __pa(v) | uv_hub_info->gnode_upper;
}

/* socket virtual --> UV global physical address */
static inline void *uv_vgpa(void *v)
{
	return (void *)uv_gpa(v);
}

/* UV global physical address --> socket virtual */
static inline void *uv_va(unsigned long gpa)
{
	return __va(gpa & uv_hub_info->gpa_mask);
}

/* pnode, offset --> socket virtual */
static inline void *uv_pnode_offset_to_vaddr(int pnode, unsigned long offset)
{
	return __va(((unsigned long)pnode << uv_hub_info->m_val) | offset);
}
204 205 206


/*
207
 * Extract a PNODE from an APICID (full apicid, not processor subset)
208
 */
209
static inline int uv_apicid_to_pnode(int apicid)
210
{
211
	return (apicid >> UV_APIC_PNODE_SHIFT);
212 213 214 215 216 217
}

/*
 * Access global MMRs using the low memory MMR32 space. This region supports
 * faster MMR access but not all MMRs are accessible in this space.
 */
218
static inline unsigned long *uv_global_mmr32_address(int pnode,
219 220 221
				unsigned long offset)
{
	return __va(UV_GLOBAL_MMR32_BASE |
222
		       UV_GLOBAL_MMR32_PNODE_BITS(pnode) | offset);
223 224
}

225
static inline void uv_write_global_mmr32(int pnode, unsigned long offset,
226 227
				 unsigned long val)
{
228
	*uv_global_mmr32_address(pnode, offset) = val;
229 230
}

231
static inline unsigned long uv_read_global_mmr32(int pnode,
232 233
						 unsigned long offset)
{
234
	return *uv_global_mmr32_address(pnode, offset);
235 236 237 238 239 240
}

/*
 * Access Global MMR space using the MMR space located at the top of physical
 * memory.
 */
241
static inline unsigned long *uv_global_mmr64_address(int pnode,
242 243 244
				unsigned long offset)
{
	return __va(UV_GLOBAL_MMR64_BASE |
245
		    UV_GLOBAL_MMR64_PNODE_BITS(pnode) | offset);
246 247
}

248
static inline void uv_write_global_mmr64(int pnode, unsigned long offset,
249 250
				unsigned long val)
{
251
	*uv_global_mmr64_address(pnode, offset) = val;
252 253
}

254
static inline unsigned long uv_read_global_mmr64(int pnode,
255 256
						 unsigned long offset)
{
257
	return *uv_global_mmr64_address(pnode, offset);
258 259 260
}

/*
261
 * Access hub local MMRs. Faster than using global space but only local MMRs
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
 * are accessible.
 */
static inline unsigned long *uv_local_mmr_address(unsigned long offset)
{
	return __va(UV_LOCAL_MMR_BASE | offset);
}

static inline unsigned long uv_read_local_mmr(unsigned long offset)
{
	return *uv_local_mmr_address(offset);
}

static inline void uv_write_local_mmr(unsigned long offset, unsigned long val)
{
	*uv_local_mmr_address(offset) = val;
}

279
/*
280
 * Structures and definitions for converting between cpu, node, pnode, and blade
281 282 283
 * numbers.
 */
struct uv_blade_info {
284
	unsigned short	nr_possible_cpus;
285
	unsigned short	nr_online_cpus;
286
	unsigned short	pnode;
287
};
288
extern struct uv_blade_info *uv_blade_info;
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
extern short *uv_node_to_blade;
extern short *uv_cpu_to_blade;
extern short uv_possible_blades;

/* Blade-local cpu number of current cpu. Numbered 0 .. <# cpus on the blade> */
static inline int uv_blade_processor_id(void)
{
	return uv_hub_info->blade_processor_id;
}

/* Blade number of current cpu. Numnbered 0 .. <#blades -1> */
static inline int uv_numa_blade_id(void)
{
	return uv_hub_info->numa_blade_id;
}

/* Convert a cpu number to the the UV blade number */
static inline int uv_cpu_to_blade_id(int cpu)
{
	return uv_cpu_to_blade[cpu];
}

/* Convert linux node number to the UV blade number */
static inline int uv_node_to_blade_id(int nid)
{
	return uv_node_to_blade[nid];
}

317 318
/* Convert a blade id to the PNODE of the blade */
static inline int uv_blade_to_pnode(int bid)
319
{
320
	return uv_blade_info[bid].pnode;
321 322 323 324 325
}

/* Determine the number of possible cpus on a blade */
static inline int uv_blade_nr_possible_cpus(int bid)
{
326
	return uv_blade_info[bid].nr_possible_cpus;
327 328 329 330 331 332 333 334
}

/* Determine the number of online cpus on a blade */
static inline int uv_blade_nr_online_cpus(int bid)
{
	return uv_blade_info[bid].nr_online_cpus;
}

335 336
/* Convert a cpu id to the PNODE of the blade containing the cpu */
static inline int uv_cpu_to_pnode(int cpu)
337
{
338
	return uv_blade_info[uv_cpu_to_blade_id(cpu)].pnode;
339 340
}

341 342
/* Convert a linux node number to the PNODE of the blade */
static inline int uv_node_to_pnode(int nid)
343
{
344
	return uv_blade_info[uv_node_to_blade_id(nid)].pnode;
345 346 347 348 349 350 351 352
}

/* Maximum possible number of blades */
static inline int uv_num_possible_blades(void)
{
	return uv_possible_blades;
}

353
#endif /* _ASM_X86_UV_UV_HUB_H */
354