uv_hub.h 19.7 KB
Newer Older
1 2 3 4 5 6 7
/*
 * This file is subject to the terms and conditions of the GNU General Public
 * License.  See the file "COPYING" in the main directory of this archive
 * for more details.
 *
 * SGI UV architectural definitions
 *
8
 * Copyright (C) 2007-2014 Silicon Graphics, Inc. All rights reserved.
9 10
 */

11 12
#ifndef _ASM_X86_UV_UV_HUB_H
#define _ASM_X86_UV_UV_HUB_H
13

14
#ifdef CONFIG_X86_64
15 16
#include <linux/numa.h>
#include <linux/percpu.h>
17
#include <linux/timer.h>
18
#include <linux/io.h>
19 20
#include <asm/types.h>
#include <asm/percpu.h>
21
#include <asm/uv/uv_mmrs.h>
22 23
#include <asm/irq_vectors.h>
#include <asm/io_apic.h>
24 25 26 27 28


/*
 * Addressing Terminology
 *
29 30 31 32
 *	M       - The low M bits of a physical address represent the offset
 *		  into the blade local memory. RAM memory on a blade is physically
 *		  contiguous (although various IO spaces may punch holes in
 *		  it)..
33
 *
34 35
 *	N	- Number of bits in the node portion of a socket physical
 *		  address.
36
 *
37 38 39 40 41
 *	NASID   - network ID of a router, Mbrick or Cbrick. Nasid values of
 *		  routers always have low bit of 1, C/MBricks have low bit
 *		  equal to 0. Most addressing macros that target UV hub chips
 *		  right shift the NASID by 1 to exclude the always-zero bit.
 *		  NASIDs contain up to 15 bits.
42 43 44 45
 *
 *	GNODE   - NASID right shifted by 1 bit. Most mmrs contain gnodes instead
 *		  of nasids.
 *
46 47
 *	PNODE   - the low N bits of the GNODE. The PNODE is the most useful variant
 *		  of the nasid for socket usage.
48
 *
49 50 51 52 53 54 55
 *	GPA	- (global physical address) a socket physical address converted
 *		  so that it can be used by the GRU as a global address. Socket
 *		  physical addresses 1) need additional NASID (node) bits added
 *		  to the high end of the address, and 2) unaliased if the
 *		  partition does not have a physical address 0. In addition, on
 *		  UV2 rev 1, GPAs need the gnode left shifted to bits 39 or 40.
 *
56 57 58 59 60 61 62 63
 *
 *  NumaLink Global Physical Address Format:
 *  +--------------------------------+---------------------+
 *  |00..000|      GNODE             |      NodeOffset     |
 *  +--------------------------------+---------------------+
 *          |<-------53 - M bits --->|<--------M bits ----->
 *
 *	M - number of node offset bits (35 .. 40)
64 65 66
 *
 *
 *  Memory/UV-HUB Processor Socket Address Format:
67 68 69 70
 *  +----------------+---------------+---------------------+
 *  |00..000000000000|   PNODE       |      NodeOffset     |
 *  +----------------+---------------+---------------------+
 *                   <--- N bits --->|<--------M bits ----->
71
 *
72 73
 *	M - number of node offset bits (35 .. 40)
 *	N - number of PNODE bits (0 .. 10)
74 75 76
 *
 *		Note: M + N cannot currently exceed 44 (x86_64) or 46 (IA64).
 *		The actual values are configuration dependent and are set at
77 78
 *		boot time. M & N values are set by the hardware/BIOS at boot.
 *
79 80
 *
 * APICID format
81 82 83
 *	NOTE!!!!!! This is the current format of the APICID. However, code
 *	should assume that this will change in the future. Use functions
 *	in this file for all APICID bit manipulations and conversion.
84
 *
85 86
 *		1111110000000000
 *		5432109876543210
87 88 89
 *		pppppppppplc0cch	Nehalem-EX (12 bits in hdw reg)
 *		ppppppppplcc0cch	Westmere-EX (12 bits in hdw reg)
 *		pppppppppppcccch	SandyBridge (15 bits in hdw reg)
90 91
 *		sssssssssss
 *
92
 *			p  = pnode bits
93 94 95
 *			l =  socket number on board
 *			c  = core
 *			h  = hyperthread
96
 *			s  = bits that are in the SOCKET_ID CSR
97
 *
98
 *	Note: Processor may support fewer bits in the APICID register. The ACPI
99 100
 *	      tables hold all 16 bits. Software needs to be aware of this.
 *
101 102 103
 *	      Unless otherwise specified, all references to APICID refer to
 *	      the FULL value contained in ACPI tables, not the subset in the
 *	      processor APICID register.
104 105 106 107 108 109 110 111 112 113 114
 */


/*
 * Maximum number of bricks in all partitions and in all coherency domains.
 * This is the total number of bricks accessible in the numalink fabric. It
 * includes all C & M bricks. Routers are NOT included.
 *
 * This value is also the value of the maximum number of non-router NASIDs
 * in the numalink fabric.
 *
115
 * NOTE: a brick may contain 1 or 2 OS nodes. Don't get these confused.
116 117 118 119 120 121 122 123 124 125 126 127
 */
#define UV_MAX_NUMALINK_BLADES	16384

/*
 * Maximum number of C/Mbricks within a software SSI (hardware may support
 * more).
 */
#define UV_MAX_SSI_BLADES	256

/*
 * The largest possible NASID of a C or M brick (+ 2)
 */
128
#define UV_MAX_NASID_VALUE	(UV_MAX_NUMALINK_BLADES * 2)
129

130 131 132 133 134 135 136 137 138 139
struct uv_scir_s {
	struct timer_list timer;
	unsigned long	offset;
	unsigned long	last;
	unsigned long	idle_on;
	unsigned long	idle_off;
	unsigned char	state;
	unsigned char	enabled;
};

140 141 142 143 144 145
/*
 * The following defines attributes of the HUB chip. These attributes are
 * frequently referenced and are kept in the per-cpu data areas of each cpu.
 * They are kept together in a struct to minimize cache misses.
 */
struct uv_hub_info_s {
146 147
	unsigned long		global_mmr_base;
	unsigned long		gpa_mask;
148
	unsigned int		gnode_extra;
149 150
	unsigned char		hub_revision;
	unsigned char		apic_pnode_shift;
151 152
	unsigned char		m_shift;
	unsigned char		n_lshift;
153 154 155 156 157 158 159 160 161 162 163
	unsigned long		gnode_upper;
	unsigned long		lowmem_remap_top;
	unsigned long		lowmem_remap_base;
	unsigned short		pnode;
	unsigned short		pnode_mask;
	unsigned short		coherency_domain_number;
	unsigned short		numa_blade_id;
	unsigned char		blade_processor_id;
	unsigned char		m_val;
	unsigned char		n_val;
	struct uv_scir_s	scir;
164
};
165

166
DECLARE_PER_CPU(struct uv_hub_info_s, __uv_hub_info);
167
#define uv_hub_info		this_cpu_ptr(&__uv_hub_info)
168 169
#define uv_cpu_hub_info(cpu)	(&per_cpu(__uv_hub_info, cpu))

170 171 172 173 174 175 176 177
/*
 * Hub revisions less than UV2_HUB_REVISION_BASE are UV1 hubs. All UV2
 * hubs have revision numbers greater than or equal to UV2_HUB_REVISION_BASE.
 * This is a software convention - NOT the hardware revision numbers in
 * the hub chip.
 */
#define UV1_HUB_REVISION_BASE		1
#define UV2_HUB_REVISION_BASE		3
178
#define UV3_HUB_REVISION_BASE		5
179 180 181 182 183 184 185

static inline int is_uv1_hub(void)
{
	return uv_hub_info->hub_revision < UV2_HUB_REVISION_BASE;
}

static inline int is_uv2_hub(void)
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
{
	return ((uv_hub_info->hub_revision >= UV2_HUB_REVISION_BASE) &&
		(uv_hub_info->hub_revision < UV3_HUB_REVISION_BASE));
}

static inline int is_uv3_hub(void)
{
	return uv_hub_info->hub_revision >= UV3_HUB_REVISION_BASE;
}

static inline int is_uv_hub(void)
{
	return uv_hub_info->hub_revision;
}

/* code common to uv2 and uv3 only */
static inline int is_uvx_hub(void)
203 204 205 206
{
	return uv_hub_info->hub_revision >= UV2_HUB_REVISION_BASE;
}

207 208 209 210 211 212 213 214 215 216 217 218
union uvh_apicid {
    unsigned long       v;
    struct uvh_apicid_s {
        unsigned long   local_apic_mask  : 24;
        unsigned long   local_apic_shift :  5;
        unsigned long   unused1          :  3;
        unsigned long   pnode_mask       : 24;
        unsigned long   pnode_shift      :  5;
        unsigned long   unused2          :  3;
    } s;
};

219 220
/*
 * Local & Global MMR space macros.
221 222 223 224 225
 *	Note: macros are intended to be used ONLY by inline functions
 *	in this file - not by other kernel code.
 *		n -  NASID (full 15-bit global nasid)
 *		g -  GNODE (full 15-bit global nasid, right shifted 1)
 *		p -  PNODE (local part of nsids, right shifted 1)
226
 */
227
#define UV_NASID_TO_PNODE(n)		(((n) >> 1) & uv_hub_info->pnode_mask)
228 229
#define UV_PNODE_TO_GNODE(p)		((p) |uv_hub_info->gnode_extra)
#define UV_PNODE_TO_NASID(p)		(UV_PNODE_TO_GNODE(p) << 1)
230

231 232 233 234 235 236 237 238 239 240
#define UV1_LOCAL_MMR_BASE		0xf4000000UL
#define UV1_GLOBAL_MMR32_BASE		0xf8000000UL
#define UV1_LOCAL_MMR_SIZE		(64UL * 1024 * 1024)
#define UV1_GLOBAL_MMR32_SIZE		(64UL * 1024 * 1024)

#define UV2_LOCAL_MMR_BASE		0xfa000000UL
#define UV2_GLOBAL_MMR32_BASE		0xfc000000UL
#define UV2_LOCAL_MMR_SIZE		(32UL * 1024 * 1024)
#define UV2_GLOBAL_MMR32_SIZE		(32UL * 1024 * 1024)

241 242 243 244 245 246 247 248 249 250 251 252 253 254
#define UV3_LOCAL_MMR_BASE		0xfa000000UL
#define UV3_GLOBAL_MMR32_BASE		0xfc000000UL
#define UV3_LOCAL_MMR_SIZE		(32UL * 1024 * 1024)
#define UV3_GLOBAL_MMR32_SIZE		(32UL * 1024 * 1024)

#define UV_LOCAL_MMR_BASE		(is_uv1_hub() ? UV1_LOCAL_MMR_BASE : \
					(is_uv2_hub() ? UV2_LOCAL_MMR_BASE : \
							UV3_LOCAL_MMR_BASE))
#define UV_GLOBAL_MMR32_BASE		(is_uv1_hub() ? UV1_GLOBAL_MMR32_BASE :\
					(is_uv2_hub() ? UV2_GLOBAL_MMR32_BASE :\
							UV3_GLOBAL_MMR32_BASE))
#define UV_LOCAL_MMR_SIZE		(is_uv1_hub() ? UV1_LOCAL_MMR_SIZE : \
					(is_uv2_hub() ? UV2_LOCAL_MMR_SIZE : \
							UV3_LOCAL_MMR_SIZE))
255
#define UV_GLOBAL_MMR32_SIZE		(is_uv1_hub() ? UV1_GLOBAL_MMR32_SIZE :\
256 257
					(is_uv2_hub() ? UV2_GLOBAL_MMR32_SIZE :\
							UV3_GLOBAL_MMR32_SIZE))
258 259
#define UV_GLOBAL_MMR64_BASE		(uv_hub_info->global_mmr_base)

260 261
#define UV_GLOBAL_GRU_MMR_BASE		0x4000000

262 263
#define UV_GLOBAL_MMR32_PNODE_SHIFT	15
#define UV_GLOBAL_MMR64_PNODE_SHIFT	26
264

265
#define UV_GLOBAL_MMR32_PNODE_BITS(p)	((p) << (UV_GLOBAL_MMR32_PNODE_SHIFT))
266

267
#define UV_GLOBAL_MMR64_PNODE_BITS(p)					\
268
	(((unsigned long)(p)) << UV_GLOBAL_MMR64_PNODE_SHIFT)
269

270
#define UVH_APICID		0x002D0E00L
271 272
#define UV_APIC_PNODE_SHIFT	6

273 274
#define UV_APICID_HIBIT_MASK	0xffff0000

275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
/* Local Bus from cpu's perspective */
#define LOCAL_BUS_BASE		0x1c00000
#define LOCAL_BUS_SIZE		(4 * 1024 * 1024)

/*
 * System Controller Interface Reg
 *
 * Note there are NO leds on a UV system.  This register is only
 * used by the system controller to monitor system-wide operation.
 * There are 64 regs per node.  With Nahelem cpus (2 cores per node,
 * 8 cpus per core, 2 threads per cpu) there are 32 cpu threads on
 * a node.
 *
 * The window is located at top of ACPI MMR space
 */
#define SCIR_WINDOW_COUNT	64
#define SCIR_LOCAL_MMR_BASE	(LOCAL_BUS_BASE + \
				 LOCAL_BUS_SIZE - \
				 SCIR_WINDOW_COUNT)

#define SCIR_CPU_HEARTBEAT	0x01	/* timer interrupt */
#define SCIR_CPU_ACTIVITY	0x02	/* not idle */
#define SCIR_CPU_HB_INTERVAL	(HZ)	/* once per second */

299 300 301 302
/* Loop through all installed blades */
#define for_each_possible_blade(bid)		\
	for ((bid) = 0; (bid) < uv_num_possible_blades(); (bid)++)

303 304 305
/*
 * Macros for converting between kernel virtual addresses, socket local physical
 * addresses, and UV global physical addresses.
306 307
 *	Note: use the standard __pa() & __va() macros for converting
 *	      between socket virtual and socket physical addresses.
308 309 310 311 312 313
 */

/* socket phys RAM --> UV global physical address */
static inline unsigned long uv_soc_phys_ram_to_gpa(unsigned long paddr)
{
	if (paddr < uv_hub_info->lowmem_remap_top)
314
		paddr |= uv_hub_info->lowmem_remap_base;
315 316 317 318
	paddr |= uv_hub_info->gnode_upper;
	paddr = ((paddr << uv_hub_info->m_shift) >> uv_hub_info->m_shift) |
		((paddr >> uv_hub_info->m_val) << uv_hub_info->n_lshift);
	return paddr;
319 320 321 322 323 324
}


/* socket virtual --> UV global physical address */
static inline unsigned long uv_gpa(void *v)
{
325
	return uv_soc_phys_ram_to_gpa(__pa(v));
326
}
327

R
Robin Holt 已提交
328 329 330 331 332 333 334
/* Top two bits indicate the requested address is in MMR space.  */
static inline int
uv_gpa_in_mmr_space(unsigned long gpa)
{
	return (gpa >> 62) == 0x3UL;
}

335 336 337
/* UV global physical address --> socket phys RAM */
static inline unsigned long uv_gpa_to_soc_phys_ram(unsigned long gpa)
{
338
	unsigned long paddr;
339 340 341
	unsigned long remap_base = uv_hub_info->lowmem_remap_base;
	unsigned long remap_top =  uv_hub_info->lowmem_remap_top;

342 343
	gpa = ((gpa << uv_hub_info->m_shift) >> uv_hub_info->m_shift) |
		((gpa >> uv_hub_info->n_lshift) << uv_hub_info->m_val);
344
	paddr = gpa & uv_hub_info->gpa_mask;
345 346 347 348 349 350
	if (paddr >= remap_base && paddr < remap_base + remap_top)
		paddr -= remap_base;
	return paddr;
}


351
/* gpa -> pnode */
352 353
static inline unsigned long uv_gpa_to_gnode(unsigned long gpa)
{
354
	return gpa >> uv_hub_info->n_lshift;
355 356 357 358 359 360 361 362 363
}

/* gpa -> pnode */
static inline int uv_gpa_to_pnode(unsigned long gpa)
{
	unsigned long n_mask = (1UL << uv_hub_info->n_val) - 1;

	return uv_gpa_to_gnode(gpa) & n_mask;
}
364

365 366 367 368 369 370
/* gpa -> node offset*/
static inline unsigned long uv_gpa_to_offset(unsigned long gpa)
{
	return (gpa << uv_hub_info->m_shift) >> uv_hub_info->m_shift;
}

371 372 373 374 375
/* pnode, offset --> socket virtual */
static inline void *uv_pnode_offset_to_vaddr(int pnode, unsigned long offset)
{
	return __va(((unsigned long)pnode << uv_hub_info->m_val) | offset);
}
376 377 378


/*
379
 * Extract a PNODE from an APICID (full apicid, not processor subset)
380
 */
381
static inline int uv_apicid_to_pnode(int apicid)
382
{
383
	return (apicid >> uv_hub_info->apic_pnode_shift);
384 385
}

386 387 388 389 390 391 392 393 394 395 396
/*
 * Convert an apicid to the socket number on the blade
 */
static inline int uv_apicid_to_socket(int apicid)
{
	if (is_uv1_hub())
		return (apicid >> (uv_hub_info->apic_pnode_shift - 1)) & 1;
	else
		return 0;
}

397 398 399 400
/*
 * Access global MMRs using the low memory MMR32 space. This region supports
 * faster MMR access but not all MMRs are accessible in this space.
 */
401
static inline unsigned long *uv_global_mmr32_address(int pnode, unsigned long offset)
402 403
{
	return __va(UV_GLOBAL_MMR32_BASE |
404
		       UV_GLOBAL_MMR32_PNODE_BITS(pnode) | offset);
405 406
}

407
static inline void uv_write_global_mmr32(int pnode, unsigned long offset, unsigned long val)
408
{
409
	writeq(val, uv_global_mmr32_address(pnode, offset));
410 411
}

412
static inline unsigned long uv_read_global_mmr32(int pnode, unsigned long offset)
413
{
414
	return readq(uv_global_mmr32_address(pnode, offset));
415 416 417 418 419 420
}

/*
 * Access Global MMR space using the MMR space located at the top of physical
 * memory.
 */
421
static inline volatile void __iomem *uv_global_mmr64_address(int pnode, unsigned long offset)
422 423
{
	return __va(UV_GLOBAL_MMR64_BASE |
424
		    UV_GLOBAL_MMR64_PNODE_BITS(pnode) | offset);
425 426
}

427
static inline void uv_write_global_mmr64(int pnode, unsigned long offset, unsigned long val)
428
{
429
	writeq(val, uv_global_mmr64_address(pnode, offset));
430 431
}

432
static inline unsigned long uv_read_global_mmr64(int pnode, unsigned long offset)
433
{
434
	return readq(uv_global_mmr64_address(pnode, offset));
435 436
}

437 438 439 440 441 442
/*
 * Global MMR space addresses when referenced by the GRU. (GRU does
 * NOT use socket addressing).
 */
static inline unsigned long uv_global_gru_mmr_address(int pnode, unsigned long offset)
{
443 444
	return UV_GLOBAL_GRU_MMR_BASE | offset |
		((unsigned long)pnode << uv_hub_info->m_val);
445 446
}

447 448 449 450 451 452 453 454 455 456
static inline void uv_write_global_mmr8(int pnode, unsigned long offset, unsigned char val)
{
	writeb(val, uv_global_mmr64_address(pnode, offset));
}

static inline unsigned char uv_read_global_mmr8(int pnode, unsigned long offset)
{
	return readb(uv_global_mmr64_address(pnode, offset));
}

457
/*
458
 * Access hub local MMRs. Faster than using global space but only local MMRs
459 460 461 462 463 464 465 466 467
 * are accessible.
 */
static inline unsigned long *uv_local_mmr_address(unsigned long offset)
{
	return __va(UV_LOCAL_MMR_BASE | offset);
}

static inline unsigned long uv_read_local_mmr(unsigned long offset)
{
468
	return readq(uv_local_mmr_address(offset));
469 470 471 472
}

static inline void uv_write_local_mmr(unsigned long offset, unsigned long val)
{
473
	writeq(val, uv_local_mmr_address(offset));
474 475
}

476 477
static inline unsigned char uv_read_local_mmr8(unsigned long offset)
{
478
	return readb(uv_local_mmr_address(offset));
479 480 481 482
}

static inline void uv_write_local_mmr8(unsigned long offset, unsigned char val)
{
483
	writeb(val, uv_local_mmr_address(offset));
484 485
}

486
/*
487
 * Structures and definitions for converting between cpu, node, pnode, and blade
488 489 490
 * numbers.
 */
struct uv_blade_info {
491
	unsigned short	nr_possible_cpus;
492
	unsigned short	nr_online_cpus;
493
	unsigned short	pnode;
494
	short		memory_nid;
495 496
	spinlock_t	nmi_lock;	/* obsolete, see uv_hub_nmi */
	unsigned long	nmi_count;	/* obsolete, see uv_hub_nmi */
497
};
498
extern struct uv_blade_info *uv_blade_info;
499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
extern short *uv_node_to_blade;
extern short *uv_cpu_to_blade;
extern short uv_possible_blades;

/* Blade-local cpu number of current cpu. Numbered 0 .. <# cpus on the blade> */
static inline int uv_blade_processor_id(void)
{
	return uv_hub_info->blade_processor_id;
}

/* Blade number of current cpu. Numnbered 0 .. <#blades -1> */
static inline int uv_numa_blade_id(void)
{
	return uv_hub_info->numa_blade_id;
}

/* Convert a cpu number to the the UV blade number */
static inline int uv_cpu_to_blade_id(int cpu)
{
	return uv_cpu_to_blade[cpu];
}

/* Convert linux node number to the UV blade number */
static inline int uv_node_to_blade_id(int nid)
{
	return uv_node_to_blade[nid];
}

527 528
/* Convert a blade id to the PNODE of the blade */
static inline int uv_blade_to_pnode(int bid)
529
{
530
	return uv_blade_info[bid].pnode;
531 532
}

533 534 535 536 537 538
/* Nid of memory node on blade. -1 if no blade-local memory */
static inline int uv_blade_to_memory_nid(int bid)
{
	return uv_blade_info[bid].memory_nid;
}

539 540 541
/* Determine the number of possible cpus on a blade */
static inline int uv_blade_nr_possible_cpus(int bid)
{
542
	return uv_blade_info[bid].nr_possible_cpus;
543 544 545 546 547 548 549 550
}

/* Determine the number of online cpus on a blade */
static inline int uv_blade_nr_online_cpus(int bid)
{
	return uv_blade_info[bid].nr_online_cpus;
}

551 552
/* Convert a cpu id to the PNODE of the blade containing the cpu */
static inline int uv_cpu_to_pnode(int cpu)
553
{
554
	return uv_blade_info[uv_cpu_to_blade_id(cpu)].pnode;
555 556
}

557 558
/* Convert a linux node number to the PNODE of the blade */
static inline int uv_node_to_pnode(int nid)
559
{
560
	return uv_blade_info[uv_node_to_blade_id(nid)].pnode;
561 562 563 564 565 566 567 568
}

/* Maximum possible number of blades */
static inline int uv_num_possible_blades(void)
{
	return uv_possible_blades;
}

569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
/* Per Hub NMI support */
extern void uv_nmi_setup(void);

/* BMC sets a bit this MMR non-zero before sending an NMI */
#define UVH_NMI_MMR		UVH_SCRATCH5
#define UVH_NMI_MMR_CLEAR	UVH_SCRATCH5_ALIAS
#define UVH_NMI_MMR_SHIFT	63
#define	UVH_NMI_MMR_TYPE	"SCRATCH5"

/* Newer SMM NMI handler, not present in all systems */
#define UVH_NMI_MMRX		UVH_EVENT_OCCURRED0
#define UVH_NMI_MMRX_CLEAR	UVH_EVENT_OCCURRED0_ALIAS
#define UVH_NMI_MMRX_SHIFT	(is_uv1_hub() ? \
					UV1H_EVENT_OCCURRED0_EXTIO_INT0_SHFT :\
					UVXH_EVENT_OCCURRED0_EXTIO_INT0_SHFT)
#define	UVH_NMI_MMRX_TYPE	"EXTIO_INT0"

/* Non-zero indicates newer SMM NMI handler present */
#define UVH_NMI_MMRX_SUPPORTED	UVH_EXTIO_INT0_BROADCAST

/* Indicates to BIOS that we want to use the newer SMM NMI handler */
#define UVH_NMI_MMRX_REQ	UVH_SCRATCH5_ALIAS_2
#define UVH_NMI_MMRX_REQ_SHIFT	62

struct uv_hub_nmi_s {
	raw_spinlock_t	nmi_lock;
	atomic_t	in_nmi;		/* flag this node in UV NMI IRQ */
	atomic_t	cpu_owner;	/* last locker of this struct */
	atomic_t	read_mmr_count;	/* count of MMR reads */
	atomic_t	nmi_count;	/* count of true UV NMIs */
	unsigned long	nmi_value;	/* last value read from NMI MMR */
};

struct uv_cpu_nmi_s {
	struct uv_hub_nmi_s	*hub;
C
Christoph Lameter 已提交
604 605
	int			state;
	int			pinging;
606 607 608 609
	int			queries;
	int			pings;
};

C
Christoph Lameter 已提交
610 611
DECLARE_PER_CPU(struct uv_cpu_nmi_s, uv_cpu_nmi);

612
#define uv_hub_nmi			this_cpu_read(uv_cpu_nmi.hub)
C
Christoph Lameter 已提交
613
#define uv_cpu_nmi_per(cpu)		(per_cpu(uv_cpu_nmi, cpu))
614 615 616 617 618 619 620 621
#define uv_hub_nmi_per(cpu)		(uv_cpu_nmi_per(cpu).hub)

/* uv_cpu_nmi_states */
#define	UV_NMI_STATE_OUT		0
#define	UV_NMI_STATE_IN			1
#define	UV_NMI_STATE_DUMP		2
#define	UV_NMI_STATE_DUMP_DONE		3

622 623 624 625 626 627 628 629
/* Update SCIR state */
static inline void uv_set_scir_bits(unsigned char value)
{
	if (uv_hub_info->scir.state != value) {
		uv_hub_info->scir.state = value;
		uv_write_local_mmr8(uv_hub_info->scir.offset, value);
	}
}
630

631 632 633 634 635
static inline unsigned long uv_scir_offset(int apicid)
{
	return SCIR_LOCAL_MMR_BASE | (apicid & 0x3f);
}

636 637 638
static inline void uv_set_cpu_scir_bits(int cpu, unsigned char value)
{
	if (uv_cpu_hub_info(cpu)->scir.state != value) {
639 640
		uv_write_global_mmr8(uv_cpu_to_pnode(cpu),
				uv_cpu_hub_info(cpu)->scir.offset, value);
641 642 643
		uv_cpu_hub_info(cpu)->scir.state = value;
	}
}
644

645
extern unsigned int uv_apicid_hibits;
646 647
static unsigned long uv_hub_ipi_value(int apicid, int vector, int mode)
{
648
	apicid |= uv_apicid_hibits;
649 650 651 652 653 654
	return (1UL << UVH_IPI_INT_SEND_SHFT) |
			((apicid) << UVH_IPI_INT_APIC_ID_SHFT) |
			(mode << UVH_IPI_INT_DELIVERY_MODE_SHFT) |
			(vector << UVH_IPI_INT_VECTOR_SHFT);
}

655 656 657
static inline void uv_hub_send_ipi(int pnode, int apicid, int vector)
{
	unsigned long val;
658 659 660 661
	unsigned long dmode = dest_Fixed;

	if (vector == NMI_VECTOR)
		dmode = dest_NMI;
662

663
	val = uv_hub_ipi_value(apicid, vector, dmode);
664 665 666
	uv_write_global_mmr64(pnode, UVH_IPI_INT, val);
}

667 668
/*
 * Get the minimum revision number of the hub chips within the partition.
669 670 671
 *     1 - UV1 rev 1.0 initial silicon
 *     2 - UV1 rev 2.0 production silicon
 *     3 - UV2 rev 1.0 initial silicon
672
 *     5 - UV3 rev 1.0 initial silicon
673 674 675
 */
static inline int uv_get_min_hub_revision_id(void)
{
676
	return uv_hub_info->hub_revision;
677 678
}

679
#endif /* CONFIG_X86_64 */
680
#endif /* _ASM_X86_UV_UV_HUB_H */