blk-mq.c 56.4 KB
Newer Older
1 2 3 4 5 6
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
7 8 9 10 11
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
12
#include <linux/kmemleak.h>
13 14 15 16 17 18 19 20 21 22 23
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
#include <linux/delay.h>
24
#include <linux/crash_dump.h>
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
#include "blk-mq-tag.h"

static DEFINE_MUTEX(all_q_mutex);
static LIST_HEAD(all_q_list);

static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);

/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
{
	unsigned int i;

45
	for (i = 0; i < hctx->ctx_map.size; i++)
46
		if (hctx->ctx_map.map[i].word)
47 48 49 50 51
			return true;

	return false;
}

52 53 54 55 56 57 58 59 60
static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
					      struct blk_mq_ctx *ctx)
{
	return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
}

#define CTX_TO_BIT(hctx, ctx)	\
	((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))

61 62 63 64 65 66
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
67 68 69 70 71 72 73 74 75 76 77 78
	struct blk_align_bitmap *bm = get_bm(hctx, ctx);

	if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
		set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
	struct blk_align_bitmap *bm = get_bm(hctx, ctx);

	clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
79 80
}

81
void blk_mq_freeze_queue_start(struct request_queue *q)
82
{
83
	int freeze_depth;
84

85 86
	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
	if (freeze_depth == 1) {
87
		percpu_ref_kill(&q->q_usage_counter);
88
		blk_mq_run_hw_queues(q, false);
89
	}
90
}
91
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
92 93 94

static void blk_mq_freeze_queue_wait(struct request_queue *q)
{
95
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
96 97
}

98 99 100 101
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
102
void blk_freeze_queue(struct request_queue *q)
103
{
104 105 106 107 108 109 110
	/*
	 * In the !blk_mq case we are only calling this to kill the
	 * q_usage_counter, otherwise this increases the freeze depth
	 * and waits for it to return to zero.  For this reason there is
	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
	 * exported to drivers as the only user for unfreeze is blk_mq.
	 */
111 112 113
	blk_mq_freeze_queue_start(q);
	blk_mq_freeze_queue_wait(q);
}
114 115 116 117 118 119 120 121 122

void blk_mq_freeze_queue(struct request_queue *q)
{
	/*
	 * ...just an alias to keep freeze and unfreeze actions balanced
	 * in the blk_mq_* namespace
	 */
	blk_freeze_queue(q);
}
123
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
124

125
void blk_mq_unfreeze_queue(struct request_queue *q)
126
{
127
	int freeze_depth;
128

129 130 131
	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
	WARN_ON_ONCE(freeze_depth < 0);
	if (!freeze_depth) {
132
		percpu_ref_reinit(&q->q_usage_counter);
133
		wake_up_all(&q->mq_freeze_wq);
134
	}
135
}
136
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
137

138 139 140 141 142 143 144 145
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
146 147 148 149 150 151 152

	/*
	 * If we are called because the queue has now been marked as
	 * dying, we need to ensure that processes currently waiting on
	 * the queue are notified as well.
	 */
	wake_up_all(&q->mq_freeze_wq);
153 154
}

155 156 157 158 159 160
bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

161 162
static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
			       struct request *rq, unsigned int rw_flags)
163
{
164 165 166
	if (blk_queue_io_stat(q))
		rw_flags |= REQ_IO_STAT;

167 168 169
	INIT_LIST_HEAD(&rq->queuelist);
	/* csd/requeue_work/fifo_time is initialized before use */
	rq->q = q;
170
	rq->mq_ctx = ctx;
171
	rq->cmd_flags |= rw_flags;
172 173 174 175 176 177
	/* do not touch atomic flags, it needs atomic ops against the timer */
	rq->cpu = -1;
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
178
	rq->start_time = jiffies;
179 180
#ifdef CONFIG_BLK_CGROUP
	rq->rl = NULL;
181
	set_start_time_ns(rq);
182 183 184 185 186 187 188 189 190 191
	rq->io_start_time_ns = 0;
#endif
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->special = NULL;
	/* tag was already set */
	rq->errors = 0;

192 193
	rq->cmd = rq->__cmd;

194 195 196 197 198 199
	rq->extra_len = 0;
	rq->sense_len = 0;
	rq->resid_len = 0;
	rq->sense = NULL;

	INIT_LIST_HEAD(&rq->timeout_list);
200 201
	rq->timeout = 0;

202 203 204 205
	rq->end_io = NULL;
	rq->end_io_data = NULL;
	rq->next_rq = NULL;

206 207 208
	ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
}

209
static struct request *
210
__blk_mq_alloc_request(struct blk_mq_alloc_data *data, int rw)
211 212 213 214
{
	struct request *rq;
	unsigned int tag;

215
	tag = blk_mq_get_tag(data);
216
	if (tag != BLK_MQ_TAG_FAIL) {
217
		rq = data->hctx->tags->rqs[tag];
218

219
		if (blk_mq_tag_busy(data->hctx)) {
220
			rq->cmd_flags = REQ_MQ_INFLIGHT;
221
			atomic_inc(&data->hctx->nr_active);
222 223 224
		}

		rq->tag = tag;
225
		blk_mq_rq_ctx_init(data->q, data->ctx, rq, rw);
226 227 228 229 230 231
		return rq;
	}

	return NULL;
}

232 233
struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
		unsigned int flags)
234
{
235 236
	struct blk_mq_ctx *ctx;
	struct blk_mq_hw_ctx *hctx;
237
	struct request *rq;
238
	struct blk_mq_alloc_data alloc_data;
239
	int ret;
240

241
	ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
242 243
	if (ret)
		return ERR_PTR(ret);
244

245 246
	ctx = blk_mq_get_ctx(q);
	hctx = q->mq_ops->map_queue(q, ctx->cpu);
247
	blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
248

249
	rq = __blk_mq_alloc_request(&alloc_data, rw);
250
	if (!rq && !(flags & BLK_MQ_REQ_NOWAIT)) {
251 252 253 254 255
		__blk_mq_run_hw_queue(hctx);
		blk_mq_put_ctx(ctx);

		ctx = blk_mq_get_ctx(q);
		hctx = q->mq_ops->map_queue(q, ctx->cpu);
256
		blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
257 258
		rq =  __blk_mq_alloc_request(&alloc_data, rw);
		ctx = alloc_data.ctx;
259 260
	}
	blk_mq_put_ctx(ctx);
K
Keith Busch 已提交
261
	if (!rq) {
262
		blk_queue_exit(q);
263
		return ERR_PTR(-EWOULDBLOCK);
K
Keith Busch 已提交
264
	}
265 266
	return rq;
}
267
EXPORT_SYMBOL(blk_mq_alloc_request);
268 269 270 271 272 273 274

static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
				  struct blk_mq_ctx *ctx, struct request *rq)
{
	const int tag = rq->tag;
	struct request_queue *q = rq->q;

275 276
	if (rq->cmd_flags & REQ_MQ_INFLIGHT)
		atomic_dec(&hctx->nr_active);
277
	rq->cmd_flags = 0;
278

279
	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
280
	blk_mq_put_tag(hctx, tag, &ctx->last_tag);
281
	blk_queue_exit(q);
282 283
}

284
void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx, struct request *rq)
285 286 287 288 289
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

	ctx->rq_completed[rq_is_sync(rq)]++;
	__blk_mq_free_request(hctx, ctx, rq);
290 291 292 293 294 295 296 297 298 299 300

}
EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request);

void blk_mq_free_request(struct request *rq)
{
	struct blk_mq_hw_ctx *hctx;
	struct request_queue *q = rq->q;

	hctx = q->mq_ops->map_queue(q, rq->mq_ctx->cpu);
	blk_mq_free_hctx_request(hctx, rq);
301
}
J
Jens Axboe 已提交
302
EXPORT_SYMBOL_GPL(blk_mq_free_request);
303

304
inline void __blk_mq_end_request(struct request *rq, int error)
305
{
M
Ming Lei 已提交
306 307
	blk_account_io_done(rq);

C
Christoph Hellwig 已提交
308
	if (rq->end_io) {
309
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
310 311 312
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
313
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
314
	}
315
}
316
EXPORT_SYMBOL(__blk_mq_end_request);
317

318
void blk_mq_end_request(struct request *rq, int error)
319 320 321
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
322
	__blk_mq_end_request(rq, error);
323
}
324
EXPORT_SYMBOL(blk_mq_end_request);
325

326
static void __blk_mq_complete_request_remote(void *data)
327
{
328
	struct request *rq = data;
329

330
	rq->q->softirq_done_fn(rq);
331 332
}

333
static void blk_mq_ipi_complete_request(struct request *rq)
334 335
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
C
Christoph Hellwig 已提交
336
	bool shared = false;
337 338
	int cpu;

C
Christoph Hellwig 已提交
339
	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
340 341 342
		rq->q->softirq_done_fn(rq);
		return;
	}
343 344

	cpu = get_cpu();
C
Christoph Hellwig 已提交
345 346 347 348
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
349
		rq->csd.func = __blk_mq_complete_request_remote;
350 351
		rq->csd.info = rq;
		rq->csd.flags = 0;
352
		smp_call_function_single_async(ctx->cpu, &rq->csd);
353
	} else {
354
		rq->q->softirq_done_fn(rq);
355
	}
356 357
	put_cpu();
}
358

359
static void __blk_mq_complete_request(struct request *rq)
360 361 362 363
{
	struct request_queue *q = rq->q;

	if (!q->softirq_done_fn)
364
		blk_mq_end_request(rq, rq->errors);
365 366 367 368
	else
		blk_mq_ipi_complete_request(rq);
}

369 370 371 372 373 374 375 376
/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
377
void blk_mq_complete_request(struct request *rq, int error)
378
{
379 380 381
	struct request_queue *q = rq->q;

	if (unlikely(blk_should_fake_timeout(q)))
382
		return;
383 384
	if (!blk_mark_rq_complete(rq)) {
		rq->errors = error;
385
		__blk_mq_complete_request(rq);
386
	}
387 388
}
EXPORT_SYMBOL(blk_mq_complete_request);
389

390 391 392 393 394 395
int blk_mq_request_started(struct request *rq)
{
	return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
}
EXPORT_SYMBOL_GPL(blk_mq_request_started);

396
void blk_mq_start_request(struct request *rq)
397 398 399 400 401
{
	struct request_queue *q = rq->q;

	trace_block_rq_issue(q, rq);

C
Christoph Hellwig 已提交
402
	rq->resid_len = blk_rq_bytes(rq);
C
Christoph Hellwig 已提交
403 404
	if (unlikely(blk_bidi_rq(rq)))
		rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
C
Christoph Hellwig 已提交
405

406
	blk_add_timer(rq);
407

408 409 410 411 412 413
	/*
	 * Ensure that ->deadline is visible before set the started
	 * flag and clear the completed flag.
	 */
	smp_mb__before_atomic();

414 415 416 417 418 419
	/*
	 * Mark us as started and clear complete. Complete might have been
	 * set if requeue raced with timeout, which then marked it as
	 * complete. So be sure to clear complete again when we start
	 * the request, otherwise we'll ignore the completion event.
	 */
420 421 422 423
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
		set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
424 425 426 427 428 429 430 431 432

	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}
433
}
434
EXPORT_SYMBOL(blk_mq_start_request);
435

436
static void __blk_mq_requeue_request(struct request *rq)
437 438 439 440
{
	struct request_queue *q = rq->q;

	trace_block_rq_requeue(q, rq);
441

442 443 444 445
	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		if (q->dma_drain_size && blk_rq_bytes(rq))
			rq->nr_phys_segments--;
	}
446 447
}

448 449 450 451 452
void blk_mq_requeue_request(struct request *rq)
{
	__blk_mq_requeue_request(rq);

	BUG_ON(blk_queued_rq(rq));
453
	blk_mq_add_to_requeue_list(rq, true);
454 455 456
}
EXPORT_SYMBOL(blk_mq_requeue_request);

457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
		container_of(work, struct request_queue, requeue_work);
	LIST_HEAD(rq_list);
	struct request *rq, *next;
	unsigned long flags;

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
		if (!(rq->cmd_flags & REQ_SOFTBARRIER))
			continue;

		rq->cmd_flags &= ~REQ_SOFTBARRIER;
		list_del_init(&rq->queuelist);
		blk_mq_insert_request(rq, true, false, false);
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
		blk_mq_insert_request(rq, false, false, false);
	}

484 485 486 487 488
	/*
	 * Use the start variant of queue running here, so that running
	 * the requeue work will kick stopped queues.
	 */
	blk_mq_start_hw_queues(q);
489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
}

void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
	 * request head insertation from the workqueue.
	 */
	BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
		rq->cmd_flags |= REQ_SOFTBARRIER;
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
}
EXPORT_SYMBOL(blk_mq_add_to_requeue_list);

513 514 515 516 517 518
void blk_mq_cancel_requeue_work(struct request_queue *q)
{
	cancel_work_sync(&q->requeue_work);
}
EXPORT_SYMBOL_GPL(blk_mq_cancel_requeue_work);

519 520 521 522 523 524
void blk_mq_kick_requeue_list(struct request_queue *q)
{
	kblockd_schedule_work(&q->requeue_work);
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
void blk_mq_abort_requeue_list(struct request_queue *q)
{
	unsigned long flags;
	LIST_HEAD(rq_list);

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	while (!list_empty(&rq_list)) {
		struct request *rq;

		rq = list_first_entry(&rq_list, struct request, queuelist);
		list_del_init(&rq->queuelist);
		rq->errors = -EIO;
		blk_mq_end_request(rq, rq->errors);
	}
}
EXPORT_SYMBOL(blk_mq_abort_requeue_list);

545 546
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
547
	return tags->rqs[tag];
548 549 550
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

551
struct blk_mq_timeout_data {
552 553
	unsigned long next;
	unsigned int next_set;
554 555
};

556
void blk_mq_rq_timed_out(struct request *req, bool reserved)
557
{
558 559
	struct blk_mq_ops *ops = req->q->mq_ops;
	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
560 561 562 563 564 565 566 567 568 569

	/*
	 * We know that complete is set at this point. If STARTED isn't set
	 * anymore, then the request isn't active and the "timeout" should
	 * just be ignored. This can happen due to the bitflag ordering.
	 * Timeout first checks if STARTED is set, and if it is, assumes
	 * the request is active. But if we race with completion, then
	 * we both flags will get cleared. So check here again, and ignore
	 * a timeout event with a request that isn't active.
	 */
570 571
	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
		return;
572

573
	if (ops->timeout)
574
		ret = ops->timeout(req, reserved);
575 576 577 578 579 580 581 582 583 584 585 586 587 588 589

	switch (ret) {
	case BLK_EH_HANDLED:
		__blk_mq_complete_request(req);
		break;
	case BLK_EH_RESET_TIMER:
		blk_add_timer(req);
		blk_clear_rq_complete(req);
		break;
	case BLK_EH_NOT_HANDLED:
		break;
	default:
		printk(KERN_ERR "block: bad eh return: %d\n", ret);
		break;
	}
590
}
591

592 593 594 595
static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
		struct request *rq, void *priv, bool reserved)
{
	struct blk_mq_timeout_data *data = priv;
596

597 598 599 600 601
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		/*
		 * If a request wasn't started before the queue was
		 * marked dying, kill it here or it'll go unnoticed.
		 */
602 603
		if (unlikely(blk_queue_dying(rq->q)))
			blk_mq_complete_request(rq, -EIO);
604
		return;
605
	}
606

607 608
	if (time_after_eq(jiffies, rq->deadline)) {
		if (!blk_mark_rq_complete(rq))
609
			blk_mq_rq_timed_out(rq, reserved);
610 611 612 613
	} else if (!data->next_set || time_after(data->next, rq->deadline)) {
		data->next = rq->deadline;
		data->next_set = 1;
	}
614 615
}

616
static void blk_mq_timeout_work(struct work_struct *work)
617
{
618 619
	struct request_queue *q =
		container_of(work, struct request_queue, timeout_work);
620 621 622 623 624
	struct blk_mq_timeout_data data = {
		.next		= 0,
		.next_set	= 0,
	};
	int i;
625

626 627 628
	if (blk_queue_enter(q, true))
		return;

629
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
630

631 632 633
	if (data.next_set) {
		data.next = blk_rq_timeout(round_jiffies_up(data.next));
		mod_timer(&q->timeout, data.next);
634
	} else {
635 636
		struct blk_mq_hw_ctx *hctx;

637 638 639 640 641
		queue_for_each_hw_ctx(q, hctx, i) {
			/* the hctx may be unmapped, so check it here */
			if (blk_mq_hw_queue_mapped(hctx))
				blk_mq_tag_idle(hctx);
		}
642
	}
643
	blk_queue_exit(q);
644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684
}

/*
 * Reverse check our software queue for entries that we could potentially
 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
 * too much time checking for merges.
 */
static bool blk_mq_attempt_merge(struct request_queue *q,
				 struct blk_mq_ctx *ctx, struct bio *bio)
{
	struct request *rq;
	int checked = 8;

	list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
		int el_ret;

		if (!checked--)
			break;

		if (!blk_rq_merge_ok(rq, bio))
			continue;

		el_ret = blk_try_merge(rq, bio);
		if (el_ret == ELEVATOR_BACK_MERGE) {
			if (bio_attempt_back_merge(q, rq, bio)) {
				ctx->rq_merged++;
				return true;
			}
			break;
		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
			if (bio_attempt_front_merge(q, rq, bio)) {
				ctx->rq_merged++;
				return true;
			}
			break;
		}
	}

	return false;
}

685 686 687 688 689 690 691 692 693
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
{
	struct blk_mq_ctx *ctx;
	int i;

694
	for (i = 0; i < hctx->ctx_map.size; i++) {
695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718
		struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
		unsigned int off, bit;

		if (!bm->word)
			continue;

		bit = 0;
		off = i * hctx->ctx_map.bits_per_word;
		do {
			bit = find_next_bit(&bm->word, bm->depth, bit);
			if (bit >= bm->depth)
				break;

			ctx = hctx->ctxs[bit + off];
			clear_bit(bit, &bm->word);
			spin_lock(&ctx->lock);
			list_splice_tail_init(&ctx->rq_list, list);
			spin_unlock(&ctx->lock);

			bit++;
		} while (1);
	}
}

719 720 721 722 723 724 725 726 727 728 729
/*
 * Run this hardware queue, pulling any software queues mapped to it in.
 * Note that this function currently has various problems around ordering
 * of IO. In particular, we'd like FIFO behaviour on handling existing
 * items on the hctx->dispatch list. Ignore that for now.
 */
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	struct request_queue *q = hctx->queue;
	struct request *rq;
	LIST_HEAD(rq_list);
730 731
	LIST_HEAD(driver_list);
	struct list_head *dptr;
732
	int queued;
733

734
	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
735

736
	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
737 738 739 740 741 742 743
		return;

	hctx->run++;

	/*
	 * Touch any software queue that has pending entries.
	 */
744
	flush_busy_ctxs(hctx, &rq_list);
745 746 747 748 749 750 751 752 753 754 755 756

	/*
	 * If we have previous entries on our dispatch list, grab them
	 * and stuff them at the front for more fair dispatch.
	 */
	if (!list_empty_careful(&hctx->dispatch)) {
		spin_lock(&hctx->lock);
		if (!list_empty(&hctx->dispatch))
			list_splice_init(&hctx->dispatch, &rq_list);
		spin_unlock(&hctx->lock);
	}

757 758 759 760 761 762
	/*
	 * Start off with dptr being NULL, so we start the first request
	 * immediately, even if we have more pending.
	 */
	dptr = NULL;

763 764 765
	/*
	 * Now process all the entries, sending them to the driver.
	 */
766
	queued = 0;
767
	while (!list_empty(&rq_list)) {
768
		struct blk_mq_queue_data bd;
769 770 771 772 773
		int ret;

		rq = list_first_entry(&rq_list, struct request, queuelist);
		list_del_init(&rq->queuelist);

774 775 776 777 778
		bd.rq = rq;
		bd.list = dptr;
		bd.last = list_empty(&rq_list);

		ret = q->mq_ops->queue_rq(hctx, &bd);
779 780 781 782 783 784
		switch (ret) {
		case BLK_MQ_RQ_QUEUE_OK:
			queued++;
			continue;
		case BLK_MQ_RQ_QUEUE_BUSY:
			list_add(&rq->queuelist, &rq_list);
785
			__blk_mq_requeue_request(rq);
786 787 788 789
			break;
		default:
			pr_err("blk-mq: bad return on queue: %d\n", ret);
		case BLK_MQ_RQ_QUEUE_ERROR:
790
			rq->errors = -EIO;
791
			blk_mq_end_request(rq, rq->errors);
792 793 794 795 796
			break;
		}

		if (ret == BLK_MQ_RQ_QUEUE_BUSY)
			break;
797 798 799 800 801 802 803

		/*
		 * We've done the first request. If we have more than 1
		 * left in the list, set dptr to defer issue.
		 */
		if (!dptr && rq_list.next != rq_list.prev)
			dptr = &driver_list;
804 805 806 807 808 809 810 811 812 813 814 815 816 817 818
	}

	if (!queued)
		hctx->dispatched[0]++;
	else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
		hctx->dispatched[ilog2(queued) + 1]++;

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
	if (!list_empty(&rq_list)) {
		spin_lock(&hctx->lock);
		list_splice(&rq_list, &hctx->dispatch);
		spin_unlock(&hctx->lock);
819 820 821 822 823 824 825 826 827 828
		/*
		 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
		 * it's possible the queue is stopped and restarted again
		 * before this. Queue restart will dispatch requests. And since
		 * requests in rq_list aren't added into hctx->dispatch yet,
		 * the requests in rq_list might get lost.
		 *
		 * blk_mq_run_hw_queue() already checks the STOPPED bit
		 **/
		blk_mq_run_hw_queue(hctx, true);
829 830 831
	}
}

832 833 834 835 836 837 838 839
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
840 841
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
842 843

	if (--hctx->next_cpu_batch <= 0) {
844
		int cpu = hctx->next_cpu, next_cpu;
845 846 847 848 849 850 851

		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
		if (next_cpu >= nr_cpu_ids)
			next_cpu = cpumask_first(hctx->cpumask);

		hctx->next_cpu = next_cpu;
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
852 853

		return cpu;
854 855
	}

856
	return hctx->next_cpu;
857 858
}

859 860
void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
861 862
	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state) ||
	    !blk_mq_hw_queue_mapped(hctx)))
863 864
		return;

865
	if (!async) {
866 867
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
868
			__blk_mq_run_hw_queue(hctx);
869
			put_cpu();
870 871
			return;
		}
872

873
		put_cpu();
874
	}
875

876 877
	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
			&hctx->run_work, 0);
878 879
}

880
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
881 882 883 884 885 886 887
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if ((!blk_mq_hctx_has_pending(hctx) &&
		    list_empty_careful(&hctx->dispatch)) ||
888
		    test_bit(BLK_MQ_S_STOPPED, &hctx->state))
889 890
			continue;

891
		blk_mq_run_hw_queue(hctx, async);
892 893
	}
}
894
EXPORT_SYMBOL(blk_mq_run_hw_queues);
895 896 897

void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
898 899
	cancel_delayed_work(&hctx->run_work);
	cancel_delayed_work(&hctx->delay_work);
900 901 902 903
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queue);

904 905 906 907 908 909 910 911 912 913
void blk_mq_stop_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

914 915 916
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
917

918
	blk_mq_run_hw_queue(hctx, false);
919 920 921
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

922 923 924 925 926 927 928 929 930 931
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);

932
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
933 934 935 936 937 938 939 940 941
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
			continue;

		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
942
		blk_mq_run_hw_queue(hctx, async);
943 944 945 946
	}
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

947
static void blk_mq_run_work_fn(struct work_struct *work)
948 949 950
{
	struct blk_mq_hw_ctx *hctx;

951
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
952

953 954 955
	__blk_mq_run_hw_queue(hctx);
}

956 957 958 959 960 961 962 963 964 965 966 967
static void blk_mq_delay_work_fn(struct work_struct *work)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);

	if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
		__blk_mq_run_hw_queue(hctx);
}

void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
968 969
	if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
		return;
970

971 972
	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
			&hctx->delay_work, msecs_to_jiffies(msecs));
973 974 975
}
EXPORT_SYMBOL(blk_mq_delay_queue);

976 977 978 979
static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
					    struct blk_mq_ctx *ctx,
					    struct request *rq,
					    bool at_head)
980
{
981 982
	trace_block_rq_insert(hctx->queue, rq);

983 984 985 986
	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
987
}
988

989 990 991 992 993 994
static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
				    struct request *rq, bool at_head)
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

	__blk_mq_insert_req_list(hctx, ctx, rq, at_head);
995 996 997
	blk_mq_hctx_mark_pending(hctx, ctx);
}

998 999
void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
		bool async)
1000
{
1001
	struct request_queue *q = rq->q;
1002
	struct blk_mq_hw_ctx *hctx;
1003 1004 1005 1006 1007
	struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;

	current_ctx = blk_mq_get_ctx(q);
	if (!cpu_online(ctx->cpu))
		rq->mq_ctx = ctx = current_ctx;
1008 1009 1010

	hctx = q->mq_ops->map_queue(q, ctx->cpu);

1011 1012 1013
	spin_lock(&ctx->lock);
	__blk_mq_insert_request(hctx, rq, at_head);
	spin_unlock(&ctx->lock);
1014 1015 1016

	if (run_queue)
		blk_mq_run_hw_queue(hctx, async);
1017 1018

	blk_mq_put_ctx(current_ctx);
1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
}

static void blk_mq_insert_requests(struct request_queue *q,
				     struct blk_mq_ctx *ctx,
				     struct list_head *list,
				     int depth,
				     bool from_schedule)

{
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *current_ctx;

	trace_block_unplug(q, depth, !from_schedule);

	current_ctx = blk_mq_get_ctx(q);

	if (!cpu_online(ctx->cpu))
		ctx = current_ctx;
	hctx = q->mq_ops->map_queue(q, ctx->cpu);

	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
	spin_lock(&ctx->lock);
	while (!list_empty(list)) {
		struct request *rq;

		rq = list_first_entry(list, struct request, queuelist);
		list_del_init(&rq->queuelist);
		rq->mq_ctx = ctx;
1050
		__blk_mq_insert_req_list(hctx, ctx, rq, false);
1051
	}
1052
	blk_mq_hctx_mark_pending(hctx, ctx);
1053 1054 1055
	spin_unlock(&ctx->lock);

	blk_mq_run_hw_queue(hctx, from_schedule);
1056
	blk_mq_put_ctx(current_ctx);
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

	list_sort(NULL, &list, plug_ctx_cmp);

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
				blk_mq_insert_requests(this_q, this_ctx,
							&ctx_list, depth,
							from_schedule);
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
		blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
				       from_schedule);
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
	init_request_from_bio(rq, bio);
1119

1120
	if (blk_do_io_stat(rq))
1121
		blk_account_io_start(rq, 1);
1122 1123
}

1124 1125 1126 1127 1128 1129
static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
{
	return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
		!blk_queue_nomerges(hctx->queue);
}

1130 1131 1132
static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
					 struct blk_mq_ctx *ctx,
					 struct request *rq, struct bio *bio)
1133
{
1134
	if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1135 1136 1137 1138 1139 1140 1141
		blk_mq_bio_to_request(rq, bio);
		spin_lock(&ctx->lock);
insert_rq:
		__blk_mq_insert_request(hctx, rq, false);
		spin_unlock(&ctx->lock);
		return false;
	} else {
1142 1143
		struct request_queue *q = hctx->queue;

1144 1145 1146 1147 1148
		spin_lock(&ctx->lock);
		if (!blk_mq_attempt_merge(q, ctx, bio)) {
			blk_mq_bio_to_request(rq, bio);
			goto insert_rq;
		}
1149

1150 1151 1152
		spin_unlock(&ctx->lock);
		__blk_mq_free_request(hctx, ctx, rq);
		return true;
1153
	}
1154
}
1155

1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
struct blk_map_ctx {
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
};

static struct request *blk_mq_map_request(struct request_queue *q,
					  struct bio *bio,
					  struct blk_map_ctx *data)
{
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
	struct request *rq;
	int rw = bio_data_dir(bio);
1169
	struct blk_mq_alloc_data alloc_data;
1170

1171
	blk_queue_enter_live(q);
1172 1173 1174
	ctx = blk_mq_get_ctx(q);
	hctx = q->mq_ops->map_queue(q, ctx->cpu);

1175
	if (rw_is_sync(bio->bi_rw))
S
Shaohua Li 已提交
1176
		rw |= REQ_SYNC;
1177

1178
	trace_block_getrq(q, bio, rw);
1179
	blk_mq_set_alloc_data(&alloc_data, q, BLK_MQ_REQ_NOWAIT, ctx, hctx);
1180
	rq = __blk_mq_alloc_request(&alloc_data, rw);
1181
	if (unlikely(!rq)) {
1182
		__blk_mq_run_hw_queue(hctx);
1183 1184
		blk_mq_put_ctx(ctx);
		trace_block_sleeprq(q, bio, rw);
1185 1186

		ctx = blk_mq_get_ctx(q);
1187
		hctx = q->mq_ops->map_queue(q, ctx->cpu);
1188
		blk_mq_set_alloc_data(&alloc_data, q, 0, ctx, hctx);
1189 1190 1191
		rq = __blk_mq_alloc_request(&alloc_data, rw);
		ctx = alloc_data.ctx;
		hctx = alloc_data.hctx;
1192 1193 1194
	}

	hctx->queued++;
1195 1196 1197 1198 1199
	data->hctx = hctx;
	data->ctx = ctx;
	return rq;
}

1200
static int blk_mq_direct_issue_request(struct request *rq, blk_qc_t *cookie)
1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
{
	int ret;
	struct request_queue *q = rq->q;
	struct blk_mq_hw_ctx *hctx = q->mq_ops->map_queue(q,
			rq->mq_ctx->cpu);
	struct blk_mq_queue_data bd = {
		.rq = rq,
		.list = NULL,
		.last = 1
	};
1211
	blk_qc_t new_cookie = blk_tag_to_qc_t(rq->tag, hctx->queue_num);
1212 1213 1214 1215 1216 1217 1218

	/*
	 * For OK queue, we are done. For error, kill it. Any other
	 * error (busy), just add it to our list as we previously
	 * would have done
	 */
	ret = q->mq_ops->queue_rq(hctx, &bd);
1219 1220
	if (ret == BLK_MQ_RQ_QUEUE_OK) {
		*cookie = new_cookie;
1221
		return 0;
1222
	}
1223

1224 1225 1226 1227 1228 1229 1230
	__blk_mq_requeue_request(rq);

	if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
		*cookie = BLK_QC_T_NONE;
		rq->errors = -EIO;
		blk_mq_end_request(rq, rq->errors);
		return 0;
1231
	}
1232 1233

	return -1;
1234 1235
}

1236 1237 1238 1239 1240
/*
 * Multiple hardware queue variant. This will not use per-process plugs,
 * but will attempt to bypass the hctx queueing if we can go straight to
 * hardware for SYNC IO.
 */
1241
static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1242 1243 1244 1245 1246
{
	const int is_sync = rw_is_sync(bio->bi_rw);
	const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
	struct blk_map_ctx data;
	struct request *rq;
1247 1248
	unsigned int request_count = 0;
	struct blk_plug *plug;
1249
	struct request *same_queue_rq = NULL;
1250
	blk_qc_t cookie;
1251 1252 1253 1254

	blk_queue_bounce(q, &bio);

	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1255
		bio_io_error(bio);
1256
		return BLK_QC_T_NONE;
1257 1258
	}

1259 1260
	blk_queue_split(q, &bio, q->bio_split);

1261 1262 1263
	if (!is_flush_fua && !blk_queue_nomerges(q)) {
		if (blk_attempt_plug_merge(q, bio, &request_count,
					   &same_queue_rq))
1264
			return BLK_QC_T_NONE;
1265 1266
	} else
		request_count = blk_plug_queued_count(q);
1267

1268 1269
	rq = blk_mq_map_request(q, bio, &data);
	if (unlikely(!rq))
1270
		return BLK_QC_T_NONE;
1271

1272
	cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
1273 1274 1275 1276 1277 1278 1279

	if (unlikely(is_flush_fua)) {
		blk_mq_bio_to_request(rq, bio);
		blk_insert_flush(rq);
		goto run_queue;
	}

1280
	plug = current->plug;
1281 1282 1283 1284 1285
	/*
	 * If the driver supports defer issued based on 'last', then
	 * queue it up like normal since we can potentially save some
	 * CPU this way.
	 */
1286 1287 1288
	if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
	    !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
		struct request *old_rq = NULL;
1289 1290 1291 1292

		blk_mq_bio_to_request(rq, bio);

		/*
1293
		 * We do limited pluging. If the bio can be merged, do that.
1294 1295
		 * Otherwise the existing request in the plug list will be
		 * issued. So the plug list will have one request at most
1296
		 */
1297
		if (plug) {
1298 1299
			/*
			 * The plug list might get flushed before this. If that
1300 1301 1302
			 * happens, same_queue_rq is invalid and plug list is
			 * empty
			 */
1303 1304
			if (same_queue_rq && !list_empty(&plug->mq_list)) {
				old_rq = same_queue_rq;
1305
				list_del_init(&old_rq->queuelist);
1306
			}
1307 1308 1309 1310 1311
			list_add_tail(&rq->queuelist, &plug->mq_list);
		} else /* is_sync */
			old_rq = rq;
		blk_mq_put_ctx(data.ctx);
		if (!old_rq)
1312 1313 1314
			goto done;
		if (!blk_mq_direct_issue_request(old_rq, &cookie))
			goto done;
1315
		blk_mq_insert_request(old_rq, false, true, true);
1316
		goto done;
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
	}

	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
		/*
		 * For a SYNC request, send it to the hardware immediately. For
		 * an ASYNC request, just ensure that we run it later on. The
		 * latter allows for merging opportunities and more efficient
		 * dispatching.
		 */
run_queue:
		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
	}
	blk_mq_put_ctx(data.ctx);
1330 1331
done:
	return cookie;
1332 1333 1334 1335 1336 1337
}

/*
 * Single hardware queue variant. This will attempt to use any per-process
 * plug for merging and IO deferral.
 */
1338
static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio)
1339 1340 1341
{
	const int is_sync = rw_is_sync(bio->bi_rw);
	const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1342 1343
	struct blk_plug *plug;
	unsigned int request_count = 0;
1344 1345
	struct blk_map_ctx data;
	struct request *rq;
1346
	blk_qc_t cookie;
1347 1348 1349 1350

	blk_queue_bounce(q, &bio);

	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1351
		bio_io_error(bio);
1352
		return BLK_QC_T_NONE;
1353 1354
	}

1355 1356
	blk_queue_split(q, &bio, q->bio_split);

1357
	if (!is_flush_fua && !blk_queue_nomerges(q) &&
1358
	    blk_attempt_plug_merge(q, bio, &request_count, NULL))
1359
		return BLK_QC_T_NONE;
1360 1361

	rq = blk_mq_map_request(q, bio, &data);
1362
	if (unlikely(!rq))
1363
		return BLK_QC_T_NONE;
1364

1365
	cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377

	if (unlikely(is_flush_fua)) {
		blk_mq_bio_to_request(rq, bio);
		blk_insert_flush(rq);
		goto run_queue;
	}

	/*
	 * A task plug currently exists. Since this is completely lockless,
	 * utilize that to temporarily store requests until the task is
	 * either done or scheduled away.
	 */
1378 1379 1380
	plug = current->plug;
	if (plug) {
		blk_mq_bio_to_request(rq, bio);
M
Ming Lei 已提交
1381
		if (!request_count)
1382
			trace_block_plug(q);
1383 1384 1385 1386

		blk_mq_put_ctx(data.ctx);

		if (request_count >= BLK_MAX_REQUEST_COUNT) {
1387 1388
			blk_flush_plug_list(plug, false);
			trace_block_plug(q);
1389
		}
1390

1391
		list_add_tail(&rq->queuelist, &plug->mq_list);
1392
		return cookie;
1393 1394
	}

1395 1396 1397 1398 1399 1400 1401 1402 1403
	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
		/*
		 * For a SYNC request, send it to the hardware immediately. For
		 * an ASYNC request, just ensure that we run it later on. The
		 * latter allows for merging opportunities and more efficient
		 * dispatching.
		 */
run_queue:
		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1404 1405
	}

1406
	blk_mq_put_ctx(data.ctx);
1407
	return cookie;
1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418
}

/*
 * Default mapping to a software queue, since we use one per CPU.
 */
struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
{
	return q->queue_hw_ctx[q->mq_map[cpu]];
}
EXPORT_SYMBOL(blk_mq_map_queue);

1419 1420
static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
		struct blk_mq_tags *tags, unsigned int hctx_idx)
1421
{
1422
	struct page *page;
1423

1424
	if (tags->rqs && set->ops->exit_request) {
1425
		int i;
1426

1427 1428
		for (i = 0; i < tags->nr_tags; i++) {
			if (!tags->rqs[i])
1429
				continue;
1430 1431
			set->ops->exit_request(set->driver_data, tags->rqs[i],
						hctx_idx, i);
1432
			tags->rqs[i] = NULL;
1433
		}
1434 1435
	}

1436 1437
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
1438
		list_del_init(&page->lru);
1439 1440 1441 1442 1443
		/*
		 * Remove kmemleak object previously allocated in
		 * blk_mq_init_rq_map().
		 */
		kmemleak_free(page_address(page));
1444 1445 1446
		__free_pages(page, page->private);
	}

1447
	kfree(tags->rqs);
1448

1449
	blk_mq_free_tags(tags);
1450 1451 1452 1453
}

static size_t order_to_size(unsigned int order)
{
1454
	return (size_t)PAGE_SIZE << order;
1455 1456
}

1457 1458
static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
		unsigned int hctx_idx)
1459
{
1460
	struct blk_mq_tags *tags;
1461 1462 1463
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;

1464
	tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
S
Shaohua Li 已提交
1465 1466
				set->numa_node,
				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1467 1468
	if (!tags)
		return NULL;
1469

1470 1471
	INIT_LIST_HEAD(&tags->page_list);

1472 1473 1474
	tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
				 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
				 set->numa_node);
1475 1476 1477 1478
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
1479 1480 1481 1482 1483

	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
1484
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1485
				cache_line_size());
1486
	left = rq_size * set->queue_depth;
1487

1488
	for (i = 0; i < set->queue_depth; ) {
1489 1490 1491 1492 1493 1494 1495 1496 1497
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

		while (left < order_to_size(this_order - 1) && this_order)
			this_order--;

		do {
1498
			page = alloc_pages_node(set->numa_node,
1499
				GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1500
				this_order);
1501 1502 1503 1504 1505 1506 1507 1508 1509
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
1510
			goto fail;
1511 1512

		page->private = this_order;
1513
		list_add_tail(&page->lru, &tags->page_list);
1514 1515

		p = page_address(page);
1516 1517 1518 1519 1520
		/*
		 * Allow kmemleak to scan these pages as they contain pointers
		 * to additional allocations like via ops->init_request().
		 */
		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_KERNEL);
1521
		entries_per_page = order_to_size(this_order) / rq_size;
1522
		to_do = min(entries_per_page, set->queue_depth - i);
1523 1524
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
1525 1526 1527 1528
			tags->rqs[i] = p;
			if (set->ops->init_request) {
				if (set->ops->init_request(set->driver_data,
						tags->rqs[i], hctx_idx, i,
1529 1530
						set->numa_node)) {
					tags->rqs[i] = NULL;
1531
					goto fail;
1532
				}
1533 1534
			}

1535 1536 1537 1538
			p += rq_size;
			i++;
		}
	}
1539
	return tags;
1540

1541 1542 1543
fail:
	blk_mq_free_rq_map(set, tags, hctx_idx);
	return NULL;
1544 1545
}

1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571
static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
{
	kfree(bitmap->map);
}

static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
{
	unsigned int bpw = 8, total, num_maps, i;

	bitmap->bits_per_word = bpw;

	num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
	bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
					GFP_KERNEL, node);
	if (!bitmap->map)
		return -ENOMEM;

	total = nr_cpu_ids;
	for (i = 0; i < num_maps; i++) {
		bitmap->map[i].depth = min(total, bitmap->bits_per_word);
		total -= bitmap->map[i].depth;
	}

	return 0;
}

1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620
static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
{
	struct request_queue *q = hctx->queue;
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

	/*
	 * Move ctx entries to new CPU, if this one is going away.
	 */
	ctx = __blk_mq_get_ctx(q, cpu);

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
		return NOTIFY_OK;

	ctx = blk_mq_get_ctx(q);
	spin_lock(&ctx->lock);

	while (!list_empty(&tmp)) {
		struct request *rq;

		rq = list_first_entry(&tmp, struct request, queuelist);
		rq->mq_ctx = ctx;
		list_move_tail(&rq->queuelist, &ctx->rq_list);
	}

	hctx = q->mq_ops->map_queue(q, ctx->cpu);
	blk_mq_hctx_mark_pending(hctx, ctx);

	spin_unlock(&ctx->lock);

	blk_mq_run_hw_queue(hctx, true);
	blk_mq_put_ctx(ctx);
	return NOTIFY_OK;
}

static int blk_mq_hctx_notify(void *data, unsigned long action,
			      unsigned int cpu)
{
	struct blk_mq_hw_ctx *hctx = data;

	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
		return blk_mq_hctx_cpu_offline(hctx, cpu);
M
Ming Lei 已提交
1621 1622 1623 1624 1625

	/*
	 * In case of CPU online, tags may be reallocated
	 * in blk_mq_map_swqueue() after mapping is updated.
	 */
1626 1627 1628 1629

	return NOTIFY_OK;
}

1630
/* hctx->ctxs will be freed in queue's release handler */
1631 1632 1633 1634
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
1635 1636
	unsigned flush_start_tag = set->queue_depth;

1637 1638
	blk_mq_tag_idle(hctx);

1639 1640 1641 1642 1643
	if (set->ops->exit_request)
		set->ops->exit_request(set->driver_data,
				       hctx->fq->flush_rq, hctx_idx,
				       flush_start_tag + hctx_idx);

1644 1645 1646 1647
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

	blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1648
	blk_free_flush_queue(hctx->fq);
1649 1650 1651
	blk_mq_free_bitmap(&hctx->ctx_map);
}

M
Ming Lei 已提交
1652 1653 1654 1655 1656 1657 1658 1659 1660
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
1661
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
1662 1663 1664 1665 1666 1667 1668 1669 1670
	}
}

static void blk_mq_free_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

1671
	queue_for_each_hw_ctx(q, hctx, i)
M
Ming Lei 已提交
1672 1673 1674
		free_cpumask_var(hctx->cpumask);
}

1675 1676 1677
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1678
{
1679
	int node;
1680
	unsigned flush_start_tag = set->queue_depth;
1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691

	node = hctx->numa_node;
	if (node == NUMA_NO_NODE)
		node = hctx->numa_node = set->numa_node;

	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
	INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
	hctx->queue_num = hctx_idx;
1692
	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1693 1694 1695 1696 1697 1698

	blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
					blk_mq_hctx_notify, hctx);
	blk_mq_register_cpu_notifier(&hctx->cpu_notifier);

	hctx->tags = set->tags[hctx_idx];
1699 1700

	/*
1701 1702
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
1703
	 */
1704 1705 1706 1707
	hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
					GFP_KERNEL, node);
	if (!hctx->ctxs)
		goto unregister_cpu_notifier;
1708

1709 1710
	if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
		goto free_ctxs;
1711

1712
	hctx->nr_ctx = 0;
1713

1714 1715 1716
	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto free_bitmap;
1717

1718 1719 1720
	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
	if (!hctx->fq)
		goto exit_hctx;
1721

1722 1723 1724 1725 1726
	if (set->ops->init_request &&
	    set->ops->init_request(set->driver_data,
				   hctx->fq->flush_rq, hctx_idx,
				   flush_start_tag + hctx_idx, node))
		goto free_fq;
1727

1728
	return 0;
1729

1730 1731 1732 1733 1734
 free_fq:
	kfree(hctx->fq);
 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
1735 1736 1737 1738 1739 1740
 free_bitmap:
	blk_mq_free_bitmap(&hctx->ctx_map);
 free_ctxs:
	kfree(hctx->ctxs);
 unregister_cpu_notifier:
	blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1741

1742 1743
	return -1;
}
1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		memset(__ctx, 0, sizeof(*__ctx));
		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;

		/* If the cpu isn't online, the cpu is mapped to first hctx */
		if (!cpu_online(i))
			continue;

1764 1765
		hctx = q->mq_ops->map_queue(q, i);

1766 1767 1768 1769 1770
		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1771
			hctx->numa_node = local_memory_node(cpu_to_node(i));
1772 1773 1774
	}
}

1775 1776
static void blk_mq_map_swqueue(struct request_queue *q,
			       const struct cpumask *online_mask)
1777 1778 1779 1780
{
	unsigned int i;
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
M
Ming Lei 已提交
1781
	struct blk_mq_tag_set *set = q->tag_set;
1782

1783 1784 1785 1786 1787
	/*
	 * Avoid others reading imcomplete hctx->cpumask through sysfs
	 */
	mutex_lock(&q->sysfs_lock);

1788
	queue_for_each_hw_ctx(q, hctx, i) {
1789
		cpumask_clear(hctx->cpumask);
1790 1791 1792 1793 1794 1795 1796 1797
		hctx->nr_ctx = 0;
	}

	/*
	 * Map software to hardware queues
	 */
	queue_for_each_ctx(q, ctx, i) {
		/* If the cpu isn't online, the cpu is mapped to first hctx */
1798
		if (!cpumask_test_cpu(i, online_mask))
1799 1800
			continue;

1801
		hctx = q->mq_ops->map_queue(q, i);
K
Keith Busch 已提交
1802

1803
		cpumask_set_cpu(i, hctx->cpumask);
1804 1805 1806
		ctx->index_hw = hctx->nr_ctx;
		hctx->ctxs[hctx->nr_ctx++] = ctx;
	}
1807

1808 1809
	mutex_unlock(&q->sysfs_lock);

1810
	queue_for_each_hw_ctx(q, hctx, i) {
1811 1812
		struct blk_mq_ctxmap *map = &hctx->ctx_map;

1813
		/*
1814 1815
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
1816 1817 1818 1819 1820 1821
		 */
		if (!hctx->nr_ctx) {
			if (set->tags[i]) {
				blk_mq_free_rq_map(set, set->tags[i], i);
				set->tags[i] = NULL;
			}
M
Ming Lei 已提交
1822
			hctx->tags = NULL;
1823 1824 1825
			continue;
		}

M
Ming Lei 已提交
1826 1827 1828 1829 1830 1831
		/* unmapped hw queue can be remapped after CPU topo changed */
		if (!set->tags[i])
			set->tags[i] = blk_mq_init_rq_map(set, i);
		hctx->tags = set->tags[i];
		WARN_ON(!hctx->tags);

1832
		cpumask_copy(hctx->tags->cpumask, hctx->cpumask);
1833 1834 1835 1836 1837
		/*
		 * Set the map size to the number of mapped software queues.
		 * This is more accurate and more efficient than looping
		 * over all possibly mapped software queues.
		 */
1838
		map->size = DIV_ROUND_UP(hctx->nr_ctx, map->bits_per_word);
1839

1840 1841 1842
		/*
		 * Initialize batch roundrobin counts
		 */
1843 1844 1845
		hctx->next_cpu = cpumask_first(hctx->cpumask);
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
1846 1847
}

1848
static void queue_set_hctx_shared(struct request_queue *q, bool shared)
1849 1850 1851 1852
{
	struct blk_mq_hw_ctx *hctx;
	int i;

1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863
	queue_for_each_hw_ctx(q, hctx, i) {
		if (shared)
			hctx->flags |= BLK_MQ_F_TAG_SHARED;
		else
			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
	}
}

static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
{
	struct request_queue *q;
1864 1865 1866

	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);
1867
		queue_set_hctx_shared(q, shared);
1868 1869 1870 1871 1872 1873 1874 1875 1876 1877
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
	list_del_init(&q->tag_set_list);
1878 1879 1880 1881 1882 1883
	if (list_is_singular(&set->tag_list)) {
		/* just transitioned to unshared */
		set->flags &= ~BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, false);
	}
1884 1885 1886 1887 1888 1889 1890 1891 1892
	mutex_unlock(&set->tag_list_lock);
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	q->tag_set = set;

	mutex_lock(&set->tag_list_lock);
1893 1894 1895 1896 1897 1898 1899 1900 1901

	/* Check to see if we're transitioning to shared (from 1 to 2 queues). */
	if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
		set->flags |= BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, true);
	}
	if (set->flags & BLK_MQ_F_TAG_SHARED)
		queue_set_hctx_shared(q, true);
1902
	list_add_tail(&q->tag_set_list, &set->tag_list);
1903

1904 1905 1906
	mutex_unlock(&set->tag_list_lock);
}

1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918
/*
 * It is the actual release handler for mq, but we do it from
 * request queue's release handler for avoiding use-after-free
 * and headache because q->mq_kobj shouldn't have been introduced,
 * but we can't group ctx/kctx kobj without it.
 */
void blk_mq_release(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	/* hctx kobj stays in hctx */
1919 1920 1921 1922
	queue_for_each_hw_ctx(q, hctx, i) {
		if (!hctx)
			continue;
		kfree(hctx->ctxs);
1923
		kfree(hctx);
1924
	}
1925

1926 1927 1928
	kfree(q->mq_map);
	q->mq_map = NULL;

1929 1930 1931 1932 1933 1934
	kfree(q->queue_hw_ctx);

	/* ctx kobj stays in queue_ctx */
	free_percpu(q->queue_ctx);
}

1935
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950
{
	struct request_queue *uninit_q, *q;

	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
	if (!uninit_q)
		return ERR_PTR(-ENOMEM);

	q = blk_mq_init_allocated_queue(set, uninit_q);
	if (IS_ERR(q))
		blk_cleanup_queue(uninit_q);

	return q;
}
EXPORT_SYMBOL(blk_mq_init_queue);

K
Keith Busch 已提交
1951 1952
static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
						struct request_queue *q)
1953
{
K
Keith Busch 已提交
1954 1955
	int i, j;
	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
1956

K
Keith Busch 已提交
1957
	blk_mq_sysfs_unregister(q);
1958
	for (i = 0; i < set->nr_hw_queues; i++) {
K
Keith Busch 已提交
1959
		int node;
1960

K
Keith Busch 已提交
1961 1962 1963 1964
		if (hctxs[i])
			continue;

		node = blk_mq_hw_queue_to_node(q->mq_map, i);
1965 1966
		hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
					GFP_KERNEL, node);
1967
		if (!hctxs[i])
K
Keith Busch 已提交
1968
			break;
1969

1970
		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
K
Keith Busch 已提交
1971 1972 1973 1974 1975
						node)) {
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
1976

1977
		atomic_set(&hctxs[i]->nr_active, 0);
1978
		hctxs[i]->numa_node = node;
1979
		hctxs[i]->queue_num = i;
K
Keith Busch 已提交
1980 1981 1982 1983 1984 1985 1986 1987

		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
			free_cpumask_var(hctxs[i]->cpumask);
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
		blk_mq_hctx_kobj_init(hctxs[i]);
1988
	}
K
Keith Busch 已提交
1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028
	for (j = i; j < q->nr_hw_queues; j++) {
		struct blk_mq_hw_ctx *hctx = hctxs[j];

		if (hctx) {
			if (hctx->tags) {
				blk_mq_free_rq_map(set, hctx->tags, j);
				set->tags[j] = NULL;
			}
			blk_mq_exit_hctx(q, set, hctx, j);
			free_cpumask_var(hctx->cpumask);
			kobject_put(&hctx->kobj);
			kfree(hctx->ctxs);
			kfree(hctx);
			hctxs[j] = NULL;

		}
	}
	q->nr_hw_queues = i;
	blk_mq_sysfs_register(q);
}

struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
						  struct request_queue *q)
{
	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
	if (!q->queue_ctx)
		return ERR_PTR(-ENOMEM);

	q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
						GFP_KERNEL, set->numa_node);
	if (!q->queue_hw_ctx)
		goto err_percpu;

	q->mq_map = blk_mq_make_queue_map(set);
	if (!q->mq_map)
		goto err_map;

	blk_mq_realloc_hw_ctxs(set, q);
	if (!q->nr_hw_queues)
		goto err_hctxs;
2029

2030
	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2031
	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2032 2033 2034

	q->nr_queues = nr_cpu_ids;

2035
	q->mq_ops = set->ops;
2036
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2037

2038 2039 2040
	if (!(set->flags & BLK_MQ_F_SG_MERGE))
		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;

2041 2042
	q->sg_reserved_size = INT_MAX;

2043 2044 2045 2046
	INIT_WORK(&q->requeue_work, blk_mq_requeue_work);
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

2047 2048 2049 2050 2051
	if (q->nr_hw_queues > 1)
		blk_queue_make_request(q, blk_mq_make_request);
	else
		blk_queue_make_request(q, blk_sq_make_request);

2052 2053 2054 2055 2056
	/*
	 * Do this after blk_queue_make_request() overrides it...
	 */
	q->nr_requests = set->queue_depth;

2057 2058
	if (set->ops->complete)
		blk_queue_softirq_done(q, set->ops->complete);
2059

2060
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2061

2062
	get_online_cpus();
2063 2064
	mutex_lock(&all_q_mutex);

2065
	list_add_tail(&q->all_q_node, &all_q_list);
2066
	blk_mq_add_queue_tag_set(set, q);
2067
	blk_mq_map_swqueue(q, cpu_online_mask);
2068

2069
	mutex_unlock(&all_q_mutex);
2070
	put_online_cpus();
2071

2072
	return q;
2073

2074
err_hctxs:
K
Keith Busch 已提交
2075
	kfree(q->mq_map);
2076
err_map:
K
Keith Busch 已提交
2077
	kfree(q->queue_hw_ctx);
2078
err_percpu:
K
Keith Busch 已提交
2079
	free_percpu(q->queue_ctx);
2080 2081
	return ERR_PTR(-ENOMEM);
}
2082
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2083 2084 2085

void blk_mq_free_queue(struct request_queue *q)
{
M
Ming Lei 已提交
2086
	struct blk_mq_tag_set	*set = q->tag_set;
2087

2088 2089 2090 2091
	mutex_lock(&all_q_mutex);
	list_del_init(&q->all_q_node);
	mutex_unlock(&all_q_mutex);

2092 2093
	blk_mq_del_queue_tag_set(q);

M
Ming Lei 已提交
2094 2095
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
	blk_mq_free_hw_queues(q, set);
2096 2097 2098
}

/* Basically redo blk_mq_init_queue with queue frozen */
2099 2100
static void blk_mq_queue_reinit(struct request_queue *q,
				const struct cpumask *online_mask)
2101
{
2102
	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2103

2104 2105
	blk_mq_sysfs_unregister(q);

2106
	blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues, online_mask);
2107 2108 2109 2110 2111 2112 2113

	/*
	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
	 * we should change hctx numa_node according to new topology (this
	 * involves free and re-allocate memory, worthy doing?)
	 */

2114
	blk_mq_map_swqueue(q, online_mask);
2115

2116
	blk_mq_sysfs_register(q);
2117 2118
}

2119 2120
static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
				      unsigned long action, void *hcpu)
2121 2122
{
	struct request_queue *q;
2123 2124 2125 2126 2127 2128 2129
	int cpu = (unsigned long)hcpu;
	/*
	 * New online cpumask which is going to be set in this hotplug event.
	 * Declare this cpumasks as global as cpu-hotplug operation is invoked
	 * one-by-one and dynamically allocating this could result in a failure.
	 */
	static struct cpumask online_new;
2130 2131

	/*
2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146
	 * Before hotadded cpu starts handling requests, new mappings must
	 * be established.  Otherwise, these requests in hw queue might
	 * never be dispatched.
	 *
	 * For example, there is a single hw queue (hctx) and two CPU queues
	 * (ctx0 for CPU0, and ctx1 for CPU1).
	 *
	 * Now CPU1 is just onlined and a request is inserted into
	 * ctx1->rq_list and set bit0 in pending bitmap as ctx1->index_hw is
	 * still zero.
	 *
	 * And then while running hw queue, flush_busy_ctxs() finds bit0 is
	 * set in pending bitmap and tries to retrieve requests in
	 * hctx->ctxs[0]->rq_list.  But htx->ctxs[0] is a pointer to ctx0,
	 * so the request in ctx1->rq_list is ignored.
2147
	 */
2148 2149 2150 2151 2152 2153 2154 2155 2156 2157
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DEAD:
	case CPU_UP_CANCELED:
		cpumask_copy(&online_new, cpu_online_mask);
		break;
	case CPU_UP_PREPARE:
		cpumask_copy(&online_new, cpu_online_mask);
		cpumask_set_cpu(cpu, &online_new);
		break;
	default:
2158
		return NOTIFY_OK;
2159
	}
2160 2161

	mutex_lock(&all_q_mutex);
2162 2163 2164 2165 2166 2167 2168 2169 2170 2171

	/*
	 * We need to freeze and reinit all existing queues.  Freezing
	 * involves synchronous wait for an RCU grace period and doing it
	 * one by one may take a long time.  Start freezing all queues in
	 * one swoop and then wait for the completions so that freezing can
	 * take place in parallel.
	 */
	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_freeze_queue_start(q);
2172
	list_for_each_entry(q, &all_q_list, all_q_node) {
2173 2174
		blk_mq_freeze_queue_wait(q);

2175 2176 2177 2178 2179 2180 2181
		/*
		 * timeout handler can't touch hw queue during the
		 * reinitialization
		 */
		del_timer_sync(&q->timeout);
	}

2182
	list_for_each_entry(q, &all_q_list, all_q_node)
2183
		blk_mq_queue_reinit(q, &online_new);
2184 2185 2186 2187

	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_unfreeze_queue(q);

2188 2189 2190 2191
	mutex_unlock(&all_q_mutex);
	return NOTIFY_OK;
}

2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

	for (i = 0; i < set->nr_hw_queues; i++) {
		set->tags[i] = blk_mq_init_rq_map(set, i);
		if (!set->tags[i])
			goto out_unwind;
	}

	return 0;

out_unwind:
	while (--i >= 0)
		blk_mq_free_rq_map(set, set->tags[i], i);

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

K
Keith Busch 已提交
2246 2247 2248 2249 2250 2251
struct cpumask *blk_mq_tags_cpumask(struct blk_mq_tags *tags)
{
	return tags->cpumask;
}
EXPORT_SYMBOL_GPL(blk_mq_tags_cpumask);

2252 2253 2254 2255 2256 2257
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
 * requested depth down, if if it too large. In that case, the set
 * value will be stored in set->queue_depth.
 */
2258 2259
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
B
Bart Van Assche 已提交
2260 2261
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

2262 2263
	if (!set->nr_hw_queues)
		return -EINVAL;
2264
	if (!set->queue_depth)
2265 2266 2267 2268
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

2269
	if (!set->ops->queue_rq || !set->ops->map_queue)
2270 2271
		return -EINVAL;

2272 2273 2274 2275 2276
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
2277

2278 2279 2280 2281 2282 2283 2284 2285 2286
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
		set->queue_depth = min(64U, set->queue_depth);
	}
K
Keith Busch 已提交
2287 2288 2289 2290 2291
	/*
	 * There is no use for more h/w queues than cpus.
	 */
	if (set->nr_hw_queues > nr_cpu_ids)
		set->nr_hw_queues = nr_cpu_ids;
2292

K
Keith Busch 已提交
2293
	set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2294 2295
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
2296
		return -ENOMEM;
2297

2298 2299
	if (blk_mq_alloc_rq_maps(set))
		goto enomem;
2300

2301 2302 2303
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

2304
	return 0;
2305
enomem:
2306 2307
	kfree(set->tags);
	set->tags = NULL;
2308 2309 2310 2311 2312 2313 2314 2315
	return -ENOMEM;
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
	int i;

K
Keith Busch 已提交
2316
	for (i = 0; i < nr_cpu_ids; i++) {
2317
		if (set->tags[i])
2318 2319 2320
			blk_mq_free_rq_map(set, set->tags[i], i);
	}

M
Ming Lei 已提交
2321
	kfree(set->tags);
2322
	set->tags = NULL;
2323 2324 2325
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

	if (!set || nr > set->queue_depth)
		return -EINVAL;

	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
		ret = blk_mq_tag_update_depth(hctx->tags, nr);
		if (ret)
			break;
	}

	if (!ret)
		q->nr_requests = nr;

	return ret;
}

K
Keith Busch 已提交
2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376
void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
{
	struct request_queue *q;

	if (nr_hw_queues > nr_cpu_ids)
		nr_hw_queues = nr_cpu_ids;
	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
		return;

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_freeze_queue(q);

	set->nr_hw_queues = nr_hw_queues;
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_realloc_hw_ctxs(set, q);

		if (q->nr_hw_queues > 1)
			blk_queue_make_request(q, blk_mq_make_request);
		else
			blk_queue_make_request(q, blk_sq_make_request);

		blk_mq_queue_reinit(q, cpu_online_mask);
	}

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_unfreeze_queue(q);
}
EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);

2377 2378 2379 2380 2381 2382 2383 2384 2385 2386
void blk_mq_disable_hotplug(void)
{
	mutex_lock(&all_q_mutex);
}

void blk_mq_enable_hotplug(void)
{
	mutex_unlock(&all_q_mutex);
}

2387 2388 2389 2390
static int __init blk_mq_init(void)
{
	blk_mq_cpu_init();

2391
	hotcpu_notifier(blk_mq_queue_reinit_notify, 0);
2392 2393 2394 2395

	return 0;
}
subsys_initcall(blk_mq_init);