perf_event.c 45.7 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2
/* Performance event support for sparc64.
3
 *
4
 * Copyright (C) 2009, 2010 David S. Miller <davem@davemloft.net>
5
 *
6
 * This code is based almost entirely upon the x86 perf event
7 8 9 10 11 12
 * code, which is:
 *
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
 *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2009 Jaswinder Singh Rajput
 *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
13
 *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
14 15
 */

16
#include <linux/perf_event.h>
17
#include <linux/kprobes.h>
18
#include <linux/ftrace.h>
19 20 21 22
#include <linux/kernel.h>
#include <linux/kdebug.h>
#include <linux/mutex.h>

23
#include <asm/stacktrace.h>
24
#include <asm/cpudata.h>
25
#include <linux/uaccess.h>
A
Arun Sharma 已提交
26
#include <linux/atomic.h>
27 28
#include <asm/nmi.h>
#include <asm/pcr.h>
29
#include <asm/cacheflush.h>
30

31
#include "kernel.h"
32 33
#include "kstack.h"

34 35 36
/* Two classes of sparc64 chips currently exist.  All of which have
 * 32-bit counters which can generate overflow interrupts on the
 * transition from 0xffffffff to 0.
37
 *
38 39 40
 * All chips upto and including SPARC-T3 have two performance
 * counters.  The two 32-bit counters are accessed in one go using a
 * single 64-bit register.
41
 *
42 43 44 45 46 47 48 49 50 51 52 53
 * On these older chips both counters are controlled using a single
 * control register.  The only way to stop all sampling is to clear
 * all of the context (user, supervisor, hypervisor) sampling enable
 * bits.  But these bits apply to both counters, thus the two counters
 * can't be enabled/disabled individually.
 *
 * Furthermore, the control register on these older chips have two
 * event fields, one for each of the two counters.  It's thus nearly
 * impossible to have one counter going while keeping the other one
 * stopped.  Therefore it is possible to get overflow interrupts for
 * counters not currently "in use" and that condition must be checked
 * in the overflow interrupt handler.
54 55 56 57 58 59
 *
 * So we use a hack, in that we program inactive counters with the
 * "sw_count0" and "sw_count1" events.  These count how many times
 * the instruction "sethi %hi(0xfc000), %g0" is executed.  It's an
 * unusual way to encode a NOP and therefore will not trigger in
 * normal code.
60 61 62 63 64 65 66
 *
 * Starting with SPARC-T4 we have one control register per counter.
 * And the counters are stored in individual registers.  The registers
 * for the counters are 64-bit but only a 32-bit counter is
 * implemented.  The event selections on SPARC-T4 lack any
 * restrictions, therefore we can elide all of the complicated
 * conflict resolution code we have for SPARC-T3 and earlier chips.
67 68
 */

69 70
#define MAX_HWEVENTS			4
#define MAX_PCRS			4
71 72 73 74
#define MAX_PERIOD			((1UL << 32) - 1)

#define PIC_UPPER_INDEX			0
#define PIC_LOWER_INDEX			1
75
#define PIC_NO_INDEX			-1
76

77
struct cpu_hw_events {
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
	/* Number of events currently scheduled onto this cpu.
	 * This tells how many entries in the arrays below
	 * are valid.
	 */
	int			n_events;

	/* Number of new events added since the last hw_perf_disable().
	 * This works because the perf event layer always adds new
	 * events inside of a perf_{disable,enable}() sequence.
	 */
	int			n_added;

	/* Array of events current scheduled on this cpu.  */
	struct perf_event	*event[MAX_HWEVENTS];

	/* Array of encoded longs, specifying the %pcr register
	 * encoding and the mask of PIC counters this even can
	 * be scheduled on.  See perf_event_encode() et al.
	 */
	unsigned long		events[MAX_HWEVENTS];

	/* The current counter index assigned to an event.  When the
	 * event hasn't been programmed into the cpu yet, this will
	 * hold PIC_NO_INDEX.  The event->hw.idx value tells us where
	 * we ought to schedule the event.
	 */
	int			current_idx[MAX_HWEVENTS];

106 107
	/* Software copy of %pcr register(s) on this cpu.  */
	u64			pcr[MAX_HWEVENTS];
108 109

	/* Enabled/disable state.  */
110
	int			enabled;
111

112
	unsigned int		txn_flags;
113
};
114
static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = { .enabled = 1, };
115

116 117 118
/* An event map describes the characteristics of a performance
 * counter event.  In particular it gives the encoding as well as
 * a mask telling which counters the event can be measured on.
119 120
 *
 * The mask is unused on SPARC-T4 and later.
121
 */
122 123 124 125 126 127 128 129
struct perf_event_map {
	u16	encoding;
	u8	pic_mask;
#define PIC_NONE	0x00
#define PIC_UPPER	0x01
#define PIC_LOWER	0x02
};

130
/* Encode a perf_event_map entry into a long.  */
131 132 133 134 135
static unsigned long perf_event_encode(const struct perf_event_map *pmap)
{
	return ((unsigned long) pmap->encoding << 16) | pmap->pic_mask;
}

136 137 138 139 140 141
static u8 perf_event_get_msk(unsigned long val)
{
	return val & 0xff;
}

static u64 perf_event_get_enc(unsigned long val)
142
{
143
	return val >> 16;
144 145
}

146 147 148 149 150 151 152 153 154 155
#define C(x) PERF_COUNT_HW_CACHE_##x

#define CACHE_OP_UNSUPPORTED	0xfffe
#define CACHE_OP_NONSENSE	0xffff

typedef struct perf_event_map cache_map_t
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX];

156 157
struct sparc_pmu {
	const struct perf_event_map	*(*event_map)(int);
158
	const cache_map_t		*cache_map;
159
	int				max_events;
160 161
	u32				(*read_pmc)(int);
	void				(*write_pmc)(int, u64);
162 163 164
	int				upper_shift;
	int				lower_shift;
	int				event_mask;
165 166
	int				user_bit;
	int				priv_bit;
167
	int				hv_bit;
168
	int				irq_bit;
169 170
	int				upper_nop;
	int				lower_nop;
171 172 173
	unsigned int			flags;
#define SPARC_PMU_ALL_EXCLUDES_SAME	0x00000001
#define SPARC_PMU_HAS_CONFLICTS		0x00000002
174
	int				max_hw_events;
175 176
	int				num_pcrs;
	int				num_pic_regs;
177 178
};

179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
static u32 sparc_default_read_pmc(int idx)
{
	u64 val;

	val = pcr_ops->read_pic(0);
	if (idx == PIC_UPPER_INDEX)
		val >>= 32;

	return val & 0xffffffff;
}

static void sparc_default_write_pmc(int idx, u64 val)
{
	u64 shift, mask, pic;

	shift = 0;
	if (idx == PIC_UPPER_INDEX)
		shift = 32;

	mask = ((u64) 0xffffffff) << shift;
	val <<= shift;

	pic = pcr_ops->read_pic(0);
	pic &= ~mask;
	pic |= val;
	pcr_ops->write_pic(0, pic);
}

207
static const struct perf_event_map ultra3_perfmon_event_map[] = {
208 209 210 211 212 213
	[PERF_COUNT_HW_CPU_CYCLES] = { 0x0000, PIC_UPPER | PIC_LOWER },
	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x0001, PIC_UPPER | PIC_LOWER },
	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0009, PIC_LOWER },
	[PERF_COUNT_HW_CACHE_MISSES] = { 0x0009, PIC_UPPER },
};

214
static const struct perf_event_map *ultra3_event_map(int event_id)
215
{
216
	return &ultra3_perfmon_event_map[event_id];
217 218
}

219
static const cache_map_t ultra3_cache_map = {
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
[C(L1D)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
		[C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
	},
	[C(OP_WRITE)] = {
		[C(RESULT_ACCESS)] = { 0x0a, PIC_LOWER },
		[C(RESULT_MISS)] = { 0x0a, PIC_UPPER },
	},
	[C(OP_PREFETCH)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(L1I)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
		[C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(LL)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER, },
		[C(RESULT_MISS)] = { 0x0c, PIC_UPPER, },
	},
	[C(OP_WRITE)] = {
		[C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER },
		[C(RESULT_MISS)] = { 0x0c, PIC_UPPER },
	},
	[C(OP_PREFETCH)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(DTLB)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { 0x12, PIC_UPPER, },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(ITLB)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { 0x11, PIC_UPPER, },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(BPU)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
304 305 306 307 308 309 310 311 312 313 314 315 316 317
[C(NODE)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
318 319
};

320 321 322 323
static const struct sparc_pmu ultra3_pmu = {
	.event_map	= ultra3_event_map,
	.cache_map	= &ultra3_cache_map,
	.max_events	= ARRAY_SIZE(ultra3_perfmon_event_map),
324 325
	.read_pmc	= sparc_default_read_pmc,
	.write_pmc	= sparc_default_write_pmc,
326 327 328
	.upper_shift	= 11,
	.lower_shift	= 4,
	.event_mask	= 0x3f,
329 330
	.user_bit	= PCR_UTRACE,
	.priv_bit	= PCR_STRACE,
331 332
	.upper_nop	= 0x1c,
	.lower_nop	= 0x14,
333 334
	.flags		= (SPARC_PMU_ALL_EXCLUDES_SAME |
			   SPARC_PMU_HAS_CONFLICTS),
335
	.max_hw_events	= 2,
336 337
	.num_pcrs	= 1,
	.num_pic_regs	= 1,
338 339
};

340 341
/* Niagara1 is very limited.  The upper PIC is hard-locked to count
 * only instructions, so it is free running which creates all kinds of
342
 * problems.  Some hardware designs make one wonder if the creator
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
 * even looked at how this stuff gets used by software.
 */
static const struct perf_event_map niagara1_perfmon_event_map[] = {
	[PERF_COUNT_HW_CPU_CYCLES] = { 0x00, PIC_UPPER },
	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x00, PIC_UPPER },
	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0, PIC_NONE },
	[PERF_COUNT_HW_CACHE_MISSES] = { 0x03, PIC_LOWER },
};

static const struct perf_event_map *niagara1_event_map(int event_id)
{
	return &niagara1_perfmon_event_map[event_id];
}

static const cache_map_t niagara1_cache_map = {
[C(L1D)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
	},
	[C(OP_WRITE)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
	},
	[C(OP_PREFETCH)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(L1I)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { 0x00, PIC_UPPER },
		[C(RESULT_MISS)] = { 0x02, PIC_LOWER, },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(LL)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
	},
	[C(OP_WRITE)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
	},
	[C(OP_PREFETCH)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(DTLB)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { 0x05, PIC_LOWER, },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(ITLB)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { 0x04, PIC_LOWER, },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(BPU)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
442 443 444 445 446 447 448 449 450 451 452 453 454 455
[C(NODE)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
456 457 458 459 460 461
};

static const struct sparc_pmu niagara1_pmu = {
	.event_map	= niagara1_event_map,
	.cache_map	= &niagara1_cache_map,
	.max_events	= ARRAY_SIZE(niagara1_perfmon_event_map),
462 463
	.read_pmc	= sparc_default_read_pmc,
	.write_pmc	= sparc_default_write_pmc,
464 465 466
	.upper_shift	= 0,
	.lower_shift	= 4,
	.event_mask	= 0x7,
467 468
	.user_bit	= PCR_UTRACE,
	.priv_bit	= PCR_STRACE,
469 470
	.upper_nop	= 0x0,
	.lower_nop	= 0x0,
471 472
	.flags		= (SPARC_PMU_ALL_EXCLUDES_SAME |
			   SPARC_PMU_HAS_CONFLICTS),
473
	.max_hw_events	= 2,
474 475
	.num_pcrs	= 1,
	.num_pic_regs	= 1,
476 477
};

478 479 480 481 482 483 484 485 486
static const struct perf_event_map niagara2_perfmon_event_map[] = {
	[PERF_COUNT_HW_CPU_CYCLES] = { 0x02ff, PIC_UPPER | PIC_LOWER },
	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x02ff, PIC_UPPER | PIC_LOWER },
	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0208, PIC_UPPER | PIC_LOWER },
	[PERF_COUNT_HW_CACHE_MISSES] = { 0x0302, PIC_UPPER | PIC_LOWER },
	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x0201, PIC_UPPER | PIC_LOWER },
	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x0202, PIC_UPPER | PIC_LOWER },
};

487
static const struct perf_event_map *niagara2_event_map(int event_id)
488
{
489
	return &niagara2_perfmon_event_map[event_id];
490 491
}

492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
static const cache_map_t niagara2_cache_map = {
[C(L1D)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
		[C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
	},
	[C(OP_WRITE)] = {
		[C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
		[C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
	},
	[C(OP_PREFETCH)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(L1I)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { 0x02ff, PIC_UPPER | PIC_LOWER, },
		[C(RESULT_MISS)] = { 0x0301, PIC_UPPER | PIC_LOWER, },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(LL)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
		[C(RESULT_MISS)] = { 0x0330, PIC_UPPER | PIC_LOWER, },
	},
	[C(OP_WRITE)] = {
		[C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
		[C(RESULT_MISS)] = { 0x0320, PIC_UPPER | PIC_LOWER, },
	},
	[C(OP_PREFETCH)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(DTLB)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { 0x0b08, PIC_UPPER | PIC_LOWER, },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(ITLB)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { 0xb04, PIC_UPPER | PIC_LOWER, },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(BPU)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
570 571 572 573 574 575 576 577 578 579 580 581 582 583
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(NODE)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
584 585 586 587 588 589 590 591 592
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
};

593 594
static const struct sparc_pmu niagara2_pmu = {
	.event_map	= niagara2_event_map,
595
	.cache_map	= &niagara2_cache_map,
596
	.max_events	= ARRAY_SIZE(niagara2_perfmon_event_map),
597 598
	.read_pmc	= sparc_default_read_pmc,
	.write_pmc	= sparc_default_write_pmc,
599 600 601
	.upper_shift	= 19,
	.lower_shift	= 6,
	.event_mask	= 0xfff,
602 603 604
	.user_bit	= PCR_UTRACE,
	.priv_bit	= PCR_STRACE,
	.hv_bit		= PCR_N2_HTRACE,
605
	.irq_bit	= 0x30,
606 607
	.upper_nop	= 0x220,
	.lower_nop	= 0x220,
608 609
	.flags		= (SPARC_PMU_ALL_EXCLUDES_SAME |
			   SPARC_PMU_HAS_CONFLICTS),
610
	.max_hw_events	= 2,
611 612
	.num_pcrs	= 1,
	.num_pic_regs	= 1,
613 614
};

615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741
static const struct perf_event_map niagara4_perfmon_event_map[] = {
	[PERF_COUNT_HW_CPU_CYCLES] = { (26 << 6) },
	[PERF_COUNT_HW_INSTRUCTIONS] = { (3 << 6) | 0x3f },
	[PERF_COUNT_HW_CACHE_REFERENCES] = { (3 << 6) | 0x04 },
	[PERF_COUNT_HW_CACHE_MISSES] = { (16 << 6) | 0x07 },
	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { (4 << 6) | 0x01 },
	[PERF_COUNT_HW_BRANCH_MISSES] = { (25 << 6) | 0x0f },
};

static const struct perf_event_map *niagara4_event_map(int event_id)
{
	return &niagara4_perfmon_event_map[event_id];
}

static const cache_map_t niagara4_cache_map = {
[C(L1D)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { (3 << 6) | 0x04 },
		[C(RESULT_MISS)] = { (16 << 6) | 0x07 },
	},
	[C(OP_WRITE)] = {
		[C(RESULT_ACCESS)] = { (3 << 6) | 0x08 },
		[C(RESULT_MISS)] = { (16 << 6) | 0x07 },
	},
	[C(OP_PREFETCH)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(L1I)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { (3 << 6) | 0x3f },
		[C(RESULT_MISS)] = { (11 << 6) | 0x03 },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(LL)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { (3 << 6) | 0x04 },
		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
	},
	[C(OP_WRITE)] = {
		[C(RESULT_ACCESS)] = { (3 << 6) | 0x08 },
		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
	},
	[C(OP_PREFETCH)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(DTLB)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { (17 << 6) | 0x3f },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(ITLB)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { (6 << 6) | 0x3f },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(BPU)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(NODE)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
};

static u32 sparc_vt_read_pmc(int idx)
{
	u64 val = pcr_ops->read_pic(idx);

	return val & 0xffffffff;
}

static void sparc_vt_write_pmc(int idx, u64 val)
{
	u64 pcr;

	pcr = pcr_ops->read_pcr(idx);
742 743
	/* ensure ov and ntc are reset */
	pcr &= ~(PCR_N4_OV | PCR_N4_NTC);
744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779

	pcr_ops->write_pic(idx, val & 0xffffffff);

	pcr_ops->write_pcr(idx, pcr);
}

static const struct sparc_pmu niagara4_pmu = {
	.event_map	= niagara4_event_map,
	.cache_map	= &niagara4_cache_map,
	.max_events	= ARRAY_SIZE(niagara4_perfmon_event_map),
	.read_pmc	= sparc_vt_read_pmc,
	.write_pmc	= sparc_vt_write_pmc,
	.upper_shift	= 5,
	.lower_shift	= 5,
	.event_mask	= 0x7ff,
	.user_bit	= PCR_N4_UTRACE,
	.priv_bit	= PCR_N4_STRACE,

	/* We explicitly don't support hypervisor tracing.  The T4
	 * generates the overflow event for precise events via a trap
	 * which will not be generated (ie. it's completely lost) if
	 * we happen to be in the hypervisor when the event triggers.
	 * Essentially, the overflow event reporting is completely
	 * unusable when you have hypervisor mode tracing enabled.
	 */
	.hv_bit		= 0,

	.irq_bit	= PCR_N4_TOE,
	.upper_nop	= 0,
	.lower_nop	= 0,
	.flags		= 0,
	.max_hw_events	= 4,
	.num_pcrs	= 4,
	.num_pic_regs	= 4,
};

780 781 782 783 784
static const struct sparc_pmu sparc_m7_pmu = {
	.event_map	= niagara4_event_map,
	.cache_map	= &niagara4_cache_map,
	.max_events	= ARRAY_SIZE(niagara4_perfmon_event_map),
	.read_pmc	= sparc_vt_read_pmc,
785
	.write_pmc	= sparc_vt_write_pmc,
786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802
	.upper_shift	= 5,
	.lower_shift	= 5,
	.event_mask	= 0x7ff,
	.user_bit	= PCR_N4_UTRACE,
	.priv_bit	= PCR_N4_STRACE,

	/* We explicitly don't support hypervisor tracing. */
	.hv_bit		= 0,

	.irq_bit	= PCR_N4_TOE,
	.upper_nop	= 0,
	.lower_nop	= 0,
	.flags		= 0,
	.max_hw_events	= 4,
	.num_pcrs	= 4,
	.num_pic_regs	= 4,
};
803 804
static const struct sparc_pmu *sparc_pmu __read_mostly;

805
static u64 event_encoding(u64 event_id, int idx)
806 807
{
	if (idx == PIC_UPPER_INDEX)
808
		event_id <<= sparc_pmu->upper_shift;
809
	else
810 811
		event_id <<= sparc_pmu->lower_shift;
	return event_id;
812 813 814 815 816 817 818 819 820 821
}

static u64 mask_for_index(int idx)
{
	return event_encoding(sparc_pmu->event_mask, idx);
}

static u64 nop_for_index(int idx)
{
	return event_encoding(idx == PIC_UPPER_INDEX ?
822 823
			      sparc_pmu->upper_nop :
			      sparc_pmu->lower_nop, idx);
824 825
}

826
static inline void sparc_pmu_enable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
827
{
828
	u64 enc, val, mask = mask_for_index(idx);
829
	int pcr_index = 0;
830

831 832 833
	if (sparc_pmu->num_pcrs > 1)
		pcr_index = idx;

834 835
	enc = perf_event_get_enc(cpuc->events[idx]);

836
	val = cpuc->pcr[pcr_index];
837
	val &= ~mask;
838
	val |= event_encoding(enc, idx);
839
	cpuc->pcr[pcr_index] = val;
840

841
	pcr_ops->write_pcr(pcr_index, cpuc->pcr[pcr_index]);
842 843
}

844
static inline void sparc_pmu_disable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
845 846 847
{
	u64 mask = mask_for_index(idx);
	u64 nop = nop_for_index(idx);
848
	int pcr_index = 0;
849
	u64 val;
850

851 852 853 854
	if (sparc_pmu->num_pcrs > 1)
		pcr_index = idx;

	val = cpuc->pcr[pcr_index];
855 856
	val &= ~mask;
	val |= nop;
857
	cpuc->pcr[pcr_index] = val;
858

859
	pcr_ops->write_pcr(pcr_index, cpuc->pcr[pcr_index]);
860 861
}

862 863 864 865 866 867 868 869
static u64 sparc_perf_event_update(struct perf_event *event,
				   struct hw_perf_event *hwc, int idx)
{
	int shift = 64 - 32;
	u64 prev_raw_count, new_raw_count;
	s64 delta;

again:
870
	prev_raw_count = local64_read(&hwc->prev_count);
871
	new_raw_count = sparc_pmu->read_pmc(idx);
872

873
	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
874 875 876 877 878 879
			     new_raw_count) != prev_raw_count)
		goto again;

	delta = (new_raw_count << shift) - (prev_raw_count << shift);
	delta >>= shift;

880 881
	local64_add(delta, &event->count);
	local64_sub(delta, &hwc->period_left);
882 883 884 885

	return new_raw_count;
}

886
static int sparc_perf_event_set_period(struct perf_event *event,
887
				       struct hw_perf_event *hwc, int idx)
888
{
889
	s64 left = local64_read(&hwc->period_left);
890 891 892 893 894
	s64 period = hwc->sample_period;
	int ret = 0;

	if (unlikely(left <= -period)) {
		left = period;
895
		local64_set(&hwc->period_left, left);
896 897 898 899 900 901
		hwc->last_period = period;
		ret = 1;
	}

	if (unlikely(left <= 0)) {
		left += period;
902
		local64_set(&hwc->period_left, left);
903 904 905 906 907 908
		hwc->last_period = period;
		ret = 1;
	}
	if (left > MAX_PERIOD)
		left = MAX_PERIOD;

909
	local64_set(&hwc->prev_count, (u64)-left);
910

911
	sparc_pmu->write_pmc(idx, (u64)(-left) & 0xffffffff);
912

913
	perf_event_update_userpage(event);
914 915 916 917

	return ret;
}

918
static void read_in_all_counters(struct cpu_hw_events *cpuc)
919
{
920
	int i;
921

922 923
	for (i = 0; i < cpuc->n_events; i++) {
		struct perf_event *cp = cpuc->event[i];
924

925 926 927 928 929 930 931
		if (cpuc->current_idx[i] != PIC_NO_INDEX &&
		    cpuc->current_idx[i] != cp->hw.idx) {
			sparc_perf_event_update(cp, &cp->hw,
						cpuc->current_idx[i]);
			cpuc->current_idx[i] = PIC_NO_INDEX;
		}
	}
932 933 934 935 936 937 938 939 940 941 942 943 944 945
}

/* On this PMU all PICs are programmed using a single PCR.  Calculate
 * the combined control register value.
 *
 * For such chips we require that all of the events have the same
 * configuration, so just fetch the settings from the first entry.
 */
static void calculate_single_pcr(struct cpu_hw_events *cpuc)
{
	int i;

	if (!cpuc->n_added)
		goto out;
946

947 948 949 950 951 952 953 954 955 956 957 958 959 960
	/* Assign to counters all unassigned events.  */
	for (i = 0; i < cpuc->n_events; i++) {
		struct perf_event *cp = cpuc->event[i];
		struct hw_perf_event *hwc = &cp->hw;
		int idx = hwc->idx;
		u64 enc;

		if (cpuc->current_idx[i] != PIC_NO_INDEX)
			continue;

		sparc_perf_event_set_period(cp, hwc, idx);
		cpuc->current_idx[i] = idx;

		enc = perf_event_get_enc(cpuc->events[i]);
961
		cpuc->pcr[0] &= ~mask_for_index(idx);
P
Peter Zijlstra 已提交
962
		if (hwc->state & PERF_HES_STOPPED)
963
			cpuc->pcr[0] |= nop_for_index(idx);
P
Peter Zijlstra 已提交
964
		else
965
			cpuc->pcr[0] |= event_encoding(enc, idx);
966 967
	}
out:
968 969 970
	cpuc->pcr[0] |= cpuc->event[0]->hw.config_base;
}

971 972
static void sparc_pmu_start(struct perf_event *event, int flags);

973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990
/* On this PMU each PIC has it's own PCR control register.  */
static void calculate_multiple_pcrs(struct cpu_hw_events *cpuc)
{
	int i;

	if (!cpuc->n_added)
		goto out;

	for (i = 0; i < cpuc->n_events; i++) {
		struct perf_event *cp = cpuc->event[i];
		struct hw_perf_event *hwc = &cp->hw;
		int idx = hwc->idx;

		if (cpuc->current_idx[i] != PIC_NO_INDEX)
			continue;

		cpuc->current_idx[i] = idx;

991
		sparc_pmu_start(cp, PERF_EF_RELOAD);
992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
	}
out:
	for (i = 0; i < cpuc->n_events; i++) {
		struct perf_event *cp = cpuc->event[i];
		int idx = cp->hw.idx;

		cpuc->pcr[idx] |= cp->hw.config_base;
	}
}

/* If performance event entries have been added, move existing events
 * around (if necessary) and then assign new entries to counters.
 */
static void update_pcrs_for_enable(struct cpu_hw_events *cpuc)
{
	if (cpuc->n_added)
		read_in_all_counters(cpuc);

	if (sparc_pmu->num_pcrs == 1) {
		calculate_single_pcr(cpuc);
	} else {
		calculate_multiple_pcrs(cpuc);
	}
1015 1016
}

P
Peter Zijlstra 已提交
1017
static void sparc_pmu_enable(struct pmu *pmu)
1018
{
1019
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1020
	int i;
1021

1022 1023
	if (cpuc->enabled)
		return;
1024

1025 1026
	cpuc->enabled = 1;
	barrier();
1027

1028 1029
	if (cpuc->n_events)
		update_pcrs_for_enable(cpuc);
1030

1031 1032
	for (i = 0; i < sparc_pmu->num_pcrs; i++)
		pcr_ops->write_pcr(i, cpuc->pcr[i]);
1033 1034
}

P
Peter Zijlstra 已提交
1035
static void sparc_pmu_disable(struct pmu *pmu)
1036
{
1037
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1038
	int i;
1039 1040 1041 1042 1043 1044 1045

	if (!cpuc->enabled)
		return;

	cpuc->enabled = 0;
	cpuc->n_added = 0;

1046 1047
	for (i = 0; i < sparc_pmu->num_pcrs; i++) {
		u64 val = cpuc->pcr[i];
1048

1049 1050 1051 1052 1053
		val &= ~(sparc_pmu->user_bit | sparc_pmu->priv_bit |
			 sparc_pmu->hv_bit | sparc_pmu->irq_bit);
		cpuc->pcr[i] = val;
		pcr_ops->write_pcr(i, cpuc->pcr[i]);
	}
1054 1055
}

P
Peter Zijlstra 已提交
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
static int active_event_index(struct cpu_hw_events *cpuc,
			      struct perf_event *event)
{
	int i;

	for (i = 0; i < cpuc->n_events; i++) {
		if (cpuc->event[i] == event)
			break;
	}
	BUG_ON(i == cpuc->n_events);
	return cpuc->current_idx[i];
}

static void sparc_pmu_start(struct perf_event *event, int flags)
{
1071
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
P
Peter Zijlstra 已提交
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
	int idx = active_event_index(cpuc, event);

	if (flags & PERF_EF_RELOAD) {
		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
		sparc_perf_event_set_period(event, &event->hw, idx);
	}

	event->hw.state = 0;

	sparc_pmu_enable_event(cpuc, &event->hw, idx);
}

static void sparc_pmu_stop(struct perf_event *event, int flags)
{
1086
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
P
Peter Zijlstra 已提交
1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
	int idx = active_event_index(cpuc, event);

	if (!(event->hw.state & PERF_HES_STOPPED)) {
		sparc_pmu_disable_event(cpuc, &event->hw, idx);
		event->hw.state |= PERF_HES_STOPPED;
	}

	if (!(event->hw.state & PERF_HES_UPTODATE) && (flags & PERF_EF_UPDATE)) {
		sparc_perf_event_update(event, &event->hw, idx);
		event->hw.state |= PERF_HES_UPTODATE;
	}
}

static void sparc_pmu_del(struct perf_event *event, int _flags)
1101
{
1102
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1103 1104
	unsigned long flags;
	int i;
1105

1106 1107 1108 1109
	local_irq_save(flags);

	for (i = 0; i < cpuc->n_events; i++) {
		if (event == cpuc->event[i]) {
P
Peter Zijlstra 已提交
1110 1111 1112 1113
			/* Absorb the final count and turn off the
			 * event.
			 */
			sparc_pmu_stop(event, PERF_EF_UPDATE);
1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125

			/* Shift remaining entries down into
			 * the existing slot.
			 */
			while (++i < cpuc->n_events) {
				cpuc->event[i - 1] = cpuc->event[i];
				cpuc->events[i - 1] = cpuc->events[i];
				cpuc->current_idx[i - 1] =
					cpuc->current_idx[i];
			}

			perf_event_update_userpage(event);
1126

1127 1128 1129 1130
			cpuc->n_events--;
			break;
		}
	}
1131

1132 1133 1134
	local_irq_restore(flags);
}

1135
static void sparc_pmu_read(struct perf_event *event)
1136
{
1137
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1138
	int idx = active_event_index(cpuc, event);
1139
	struct hw_perf_event *hwc = &event->hw;
1140

1141
	sparc_perf_event_update(event, hwc, idx);
1142 1143
}

1144
static atomic_t active_events = ATOMIC_INIT(0);
1145 1146
static DEFINE_MUTEX(pmc_grab_mutex);

1147 1148
static void perf_stop_nmi_watchdog(void *unused)
{
1149
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1150
	int i;
1151 1152

	stop_nmi_watchdog(NULL);
1153 1154
	for (i = 0; i < sparc_pmu->num_pcrs; i++)
		cpuc->pcr[i] = pcr_ops->read_pcr(i);
1155 1156
}

1157
static void perf_event_grab_pmc(void)
1158
{
1159
	if (atomic_inc_not_zero(&active_events))
1160 1161 1162
		return;

	mutex_lock(&pmc_grab_mutex);
1163
	if (atomic_read(&active_events) == 0) {
1164
		if (atomic_read(&nmi_active) > 0) {
1165
			on_each_cpu(perf_stop_nmi_watchdog, NULL, 1);
1166 1167
			BUG_ON(atomic_read(&nmi_active) != 0);
		}
1168
		atomic_inc(&active_events);
1169 1170 1171 1172
	}
	mutex_unlock(&pmc_grab_mutex);
}

1173
static void perf_event_release_pmc(void)
1174
{
1175
	if (atomic_dec_and_mutex_lock(&active_events, &pmc_grab_mutex)) {
1176 1177 1178 1179 1180 1181
		if (atomic_read(&nmi_active) == 0)
			on_each_cpu(start_nmi_watchdog, NULL, 1);
		mutex_unlock(&pmc_grab_mutex);
	}
}

1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
static const struct perf_event_map *sparc_map_cache_event(u64 config)
{
	unsigned int cache_type, cache_op, cache_result;
	const struct perf_event_map *pmap;

	if (!sparc_pmu->cache_map)
		return ERR_PTR(-ENOENT);

	cache_type = (config >>  0) & 0xff;
	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
		return ERR_PTR(-EINVAL);

	cache_op = (config >>  8) & 0xff;
	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
		return ERR_PTR(-EINVAL);

	cache_result = (config >> 16) & 0xff;
	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
		return ERR_PTR(-EINVAL);

	pmap = &((*sparc_pmu->cache_map)[cache_type][cache_op][cache_result]);

	if (pmap->encoding == CACHE_OP_UNSUPPORTED)
		return ERR_PTR(-ENOENT);

	if (pmap->encoding == CACHE_OP_NONSENSE)
		return ERR_PTR(-EINVAL);

	return pmap;
}

1213
static void hw_perf_event_destroy(struct perf_event *event)
1214
{
1215
	perf_event_release_pmc();
1216 1217
}

1218 1219 1220
/* Make sure all events can be scheduled into the hardware at
 * the same time.  This is simplified by the fact that we only
 * need to support 2 simultaneous HW events.
1221 1222 1223 1224 1225 1226
 *
 * As a side effect, the evts[]->hw.idx values will be assigned
 * on success.  These are pending indexes.  When the events are
 * actually programmed into the chip, these values will propagate
 * to the per-cpu cpuc->current_idx[] slots, see the code in
 * maybe_change_configuration() for details.
1227
 */
1228 1229
static int sparc_check_constraints(struct perf_event **evts,
				   unsigned long *events, int n_ev)
1230
{
1231 1232 1233 1234 1235 1236 1237 1238 1239
	u8 msk0 = 0, msk1 = 0;
	int idx0 = 0;

	/* This case is possible when we are invoked from
	 * hw_perf_group_sched_in().
	 */
	if (!n_ev)
		return 0;

1240
	if (n_ev > sparc_pmu->max_hw_events)
1241 1242
		return -1;

1243 1244 1245 1246 1247 1248 1249 1250
	if (!(sparc_pmu->flags & SPARC_PMU_HAS_CONFLICTS)) {
		int i;

		for (i = 0; i < n_ev; i++)
			evts[i]->hw.idx = i;
		return 0;
	}

1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
	msk0 = perf_event_get_msk(events[0]);
	if (n_ev == 1) {
		if (msk0 & PIC_LOWER)
			idx0 = 1;
		goto success;
	}
	BUG_ON(n_ev != 2);
	msk1 = perf_event_get_msk(events[1]);

	/* If both events can go on any counter, OK.  */
	if (msk0 == (PIC_UPPER | PIC_LOWER) &&
	    msk1 == (PIC_UPPER | PIC_LOWER))
		goto success;

	/* If one event is limited to a specific counter,
	 * and the other can go on both, OK.
	 */
	if ((msk0 == PIC_UPPER || msk0 == PIC_LOWER) &&
	    msk1 == (PIC_UPPER | PIC_LOWER)) {
		if (msk0 & PIC_LOWER)
			idx0 = 1;
		goto success;
1273 1274
	}

1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
	if ((msk1 == PIC_UPPER || msk1 == PIC_LOWER) &&
	    msk0 == (PIC_UPPER | PIC_LOWER)) {
		if (msk1 & PIC_UPPER)
			idx0 = 1;
		goto success;
	}

	/* If the events are fixed to different counters, OK.  */
	if ((msk0 == PIC_UPPER && msk1 == PIC_LOWER) ||
	    (msk0 == PIC_LOWER && msk1 == PIC_UPPER)) {
		if (msk0 & PIC_LOWER)
			idx0 = 1;
		goto success;
	}

	/* Otherwise, there is a conflict.  */
1291
	return -1;
1292 1293 1294 1295 1296 1297

success:
	evts[0]->hw.idx = idx0;
	if (n_ev == 2)
		evts[1]->hw.idx = idx0 ^ 1;
	return 0;
1298 1299
}

1300 1301 1302 1303 1304 1305
static int check_excludes(struct perf_event **evts, int n_prev, int n_new)
{
	int eu = 0, ek = 0, eh = 0;
	struct perf_event *event;
	int i, n, first;

1306 1307 1308
	if (!(sparc_pmu->flags & SPARC_PMU_ALL_EXCLUDES_SAME))
		return 0;

1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331
	n = n_prev + n_new;
	if (n <= 1)
		return 0;

	first = 1;
	for (i = 0; i < n; i++) {
		event = evts[i];
		if (first) {
			eu = event->attr.exclude_user;
			ek = event->attr.exclude_kernel;
			eh = event->attr.exclude_hv;
			first = 0;
		} else if (event->attr.exclude_user != eu ||
			   event->attr.exclude_kernel != ek ||
			   event->attr.exclude_hv != eh) {
			return -EAGAIN;
		}
	}

	return 0;
}

static int collect_events(struct perf_event *group, int max_count,
1332 1333
			  struct perf_event *evts[], unsigned long *events,
			  int *current_idx)
1334 1335 1336 1337 1338 1339 1340 1341
{
	struct perf_event *event;
	int n = 0;

	if (!is_software_event(group)) {
		if (n >= max_count)
			return -1;
		evts[n] = group;
1342 1343
		events[n] = group->hw.event_base;
		current_idx[n++] = PIC_NO_INDEX;
1344
	}
1345
	list_for_each_entry(event, &group->sibling_list, sibling_list) {
1346 1347 1348 1349 1350
		if (!is_software_event(event) &&
		    event->state != PERF_EVENT_STATE_OFF) {
			if (n >= max_count)
				return -1;
			evts[n] = event;
1351 1352
			events[n] = event->hw.event_base;
			current_idx[n++] = PIC_NO_INDEX;
1353 1354 1355 1356 1357
		}
	}
	return n;
}

P
Peter Zijlstra 已提交
1358
static int sparc_pmu_add(struct perf_event *event, int ef_flags)
1359
{
1360
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1361 1362 1363 1364 1365 1366
	int n0, ret = -EAGAIN;
	unsigned long flags;

	local_irq_save(flags);

	n0 = cpuc->n_events;
1367
	if (n0 >= sparc_pmu->max_hw_events)
1368 1369 1370 1371 1372 1373
		goto out;

	cpuc->event[n0] = event;
	cpuc->events[n0] = event->hw.event_base;
	cpuc->current_idx[n0] = PIC_NO_INDEX;

P
Peter Zijlstra 已提交
1374 1375 1376 1377
	event->hw.state = PERF_HES_UPTODATE;
	if (!(ef_flags & PERF_EF_START))
		event->hw.state |= PERF_HES_STOPPED;

1378 1379
	/*
	 * If group events scheduling transaction was started,
L
Lucas De Marchi 已提交
1380
	 * skip the schedulability test here, it will be performed
1381 1382
	 * at commit time(->commit_txn) as a whole
	 */
1383
	if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1384 1385
		goto nocheck;

1386 1387 1388 1389 1390
	if (check_excludes(cpuc->event, n0, 1))
		goto out;
	if (sparc_check_constraints(cpuc->event, cpuc->events, n0 + 1))
		goto out;

1391
nocheck:
1392 1393 1394 1395 1396 1397 1398 1399 1400
	cpuc->n_events++;
	cpuc->n_added++;

	ret = 0;
out:
	local_irq_restore(flags);
	return ret;
}

1401
static int sparc_pmu_event_init(struct perf_event *event)
1402
{
1403
	struct perf_event_attr *attr = &event->attr;
1404
	struct perf_event *evts[MAX_HWEVENTS];
1405
	struct hw_perf_event *hwc = &event->hw;
1406
	unsigned long events[MAX_HWEVENTS];
1407
	int current_idx_dmy[MAX_HWEVENTS];
1408
	const struct perf_event_map *pmap;
1409
	int n;
1410 1411 1412 1413

	if (atomic_read(&nmi_active) < 0)
		return -ENODEV;

1414 1415 1416 1417
	/* does not support taken branch sampling */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

1418 1419
	switch (attr->type) {
	case PERF_TYPE_HARDWARE:
1420 1421 1422
		if (attr->config >= sparc_pmu->max_events)
			return -EINVAL;
		pmap = sparc_pmu->event_map(attr->config);
1423 1424 1425
		break;

	case PERF_TYPE_HW_CACHE:
1426 1427 1428
		pmap = sparc_map_cache_event(attr->config);
		if (IS_ERR(pmap))
			return PTR_ERR(pmap);
1429 1430 1431
		break;

	case PERF_TYPE_RAW:
1432 1433
		pmap = NULL;
		break;
1434

1435 1436 1437 1438 1439
	default:
		return -ENOENT;

	}

1440 1441 1442
	if (pmap) {
		hwc->event_base = perf_event_encode(pmap);
	} else {
1443 1444
		/*
		 * User gives us "(encoding << 16) | pic_mask" for
1445 1446 1447 1448 1449
		 * PERF_TYPE_RAW events.
		 */
		hwc->event_base = attr->config;
	}

1450
	/* We save the enable bits in the config_base.  */
1451
	hwc->config_base = sparc_pmu->irq_bit;
1452
	if (!attr->exclude_user)
1453
		hwc->config_base |= sparc_pmu->user_bit;
1454
	if (!attr->exclude_kernel)
1455
		hwc->config_base |= sparc_pmu->priv_bit;
1456 1457
	if (!attr->exclude_hv)
		hwc->config_base |= sparc_pmu->hv_bit;
1458

1459 1460 1461
	n = 0;
	if (event->group_leader != event) {
		n = collect_events(event->group_leader,
1462
				   sparc_pmu->max_hw_events - 1,
1463
				   evts, events, current_idx_dmy);
1464 1465 1466
		if (n < 0)
			return -EINVAL;
	}
1467
	events[n] = hwc->event_base;
1468 1469 1470 1471 1472
	evts[n] = event;

	if (check_excludes(evts, n, 1))
		return -EINVAL;

1473
	if (sparc_check_constraints(evts, events, n + 1))
1474 1475
		return -EINVAL;

1476 1477
	hwc->idx = PIC_NO_INDEX;

1478 1479 1480 1481 1482 1483
	/* Try to do all error checking before this point, as unwinding
	 * state after grabbing the PMC is difficult.
	 */
	perf_event_grab_pmc();
	event->destroy = hw_perf_event_destroy;

1484 1485 1486
	if (!hwc->sample_period) {
		hwc->sample_period = MAX_PERIOD;
		hwc->last_period = hwc->sample_period;
1487
		local64_set(&hwc->period_left, hwc->sample_period);
1488 1489 1490 1491 1492
	}

	return 0;
}

1493 1494 1495 1496 1497
/*
 * Start group events scheduling transaction
 * Set the flag to make pmu::enable() not perform the
 * schedulability test, it will be performed at commit time
 */
1498
static void sparc_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
1499
{
1500
	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1501

1502 1503 1504 1505 1506 1507
	WARN_ON_ONCE(cpuhw->txn_flags);		/* txn already in flight */

	cpuhw->txn_flags = txn_flags;
	if (txn_flags & ~PERF_PMU_TXN_ADD)
		return;

P
Peter Zijlstra 已提交
1508
	perf_pmu_disable(pmu);
1509 1510 1511 1512 1513 1514 1515
}

/*
 * Stop group events scheduling transaction
 * Clear the flag and pmu::enable() will perform the
 * schedulability test.
 */
P
Peter Zijlstra 已提交
1516
static void sparc_pmu_cancel_txn(struct pmu *pmu)
1517
{
1518
	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1519 1520 1521 1522 1523 1524 1525 1526
	unsigned int txn_flags;

	WARN_ON_ONCE(!cpuhw->txn_flags);	/* no txn in flight */

	txn_flags = cpuhw->txn_flags;
	cpuhw->txn_flags = 0;
	if (txn_flags & ~PERF_PMU_TXN_ADD)
		return;
1527

P
Peter Zijlstra 已提交
1528
	perf_pmu_enable(pmu);
1529 1530 1531 1532 1533 1534 1535
}

/*
 * Commit group events scheduling transaction
 * Perform the group schedulability test as a whole
 * Return 0 if success
 */
P
Peter Zijlstra 已提交
1536
static int sparc_pmu_commit_txn(struct pmu *pmu)
1537
{
1538
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1539 1540 1541 1542 1543
	int n;

	if (!sparc_pmu)
		return -EINVAL;

1544 1545 1546 1547 1548 1549 1550
	WARN_ON_ONCE(!cpuc->txn_flags);	/* no txn in flight */

	if (cpuc->txn_flags & ~PERF_PMU_TXN_ADD) {
		cpuc->txn_flags = 0;
		return 0;
	}

1551 1552 1553 1554 1555 1556
	n = cpuc->n_events;
	if (check_excludes(cpuc->event, 0, n))
		return -EINVAL;
	if (sparc_check_constraints(cpuc->event, cpuc->events, n))
		return -EAGAIN;

1557
	cpuc->txn_flags = 0;
P
Peter Zijlstra 已提交
1558
	perf_pmu_enable(pmu);
1559 1560 1561
	return 0;
}

P
Peter Zijlstra 已提交
1562
static struct pmu pmu = {
P
Peter Zijlstra 已提交
1563 1564
	.pmu_enable	= sparc_pmu_enable,
	.pmu_disable	= sparc_pmu_disable,
1565
	.event_init	= sparc_pmu_event_init,
P
Peter Zijlstra 已提交
1566 1567 1568 1569
	.add		= sparc_pmu_add,
	.del		= sparc_pmu_del,
	.start		= sparc_pmu_start,
	.stop		= sparc_pmu_stop,
1570
	.read		= sparc_pmu_read,
1571 1572 1573
	.start_txn	= sparc_pmu_start_txn,
	.cancel_txn	= sparc_pmu_cancel_txn,
	.commit_txn	= sparc_pmu_commit_txn,
1574 1575
};

1576
void perf_event_print_debug(void)
1577 1578
{
	unsigned long flags;
1579
	int cpu, i;
1580 1581 1582 1583 1584 1585 1586 1587 1588

	if (!sparc_pmu)
		return;

	local_irq_save(flags);

	cpu = smp_processor_id();

	pr_info("\n");
1589 1590 1591 1592 1593 1594
	for (i = 0; i < sparc_pmu->num_pcrs; i++)
		pr_info("CPU#%d: PCR%d[%016llx]\n",
			cpu, i, pcr_ops->read_pcr(i));
	for (i = 0; i < sparc_pmu->num_pic_regs; i++)
		pr_info("CPU#%d: PIC%d[%016llx]\n",
			cpu, i, pcr_ops->read_pic(i));
1595 1596 1597 1598

	local_irq_restore(flags);
}

1599
static int __kprobes perf_event_nmi_handler(struct notifier_block *self,
1600
					    unsigned long cmd, void *__args)
1601 1602 1603
{
	struct die_args *args = __args;
	struct perf_sample_data data;
1604
	struct cpu_hw_events *cpuc;
1605
	struct pt_regs *regs;
1606
	int i;
1607

1608
	if (!atomic_read(&active_events))
1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620
		return NOTIFY_DONE;

	switch (cmd) {
	case DIE_NMI:
		break;

	default:
		return NOTIFY_DONE;
	}

	regs = args->regs;

1621
	cpuc = this_cpu_ptr(&cpu_hw_events);
1622 1623 1624 1625 1626 1627 1628 1629

	/* If the PMU has the TOE IRQ enable bits, we need to do a
	 * dummy write to the %pcr to clear the overflow bits and thus
	 * the interrupt.
	 *
	 * Do this before we peek at the counters to determine
	 * overflow so we don't lose any events.
	 */
1630 1631 1632
	if (sparc_pmu->irq_bit &&
	    sparc_pmu->num_pcrs == 1)
		pcr_ops->write_pcr(0, cpuc->pcr[0]);
1633

1634 1635 1636
	for (i = 0; i < cpuc->n_events; i++) {
		struct perf_event *event = cpuc->event[i];
		int idx = cpuc->current_idx[i];
1637
		struct hw_perf_event *hwc;
1638 1639
		u64 val;

1640 1641 1642 1643
		if (sparc_pmu->irq_bit &&
		    sparc_pmu->num_pcrs > 1)
			pcr_ops->write_pcr(idx, cpuc->pcr[idx]);

1644 1645
		hwc = &event->hw;
		val = sparc_perf_event_update(event, hwc, idx);
1646 1647 1648
		if (val & (1ULL << 31))
			continue;

1649
		perf_sample_data_init(&data, 0, hwc->last_period);
1650
		if (!sparc_perf_event_set_period(event, hwc, idx))
1651 1652
			continue;

1653
		if (perf_event_overflow(event, &data, regs))
P
Peter Zijlstra 已提交
1654
			sparc_pmu_stop(event, 0);
1655 1656 1657 1658 1659
	}

	return NOTIFY_STOP;
}

1660 1661
static __read_mostly struct notifier_block perf_event_nmi_notifier = {
	.notifier_call		= perf_event_nmi_handler,
1662 1663 1664 1665
};

static bool __init supported_pmu(void)
{
1666 1667 1668 1669 1670
	if (!strcmp(sparc_pmu_type, "ultra3") ||
	    !strcmp(sparc_pmu_type, "ultra3+") ||
	    !strcmp(sparc_pmu_type, "ultra3i") ||
	    !strcmp(sparc_pmu_type, "ultra4+")) {
		sparc_pmu = &ultra3_pmu;
1671 1672
		return true;
	}
1673 1674 1675 1676
	if (!strcmp(sparc_pmu_type, "niagara")) {
		sparc_pmu = &niagara1_pmu;
		return true;
	}
1677 1678
	if (!strcmp(sparc_pmu_type, "niagara2") ||
	    !strcmp(sparc_pmu_type, "niagara3")) {
1679 1680 1681
		sparc_pmu = &niagara2_pmu;
		return true;
	}
B
bob picco 已提交
1682 1683
	if (!strcmp(sparc_pmu_type, "niagara4") ||
	    !strcmp(sparc_pmu_type, "niagara5")) {
1684 1685 1686
		sparc_pmu = &niagara4_pmu;
		return true;
	}
1687 1688 1689 1690
	if (!strcmp(sparc_pmu_type, "sparc-m7")) {
		sparc_pmu = &sparc_m7_pmu;
		return true;
	}
1691 1692 1693
	return false;
}

1694
static int __init init_hw_perf_events(void)
1695
{
1696 1697
	int err;

1698
	pr_info("Performance events: ");
1699

1700 1701
	err = pcr_arch_init();
	if (err || !supported_pmu()) {
1702
		pr_cont("No support for PMU type '%s'\n", sparc_pmu_type);
1703
		return 0;
1704 1705 1706 1707
	}

	pr_cont("Supported PMU type is '%s'\n", sparc_pmu_type);

P
Peter Zijlstra 已提交
1708
	perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1709
	register_die_notifier(&perf_event_nmi_notifier);
1710 1711

	return 0;
1712
}
1713
pure_initcall(init_hw_perf_events);
1714

1715
void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry,
1716
			   struct pt_regs *regs)
1717 1718
{
	unsigned long ksp, fp;
1719 1720 1721
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
	int graph = 0;
#endif
1722

1723 1724
	stack_trace_flush();

1725
	perf_callchain_store(entry, regs->tpc);
1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748

	ksp = regs->u_regs[UREG_I6];
	fp = ksp + STACK_BIAS;
	do {
		struct sparc_stackf *sf;
		struct pt_regs *regs;
		unsigned long pc;

		if (!kstack_valid(current_thread_info(), fp))
			break;

		sf = (struct sparc_stackf *) fp;
		regs = (struct pt_regs *) (sf + 1);

		if (kstack_is_trap_frame(current_thread_info(), regs)) {
			if (user_mode(regs))
				break;
			pc = regs->tpc;
			fp = regs->u_regs[UREG_I6] + STACK_BIAS;
		} else {
			pc = sf->callers_pc;
			fp = (unsigned long)sf->fp + STACK_BIAS;
		}
1749
		perf_callchain_store(entry, pc);
1750 1751 1752 1753 1754
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
		if ((pc + 8UL) == (unsigned long) &return_to_handler) {
			int index = current->curr_ret_stack;
			if (current->ret_stack && index >= graph) {
				pc = current->ret_stack[index - graph].ret;
1755
				perf_callchain_store(entry, pc);
1756 1757 1758 1759
				graph++;
			}
		}
#endif
1760
	} while (entry->nr < entry->max_stack);
1761 1762
}

1763 1764 1765 1766 1767 1768 1769 1770 1771 1772
static inline int
valid_user_frame(const void __user *fp, unsigned long size)
{
	/* addresses should be at least 4-byte aligned */
	if (((unsigned long) fp) & 3)
		return 0;

	return (__range_not_ok(fp, size, TASK_SIZE) == 0);
}

1773
static void perf_callchain_user_64(struct perf_callchain_entry_ctx *entry,
1774
				   struct pt_regs *regs)
1775 1776 1777
{
	unsigned long ufp;

1778
	ufp = regs->u_regs[UREG_FP] + STACK_BIAS;
1779
	do {
1780 1781
		struct sparc_stackf __user *usf;
		struct sparc_stackf sf;
1782 1783
		unsigned long pc;

1784
		usf = (struct sparc_stackf __user *)ufp;
1785 1786 1787
		if (!valid_user_frame(usf, sizeof(sf)))
			break;

1788 1789 1790 1791 1792
		if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
			break;

		pc = sf.callers_pc;
		ufp = (unsigned long)sf.fp + STACK_BIAS;
1793
		perf_callchain_store(entry, pc);
1794
	} while (entry->nr < entry->max_stack);
1795 1796
}

1797
static void perf_callchain_user_32(struct perf_callchain_entry_ctx *entry,
1798
				   struct pt_regs *regs)
1799 1800 1801
{
	unsigned long ufp;

1802
	ufp = regs->u_regs[UREG_FP] & 0xffffffffUL;
1803 1804 1805
	do {
		unsigned long pc;

1806
		if (thread32_stack_is_64bit(ufp)) {
1807 1808
			struct sparc_stackf __user *usf;
			struct sparc_stackf sf;
1809

1810
			ufp += STACK_BIAS;
1811
			usf = (struct sparc_stackf __user *)ufp;
1812 1813 1814 1815 1816
			if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
				break;
			pc = sf.callers_pc & 0xffffffff;
			ufp = ((unsigned long) sf.fp) & 0xffffffff;
		} else {
1817 1818 1819
			struct sparc_stackf32 __user *usf;
			struct sparc_stackf32 sf;
			usf = (struct sparc_stackf32 __user *)ufp;
1820 1821 1822 1823 1824
			if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
				break;
			pc = sf.callers_pc;
			ufp = (unsigned long)sf.fp;
		}
1825
		perf_callchain_store(entry, pc);
1826
	} while (entry->nr < entry->max_stack);
1827 1828
}

1829
void
1830
perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
1831
{
1832 1833
	u64 saved_fault_address = current_thread_info()->fault_address;
	u8 saved_fault_code = get_thread_fault_code();
1834 1835
	mm_segment_t old_fs;

1836 1837 1838 1839 1840
	perf_callchain_store(entry, regs->tpc);

	if (!current->mm)
		return;

1841 1842 1843
	old_fs = get_fs();
	set_fs(USER_DS);

1844
	flushw_user();
1845 1846 1847

	pagefault_disable();

1848 1849 1850 1851
	if (test_thread_flag(TIF_32BIT))
		perf_callchain_user_32(entry, regs);
	else
		perf_callchain_user_64(entry, regs);
1852 1853

	pagefault_enable();
1854 1855

	set_fs(old_fs);
1856 1857
	set_thread_fault_code(saved_fault_code);
	current_thread_info()->fault_address = saved_fault_address;
1858
}