perf_event.c 38.8 KB
Newer Older
1
/* Performance event support for sparc64.
2
 *
3
 * Copyright (C) 2009, 2010 David S. Miller <davem@davemloft.net>
4
 *
5
 * This code is based almost entirely upon the x86 perf event
6 7 8 9 10 11 12 13 14
 * code, which is:
 *
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
 *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2009 Jaswinder Singh Rajput
 *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
 *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
 */

15
#include <linux/perf_event.h>
16
#include <linux/kprobes.h>
17
#include <linux/ftrace.h>
18 19 20 21
#include <linux/kernel.h>
#include <linux/kdebug.h>
#include <linux/mutex.h>

22
#include <asm/stacktrace.h>
23
#include <asm/cpudata.h>
24
#include <asm/uaccess.h>
A
Arun Sharma 已提交
25
#include <linux/atomic.h>
26 27
#include <asm/nmi.h>
#include <asm/pcr.h>
28
#include <asm/cacheflush.h>
29

30
#include "kernel.h"
31 32
#include "kstack.h"

33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
/* Sparc64 chips have two performance counters, 32-bits each, with
 * overflow interrupts generated on transition from 0xffffffff to 0.
 * The counters are accessed in one go using a 64-bit register.
 *
 * Both counters are controlled using a single control register.  The
 * only way to stop all sampling is to clear all of the context (user,
 * supervisor, hypervisor) sampling enable bits.  But these bits apply
 * to both counters, thus the two counters can't be enabled/disabled
 * individually.
 *
 * The control register has two event fields, one for each of the two
 * counters.  It's thus nearly impossible to have one counter going
 * while keeping the other one stopped.  Therefore it is possible to
 * get overflow interrupts for counters not currently "in use" and
 * that condition must be checked in the overflow interrupt handler.
 *
 * So we use a hack, in that we program inactive counters with the
 * "sw_count0" and "sw_count1" events.  These count how many times
 * the instruction "sethi %hi(0xfc000), %g0" is executed.  It's an
 * unusual way to encode a NOP and therefore will not trigger in
 * normal code.
 */

56
#define MAX_HWEVENTS			2
57
#define MAX_PCRS			1
58 59 60 61
#define MAX_PERIOD			((1UL << 32) - 1)

#define PIC_UPPER_INDEX			0
#define PIC_LOWER_INDEX			1
62
#define PIC_NO_INDEX			-1
63

64
struct cpu_hw_events {
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
	/* Number of events currently scheduled onto this cpu.
	 * This tells how many entries in the arrays below
	 * are valid.
	 */
	int			n_events;

	/* Number of new events added since the last hw_perf_disable().
	 * This works because the perf event layer always adds new
	 * events inside of a perf_{disable,enable}() sequence.
	 */
	int			n_added;

	/* Array of events current scheduled on this cpu.  */
	struct perf_event	*event[MAX_HWEVENTS];

	/* Array of encoded longs, specifying the %pcr register
	 * encoding and the mask of PIC counters this even can
	 * be scheduled on.  See perf_event_encode() et al.
	 */
	unsigned long		events[MAX_HWEVENTS];

	/* The current counter index assigned to an event.  When the
	 * event hasn't been programmed into the cpu yet, this will
	 * hold PIC_NO_INDEX.  The event->hw.idx value tells us where
	 * we ought to schedule the event.
	 */
	int			current_idx[MAX_HWEVENTS];

93 94
	/* Software copy of %pcr register(s) on this cpu.  */
	u64			pcr[MAX_HWEVENTS];
95 96

	/* Enabled/disable state.  */
97
	int			enabled;
98 99

	unsigned int		group_flag;
100
};
101
DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = { .enabled = 1, };
102

103 104 105 106
/* An event map describes the characteristics of a performance
 * counter event.  In particular it gives the encoding as well as
 * a mask telling which counters the event can be measured on.
 */
107 108 109 110 111 112 113 114
struct perf_event_map {
	u16	encoding;
	u8	pic_mask;
#define PIC_NONE	0x00
#define PIC_UPPER	0x01
#define PIC_LOWER	0x02
};

115
/* Encode a perf_event_map entry into a long.  */
116 117 118 119 120
static unsigned long perf_event_encode(const struct perf_event_map *pmap)
{
	return ((unsigned long) pmap->encoding << 16) | pmap->pic_mask;
}

121 122 123 124 125 126
static u8 perf_event_get_msk(unsigned long val)
{
	return val & 0xff;
}

static u64 perf_event_get_enc(unsigned long val)
127
{
128
	return val >> 16;
129 130
}

131 132 133 134 135 136 137 138 139 140
#define C(x) PERF_COUNT_HW_CACHE_##x

#define CACHE_OP_UNSUPPORTED	0xfffe
#define CACHE_OP_NONSENSE	0xffff

typedef struct perf_event_map cache_map_t
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX];

141 142
struct sparc_pmu {
	const struct perf_event_map	*(*event_map)(int);
143
	const cache_map_t		*cache_map;
144
	int				max_events;
145 146
	u32				(*read_pmc)(int);
	void				(*write_pmc)(int, u64);
147 148 149
	int				upper_shift;
	int				lower_shift;
	int				event_mask;
150 151
	int				user_bit;
	int				priv_bit;
152
	int				hv_bit;
153
	int				irq_bit;
154 155
	int				upper_nop;
	int				lower_nop;
156 157 158
	unsigned int			flags;
#define SPARC_PMU_ALL_EXCLUDES_SAME	0x00000001
#define SPARC_PMU_HAS_CONFLICTS		0x00000002
159
	int				max_hw_events;
160 161
	int				num_pcrs;
	int				num_pic_regs;
162 163
};

164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
static u32 sparc_default_read_pmc(int idx)
{
	u64 val;

	val = pcr_ops->read_pic(0);
	if (idx == PIC_UPPER_INDEX)
		val >>= 32;

	return val & 0xffffffff;
}

static void sparc_default_write_pmc(int idx, u64 val)
{
	u64 shift, mask, pic;

	shift = 0;
	if (idx == PIC_UPPER_INDEX)
		shift = 32;

	mask = ((u64) 0xffffffff) << shift;
	val <<= shift;

	pic = pcr_ops->read_pic(0);
	pic &= ~mask;
	pic |= val;
	pcr_ops->write_pic(0, pic);
}

192
static const struct perf_event_map ultra3_perfmon_event_map[] = {
193 194 195 196 197 198
	[PERF_COUNT_HW_CPU_CYCLES] = { 0x0000, PIC_UPPER | PIC_LOWER },
	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x0001, PIC_UPPER | PIC_LOWER },
	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0009, PIC_LOWER },
	[PERF_COUNT_HW_CACHE_MISSES] = { 0x0009, PIC_UPPER },
};

199
static const struct perf_event_map *ultra3_event_map(int event_id)
200
{
201
	return &ultra3_perfmon_event_map[event_id];
202 203
}

204
static const cache_map_t ultra3_cache_map = {
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
[C(L1D)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
		[C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
	},
	[C(OP_WRITE)] = {
		[C(RESULT_ACCESS)] = { 0x0a, PIC_LOWER },
		[C(RESULT_MISS)] = { 0x0a, PIC_UPPER },
	},
	[C(OP_PREFETCH)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(L1I)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
		[C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(LL)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER, },
		[C(RESULT_MISS)] = { 0x0c, PIC_UPPER, },
	},
	[C(OP_WRITE)] = {
		[C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER },
		[C(RESULT_MISS)] = { 0x0c, PIC_UPPER },
	},
	[C(OP_PREFETCH)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(DTLB)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { 0x12, PIC_UPPER, },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(ITLB)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { 0x11, PIC_UPPER, },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(BPU)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
289 290 291 292 293 294 295 296 297 298 299 300 301 302
[C(NODE)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
303 304
};

305 306 307 308
static const struct sparc_pmu ultra3_pmu = {
	.event_map	= ultra3_event_map,
	.cache_map	= &ultra3_cache_map,
	.max_events	= ARRAY_SIZE(ultra3_perfmon_event_map),
309 310
	.read_pmc	= sparc_default_read_pmc,
	.write_pmc	= sparc_default_write_pmc,
311 312 313
	.upper_shift	= 11,
	.lower_shift	= 4,
	.event_mask	= 0x3f,
314 315
	.user_bit	= PCR_UTRACE,
	.priv_bit	= PCR_STRACE,
316 317
	.upper_nop	= 0x1c,
	.lower_nop	= 0x14,
318 319
	.flags		= (SPARC_PMU_ALL_EXCLUDES_SAME |
			   SPARC_PMU_HAS_CONFLICTS),
320
	.max_hw_events	= 2,
321 322
	.num_pcrs	= 1,
	.num_pic_regs	= 1,
323 324
};

325 326
/* Niagara1 is very limited.  The upper PIC is hard-locked to count
 * only instructions, so it is free running which creates all kinds of
327
 * problems.  Some hardware designs make one wonder if the creator
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
 * even looked at how this stuff gets used by software.
 */
static const struct perf_event_map niagara1_perfmon_event_map[] = {
	[PERF_COUNT_HW_CPU_CYCLES] = { 0x00, PIC_UPPER },
	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x00, PIC_UPPER },
	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0, PIC_NONE },
	[PERF_COUNT_HW_CACHE_MISSES] = { 0x03, PIC_LOWER },
};

static const struct perf_event_map *niagara1_event_map(int event_id)
{
	return &niagara1_perfmon_event_map[event_id];
}

static const cache_map_t niagara1_cache_map = {
[C(L1D)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
	},
	[C(OP_WRITE)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
	},
	[C(OP_PREFETCH)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(L1I)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { 0x00, PIC_UPPER },
		[C(RESULT_MISS)] = { 0x02, PIC_LOWER, },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(LL)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
	},
	[C(OP_WRITE)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
	},
	[C(OP_PREFETCH)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(DTLB)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { 0x05, PIC_LOWER, },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(ITLB)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { 0x04, PIC_LOWER, },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(BPU)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
427 428 429 430 431 432 433 434 435 436 437 438 439 440
[C(NODE)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
441 442 443 444 445 446
};

static const struct sparc_pmu niagara1_pmu = {
	.event_map	= niagara1_event_map,
	.cache_map	= &niagara1_cache_map,
	.max_events	= ARRAY_SIZE(niagara1_perfmon_event_map),
447 448
	.read_pmc	= sparc_default_read_pmc,
	.write_pmc	= sparc_default_write_pmc,
449 450 451
	.upper_shift	= 0,
	.lower_shift	= 4,
	.event_mask	= 0x7,
452 453
	.user_bit	= PCR_UTRACE,
	.priv_bit	= PCR_STRACE,
454 455
	.upper_nop	= 0x0,
	.lower_nop	= 0x0,
456 457
	.flags		= (SPARC_PMU_ALL_EXCLUDES_SAME |
			   SPARC_PMU_HAS_CONFLICTS),
458
	.max_hw_events	= 2,
459 460
	.num_pcrs	= 1,
	.num_pic_regs	= 1,
461 462
};

463 464 465 466 467 468 469 470 471
static const struct perf_event_map niagara2_perfmon_event_map[] = {
	[PERF_COUNT_HW_CPU_CYCLES] = { 0x02ff, PIC_UPPER | PIC_LOWER },
	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x02ff, PIC_UPPER | PIC_LOWER },
	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0208, PIC_UPPER | PIC_LOWER },
	[PERF_COUNT_HW_CACHE_MISSES] = { 0x0302, PIC_UPPER | PIC_LOWER },
	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x0201, PIC_UPPER | PIC_LOWER },
	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x0202, PIC_UPPER | PIC_LOWER },
};

472
static const struct perf_event_map *niagara2_event_map(int event_id)
473
{
474
	return &niagara2_perfmon_event_map[event_id];
475 476
}

477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
static const cache_map_t niagara2_cache_map = {
[C(L1D)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
		[C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
	},
	[C(OP_WRITE)] = {
		[C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
		[C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
	},
	[C(OP_PREFETCH)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(L1I)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { 0x02ff, PIC_UPPER | PIC_LOWER, },
		[C(RESULT_MISS)] = { 0x0301, PIC_UPPER | PIC_LOWER, },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(LL)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
		[C(RESULT_MISS)] = { 0x0330, PIC_UPPER | PIC_LOWER, },
	},
	[C(OP_WRITE)] = {
		[C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
		[C(RESULT_MISS)] = { 0x0320, PIC_UPPER | PIC_LOWER, },
	},
	[C(OP_PREFETCH)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(DTLB)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { 0x0b08, PIC_UPPER | PIC_LOWER, },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(ITLB)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { 0xb04, PIC_UPPER | PIC_LOWER, },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(BPU)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
555 556 557 558 559 560 561 562 563 564 565 566 567 568
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(NODE)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
569 570 571 572 573 574 575 576 577
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
};

578 579
static const struct sparc_pmu niagara2_pmu = {
	.event_map	= niagara2_event_map,
580
	.cache_map	= &niagara2_cache_map,
581
	.max_events	= ARRAY_SIZE(niagara2_perfmon_event_map),
582 583
	.read_pmc	= sparc_default_read_pmc,
	.write_pmc	= sparc_default_write_pmc,
584 585 586
	.upper_shift	= 19,
	.lower_shift	= 6,
	.event_mask	= 0xfff,
587 588 589
	.user_bit	= PCR_UTRACE,
	.priv_bit	= PCR_STRACE,
	.hv_bit		= PCR_N2_HTRACE,
590
	.irq_bit	= 0x30,
591 592
	.upper_nop	= 0x220,
	.lower_nop	= 0x220,
593 594
	.flags		= (SPARC_PMU_ALL_EXCLUDES_SAME |
			   SPARC_PMU_HAS_CONFLICTS),
595
	.max_hw_events	= 2,
596 597
	.num_pcrs	= 1,
	.num_pic_regs	= 1,
598 599
};

600 601
static const struct sparc_pmu *sparc_pmu __read_mostly;

602
static u64 event_encoding(u64 event_id, int idx)
603 604
{
	if (idx == PIC_UPPER_INDEX)
605
		event_id <<= sparc_pmu->upper_shift;
606
	else
607 608
		event_id <<= sparc_pmu->lower_shift;
	return event_id;
609 610 611 612 613 614 615 616 617 618
}

static u64 mask_for_index(int idx)
{
	return event_encoding(sparc_pmu->event_mask, idx);
}

static u64 nop_for_index(int idx)
{
	return event_encoding(idx == PIC_UPPER_INDEX ?
619 620
			      sparc_pmu->upper_nop :
			      sparc_pmu->lower_nop, idx);
621 622
}

623
static inline void sparc_pmu_enable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
624 625
{
	u64 val, mask = mask_for_index(idx);
626
	int pcr_index = 0;
627

628 629 630 631
	if (sparc_pmu->num_pcrs > 1)
		pcr_index = idx;

	val = cpuc->pcr[pcr_index];
632 633
	val &= ~mask;
	val |= hwc->config;
634
	cpuc->pcr[pcr_index] = val;
635

636
	pcr_ops->write_pcr(pcr_index, cpuc->pcr[pcr_index]);
637 638
}

639
static inline void sparc_pmu_disable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
640 641 642
{
	u64 mask = mask_for_index(idx);
	u64 nop = nop_for_index(idx);
643
	int pcr_index = 0;
644
	u64 val;
645

646 647 648 649
	if (sparc_pmu->num_pcrs > 1)
		pcr_index = idx;

	val = cpuc->pcr[pcr_index];
650 651
	val &= ~mask;
	val |= nop;
652
	cpuc->pcr[pcr_index] = val;
653

654
	pcr_ops->write_pcr(pcr_index, cpuc->pcr[pcr_index]);
655 656
}

657 658 659 660 661 662 663 664
static u64 sparc_perf_event_update(struct perf_event *event,
				   struct hw_perf_event *hwc, int idx)
{
	int shift = 64 - 32;
	u64 prev_raw_count, new_raw_count;
	s64 delta;

again:
665
	prev_raw_count = local64_read(&hwc->prev_count);
666
	new_raw_count = sparc_pmu->read_pmc(idx);
667

668
	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
669 670 671 672 673 674
			     new_raw_count) != prev_raw_count)
		goto again;

	delta = (new_raw_count << shift) - (prev_raw_count << shift);
	delta >>= shift;

675 676
	local64_add(delta, &event->count);
	local64_sub(delta, &hwc->period_left);
677 678 679 680

	return new_raw_count;
}

681
static int sparc_perf_event_set_period(struct perf_event *event,
682
				       struct hw_perf_event *hwc, int idx)
683
{
684
	s64 left = local64_read(&hwc->period_left);
685 686 687 688 689
	s64 period = hwc->sample_period;
	int ret = 0;

	if (unlikely(left <= -period)) {
		left = period;
690
		local64_set(&hwc->period_left, left);
691 692 693 694 695 696
		hwc->last_period = period;
		ret = 1;
	}

	if (unlikely(left <= 0)) {
		left += period;
697
		local64_set(&hwc->period_left, left);
698 699 700 701 702 703
		hwc->last_period = period;
		ret = 1;
	}
	if (left > MAX_PERIOD)
		left = MAX_PERIOD;

704
	local64_set(&hwc->prev_count, (u64)-left);
705

706
	sparc_pmu->write_pmc(idx, (u64)(-left) & 0xffffffff);
707

708
	perf_event_update_userpage(event);
709 710 711 712

	return ret;
}

713
static void read_in_all_counters(struct cpu_hw_events *cpuc)
714
{
715
	int i;
716

717 718
	for (i = 0; i < cpuc->n_events; i++) {
		struct perf_event *cp = cpuc->event[i];
719

720 721 722 723 724 725 726
		if (cpuc->current_idx[i] != PIC_NO_INDEX &&
		    cpuc->current_idx[i] != cp->hw.idx) {
			sparc_perf_event_update(cp, &cp->hw,
						cpuc->current_idx[i]);
			cpuc->current_idx[i] = PIC_NO_INDEX;
		}
	}
727 728 729 730 731 732 733 734 735 736 737 738 739 740
}

/* On this PMU all PICs are programmed using a single PCR.  Calculate
 * the combined control register value.
 *
 * For such chips we require that all of the events have the same
 * configuration, so just fetch the settings from the first entry.
 */
static void calculate_single_pcr(struct cpu_hw_events *cpuc)
{
	int i;

	if (!cpuc->n_added)
		goto out;
741

742 743 744 745 746 747 748 749 750 751 752 753 754 755
	/* Assign to counters all unassigned events.  */
	for (i = 0; i < cpuc->n_events; i++) {
		struct perf_event *cp = cpuc->event[i];
		struct hw_perf_event *hwc = &cp->hw;
		int idx = hwc->idx;
		u64 enc;

		if (cpuc->current_idx[i] != PIC_NO_INDEX)
			continue;

		sparc_perf_event_set_period(cp, hwc, idx);
		cpuc->current_idx[i] = idx;

		enc = perf_event_get_enc(cpuc->events[i]);
756
		cpuc->pcr[0] &= ~mask_for_index(idx);
P
Peter Zijlstra 已提交
757
		if (hwc->state & PERF_HES_STOPPED)
758
			cpuc->pcr[0] |= nop_for_index(idx);
P
Peter Zijlstra 已提交
759
		else
760
			cpuc->pcr[0] |= event_encoding(enc, idx);
761 762
	}
out:
763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814
	cpuc->pcr[0] |= cpuc->event[0]->hw.config_base;
}

/* On this PMU each PIC has it's own PCR control register.  */
static void calculate_multiple_pcrs(struct cpu_hw_events *cpuc)
{
	int i;

	if (!cpuc->n_added)
		goto out;

	for (i = 0; i < cpuc->n_events; i++) {
		struct perf_event *cp = cpuc->event[i];
		struct hw_perf_event *hwc = &cp->hw;
		int idx = hwc->idx;
		u64 enc;

		if (cpuc->current_idx[i] != PIC_NO_INDEX)
			continue;

		sparc_perf_event_set_period(cp, hwc, idx);
		cpuc->current_idx[i] = idx;

		enc = perf_event_get_enc(cpuc->events[i]);
		cpuc->pcr[idx] &= ~mask_for_index(idx);
		if (hwc->state & PERF_HES_STOPPED)
			cpuc->pcr[idx] |= nop_for_index(idx);
		else
			cpuc->pcr[idx] |= event_encoding(enc, idx);
	}
out:
	for (i = 0; i < cpuc->n_events; i++) {
		struct perf_event *cp = cpuc->event[i];
		int idx = cp->hw.idx;

		cpuc->pcr[idx] |= cp->hw.config_base;
	}
}

/* If performance event entries have been added, move existing events
 * around (if necessary) and then assign new entries to counters.
 */
static void update_pcrs_for_enable(struct cpu_hw_events *cpuc)
{
	if (cpuc->n_added)
		read_in_all_counters(cpuc);

	if (sparc_pmu->num_pcrs == 1) {
		calculate_single_pcr(cpuc);
	} else {
		calculate_multiple_pcrs(cpuc);
	}
815 816
}

P
Peter Zijlstra 已提交
817
static void sparc_pmu_enable(struct pmu *pmu)
818
{
819
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
820
	int i;
821

822 823
	if (cpuc->enabled)
		return;
824

825 826
	cpuc->enabled = 1;
	barrier();
827

828 829
	if (cpuc->n_events)
		update_pcrs_for_enable(cpuc);
830

831 832
	for (i = 0; i < sparc_pmu->num_pcrs; i++)
		pcr_ops->write_pcr(i, cpuc->pcr[i]);
833 834
}

P
Peter Zijlstra 已提交
835
static void sparc_pmu_disable(struct pmu *pmu)
836 837
{
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
838
	int i;
839 840 841 842 843 844 845

	if (!cpuc->enabled)
		return;

	cpuc->enabled = 0;
	cpuc->n_added = 0;

846 847
	for (i = 0; i < sparc_pmu->num_pcrs; i++) {
		u64 val = cpuc->pcr[i];
848

849 850 851 852 853
		val &= ~(sparc_pmu->user_bit | sparc_pmu->priv_bit |
			 sparc_pmu->hv_bit | sparc_pmu->irq_bit);
		cpuc->pcr[i] = val;
		pcr_ops->write_pcr(i, cpuc->pcr[i]);
	}
854 855
}

P
Peter Zijlstra 已提交
856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900
static int active_event_index(struct cpu_hw_events *cpuc,
			      struct perf_event *event)
{
	int i;

	for (i = 0; i < cpuc->n_events; i++) {
		if (cpuc->event[i] == event)
			break;
	}
	BUG_ON(i == cpuc->n_events);
	return cpuc->current_idx[i];
}

static void sparc_pmu_start(struct perf_event *event, int flags)
{
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
	int idx = active_event_index(cpuc, event);

	if (flags & PERF_EF_RELOAD) {
		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
		sparc_perf_event_set_period(event, &event->hw, idx);
	}

	event->hw.state = 0;

	sparc_pmu_enable_event(cpuc, &event->hw, idx);
}

static void sparc_pmu_stop(struct perf_event *event, int flags)
{
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
	int idx = active_event_index(cpuc, event);

	if (!(event->hw.state & PERF_HES_STOPPED)) {
		sparc_pmu_disable_event(cpuc, &event->hw, idx);
		event->hw.state |= PERF_HES_STOPPED;
	}

	if (!(event->hw.state & PERF_HES_UPTODATE) && (flags & PERF_EF_UPDATE)) {
		sparc_perf_event_update(event, &event->hw, idx);
		event->hw.state |= PERF_HES_UPTODATE;
	}
}

static void sparc_pmu_del(struct perf_event *event, int _flags)
901
{
902
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
903 904
	unsigned long flags;
	int i;
905

906
	local_irq_save(flags);
P
Peter Zijlstra 已提交
907
	perf_pmu_disable(event->pmu);
908 909 910

	for (i = 0; i < cpuc->n_events; i++) {
		if (event == cpuc->event[i]) {
P
Peter Zijlstra 已提交
911 912 913 914
			/* Absorb the final count and turn off the
			 * event.
			 */
			sparc_pmu_stop(event, PERF_EF_UPDATE);
915 916 917 918 919 920 921 922 923 924 925 926

			/* Shift remaining entries down into
			 * the existing slot.
			 */
			while (++i < cpuc->n_events) {
				cpuc->event[i - 1] = cpuc->event[i];
				cpuc->events[i - 1] = cpuc->events[i];
				cpuc->current_idx[i - 1] =
					cpuc->current_idx[i];
			}

			perf_event_update_userpage(event);
927

928 929 930 931
			cpuc->n_events--;
			break;
		}
	}
932

P
Peter Zijlstra 已提交
933
	perf_pmu_enable(event->pmu);
934 935 936
	local_irq_restore(flags);
}

937
static void sparc_pmu_read(struct perf_event *event)
938
{
939 940
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
	int idx = active_event_index(cpuc, event);
941
	struct hw_perf_event *hwc = &event->hw;
942

943
	sparc_perf_event_update(event, hwc, idx);
944 945
}

946
static atomic_t active_events = ATOMIC_INIT(0);
947 948
static DEFINE_MUTEX(pmc_grab_mutex);

949 950 951
static void perf_stop_nmi_watchdog(void *unused)
{
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
952
	int i;
953 954

	stop_nmi_watchdog(NULL);
955 956
	for (i = 0; i < sparc_pmu->num_pcrs; i++)
		cpuc->pcr[i] = pcr_ops->read_pcr(i);
957 958
}

959
void perf_event_grab_pmc(void)
960
{
961
	if (atomic_inc_not_zero(&active_events))
962 963 964
		return;

	mutex_lock(&pmc_grab_mutex);
965
	if (atomic_read(&active_events) == 0) {
966
		if (atomic_read(&nmi_active) > 0) {
967
			on_each_cpu(perf_stop_nmi_watchdog, NULL, 1);
968 969
			BUG_ON(atomic_read(&nmi_active) != 0);
		}
970
		atomic_inc(&active_events);
971 972 973 974
	}
	mutex_unlock(&pmc_grab_mutex);
}

975
void perf_event_release_pmc(void)
976
{
977
	if (atomic_dec_and_mutex_lock(&active_events, &pmc_grab_mutex)) {
978 979 980 981 982 983
		if (atomic_read(&nmi_active) == 0)
			on_each_cpu(start_nmi_watchdog, NULL, 1);
		mutex_unlock(&pmc_grab_mutex);
	}
}

984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
static const struct perf_event_map *sparc_map_cache_event(u64 config)
{
	unsigned int cache_type, cache_op, cache_result;
	const struct perf_event_map *pmap;

	if (!sparc_pmu->cache_map)
		return ERR_PTR(-ENOENT);

	cache_type = (config >>  0) & 0xff;
	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
		return ERR_PTR(-EINVAL);

	cache_op = (config >>  8) & 0xff;
	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
		return ERR_PTR(-EINVAL);

	cache_result = (config >> 16) & 0xff;
	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
		return ERR_PTR(-EINVAL);

	pmap = &((*sparc_pmu->cache_map)[cache_type][cache_op][cache_result]);

	if (pmap->encoding == CACHE_OP_UNSUPPORTED)
		return ERR_PTR(-ENOENT);

	if (pmap->encoding == CACHE_OP_NONSENSE)
		return ERR_PTR(-EINVAL);

	return pmap;
}

1015
static void hw_perf_event_destroy(struct perf_event *event)
1016
{
1017
	perf_event_release_pmc();
1018 1019
}

1020 1021 1022
/* Make sure all events can be scheduled into the hardware at
 * the same time.  This is simplified by the fact that we only
 * need to support 2 simultaneous HW events.
1023 1024 1025 1026 1027 1028
 *
 * As a side effect, the evts[]->hw.idx values will be assigned
 * on success.  These are pending indexes.  When the events are
 * actually programmed into the chip, these values will propagate
 * to the per-cpu cpuc->current_idx[] slots, see the code in
 * maybe_change_configuration() for details.
1029
 */
1030 1031
static int sparc_check_constraints(struct perf_event **evts,
				   unsigned long *events, int n_ev)
1032
{
1033 1034 1035 1036 1037 1038 1039 1040 1041
	u8 msk0 = 0, msk1 = 0;
	int idx0 = 0;

	/* This case is possible when we are invoked from
	 * hw_perf_group_sched_in().
	 */
	if (!n_ev)
		return 0;

1042
	if (n_ev > sparc_pmu->max_hw_events)
1043 1044
		return -1;

1045 1046 1047 1048 1049 1050 1051 1052
	if (!(sparc_pmu->flags & SPARC_PMU_HAS_CONFLICTS)) {
		int i;

		for (i = 0; i < n_ev; i++)
			evts[i]->hw.idx = i;
		return 0;
	}

1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
	msk0 = perf_event_get_msk(events[0]);
	if (n_ev == 1) {
		if (msk0 & PIC_LOWER)
			idx0 = 1;
		goto success;
	}
	BUG_ON(n_ev != 2);
	msk1 = perf_event_get_msk(events[1]);

	/* If both events can go on any counter, OK.  */
	if (msk0 == (PIC_UPPER | PIC_LOWER) &&
	    msk1 == (PIC_UPPER | PIC_LOWER))
		goto success;

	/* If one event is limited to a specific counter,
	 * and the other can go on both, OK.
	 */
	if ((msk0 == PIC_UPPER || msk0 == PIC_LOWER) &&
	    msk1 == (PIC_UPPER | PIC_LOWER)) {
		if (msk0 & PIC_LOWER)
			idx0 = 1;
		goto success;
1075 1076
	}

1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
	if ((msk1 == PIC_UPPER || msk1 == PIC_LOWER) &&
	    msk0 == (PIC_UPPER | PIC_LOWER)) {
		if (msk1 & PIC_UPPER)
			idx0 = 1;
		goto success;
	}

	/* If the events are fixed to different counters, OK.  */
	if ((msk0 == PIC_UPPER && msk1 == PIC_LOWER) ||
	    (msk0 == PIC_LOWER && msk1 == PIC_UPPER)) {
		if (msk0 & PIC_LOWER)
			idx0 = 1;
		goto success;
	}

	/* Otherwise, there is a conflict.  */
1093
	return -1;
1094 1095 1096 1097 1098 1099

success:
	evts[0]->hw.idx = idx0;
	if (n_ev == 2)
		evts[1]->hw.idx = idx0 ^ 1;
	return 0;
1100 1101
}

1102 1103 1104 1105 1106 1107
static int check_excludes(struct perf_event **evts, int n_prev, int n_new)
{
	int eu = 0, ek = 0, eh = 0;
	struct perf_event *event;
	int i, n, first;

1108 1109 1110
	if (!(sparc_pmu->flags & SPARC_PMU_ALL_EXCLUDES_SAME))
		return 0;

1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
	n = n_prev + n_new;
	if (n <= 1)
		return 0;

	first = 1;
	for (i = 0; i < n; i++) {
		event = evts[i];
		if (first) {
			eu = event->attr.exclude_user;
			ek = event->attr.exclude_kernel;
			eh = event->attr.exclude_hv;
			first = 0;
		} else if (event->attr.exclude_user != eu ||
			   event->attr.exclude_kernel != ek ||
			   event->attr.exclude_hv != eh) {
			return -EAGAIN;
		}
	}

	return 0;
}

static int collect_events(struct perf_event *group, int max_count,
1134 1135
			  struct perf_event *evts[], unsigned long *events,
			  int *current_idx)
1136 1137 1138 1139 1140 1141 1142 1143
{
	struct perf_event *event;
	int n = 0;

	if (!is_software_event(group)) {
		if (n >= max_count)
			return -1;
		evts[n] = group;
1144 1145
		events[n] = group->hw.event_base;
		current_idx[n++] = PIC_NO_INDEX;
1146 1147 1148 1149 1150 1151 1152
	}
	list_for_each_entry(event, &group->sibling_list, group_entry) {
		if (!is_software_event(event) &&
		    event->state != PERF_EVENT_STATE_OFF) {
			if (n >= max_count)
				return -1;
			evts[n] = event;
1153 1154
			events[n] = event->hw.event_base;
			current_idx[n++] = PIC_NO_INDEX;
1155 1156 1157 1158 1159
		}
	}
	return n;
}

P
Peter Zijlstra 已提交
1160
static int sparc_pmu_add(struct perf_event *event, int ef_flags)
1161 1162 1163 1164 1165 1166
{
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
	int n0, ret = -EAGAIN;
	unsigned long flags;

	local_irq_save(flags);
P
Peter Zijlstra 已提交
1167
	perf_pmu_disable(event->pmu);
1168 1169

	n0 = cpuc->n_events;
1170
	if (n0 >= sparc_pmu->max_hw_events)
1171 1172 1173 1174 1175 1176
		goto out;

	cpuc->event[n0] = event;
	cpuc->events[n0] = event->hw.event_base;
	cpuc->current_idx[n0] = PIC_NO_INDEX;

P
Peter Zijlstra 已提交
1177 1178 1179 1180
	event->hw.state = PERF_HES_UPTODATE;
	if (!(ef_flags & PERF_EF_START))
		event->hw.state |= PERF_HES_STOPPED;

1181 1182
	/*
	 * If group events scheduling transaction was started,
L
Lucas De Marchi 已提交
1183
	 * skip the schedulability test here, it will be performed
1184 1185
	 * at commit time(->commit_txn) as a whole
	 */
1186
	if (cpuc->group_flag & PERF_EVENT_TXN)
1187 1188
		goto nocheck;

1189 1190 1191 1192 1193
	if (check_excludes(cpuc->event, n0, 1))
		goto out;
	if (sparc_check_constraints(cpuc->event, cpuc->events, n0 + 1))
		goto out;

1194
nocheck:
1195 1196 1197 1198 1199
	cpuc->n_events++;
	cpuc->n_added++;

	ret = 0;
out:
P
Peter Zijlstra 已提交
1200
	perf_pmu_enable(event->pmu);
1201 1202 1203 1204
	local_irq_restore(flags);
	return ret;
}

1205
static int sparc_pmu_event_init(struct perf_event *event)
1206
{
1207
	struct perf_event_attr *attr = &event->attr;
1208
	struct perf_event *evts[MAX_HWEVENTS];
1209
	struct hw_perf_event *hwc = &event->hw;
1210
	unsigned long events[MAX_HWEVENTS];
1211
	int current_idx_dmy[MAX_HWEVENTS];
1212
	const struct perf_event_map *pmap;
1213
	int n;
1214 1215 1216 1217

	if (atomic_read(&nmi_active) < 0)
		return -ENODEV;

1218 1219 1220 1221
	/* does not support taken branch sampling */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

1222 1223
	switch (attr->type) {
	case PERF_TYPE_HARDWARE:
1224 1225 1226
		if (attr->config >= sparc_pmu->max_events)
			return -EINVAL;
		pmap = sparc_pmu->event_map(attr->config);
1227 1228 1229
		break;

	case PERF_TYPE_HW_CACHE:
1230 1231 1232
		pmap = sparc_map_cache_event(attr->config);
		if (IS_ERR(pmap))
			return PTR_ERR(pmap);
1233 1234 1235
		break;

	case PERF_TYPE_RAW:
1236 1237
		pmap = NULL;
		break;
1238

1239 1240 1241 1242 1243
	default:
		return -ENOENT;

	}

1244 1245 1246
	if (pmap) {
		hwc->event_base = perf_event_encode(pmap);
	} else {
1247 1248
		/*
		 * User gives us "(encoding << 16) | pic_mask" for
1249 1250 1251 1252 1253
		 * PERF_TYPE_RAW events.
		 */
		hwc->event_base = attr->config;
	}

1254
	/* We save the enable bits in the config_base.  */
1255
	hwc->config_base = sparc_pmu->irq_bit;
1256
	if (!attr->exclude_user)
1257
		hwc->config_base |= sparc_pmu->user_bit;
1258
	if (!attr->exclude_kernel)
1259
		hwc->config_base |= sparc_pmu->priv_bit;
1260 1261
	if (!attr->exclude_hv)
		hwc->config_base |= sparc_pmu->hv_bit;
1262

1263 1264 1265
	n = 0;
	if (event->group_leader != event) {
		n = collect_events(event->group_leader,
1266
				   sparc_pmu->max_hw_events - 1,
1267
				   evts, events, current_idx_dmy);
1268 1269 1270
		if (n < 0)
			return -EINVAL;
	}
1271
	events[n] = hwc->event_base;
1272 1273 1274 1275 1276
	evts[n] = event;

	if (check_excludes(evts, n, 1))
		return -EINVAL;

1277
	if (sparc_check_constraints(evts, events, n + 1))
1278 1279
		return -EINVAL;

1280 1281
	hwc->idx = PIC_NO_INDEX;

1282 1283 1284 1285 1286 1287
	/* Try to do all error checking before this point, as unwinding
	 * state after grabbing the PMC is difficult.
	 */
	perf_event_grab_pmc();
	event->destroy = hw_perf_event_destroy;

1288 1289 1290
	if (!hwc->sample_period) {
		hwc->sample_period = MAX_PERIOD;
		hwc->last_period = hwc->sample_period;
1291
		local64_set(&hwc->period_left, hwc->sample_period);
1292 1293 1294 1295 1296
	}

	return 0;
}

1297 1298 1299 1300 1301
/*
 * Start group events scheduling transaction
 * Set the flag to make pmu::enable() not perform the
 * schedulability test, it will be performed at commit time
 */
P
Peter Zijlstra 已提交
1302
static void sparc_pmu_start_txn(struct pmu *pmu)
1303 1304 1305
{
	struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);

P
Peter Zijlstra 已提交
1306
	perf_pmu_disable(pmu);
1307
	cpuhw->group_flag |= PERF_EVENT_TXN;
1308 1309 1310 1311 1312 1313 1314
}

/*
 * Stop group events scheduling transaction
 * Clear the flag and pmu::enable() will perform the
 * schedulability test.
 */
P
Peter Zijlstra 已提交
1315
static void sparc_pmu_cancel_txn(struct pmu *pmu)
1316 1317 1318
{
	struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);

1319
	cpuhw->group_flag &= ~PERF_EVENT_TXN;
P
Peter Zijlstra 已提交
1320
	perf_pmu_enable(pmu);
1321 1322 1323 1324 1325 1326 1327
}

/*
 * Commit group events scheduling transaction
 * Perform the group schedulability test as a whole
 * Return 0 if success
 */
P
Peter Zijlstra 已提交
1328
static int sparc_pmu_commit_txn(struct pmu *pmu)
1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342
{
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
	int n;

	if (!sparc_pmu)
		return -EINVAL;

	cpuc = &__get_cpu_var(cpu_hw_events);
	n = cpuc->n_events;
	if (check_excludes(cpuc->event, 0, n))
		return -EINVAL;
	if (sparc_check_constraints(cpuc->event, cpuc->events, n))
		return -EAGAIN;

1343
	cpuc->group_flag &= ~PERF_EVENT_TXN;
P
Peter Zijlstra 已提交
1344
	perf_pmu_enable(pmu);
1345 1346 1347
	return 0;
}

P
Peter Zijlstra 已提交
1348
static struct pmu pmu = {
P
Peter Zijlstra 已提交
1349 1350
	.pmu_enable	= sparc_pmu_enable,
	.pmu_disable	= sparc_pmu_disable,
1351
	.event_init	= sparc_pmu_event_init,
P
Peter Zijlstra 已提交
1352 1353 1354 1355
	.add		= sparc_pmu_add,
	.del		= sparc_pmu_del,
	.start		= sparc_pmu_start,
	.stop		= sparc_pmu_stop,
1356
	.read		= sparc_pmu_read,
1357 1358 1359
	.start_txn	= sparc_pmu_start_txn,
	.cancel_txn	= sparc_pmu_cancel_txn,
	.commit_txn	= sparc_pmu_commit_txn,
1360 1361
};

1362
void perf_event_print_debug(void)
1363 1364
{
	unsigned long flags;
1365
	int cpu, i;
1366 1367 1368 1369 1370 1371 1372 1373 1374

	if (!sparc_pmu)
		return;

	local_irq_save(flags);

	cpu = smp_processor_id();

	pr_info("\n");
1375 1376 1377 1378 1379 1380
	for (i = 0; i < sparc_pmu->num_pcrs; i++)
		pr_info("CPU#%d: PCR%d[%016llx]\n",
			cpu, i, pcr_ops->read_pcr(i));
	for (i = 0; i < sparc_pmu->num_pic_regs; i++)
		pr_info("CPU#%d: PIC%d[%016llx]\n",
			cpu, i, pcr_ops->read_pic(i));
1381 1382 1383 1384

	local_irq_restore(flags);
}

1385
static int __kprobes perf_event_nmi_handler(struct notifier_block *self,
1386
					    unsigned long cmd, void *__args)
1387 1388 1389
{
	struct die_args *args = __args;
	struct perf_sample_data data;
1390
	struct cpu_hw_events *cpuc;
1391
	struct pt_regs *regs;
1392
	int i;
1393

1394
	if (!atomic_read(&active_events))
1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
		return NOTIFY_DONE;

	switch (cmd) {
	case DIE_NMI:
		break;

	default:
		return NOTIFY_DONE;
	}

	regs = args->regs;

1407
	cpuc = &__get_cpu_var(cpu_hw_events);
1408 1409 1410 1411 1412 1413 1414 1415

	/* If the PMU has the TOE IRQ enable bits, we need to do a
	 * dummy write to the %pcr to clear the overflow bits and thus
	 * the interrupt.
	 *
	 * Do this before we peek at the counters to determine
	 * overflow so we don't lose any events.
	 */
1416 1417 1418
	if (sparc_pmu->irq_bit &&
	    sparc_pmu->num_pcrs == 1)
		pcr_ops->write_pcr(0, cpuc->pcr[0]);
1419

1420 1421 1422
	for (i = 0; i < cpuc->n_events; i++) {
		struct perf_event *event = cpuc->event[i];
		int idx = cpuc->current_idx[i];
1423
		struct hw_perf_event *hwc;
1424 1425
		u64 val;

1426 1427 1428 1429
		if (sparc_pmu->irq_bit &&
		    sparc_pmu->num_pcrs > 1)
			pcr_ops->write_pcr(idx, cpuc->pcr[idx]);

1430 1431
		hwc = &event->hw;
		val = sparc_perf_event_update(event, hwc, idx);
1432 1433 1434
		if (val & (1ULL << 31))
			continue;

1435
		perf_sample_data_init(&data, 0, hwc->last_period);
1436
		if (!sparc_perf_event_set_period(event, hwc, idx))
1437 1438
			continue;

1439
		if (perf_event_overflow(event, &data, regs))
P
Peter Zijlstra 已提交
1440
			sparc_pmu_stop(event, 0);
1441 1442 1443 1444 1445
	}

	return NOTIFY_STOP;
}

1446 1447
static __read_mostly struct notifier_block perf_event_nmi_notifier = {
	.notifier_call		= perf_event_nmi_handler,
1448 1449 1450 1451
};

static bool __init supported_pmu(void)
{
1452 1453 1454 1455 1456
	if (!strcmp(sparc_pmu_type, "ultra3") ||
	    !strcmp(sparc_pmu_type, "ultra3+") ||
	    !strcmp(sparc_pmu_type, "ultra3i") ||
	    !strcmp(sparc_pmu_type, "ultra4+")) {
		sparc_pmu = &ultra3_pmu;
1457 1458
		return true;
	}
1459 1460 1461 1462
	if (!strcmp(sparc_pmu_type, "niagara")) {
		sparc_pmu = &niagara1_pmu;
		return true;
	}
1463 1464
	if (!strcmp(sparc_pmu_type, "niagara2") ||
	    !strcmp(sparc_pmu_type, "niagara3")) {
1465 1466 1467
		sparc_pmu = &niagara2_pmu;
		return true;
	}
1468 1469 1470
	return false;
}

1471
int __init init_hw_perf_events(void)
1472
{
1473
	pr_info("Performance events: ");
1474 1475 1476

	if (!supported_pmu()) {
		pr_cont("No support for PMU type '%s'\n", sparc_pmu_type);
1477
		return 0;
1478 1479 1480 1481
	}

	pr_cont("Supported PMU type is '%s'\n", sparc_pmu_type);

P
Peter Zijlstra 已提交
1482
	perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1483
	register_die_notifier(&perf_event_nmi_notifier);
1484 1485

	return 0;
1486
}
1487
early_initcall(init_hw_perf_events);
1488

1489 1490
void perf_callchain_kernel(struct perf_callchain_entry *entry,
			   struct pt_regs *regs)
1491 1492
{
	unsigned long ksp, fp;
1493 1494 1495
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
	int graph = 0;
#endif
1496

1497 1498
	stack_trace_flush();

1499
	perf_callchain_store(entry, regs->tpc);
1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522

	ksp = regs->u_regs[UREG_I6];
	fp = ksp + STACK_BIAS;
	do {
		struct sparc_stackf *sf;
		struct pt_regs *regs;
		unsigned long pc;

		if (!kstack_valid(current_thread_info(), fp))
			break;

		sf = (struct sparc_stackf *) fp;
		regs = (struct pt_regs *) (sf + 1);

		if (kstack_is_trap_frame(current_thread_info(), regs)) {
			if (user_mode(regs))
				break;
			pc = regs->tpc;
			fp = regs->u_regs[UREG_I6] + STACK_BIAS;
		} else {
			pc = sf->callers_pc;
			fp = (unsigned long)sf->fp + STACK_BIAS;
		}
1523
		perf_callchain_store(entry, pc);
1524 1525 1526 1527 1528
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
		if ((pc + 8UL) == (unsigned long) &return_to_handler) {
			int index = current->curr_ret_stack;
			if (current->ret_stack && index >= graph) {
				pc = current->ret_stack[index - graph].ret;
1529
				perf_callchain_store(entry, pc);
1530 1531 1532 1533
				graph++;
			}
		}
#endif
1534 1535 1536
	} while (entry->nr < PERF_MAX_STACK_DEPTH);
}

1537 1538
static void perf_callchain_user_64(struct perf_callchain_entry *entry,
				   struct pt_regs *regs)
1539 1540 1541
{
	unsigned long ufp;

1542
	perf_callchain_store(entry, regs->tpc);
1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554

	ufp = regs->u_regs[UREG_I6] + STACK_BIAS;
	do {
		struct sparc_stackf *usf, sf;
		unsigned long pc;

		usf = (struct sparc_stackf *) ufp;
		if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
			break;

		pc = sf.callers_pc;
		ufp = (unsigned long)sf.fp + STACK_BIAS;
1555
		perf_callchain_store(entry, pc);
1556 1557 1558
	} while (entry->nr < PERF_MAX_STACK_DEPTH);
}

1559 1560
static void perf_callchain_user_32(struct perf_callchain_entry *entry,
				   struct pt_regs *regs)
1561 1562 1563
{
	unsigned long ufp;

1564
	perf_callchain_store(entry, regs->tpc);
1565

1566
	ufp = regs->u_regs[UREG_I6] & 0xffffffffUL;
1567 1568 1569 1570 1571 1572 1573 1574 1575 1576
	do {
		struct sparc_stackf32 *usf, sf;
		unsigned long pc;

		usf = (struct sparc_stackf32 *) ufp;
		if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
			break;

		pc = sf.callers_pc;
		ufp = (unsigned long)sf.fp;
1577
		perf_callchain_store(entry, pc);
1578 1579 1580
	} while (entry->nr < PERF_MAX_STACK_DEPTH);
}

1581 1582
void
perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
1583
{
1584 1585 1586 1587 1588
	flushw_user();
	if (test_thread_flag(TIF_32BIT))
		perf_callchain_user_32(entry, regs);
	else
		perf_callchain_user_64(entry, regs);
1589
}