perf_event.c 45.0 KB
Newer Older
1
/* Performance event support for sparc64.
2
 *
3
 * Copyright (C) 2009, 2010 David S. Miller <davem@davemloft.net>
4
 *
5
 * This code is based almost entirely upon the x86 perf event
6 7 8 9 10 11 12 13 14
 * code, which is:
 *
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
 *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2009 Jaswinder Singh Rajput
 *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
 *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
 */

15
#include <linux/perf_event.h>
16
#include <linux/kprobes.h>
17
#include <linux/ftrace.h>
18 19 20 21
#include <linux/kernel.h>
#include <linux/kdebug.h>
#include <linux/mutex.h>

22
#include <asm/stacktrace.h>
23
#include <asm/cpudata.h>
24
#include <asm/uaccess.h>
A
Arun Sharma 已提交
25
#include <linux/atomic.h>
26 27
#include <asm/nmi.h>
#include <asm/pcr.h>
28
#include <asm/cacheflush.h>
29

30
#include "kernel.h"
31 32
#include "kstack.h"

33 34 35
/* Two classes of sparc64 chips currently exist.  All of which have
 * 32-bit counters which can generate overflow interrupts on the
 * transition from 0xffffffff to 0.
36
 *
37 38 39
 * All chips upto and including SPARC-T3 have two performance
 * counters.  The two 32-bit counters are accessed in one go using a
 * single 64-bit register.
40
 *
41 42 43 44 45 46 47 48 49 50 51 52
 * On these older chips both counters are controlled using a single
 * control register.  The only way to stop all sampling is to clear
 * all of the context (user, supervisor, hypervisor) sampling enable
 * bits.  But these bits apply to both counters, thus the two counters
 * can't be enabled/disabled individually.
 *
 * Furthermore, the control register on these older chips have two
 * event fields, one for each of the two counters.  It's thus nearly
 * impossible to have one counter going while keeping the other one
 * stopped.  Therefore it is possible to get overflow interrupts for
 * counters not currently "in use" and that condition must be checked
 * in the overflow interrupt handler.
53 54 55 56 57 58
 *
 * So we use a hack, in that we program inactive counters with the
 * "sw_count0" and "sw_count1" events.  These count how many times
 * the instruction "sethi %hi(0xfc000), %g0" is executed.  It's an
 * unusual way to encode a NOP and therefore will not trigger in
 * normal code.
59 60 61 62 63 64 65
 *
 * Starting with SPARC-T4 we have one control register per counter.
 * And the counters are stored in individual registers.  The registers
 * for the counters are 64-bit but only a 32-bit counter is
 * implemented.  The event selections on SPARC-T4 lack any
 * restrictions, therefore we can elide all of the complicated
 * conflict resolution code we have for SPARC-T3 and earlier chips.
66 67
 */

68 69
#define MAX_HWEVENTS			4
#define MAX_PCRS			4
70 71 72 73
#define MAX_PERIOD			((1UL << 32) - 1)

#define PIC_UPPER_INDEX			0
#define PIC_LOWER_INDEX			1
74
#define PIC_NO_INDEX			-1
75

76
struct cpu_hw_events {
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
	/* Number of events currently scheduled onto this cpu.
	 * This tells how many entries in the arrays below
	 * are valid.
	 */
	int			n_events;

	/* Number of new events added since the last hw_perf_disable().
	 * This works because the perf event layer always adds new
	 * events inside of a perf_{disable,enable}() sequence.
	 */
	int			n_added;

	/* Array of events current scheduled on this cpu.  */
	struct perf_event	*event[MAX_HWEVENTS];

	/* Array of encoded longs, specifying the %pcr register
	 * encoding and the mask of PIC counters this even can
	 * be scheduled on.  See perf_event_encode() et al.
	 */
	unsigned long		events[MAX_HWEVENTS];

	/* The current counter index assigned to an event.  When the
	 * event hasn't been programmed into the cpu yet, this will
	 * hold PIC_NO_INDEX.  The event->hw.idx value tells us where
	 * we ought to schedule the event.
	 */
	int			current_idx[MAX_HWEVENTS];

105 106
	/* Software copy of %pcr register(s) on this cpu.  */
	u64			pcr[MAX_HWEVENTS];
107 108

	/* Enabled/disable state.  */
109
	int			enabled;
110 111

	unsigned int		group_flag;
112
};
113
static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = { .enabled = 1, };
114

115 116 117
/* An event map describes the characteristics of a performance
 * counter event.  In particular it gives the encoding as well as
 * a mask telling which counters the event can be measured on.
118 119
 *
 * The mask is unused on SPARC-T4 and later.
120
 */
121 122 123 124 125 126 127 128
struct perf_event_map {
	u16	encoding;
	u8	pic_mask;
#define PIC_NONE	0x00
#define PIC_UPPER	0x01
#define PIC_LOWER	0x02
};

129
/* Encode a perf_event_map entry into a long.  */
130 131 132 133 134
static unsigned long perf_event_encode(const struct perf_event_map *pmap)
{
	return ((unsigned long) pmap->encoding << 16) | pmap->pic_mask;
}

135 136 137 138 139 140
static u8 perf_event_get_msk(unsigned long val)
{
	return val & 0xff;
}

static u64 perf_event_get_enc(unsigned long val)
141
{
142
	return val >> 16;
143 144
}

145 146 147 148 149 150 151 152 153 154
#define C(x) PERF_COUNT_HW_CACHE_##x

#define CACHE_OP_UNSUPPORTED	0xfffe
#define CACHE_OP_NONSENSE	0xffff

typedef struct perf_event_map cache_map_t
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX];

155 156
struct sparc_pmu {
	const struct perf_event_map	*(*event_map)(int);
157
	const cache_map_t		*cache_map;
158
	int				max_events;
159 160
	u32				(*read_pmc)(int);
	void				(*write_pmc)(int, u64);
161 162 163
	int				upper_shift;
	int				lower_shift;
	int				event_mask;
164 165
	int				user_bit;
	int				priv_bit;
166
	int				hv_bit;
167
	int				irq_bit;
168 169
	int				upper_nop;
	int				lower_nop;
170 171 172
	unsigned int			flags;
#define SPARC_PMU_ALL_EXCLUDES_SAME	0x00000001
#define SPARC_PMU_HAS_CONFLICTS		0x00000002
173
	int				max_hw_events;
174 175
	int				num_pcrs;
	int				num_pic_regs;
176 177
};

178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
static u32 sparc_default_read_pmc(int idx)
{
	u64 val;

	val = pcr_ops->read_pic(0);
	if (idx == PIC_UPPER_INDEX)
		val >>= 32;

	return val & 0xffffffff;
}

static void sparc_default_write_pmc(int idx, u64 val)
{
	u64 shift, mask, pic;

	shift = 0;
	if (idx == PIC_UPPER_INDEX)
		shift = 32;

	mask = ((u64) 0xffffffff) << shift;
	val <<= shift;

	pic = pcr_ops->read_pic(0);
	pic &= ~mask;
	pic |= val;
	pcr_ops->write_pic(0, pic);
}

206
static const struct perf_event_map ultra3_perfmon_event_map[] = {
207 208 209 210 211 212
	[PERF_COUNT_HW_CPU_CYCLES] = { 0x0000, PIC_UPPER | PIC_LOWER },
	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x0001, PIC_UPPER | PIC_LOWER },
	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0009, PIC_LOWER },
	[PERF_COUNT_HW_CACHE_MISSES] = { 0x0009, PIC_UPPER },
};

213
static const struct perf_event_map *ultra3_event_map(int event_id)
214
{
215
	return &ultra3_perfmon_event_map[event_id];
216 217
}

218
static const cache_map_t ultra3_cache_map = {
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
[C(L1D)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
		[C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
	},
	[C(OP_WRITE)] = {
		[C(RESULT_ACCESS)] = { 0x0a, PIC_LOWER },
		[C(RESULT_MISS)] = { 0x0a, PIC_UPPER },
	},
	[C(OP_PREFETCH)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(L1I)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
		[C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(LL)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER, },
		[C(RESULT_MISS)] = { 0x0c, PIC_UPPER, },
	},
	[C(OP_WRITE)] = {
		[C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER },
		[C(RESULT_MISS)] = { 0x0c, PIC_UPPER },
	},
	[C(OP_PREFETCH)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(DTLB)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { 0x12, PIC_UPPER, },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(ITLB)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { 0x11, PIC_UPPER, },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(BPU)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
303 304 305 306 307 308 309 310 311 312 313 314 315 316
[C(NODE)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
317 318
};

319 320 321 322
static const struct sparc_pmu ultra3_pmu = {
	.event_map	= ultra3_event_map,
	.cache_map	= &ultra3_cache_map,
	.max_events	= ARRAY_SIZE(ultra3_perfmon_event_map),
323 324
	.read_pmc	= sparc_default_read_pmc,
	.write_pmc	= sparc_default_write_pmc,
325 326 327
	.upper_shift	= 11,
	.lower_shift	= 4,
	.event_mask	= 0x3f,
328 329
	.user_bit	= PCR_UTRACE,
	.priv_bit	= PCR_STRACE,
330 331
	.upper_nop	= 0x1c,
	.lower_nop	= 0x14,
332 333
	.flags		= (SPARC_PMU_ALL_EXCLUDES_SAME |
			   SPARC_PMU_HAS_CONFLICTS),
334
	.max_hw_events	= 2,
335 336
	.num_pcrs	= 1,
	.num_pic_regs	= 1,
337 338
};

339 340
/* Niagara1 is very limited.  The upper PIC is hard-locked to count
 * only instructions, so it is free running which creates all kinds of
341
 * problems.  Some hardware designs make one wonder if the creator
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
 * even looked at how this stuff gets used by software.
 */
static const struct perf_event_map niagara1_perfmon_event_map[] = {
	[PERF_COUNT_HW_CPU_CYCLES] = { 0x00, PIC_UPPER },
	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x00, PIC_UPPER },
	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0, PIC_NONE },
	[PERF_COUNT_HW_CACHE_MISSES] = { 0x03, PIC_LOWER },
};

static const struct perf_event_map *niagara1_event_map(int event_id)
{
	return &niagara1_perfmon_event_map[event_id];
}

static const cache_map_t niagara1_cache_map = {
[C(L1D)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
	},
	[C(OP_WRITE)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
	},
	[C(OP_PREFETCH)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(L1I)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { 0x00, PIC_UPPER },
		[C(RESULT_MISS)] = { 0x02, PIC_LOWER, },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(LL)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
	},
	[C(OP_WRITE)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
	},
	[C(OP_PREFETCH)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(DTLB)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { 0x05, PIC_LOWER, },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(ITLB)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { 0x04, PIC_LOWER, },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(BPU)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
441 442 443 444 445 446 447 448 449 450 451 452 453 454
[C(NODE)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
455 456 457 458 459 460
};

static const struct sparc_pmu niagara1_pmu = {
	.event_map	= niagara1_event_map,
	.cache_map	= &niagara1_cache_map,
	.max_events	= ARRAY_SIZE(niagara1_perfmon_event_map),
461 462
	.read_pmc	= sparc_default_read_pmc,
	.write_pmc	= sparc_default_write_pmc,
463 464 465
	.upper_shift	= 0,
	.lower_shift	= 4,
	.event_mask	= 0x7,
466 467
	.user_bit	= PCR_UTRACE,
	.priv_bit	= PCR_STRACE,
468 469
	.upper_nop	= 0x0,
	.lower_nop	= 0x0,
470 471
	.flags		= (SPARC_PMU_ALL_EXCLUDES_SAME |
			   SPARC_PMU_HAS_CONFLICTS),
472
	.max_hw_events	= 2,
473 474
	.num_pcrs	= 1,
	.num_pic_regs	= 1,
475 476
};

477 478 479 480 481 482 483 484 485
static const struct perf_event_map niagara2_perfmon_event_map[] = {
	[PERF_COUNT_HW_CPU_CYCLES] = { 0x02ff, PIC_UPPER | PIC_LOWER },
	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x02ff, PIC_UPPER | PIC_LOWER },
	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0208, PIC_UPPER | PIC_LOWER },
	[PERF_COUNT_HW_CACHE_MISSES] = { 0x0302, PIC_UPPER | PIC_LOWER },
	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x0201, PIC_UPPER | PIC_LOWER },
	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x0202, PIC_UPPER | PIC_LOWER },
};

486
static const struct perf_event_map *niagara2_event_map(int event_id)
487
{
488
	return &niagara2_perfmon_event_map[event_id];
489 490
}

491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
static const cache_map_t niagara2_cache_map = {
[C(L1D)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
		[C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
	},
	[C(OP_WRITE)] = {
		[C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
		[C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
	},
	[C(OP_PREFETCH)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(L1I)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { 0x02ff, PIC_UPPER | PIC_LOWER, },
		[C(RESULT_MISS)] = { 0x0301, PIC_UPPER | PIC_LOWER, },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(LL)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
		[C(RESULT_MISS)] = { 0x0330, PIC_UPPER | PIC_LOWER, },
	},
	[C(OP_WRITE)] = {
		[C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
		[C(RESULT_MISS)] = { 0x0320, PIC_UPPER | PIC_LOWER, },
	},
	[C(OP_PREFETCH)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(DTLB)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { 0x0b08, PIC_UPPER | PIC_LOWER, },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(ITLB)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { 0xb04, PIC_UPPER | PIC_LOWER, },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(BPU)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
569 570 571 572 573 574 575 576 577 578 579 580 581 582
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(NODE)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
583 584 585 586 587 588 589 590 591
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
};

592 593
static const struct sparc_pmu niagara2_pmu = {
	.event_map	= niagara2_event_map,
594
	.cache_map	= &niagara2_cache_map,
595
	.max_events	= ARRAY_SIZE(niagara2_perfmon_event_map),
596 597
	.read_pmc	= sparc_default_read_pmc,
	.write_pmc	= sparc_default_write_pmc,
598 599 600
	.upper_shift	= 19,
	.lower_shift	= 6,
	.event_mask	= 0xfff,
601 602 603
	.user_bit	= PCR_UTRACE,
	.priv_bit	= PCR_STRACE,
	.hv_bit		= PCR_N2_HTRACE,
604
	.irq_bit	= 0x30,
605 606
	.upper_nop	= 0x220,
	.lower_nop	= 0x220,
607 608
	.flags		= (SPARC_PMU_ALL_EXCLUDES_SAME |
			   SPARC_PMU_HAS_CONFLICTS),
609
	.max_hw_events	= 2,
610 611
	.num_pcrs	= 1,
	.num_pic_regs	= 1,
612 613
};

614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
static const struct perf_event_map niagara4_perfmon_event_map[] = {
	[PERF_COUNT_HW_CPU_CYCLES] = { (26 << 6) },
	[PERF_COUNT_HW_INSTRUCTIONS] = { (3 << 6) | 0x3f },
	[PERF_COUNT_HW_CACHE_REFERENCES] = { (3 << 6) | 0x04 },
	[PERF_COUNT_HW_CACHE_MISSES] = { (16 << 6) | 0x07 },
	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { (4 << 6) | 0x01 },
	[PERF_COUNT_HW_BRANCH_MISSES] = { (25 << 6) | 0x0f },
};

static const struct perf_event_map *niagara4_event_map(int event_id)
{
	return &niagara4_perfmon_event_map[event_id];
}

static const cache_map_t niagara4_cache_map = {
[C(L1D)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { (3 << 6) | 0x04 },
		[C(RESULT_MISS)] = { (16 << 6) | 0x07 },
	},
	[C(OP_WRITE)] = {
		[C(RESULT_ACCESS)] = { (3 << 6) | 0x08 },
		[C(RESULT_MISS)] = { (16 << 6) | 0x07 },
	},
	[C(OP_PREFETCH)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(L1I)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { (3 << 6) | 0x3f },
		[C(RESULT_MISS)] = { (11 << 6) | 0x03 },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(LL)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { (3 << 6) | 0x04 },
		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
	},
	[C(OP_WRITE)] = {
		[C(RESULT_ACCESS)] = { (3 << 6) | 0x08 },
		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
	},
	[C(OP_PREFETCH)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(DTLB)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { (17 << 6) | 0x3f },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(ITLB)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { (6 << 6) | 0x3f },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(BPU)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(NODE)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
};

static u32 sparc_vt_read_pmc(int idx)
{
	u64 val = pcr_ops->read_pic(idx);

	return val & 0xffffffff;
}

static void sparc_vt_write_pmc(int idx, u64 val)
{
	u64 pcr;

	/* There seems to be an internal latch on the overflow event
	 * on SPARC-T4 that prevents it from triggering unless you
	 * update the PIC exactly as we do here.  The requirement
	 * seems to be that you have to turn off event counting in the
	 * PCR around the PIC update.
	 *
	 * For example, after the following sequence:
	 *
	 * 1) set PIC to -1
	 * 2) enable event counting and overflow reporting in PCR
	 * 3) overflow triggers, softint 15 handler invoked
	 * 4) clear OV bit in PCR
	 * 5) write PIC to -1
	 *
	 * a subsequent overflow event will not trigger.  This
	 * sequence works on SPARC-T3 and previous chips.
	 */
	pcr = pcr_ops->read_pcr(idx);
	pcr_ops->write_pcr(idx, PCR_N4_PICNPT);

	pcr_ops->write_pic(idx, val & 0xffffffff);

	pcr_ops->write_pcr(idx, pcr);
}

static const struct sparc_pmu niagara4_pmu = {
	.event_map	= niagara4_event_map,
	.cache_map	= &niagara4_cache_map,
	.max_events	= ARRAY_SIZE(niagara4_perfmon_event_map),
	.read_pmc	= sparc_vt_read_pmc,
	.write_pmc	= sparc_vt_write_pmc,
	.upper_shift	= 5,
	.lower_shift	= 5,
	.event_mask	= 0x7ff,
	.user_bit	= PCR_N4_UTRACE,
	.priv_bit	= PCR_N4_STRACE,

	/* We explicitly don't support hypervisor tracing.  The T4
	 * generates the overflow event for precise events via a trap
	 * which will not be generated (ie. it's completely lost) if
	 * we happen to be in the hypervisor when the event triggers.
	 * Essentially, the overflow event reporting is completely
	 * unusable when you have hypervisor mode tracing enabled.
	 */
	.hv_bit		= 0,

	.irq_bit	= PCR_N4_TOE,
	.upper_nop	= 0,
	.lower_nop	= 0,
	.flags		= 0,
	.max_hw_events	= 4,
	.num_pcrs	= 4,
	.num_pic_regs	= 4,
};

795 796
static const struct sparc_pmu *sparc_pmu __read_mostly;

797
static u64 event_encoding(u64 event_id, int idx)
798 799
{
	if (idx == PIC_UPPER_INDEX)
800
		event_id <<= sparc_pmu->upper_shift;
801
	else
802 803
		event_id <<= sparc_pmu->lower_shift;
	return event_id;
804 805 806 807 808 809 810 811 812 813
}

static u64 mask_for_index(int idx)
{
	return event_encoding(sparc_pmu->event_mask, idx);
}

static u64 nop_for_index(int idx)
{
	return event_encoding(idx == PIC_UPPER_INDEX ?
814 815
			      sparc_pmu->upper_nop :
			      sparc_pmu->lower_nop, idx);
816 817
}

818
static inline void sparc_pmu_enable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
819
{
820
	u64 enc, val, mask = mask_for_index(idx);
821
	int pcr_index = 0;
822

823 824 825
	if (sparc_pmu->num_pcrs > 1)
		pcr_index = idx;

826 827
	enc = perf_event_get_enc(cpuc->events[idx]);

828
	val = cpuc->pcr[pcr_index];
829
	val &= ~mask;
830
	val |= event_encoding(enc, idx);
831
	cpuc->pcr[pcr_index] = val;
832

833
	pcr_ops->write_pcr(pcr_index, cpuc->pcr[pcr_index]);
834 835
}

836
static inline void sparc_pmu_disable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
837 838 839
{
	u64 mask = mask_for_index(idx);
	u64 nop = nop_for_index(idx);
840
	int pcr_index = 0;
841
	u64 val;
842

843 844 845 846
	if (sparc_pmu->num_pcrs > 1)
		pcr_index = idx;

	val = cpuc->pcr[pcr_index];
847 848
	val &= ~mask;
	val |= nop;
849
	cpuc->pcr[pcr_index] = val;
850

851
	pcr_ops->write_pcr(pcr_index, cpuc->pcr[pcr_index]);
852 853
}

854 855 856 857 858 859 860 861
static u64 sparc_perf_event_update(struct perf_event *event,
				   struct hw_perf_event *hwc, int idx)
{
	int shift = 64 - 32;
	u64 prev_raw_count, new_raw_count;
	s64 delta;

again:
862
	prev_raw_count = local64_read(&hwc->prev_count);
863
	new_raw_count = sparc_pmu->read_pmc(idx);
864

865
	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
866 867 868 869 870 871
			     new_raw_count) != prev_raw_count)
		goto again;

	delta = (new_raw_count << shift) - (prev_raw_count << shift);
	delta >>= shift;

872 873
	local64_add(delta, &event->count);
	local64_sub(delta, &hwc->period_left);
874 875 876 877

	return new_raw_count;
}

878
static int sparc_perf_event_set_period(struct perf_event *event,
879
				       struct hw_perf_event *hwc, int idx)
880
{
881
	s64 left = local64_read(&hwc->period_left);
882 883 884 885 886
	s64 period = hwc->sample_period;
	int ret = 0;

	if (unlikely(left <= -period)) {
		left = period;
887
		local64_set(&hwc->period_left, left);
888 889 890 891 892 893
		hwc->last_period = period;
		ret = 1;
	}

	if (unlikely(left <= 0)) {
		left += period;
894
		local64_set(&hwc->period_left, left);
895 896 897 898 899 900
		hwc->last_period = period;
		ret = 1;
	}
	if (left > MAX_PERIOD)
		left = MAX_PERIOD;

901
	local64_set(&hwc->prev_count, (u64)-left);
902

903
	sparc_pmu->write_pmc(idx, (u64)(-left) & 0xffffffff);
904

905
	perf_event_update_userpage(event);
906 907 908 909

	return ret;
}

910
static void read_in_all_counters(struct cpu_hw_events *cpuc)
911
{
912
	int i;
913

914 915
	for (i = 0; i < cpuc->n_events; i++) {
		struct perf_event *cp = cpuc->event[i];
916

917 918 919 920 921 922 923
		if (cpuc->current_idx[i] != PIC_NO_INDEX &&
		    cpuc->current_idx[i] != cp->hw.idx) {
			sparc_perf_event_update(cp, &cp->hw,
						cpuc->current_idx[i]);
			cpuc->current_idx[i] = PIC_NO_INDEX;
		}
	}
924 925 926 927 928 929 930 931 932 933 934 935 936 937
}

/* On this PMU all PICs are programmed using a single PCR.  Calculate
 * the combined control register value.
 *
 * For such chips we require that all of the events have the same
 * configuration, so just fetch the settings from the first entry.
 */
static void calculate_single_pcr(struct cpu_hw_events *cpuc)
{
	int i;

	if (!cpuc->n_added)
		goto out;
938

939 940 941 942 943 944 945 946 947 948 949 950 951 952
	/* Assign to counters all unassigned events.  */
	for (i = 0; i < cpuc->n_events; i++) {
		struct perf_event *cp = cpuc->event[i];
		struct hw_perf_event *hwc = &cp->hw;
		int idx = hwc->idx;
		u64 enc;

		if (cpuc->current_idx[i] != PIC_NO_INDEX)
			continue;

		sparc_perf_event_set_period(cp, hwc, idx);
		cpuc->current_idx[i] = idx;

		enc = perf_event_get_enc(cpuc->events[i]);
953
		cpuc->pcr[0] &= ~mask_for_index(idx);
P
Peter Zijlstra 已提交
954
		if (hwc->state & PERF_HES_STOPPED)
955
			cpuc->pcr[0] |= nop_for_index(idx);
P
Peter Zijlstra 已提交
956
		else
957
			cpuc->pcr[0] |= event_encoding(enc, idx);
958 959
	}
out:
960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
	cpuc->pcr[0] |= cpuc->event[0]->hw.config_base;
}

/* On this PMU each PIC has it's own PCR control register.  */
static void calculate_multiple_pcrs(struct cpu_hw_events *cpuc)
{
	int i;

	if (!cpuc->n_added)
		goto out;

	for (i = 0; i < cpuc->n_events; i++) {
		struct perf_event *cp = cpuc->event[i];
		struct hw_perf_event *hwc = &cp->hw;
		int idx = hwc->idx;
		u64 enc;

		if (cpuc->current_idx[i] != PIC_NO_INDEX)
			continue;

		sparc_perf_event_set_period(cp, hwc, idx);
		cpuc->current_idx[i] = idx;

		enc = perf_event_get_enc(cpuc->events[i]);
		cpuc->pcr[idx] &= ~mask_for_index(idx);
		if (hwc->state & PERF_HES_STOPPED)
			cpuc->pcr[idx] |= nop_for_index(idx);
		else
			cpuc->pcr[idx] |= event_encoding(enc, idx);
	}
out:
	for (i = 0; i < cpuc->n_events; i++) {
		struct perf_event *cp = cpuc->event[i];
		int idx = cp->hw.idx;

		cpuc->pcr[idx] |= cp->hw.config_base;
	}
}

/* If performance event entries have been added, move existing events
 * around (if necessary) and then assign new entries to counters.
 */
static void update_pcrs_for_enable(struct cpu_hw_events *cpuc)
{
	if (cpuc->n_added)
		read_in_all_counters(cpuc);

	if (sparc_pmu->num_pcrs == 1) {
		calculate_single_pcr(cpuc);
	} else {
		calculate_multiple_pcrs(cpuc);
	}
1012 1013
}

P
Peter Zijlstra 已提交
1014
static void sparc_pmu_enable(struct pmu *pmu)
1015
{
1016
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1017
	int i;
1018

1019 1020
	if (cpuc->enabled)
		return;
1021

1022 1023
	cpuc->enabled = 1;
	barrier();
1024

1025 1026
	if (cpuc->n_events)
		update_pcrs_for_enable(cpuc);
1027

1028 1029
	for (i = 0; i < sparc_pmu->num_pcrs; i++)
		pcr_ops->write_pcr(i, cpuc->pcr[i]);
1030 1031
}

P
Peter Zijlstra 已提交
1032
static void sparc_pmu_disable(struct pmu *pmu)
1033 1034
{
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1035
	int i;
1036 1037 1038 1039 1040 1041 1042

	if (!cpuc->enabled)
		return;

	cpuc->enabled = 0;
	cpuc->n_added = 0;

1043 1044
	for (i = 0; i < sparc_pmu->num_pcrs; i++) {
		u64 val = cpuc->pcr[i];
1045

1046 1047 1048 1049 1050
		val &= ~(sparc_pmu->user_bit | sparc_pmu->priv_bit |
			 sparc_pmu->hv_bit | sparc_pmu->irq_bit);
		cpuc->pcr[i] = val;
		pcr_ops->write_pcr(i, cpuc->pcr[i]);
	}
1051 1052
}

P
Peter Zijlstra 已提交
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
static int active_event_index(struct cpu_hw_events *cpuc,
			      struct perf_event *event)
{
	int i;

	for (i = 0; i < cpuc->n_events; i++) {
		if (cpuc->event[i] == event)
			break;
	}
	BUG_ON(i == cpuc->n_events);
	return cpuc->current_idx[i];
}

static void sparc_pmu_start(struct perf_event *event, int flags)
{
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
	int idx = active_event_index(cpuc, event);

	if (flags & PERF_EF_RELOAD) {
		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
		sparc_perf_event_set_period(event, &event->hw, idx);
	}

	event->hw.state = 0;

	sparc_pmu_enable_event(cpuc, &event->hw, idx);
}

static void sparc_pmu_stop(struct perf_event *event, int flags)
{
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
	int idx = active_event_index(cpuc, event);

	if (!(event->hw.state & PERF_HES_STOPPED)) {
		sparc_pmu_disable_event(cpuc, &event->hw, idx);
		event->hw.state |= PERF_HES_STOPPED;
	}

	if (!(event->hw.state & PERF_HES_UPTODATE) && (flags & PERF_EF_UPDATE)) {
		sparc_perf_event_update(event, &event->hw, idx);
		event->hw.state |= PERF_HES_UPTODATE;
	}
}

static void sparc_pmu_del(struct perf_event *event, int _flags)
1098
{
1099
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1100 1101
	unsigned long flags;
	int i;
1102

1103
	local_irq_save(flags);
P
Peter Zijlstra 已提交
1104
	perf_pmu_disable(event->pmu);
1105 1106 1107

	for (i = 0; i < cpuc->n_events; i++) {
		if (event == cpuc->event[i]) {
P
Peter Zijlstra 已提交
1108 1109 1110 1111
			/* Absorb the final count and turn off the
			 * event.
			 */
			sparc_pmu_stop(event, PERF_EF_UPDATE);
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123

			/* Shift remaining entries down into
			 * the existing slot.
			 */
			while (++i < cpuc->n_events) {
				cpuc->event[i - 1] = cpuc->event[i];
				cpuc->events[i - 1] = cpuc->events[i];
				cpuc->current_idx[i - 1] =
					cpuc->current_idx[i];
			}

			perf_event_update_userpage(event);
1124

1125 1126 1127 1128
			cpuc->n_events--;
			break;
		}
	}
1129

P
Peter Zijlstra 已提交
1130
	perf_pmu_enable(event->pmu);
1131 1132 1133
	local_irq_restore(flags);
}

1134
static void sparc_pmu_read(struct perf_event *event)
1135
{
1136 1137
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
	int idx = active_event_index(cpuc, event);
1138
	struct hw_perf_event *hwc = &event->hw;
1139

1140
	sparc_perf_event_update(event, hwc, idx);
1141 1142
}

1143
static atomic_t active_events = ATOMIC_INIT(0);
1144 1145
static DEFINE_MUTEX(pmc_grab_mutex);

1146 1147 1148
static void perf_stop_nmi_watchdog(void *unused)
{
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1149
	int i;
1150 1151

	stop_nmi_watchdog(NULL);
1152 1153
	for (i = 0; i < sparc_pmu->num_pcrs; i++)
		cpuc->pcr[i] = pcr_ops->read_pcr(i);
1154 1155
}

1156
static void perf_event_grab_pmc(void)
1157
{
1158
	if (atomic_inc_not_zero(&active_events))
1159 1160 1161
		return;

	mutex_lock(&pmc_grab_mutex);
1162
	if (atomic_read(&active_events) == 0) {
1163
		if (atomic_read(&nmi_active) > 0) {
1164
			on_each_cpu(perf_stop_nmi_watchdog, NULL, 1);
1165 1166
			BUG_ON(atomic_read(&nmi_active) != 0);
		}
1167
		atomic_inc(&active_events);
1168 1169 1170 1171
	}
	mutex_unlock(&pmc_grab_mutex);
}

1172
static void perf_event_release_pmc(void)
1173
{
1174
	if (atomic_dec_and_mutex_lock(&active_events, &pmc_grab_mutex)) {
1175 1176 1177 1178 1179 1180
		if (atomic_read(&nmi_active) == 0)
			on_each_cpu(start_nmi_watchdog, NULL, 1);
		mutex_unlock(&pmc_grab_mutex);
	}
}

1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
static const struct perf_event_map *sparc_map_cache_event(u64 config)
{
	unsigned int cache_type, cache_op, cache_result;
	const struct perf_event_map *pmap;

	if (!sparc_pmu->cache_map)
		return ERR_PTR(-ENOENT);

	cache_type = (config >>  0) & 0xff;
	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
		return ERR_PTR(-EINVAL);

	cache_op = (config >>  8) & 0xff;
	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
		return ERR_PTR(-EINVAL);

	cache_result = (config >> 16) & 0xff;
	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
		return ERR_PTR(-EINVAL);

	pmap = &((*sparc_pmu->cache_map)[cache_type][cache_op][cache_result]);

	if (pmap->encoding == CACHE_OP_UNSUPPORTED)
		return ERR_PTR(-ENOENT);

	if (pmap->encoding == CACHE_OP_NONSENSE)
		return ERR_PTR(-EINVAL);

	return pmap;
}

1212
static void hw_perf_event_destroy(struct perf_event *event)
1213
{
1214
	perf_event_release_pmc();
1215 1216
}

1217 1218 1219
/* Make sure all events can be scheduled into the hardware at
 * the same time.  This is simplified by the fact that we only
 * need to support 2 simultaneous HW events.
1220 1221 1222 1223 1224 1225
 *
 * As a side effect, the evts[]->hw.idx values will be assigned
 * on success.  These are pending indexes.  When the events are
 * actually programmed into the chip, these values will propagate
 * to the per-cpu cpuc->current_idx[] slots, see the code in
 * maybe_change_configuration() for details.
1226
 */
1227 1228
static int sparc_check_constraints(struct perf_event **evts,
				   unsigned long *events, int n_ev)
1229
{
1230 1231 1232 1233 1234 1235 1236 1237 1238
	u8 msk0 = 0, msk1 = 0;
	int idx0 = 0;

	/* This case is possible when we are invoked from
	 * hw_perf_group_sched_in().
	 */
	if (!n_ev)
		return 0;

1239
	if (n_ev > sparc_pmu->max_hw_events)
1240 1241
		return -1;

1242 1243 1244 1245 1246 1247 1248 1249
	if (!(sparc_pmu->flags & SPARC_PMU_HAS_CONFLICTS)) {
		int i;

		for (i = 0; i < n_ev; i++)
			evts[i]->hw.idx = i;
		return 0;
	}

1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
	msk0 = perf_event_get_msk(events[0]);
	if (n_ev == 1) {
		if (msk0 & PIC_LOWER)
			idx0 = 1;
		goto success;
	}
	BUG_ON(n_ev != 2);
	msk1 = perf_event_get_msk(events[1]);

	/* If both events can go on any counter, OK.  */
	if (msk0 == (PIC_UPPER | PIC_LOWER) &&
	    msk1 == (PIC_UPPER | PIC_LOWER))
		goto success;

	/* If one event is limited to a specific counter,
	 * and the other can go on both, OK.
	 */
	if ((msk0 == PIC_UPPER || msk0 == PIC_LOWER) &&
	    msk1 == (PIC_UPPER | PIC_LOWER)) {
		if (msk0 & PIC_LOWER)
			idx0 = 1;
		goto success;
1272 1273
	}

1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
	if ((msk1 == PIC_UPPER || msk1 == PIC_LOWER) &&
	    msk0 == (PIC_UPPER | PIC_LOWER)) {
		if (msk1 & PIC_UPPER)
			idx0 = 1;
		goto success;
	}

	/* If the events are fixed to different counters, OK.  */
	if ((msk0 == PIC_UPPER && msk1 == PIC_LOWER) ||
	    (msk0 == PIC_LOWER && msk1 == PIC_UPPER)) {
		if (msk0 & PIC_LOWER)
			idx0 = 1;
		goto success;
	}

	/* Otherwise, there is a conflict.  */
1290
	return -1;
1291 1292 1293 1294 1295 1296

success:
	evts[0]->hw.idx = idx0;
	if (n_ev == 2)
		evts[1]->hw.idx = idx0 ^ 1;
	return 0;
1297 1298
}

1299 1300 1301 1302 1303 1304
static int check_excludes(struct perf_event **evts, int n_prev, int n_new)
{
	int eu = 0, ek = 0, eh = 0;
	struct perf_event *event;
	int i, n, first;

1305 1306 1307
	if (!(sparc_pmu->flags & SPARC_PMU_ALL_EXCLUDES_SAME))
		return 0;

1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
	n = n_prev + n_new;
	if (n <= 1)
		return 0;

	first = 1;
	for (i = 0; i < n; i++) {
		event = evts[i];
		if (first) {
			eu = event->attr.exclude_user;
			ek = event->attr.exclude_kernel;
			eh = event->attr.exclude_hv;
			first = 0;
		} else if (event->attr.exclude_user != eu ||
			   event->attr.exclude_kernel != ek ||
			   event->attr.exclude_hv != eh) {
			return -EAGAIN;
		}
	}

	return 0;
}

static int collect_events(struct perf_event *group, int max_count,
1331 1332
			  struct perf_event *evts[], unsigned long *events,
			  int *current_idx)
1333 1334 1335 1336 1337 1338 1339 1340
{
	struct perf_event *event;
	int n = 0;

	if (!is_software_event(group)) {
		if (n >= max_count)
			return -1;
		evts[n] = group;
1341 1342
		events[n] = group->hw.event_base;
		current_idx[n++] = PIC_NO_INDEX;
1343 1344 1345 1346 1347 1348 1349
	}
	list_for_each_entry(event, &group->sibling_list, group_entry) {
		if (!is_software_event(event) &&
		    event->state != PERF_EVENT_STATE_OFF) {
			if (n >= max_count)
				return -1;
			evts[n] = event;
1350 1351
			events[n] = event->hw.event_base;
			current_idx[n++] = PIC_NO_INDEX;
1352 1353 1354 1355 1356
		}
	}
	return n;
}

P
Peter Zijlstra 已提交
1357
static int sparc_pmu_add(struct perf_event *event, int ef_flags)
1358 1359 1360 1361 1362 1363
{
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
	int n0, ret = -EAGAIN;
	unsigned long flags;

	local_irq_save(flags);
P
Peter Zijlstra 已提交
1364
	perf_pmu_disable(event->pmu);
1365 1366

	n0 = cpuc->n_events;
1367
	if (n0 >= sparc_pmu->max_hw_events)
1368 1369 1370 1371 1372 1373
		goto out;

	cpuc->event[n0] = event;
	cpuc->events[n0] = event->hw.event_base;
	cpuc->current_idx[n0] = PIC_NO_INDEX;

P
Peter Zijlstra 已提交
1374 1375 1376 1377
	event->hw.state = PERF_HES_UPTODATE;
	if (!(ef_flags & PERF_EF_START))
		event->hw.state |= PERF_HES_STOPPED;

1378 1379
	/*
	 * If group events scheduling transaction was started,
L
Lucas De Marchi 已提交
1380
	 * skip the schedulability test here, it will be performed
1381 1382
	 * at commit time(->commit_txn) as a whole
	 */
1383
	if (cpuc->group_flag & PERF_EVENT_TXN)
1384 1385
		goto nocheck;

1386 1387 1388 1389 1390
	if (check_excludes(cpuc->event, n0, 1))
		goto out;
	if (sparc_check_constraints(cpuc->event, cpuc->events, n0 + 1))
		goto out;

1391
nocheck:
1392 1393 1394 1395 1396
	cpuc->n_events++;
	cpuc->n_added++;

	ret = 0;
out:
P
Peter Zijlstra 已提交
1397
	perf_pmu_enable(event->pmu);
1398 1399 1400 1401
	local_irq_restore(flags);
	return ret;
}

1402
static int sparc_pmu_event_init(struct perf_event *event)
1403
{
1404
	struct perf_event_attr *attr = &event->attr;
1405
	struct perf_event *evts[MAX_HWEVENTS];
1406
	struct hw_perf_event *hwc = &event->hw;
1407
	unsigned long events[MAX_HWEVENTS];
1408
	int current_idx_dmy[MAX_HWEVENTS];
1409
	const struct perf_event_map *pmap;
1410
	int n;
1411 1412 1413 1414

	if (atomic_read(&nmi_active) < 0)
		return -ENODEV;

1415 1416 1417 1418
	/* does not support taken branch sampling */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

1419 1420
	switch (attr->type) {
	case PERF_TYPE_HARDWARE:
1421 1422 1423
		if (attr->config >= sparc_pmu->max_events)
			return -EINVAL;
		pmap = sparc_pmu->event_map(attr->config);
1424 1425 1426
		break;

	case PERF_TYPE_HW_CACHE:
1427 1428 1429
		pmap = sparc_map_cache_event(attr->config);
		if (IS_ERR(pmap))
			return PTR_ERR(pmap);
1430 1431 1432
		break;

	case PERF_TYPE_RAW:
1433 1434
		pmap = NULL;
		break;
1435

1436 1437 1438 1439 1440
	default:
		return -ENOENT;

	}

1441 1442 1443
	if (pmap) {
		hwc->event_base = perf_event_encode(pmap);
	} else {
1444 1445
		/*
		 * User gives us "(encoding << 16) | pic_mask" for
1446 1447 1448 1449 1450
		 * PERF_TYPE_RAW events.
		 */
		hwc->event_base = attr->config;
	}

1451
	/* We save the enable bits in the config_base.  */
1452
	hwc->config_base = sparc_pmu->irq_bit;
1453
	if (!attr->exclude_user)
1454
		hwc->config_base |= sparc_pmu->user_bit;
1455
	if (!attr->exclude_kernel)
1456
		hwc->config_base |= sparc_pmu->priv_bit;
1457 1458
	if (!attr->exclude_hv)
		hwc->config_base |= sparc_pmu->hv_bit;
1459

1460 1461 1462
	n = 0;
	if (event->group_leader != event) {
		n = collect_events(event->group_leader,
1463
				   sparc_pmu->max_hw_events - 1,
1464
				   evts, events, current_idx_dmy);
1465 1466 1467
		if (n < 0)
			return -EINVAL;
	}
1468
	events[n] = hwc->event_base;
1469 1470 1471 1472 1473
	evts[n] = event;

	if (check_excludes(evts, n, 1))
		return -EINVAL;

1474
	if (sparc_check_constraints(evts, events, n + 1))
1475 1476
		return -EINVAL;

1477 1478
	hwc->idx = PIC_NO_INDEX;

1479 1480 1481 1482 1483 1484
	/* Try to do all error checking before this point, as unwinding
	 * state after grabbing the PMC is difficult.
	 */
	perf_event_grab_pmc();
	event->destroy = hw_perf_event_destroy;

1485 1486 1487
	if (!hwc->sample_period) {
		hwc->sample_period = MAX_PERIOD;
		hwc->last_period = hwc->sample_period;
1488
		local64_set(&hwc->period_left, hwc->sample_period);
1489 1490 1491 1492 1493
	}

	return 0;
}

1494 1495 1496 1497 1498
/*
 * Start group events scheduling transaction
 * Set the flag to make pmu::enable() not perform the
 * schedulability test, it will be performed at commit time
 */
P
Peter Zijlstra 已提交
1499
static void sparc_pmu_start_txn(struct pmu *pmu)
1500 1501 1502
{
	struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);

P
Peter Zijlstra 已提交
1503
	perf_pmu_disable(pmu);
1504
	cpuhw->group_flag |= PERF_EVENT_TXN;
1505 1506 1507 1508 1509 1510 1511
}

/*
 * Stop group events scheduling transaction
 * Clear the flag and pmu::enable() will perform the
 * schedulability test.
 */
P
Peter Zijlstra 已提交
1512
static void sparc_pmu_cancel_txn(struct pmu *pmu)
1513 1514 1515
{
	struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);

1516
	cpuhw->group_flag &= ~PERF_EVENT_TXN;
P
Peter Zijlstra 已提交
1517
	perf_pmu_enable(pmu);
1518 1519 1520 1521 1522 1523 1524
}

/*
 * Commit group events scheduling transaction
 * Perform the group schedulability test as a whole
 * Return 0 if success
 */
P
Peter Zijlstra 已提交
1525
static int sparc_pmu_commit_txn(struct pmu *pmu)
1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
{
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
	int n;

	if (!sparc_pmu)
		return -EINVAL;

	cpuc = &__get_cpu_var(cpu_hw_events);
	n = cpuc->n_events;
	if (check_excludes(cpuc->event, 0, n))
		return -EINVAL;
	if (sparc_check_constraints(cpuc->event, cpuc->events, n))
		return -EAGAIN;

1540
	cpuc->group_flag &= ~PERF_EVENT_TXN;
P
Peter Zijlstra 已提交
1541
	perf_pmu_enable(pmu);
1542 1543 1544
	return 0;
}

P
Peter Zijlstra 已提交
1545
static struct pmu pmu = {
P
Peter Zijlstra 已提交
1546 1547
	.pmu_enable	= sparc_pmu_enable,
	.pmu_disable	= sparc_pmu_disable,
1548
	.event_init	= sparc_pmu_event_init,
P
Peter Zijlstra 已提交
1549 1550 1551 1552
	.add		= sparc_pmu_add,
	.del		= sparc_pmu_del,
	.start		= sparc_pmu_start,
	.stop		= sparc_pmu_stop,
1553
	.read		= sparc_pmu_read,
1554 1555 1556
	.start_txn	= sparc_pmu_start_txn,
	.cancel_txn	= sparc_pmu_cancel_txn,
	.commit_txn	= sparc_pmu_commit_txn,
1557 1558
};

1559
void perf_event_print_debug(void)
1560 1561
{
	unsigned long flags;
1562
	int cpu, i;
1563 1564 1565 1566 1567 1568 1569 1570 1571

	if (!sparc_pmu)
		return;

	local_irq_save(flags);

	cpu = smp_processor_id();

	pr_info("\n");
1572 1573 1574 1575 1576 1577
	for (i = 0; i < sparc_pmu->num_pcrs; i++)
		pr_info("CPU#%d: PCR%d[%016llx]\n",
			cpu, i, pcr_ops->read_pcr(i));
	for (i = 0; i < sparc_pmu->num_pic_regs; i++)
		pr_info("CPU#%d: PIC%d[%016llx]\n",
			cpu, i, pcr_ops->read_pic(i));
1578 1579 1580 1581

	local_irq_restore(flags);
}

1582
static int __kprobes perf_event_nmi_handler(struct notifier_block *self,
1583
					    unsigned long cmd, void *__args)
1584 1585 1586
{
	struct die_args *args = __args;
	struct perf_sample_data data;
1587
	struct cpu_hw_events *cpuc;
1588
	struct pt_regs *regs;
1589
	int i;
1590

1591
	if (!atomic_read(&active_events))
1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603
		return NOTIFY_DONE;

	switch (cmd) {
	case DIE_NMI:
		break;

	default:
		return NOTIFY_DONE;
	}

	regs = args->regs;

1604
	cpuc = &__get_cpu_var(cpu_hw_events);
1605 1606 1607 1608 1609 1610 1611 1612

	/* If the PMU has the TOE IRQ enable bits, we need to do a
	 * dummy write to the %pcr to clear the overflow bits and thus
	 * the interrupt.
	 *
	 * Do this before we peek at the counters to determine
	 * overflow so we don't lose any events.
	 */
1613 1614 1615
	if (sparc_pmu->irq_bit &&
	    sparc_pmu->num_pcrs == 1)
		pcr_ops->write_pcr(0, cpuc->pcr[0]);
1616

1617 1618 1619
	for (i = 0; i < cpuc->n_events; i++) {
		struct perf_event *event = cpuc->event[i];
		int idx = cpuc->current_idx[i];
1620
		struct hw_perf_event *hwc;
1621 1622
		u64 val;

1623 1624 1625 1626
		if (sparc_pmu->irq_bit &&
		    sparc_pmu->num_pcrs > 1)
			pcr_ops->write_pcr(idx, cpuc->pcr[idx]);

1627 1628
		hwc = &event->hw;
		val = sparc_perf_event_update(event, hwc, idx);
1629 1630 1631
		if (val & (1ULL << 31))
			continue;

1632
		perf_sample_data_init(&data, 0, hwc->last_period);
1633
		if (!sparc_perf_event_set_period(event, hwc, idx))
1634 1635
			continue;

1636
		if (perf_event_overflow(event, &data, regs))
P
Peter Zijlstra 已提交
1637
			sparc_pmu_stop(event, 0);
1638 1639 1640 1641 1642
	}

	return NOTIFY_STOP;
}

1643 1644
static __read_mostly struct notifier_block perf_event_nmi_notifier = {
	.notifier_call		= perf_event_nmi_handler,
1645 1646 1647 1648
};

static bool __init supported_pmu(void)
{
1649 1650 1651 1652 1653
	if (!strcmp(sparc_pmu_type, "ultra3") ||
	    !strcmp(sparc_pmu_type, "ultra3+") ||
	    !strcmp(sparc_pmu_type, "ultra3i") ||
	    !strcmp(sparc_pmu_type, "ultra4+")) {
		sparc_pmu = &ultra3_pmu;
1654 1655
		return true;
	}
1656 1657 1658 1659
	if (!strcmp(sparc_pmu_type, "niagara")) {
		sparc_pmu = &niagara1_pmu;
		return true;
	}
1660 1661
	if (!strcmp(sparc_pmu_type, "niagara2") ||
	    !strcmp(sparc_pmu_type, "niagara3")) {
1662 1663 1664
		sparc_pmu = &niagara2_pmu;
		return true;
	}
1665 1666 1667 1668
	if (!strcmp(sparc_pmu_type, "niagara4")) {
		sparc_pmu = &niagara4_pmu;
		return true;
	}
1669 1670 1671
	return false;
}

1672
static int __init init_hw_perf_events(void)
1673
{
1674 1675
	int err;

1676
	pr_info("Performance events: ");
1677

1678 1679
	err = pcr_arch_init();
	if (err || !supported_pmu()) {
1680
		pr_cont("No support for PMU type '%s'\n", sparc_pmu_type);
1681
		return 0;
1682 1683 1684 1685
	}

	pr_cont("Supported PMU type is '%s'\n", sparc_pmu_type);

P
Peter Zijlstra 已提交
1686
	perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1687
	register_die_notifier(&perf_event_nmi_notifier);
1688 1689

	return 0;
1690
}
1691
pure_initcall(init_hw_perf_events);
1692

1693 1694
void perf_callchain_kernel(struct perf_callchain_entry *entry,
			   struct pt_regs *regs)
1695 1696
{
	unsigned long ksp, fp;
1697 1698 1699
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
	int graph = 0;
#endif
1700

1701 1702
	stack_trace_flush();

1703
	perf_callchain_store(entry, regs->tpc);
1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726

	ksp = regs->u_regs[UREG_I6];
	fp = ksp + STACK_BIAS;
	do {
		struct sparc_stackf *sf;
		struct pt_regs *regs;
		unsigned long pc;

		if (!kstack_valid(current_thread_info(), fp))
			break;

		sf = (struct sparc_stackf *) fp;
		regs = (struct pt_regs *) (sf + 1);

		if (kstack_is_trap_frame(current_thread_info(), regs)) {
			if (user_mode(regs))
				break;
			pc = regs->tpc;
			fp = regs->u_regs[UREG_I6] + STACK_BIAS;
		} else {
			pc = sf->callers_pc;
			fp = (unsigned long)sf->fp + STACK_BIAS;
		}
1727
		perf_callchain_store(entry, pc);
1728 1729 1730 1731 1732
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
		if ((pc + 8UL) == (unsigned long) &return_to_handler) {
			int index = current->curr_ret_stack;
			if (current->ret_stack && index >= graph) {
				pc = current->ret_stack[index - graph].ret;
1733
				perf_callchain_store(entry, pc);
1734 1735 1736 1737
				graph++;
			}
		}
#endif
1738 1739 1740
	} while (entry->nr < PERF_MAX_STACK_DEPTH);
}

1741 1742
static void perf_callchain_user_64(struct perf_callchain_entry *entry,
				   struct pt_regs *regs)
1743 1744 1745 1746 1747
{
	unsigned long ufp;

	ufp = regs->u_regs[UREG_I6] + STACK_BIAS;
	do {
1748 1749
		struct sparc_stackf __user *usf;
		struct sparc_stackf sf;
1750 1751
		unsigned long pc;

1752
		usf = (struct sparc_stackf __user *)ufp;
1753 1754 1755 1756 1757
		if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
			break;

		pc = sf.callers_pc;
		ufp = (unsigned long)sf.fp + STACK_BIAS;
1758
		perf_callchain_store(entry, pc);
1759 1760 1761
	} while (entry->nr < PERF_MAX_STACK_DEPTH);
}

1762 1763
static void perf_callchain_user_32(struct perf_callchain_entry *entry,
				   struct pt_regs *regs)
1764 1765 1766
{
	unsigned long ufp;

1767
	ufp = regs->u_regs[UREG_I6] & 0xffffffffUL;
1768 1769 1770
	do {
		unsigned long pc;

1771
		if (thread32_stack_is_64bit(ufp)) {
1772 1773
			struct sparc_stackf __user *usf;
			struct sparc_stackf sf;
1774

1775
			ufp += STACK_BIAS;
1776
			usf = (struct sparc_stackf __user *)ufp;
1777 1778 1779 1780 1781
			if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
				break;
			pc = sf.callers_pc & 0xffffffff;
			ufp = ((unsigned long) sf.fp) & 0xffffffff;
		} else {
1782 1783 1784
			struct sparc_stackf32 __user *usf;
			struct sparc_stackf32 sf;
			usf = (struct sparc_stackf32 __user *)ufp;
1785 1786 1787 1788 1789
			if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
				break;
			pc = sf.callers_pc;
			ufp = (unsigned long)sf.fp;
		}
1790
		perf_callchain_store(entry, pc);
1791 1792 1793
	} while (entry->nr < PERF_MAX_STACK_DEPTH);
}

1794 1795
void
perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
1796
{
1797 1798 1799 1800 1801
	perf_callchain_store(entry, regs->tpc);

	if (!current->mm)
		return;

1802 1803 1804 1805 1806
	flushw_user();
	if (test_thread_flag(TIF_32BIT))
		perf_callchain_user_32(entry, regs);
	else
		perf_callchain_user_64(entry, regs);
1807
}