amd_iommu_init.c 38.8 KB
Newer Older
1
/*
2
 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
 * Author: Joerg Roedel <joerg.roedel@amd.com>
 *         Leo Duran <leo.duran@amd.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

#include <linux/pci.h>
#include <linux/acpi.h>
#include <linux/list.h>
23
#include <linux/slab.h>
24
#include <linux/syscore_ops.h>
25 26
#include <linux/interrupt.h>
#include <linux/msi.h>
27
#include <asm/pci-direct.h>
28
#include <asm/amd_iommu_proto.h>
29
#include <asm/amd_iommu_types.h>
30
#include <asm/amd_iommu.h>
31
#include <asm/iommu.h>
32
#include <asm/gart.h>
33
#include <asm/x86_init.h>
34
#include <asm/iommu_table.h>
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
/*
 * definitions for the ACPI scanning code
 */
#define IVRS_HEADER_LENGTH 48

#define ACPI_IVHD_TYPE                  0x10
#define ACPI_IVMD_TYPE_ALL              0x20
#define ACPI_IVMD_TYPE                  0x21
#define ACPI_IVMD_TYPE_RANGE            0x22

#define IVHD_DEV_ALL                    0x01
#define IVHD_DEV_SELECT                 0x02
#define IVHD_DEV_SELECT_RANGE_START     0x03
#define IVHD_DEV_RANGE_END              0x04
#define IVHD_DEV_ALIAS                  0x42
#define IVHD_DEV_ALIAS_RANGE            0x43
#define IVHD_DEV_EXT_SELECT             0x46
#define IVHD_DEV_EXT_SELECT_RANGE       0x47

J
Joerg Roedel 已提交
54 55 56 57
#define IVHD_FLAG_HT_TUN_EN_MASK        0x01
#define IVHD_FLAG_PASSPW_EN_MASK        0x02
#define IVHD_FLAG_RESPASSPW_EN_MASK     0x04
#define IVHD_FLAG_ISOC_EN_MASK          0x08
58 59 60 61 62 63 64 65 66 67 68 69 70

#define IVMD_FLAG_EXCL_RANGE            0x08
#define IVMD_FLAG_UNITY_MAP             0x01

#define ACPI_DEVFLAG_INITPASS           0x01
#define ACPI_DEVFLAG_EXTINT             0x02
#define ACPI_DEVFLAG_NMI                0x04
#define ACPI_DEVFLAG_SYSMGT1            0x10
#define ACPI_DEVFLAG_SYSMGT2            0x20
#define ACPI_DEVFLAG_LINT0              0x40
#define ACPI_DEVFLAG_LINT1              0x80
#define ACPI_DEVFLAG_ATSDIS             0x10000000

71 72 73 74 75 76 77 78 79 80 81
/*
 * ACPI table definitions
 *
 * These data structures are laid over the table to parse the important values
 * out of it.
 */

/*
 * structure describing one IOMMU in the ACPI table. Typically followed by one
 * or more ivhd_entrys.
 */
82 83 84 85 86 87 88 89 90 91 92 93
struct ivhd_header {
	u8 type;
	u8 flags;
	u16 length;
	u16 devid;
	u16 cap_ptr;
	u64 mmio_phys;
	u16 pci_seg;
	u16 info;
	u32 reserved;
} __attribute__((packed));

94 95 96 97
/*
 * A device entry describing which devices a specific IOMMU translates and
 * which requestor ids they use.
 */
98 99 100 101 102 103 104
struct ivhd_entry {
	u8 type;
	u16 devid;
	u8 flags;
	u32 ext;
} __attribute__((packed));

105 106 107 108
/*
 * An AMD IOMMU memory definition structure. It defines things like exclusion
 * ranges for devices and regions that should be unity mapped.
 */
109 110 111 112 113 114 115 116 117 118 119
struct ivmd_header {
	u8 type;
	u8 flags;
	u16 length;
	u16 devid;
	u16 aux;
	u64 resv;
	u64 range_start;
	u64 range_length;
} __attribute__((packed));

120 121
bool amd_iommu_dump;

122
static int __initdata amd_iommu_detected;
123
static bool __initdata amd_iommu_disabled;
124

125 126
u16 amd_iommu_last_bdf;			/* largest PCI device id we have
					   to handle */
127
LIST_HEAD(amd_iommu_unity_map);		/* a list of required unity mappings
128
					   we find in ACPI */
129
bool amd_iommu_unmap_flush;		/* if true, flush on every unmap */
130

131
LIST_HEAD(amd_iommu_list);		/* list of all AMD IOMMUs in the
132
					   system */
133

134 135 136 137
/* Array to assign indices to IOMMUs*/
struct amd_iommu *amd_iommus[MAX_IOMMUS];
int amd_iommus_present;

138 139 140
/* IOMMUs have a non-present cache? */
bool amd_iommu_np_cache __read_mostly;

141
/*
142
 * The ACPI table parsing functions set this variable on an error
143
 */
144
static int __initdata amd_iommu_init_err;
145

146 147 148 149 150 151
/*
 * List of protection domains - used during resume
 */
LIST_HEAD(amd_iommu_pd_list);
spinlock_t amd_iommu_pd_lock;

152 153 154 155 156 157
/*
 * Pointer to the device table which is shared by all AMD IOMMUs
 * it is indexed by the PCI device id or the HT unit id and contains
 * information about the domain the device belongs to as well as the
 * page table root pointer.
 */
158
struct dev_table_entry *amd_iommu_dev_table;
159 160 161 162 163 164

/*
 * The alias table is a driver specific data structure which contains the
 * mappings of the PCI device ids to the actual requestor ids on the IOMMU.
 * More than one device can share the same requestor id.
 */
165
u16 *amd_iommu_alias_table;
166 167 168 169 170

/*
 * The rlookup table is used to find the IOMMU which is responsible
 * for a specific device. It is also indexed by the PCI device id.
 */
171
struct amd_iommu **amd_iommu_rlookup_table;
172 173 174 175 176

/*
 * AMD IOMMU allows up to 2^16 differend protection domains. This is a bitmap
 * to know which ones are already in use.
 */
177 178
unsigned long *amd_iommu_pd_alloc_bitmap;

179 180 181
static u32 dev_table_size;	/* size of the device table */
static u32 alias_table_size;	/* size of the alias table */
static u32 rlookup_table_size;	/* size if the rlookup table */
182

183 184 185 186 187 188
/*
 * This function flushes all internal caches of
 * the IOMMU used by this driver.
 */
extern void iommu_flush_all_caches(struct amd_iommu *iommu);

189 190 191 192 193 194
static inline void update_last_devid(u16 devid)
{
	if (devid > amd_iommu_last_bdf)
		amd_iommu_last_bdf = devid;
}

195 196 197
static inline unsigned long tbl_size(int entry_size)
{
	unsigned shift = PAGE_SHIFT +
198
			 get_order(((int)amd_iommu_last_bdf + 1) * entry_size);
199 200 201 202

	return 1UL << shift;
}

203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
/* Access to l1 and l2 indexed register spaces */

static u32 iommu_read_l1(struct amd_iommu *iommu, u16 l1, u8 address)
{
	u32 val;

	pci_write_config_dword(iommu->dev, 0xf8, (address | l1 << 16));
	pci_read_config_dword(iommu->dev, 0xfc, &val);
	return val;
}

static void iommu_write_l1(struct amd_iommu *iommu, u16 l1, u8 address, u32 val)
{
	pci_write_config_dword(iommu->dev, 0xf8, (address | l1 << 16 | 1 << 31));
	pci_write_config_dword(iommu->dev, 0xfc, val);
	pci_write_config_dword(iommu->dev, 0xf8, (address | l1 << 16));
}

static u32 iommu_read_l2(struct amd_iommu *iommu, u8 address)
{
	u32 val;

	pci_write_config_dword(iommu->dev, 0xf0, address);
	pci_read_config_dword(iommu->dev, 0xf4, &val);
	return val;
}

static void iommu_write_l2(struct amd_iommu *iommu, u8 address, u32 val)
{
	pci_write_config_dword(iommu->dev, 0xf0, (address | 1 << 8));
	pci_write_config_dword(iommu->dev, 0xf4, val);
}

236 237 238 239 240 241 242 243
/****************************************************************************
 *
 * AMD IOMMU MMIO register space handling functions
 *
 * These functions are used to program the IOMMU device registers in
 * MMIO space required for that driver.
 *
 ****************************************************************************/
244

245 246 247 248
/*
 * This function set the exclusion range in the IOMMU. DMA accesses to the
 * exclusion range are passed through untranslated
 */
249
static void iommu_set_exclusion_range(struct amd_iommu *iommu)
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
{
	u64 start = iommu->exclusion_start & PAGE_MASK;
	u64 limit = (start + iommu->exclusion_length) & PAGE_MASK;
	u64 entry;

	if (!iommu->exclusion_start)
		return;

	entry = start | MMIO_EXCL_ENABLE_MASK;
	memcpy_toio(iommu->mmio_base + MMIO_EXCL_BASE_OFFSET,
			&entry, sizeof(entry));

	entry = limit;
	memcpy_toio(iommu->mmio_base + MMIO_EXCL_LIMIT_OFFSET,
			&entry, sizeof(entry));
}

267
/* Programs the physical address of the device table into the IOMMU hardware */
268 269
static void __init iommu_set_device_table(struct amd_iommu *iommu)
{
270
	u64 entry;
271 272 273 274 275 276 277 278 279

	BUG_ON(iommu->mmio_base == NULL);

	entry = virt_to_phys(amd_iommu_dev_table);
	entry |= (dev_table_size >> 12) - 1;
	memcpy_toio(iommu->mmio_base + MMIO_DEV_TABLE_OFFSET,
			&entry, sizeof(entry));
}

280
/* Generic functions to enable/disable certain features of the IOMMU. */
281
static void iommu_feature_enable(struct amd_iommu *iommu, u8 bit)
282 283 284 285 286 287 288 289
{
	u32 ctrl;

	ctrl = readl(iommu->mmio_base + MMIO_CONTROL_OFFSET);
	ctrl |= (1 << bit);
	writel(ctrl, iommu->mmio_base + MMIO_CONTROL_OFFSET);
}

290
static void iommu_feature_disable(struct amd_iommu *iommu, u8 bit)
291 292 293
{
	u32 ctrl;

294
	ctrl = readl(iommu->mmio_base + MMIO_CONTROL_OFFSET);
295 296 297 298
	ctrl &= ~(1 << bit);
	writel(ctrl, iommu->mmio_base + MMIO_CONTROL_OFFSET);
}

299
/* Function to enable the hardware */
300
static void iommu_enable(struct amd_iommu *iommu)
301
{
302
	printk(KERN_INFO "AMD-Vi: Enabling IOMMU at %s cap 0x%hx\n",
303
	       dev_name(&iommu->dev->dev), iommu->cap_ptr);
304 305 306 307

	iommu_feature_enable(iommu, CONTROL_IOMMU_EN);
}

308
static void iommu_disable(struct amd_iommu *iommu)
J
Joerg Roedel 已提交
309
{
310 311 312 313 314 315 316 317
	/* Disable command buffer */
	iommu_feature_disable(iommu, CONTROL_CMDBUF_EN);

	/* Disable event logging and event interrupts */
	iommu_feature_disable(iommu, CONTROL_EVT_INT_EN);
	iommu_feature_disable(iommu, CONTROL_EVT_LOG_EN);

	/* Disable IOMMU hardware itself */
318
	iommu_feature_disable(iommu, CONTROL_IOMMU_EN);
J
Joerg Roedel 已提交
319 320
}

321 322 323 324
/*
 * mapping and unmapping functions for the IOMMU MMIO space. Each AMD IOMMU in
 * the system has one.
 */
325 326 327 328
static u8 * __init iommu_map_mmio_space(u64 address)
{
	u8 *ret;

329 330 331 332
	if (!request_mem_region(address, MMIO_REGION_LENGTH, "amd_iommu")) {
		pr_err("AMD-Vi: Can not reserve memory region %llx for mmio\n",
			address);
		pr_err("AMD-Vi: This is a BIOS bug. Please contact your hardware vendor\n");
333
		return NULL;
334
	}
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351

	ret = ioremap_nocache(address, MMIO_REGION_LENGTH);
	if (ret != NULL)
		return ret;

	release_mem_region(address, MMIO_REGION_LENGTH);

	return NULL;
}

static void __init iommu_unmap_mmio_space(struct amd_iommu *iommu)
{
	if (iommu->mmio_base)
		iounmap(iommu->mmio_base);
	release_mem_region(iommu->mmio_phys, MMIO_REGION_LENGTH);
}

352 353 354 355 356 357 358 359 360
/****************************************************************************
 *
 * The functions below belong to the first pass of AMD IOMMU ACPI table
 * parsing. In this pass we try to find out the highest device id this
 * code has to handle. Upon this information the size of the shared data
 * structures is determined later.
 *
 ****************************************************************************/

361 362 363 364 365 366 367 368
/*
 * This function calculates the length of a given IVHD entry
 */
static inline int ivhd_entry_length(u8 *ivhd)
{
	return 0x04 << (*ivhd >> 6);
}

369 370 371 372
/*
 * This function reads the last device id the IOMMU has to handle from the PCI
 * capability header for this IOMMU
 */
373 374 375 376 377
static int __init find_last_devid_on_pci(int bus, int dev, int fn, int cap_ptr)
{
	u32 cap;

	cap = read_pci_config(bus, dev, fn, cap_ptr+MMIO_RANGE_OFFSET);
378
	update_last_devid(calc_devid(MMIO_GET_BUS(cap), MMIO_GET_LD(cap)));
379 380 381 382

	return 0;
}

383 384 385 386
/*
 * After reading the highest device id from the IOMMU PCI capability header
 * this function looks if there is a higher device id defined in the ACPI table
 */
387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
static int __init find_last_devid_from_ivhd(struct ivhd_header *h)
{
	u8 *p = (void *)h, *end = (void *)h;
	struct ivhd_entry *dev;

	p += sizeof(*h);
	end += h->length;

	find_last_devid_on_pci(PCI_BUS(h->devid),
			PCI_SLOT(h->devid),
			PCI_FUNC(h->devid),
			h->cap_ptr);

	while (p < end) {
		dev = (struct ivhd_entry *)p;
		switch (dev->type) {
		case IVHD_DEV_SELECT:
		case IVHD_DEV_RANGE_END:
		case IVHD_DEV_ALIAS:
		case IVHD_DEV_EXT_SELECT:
407
			/* all the above subfield types refer to device ids */
408
			update_last_devid(dev->devid);
409 410 411 412
			break;
		default:
			break;
		}
413
		p += ivhd_entry_length(p);
414 415 416 417 418 419 420
	}

	WARN_ON(p != end);

	return 0;
}

421 422 423 424 425
/*
 * Iterate over all IVHD entries in the ACPI table and find the highest device
 * id which we need to handle. This is the first of three functions which parse
 * the ACPI table. So we check the checksum here.
 */
426 427 428 429 430 431 432 433 434 435 436 437
static int __init find_last_devid_acpi(struct acpi_table_header *table)
{
	int i;
	u8 checksum = 0, *p = (u8 *)table, *end = (u8 *)table;
	struct ivhd_header *h;

	/*
	 * Validate checksum here so we don't need to do it when
	 * we actually parse the table
	 */
	for (i = 0; i < table->length; ++i)
		checksum += p[i];
438
	if (checksum != 0) {
439
		/* ACPI table corrupt */
440 441 442
		amd_iommu_init_err = -ENODEV;
		return 0;
	}
443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462

	p += IVRS_HEADER_LENGTH;

	end += table->length;
	while (p < end) {
		h = (struct ivhd_header *)p;
		switch (h->type) {
		case ACPI_IVHD_TYPE:
			find_last_devid_from_ivhd(h);
			break;
		default:
			break;
		}
		p += h->length;
	}
	WARN_ON(p != end);

	return 0;
}

463 464 465 466 467 468 469 470 471 472 473 474 475 476
/****************************************************************************
 *
 * The following functions belong the the code path which parses the ACPI table
 * the second time. In this ACPI parsing iteration we allocate IOMMU specific
 * data structures, initialize the device/alias/rlookup table and also
 * basically initialize the hardware.
 *
 ****************************************************************************/

/*
 * Allocates the command buffer. This buffer is per AMD IOMMU. We can
 * write commands to that buffer later and the IOMMU will execute them
 * asynchronously
 */
477 478
static u8 * __init alloc_command_buffer(struct amd_iommu *iommu)
{
479
	u8 *cmd_buf = (u8 *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
480 481 482 483 484
			get_order(CMD_BUFFER_SIZE));

	if (cmd_buf == NULL)
		return NULL;

485
	iommu->cmd_buf_size = CMD_BUFFER_SIZE | CMD_BUFFER_UNINITIALIZED;
486

487 488 489
	return cmd_buf;
}

490 491 492 493 494 495 496 497 498 499 500 501 502 503
/*
 * This function resets the command buffer if the IOMMU stopped fetching
 * commands from it.
 */
void amd_iommu_reset_cmd_buffer(struct amd_iommu *iommu)
{
	iommu_feature_disable(iommu, CONTROL_CMDBUF_EN);

	writel(0x00, iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
	writel(0x00, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);

	iommu_feature_enable(iommu, CONTROL_CMDBUF_EN);
}

504 505 506 507 508 509 510 511 512 513 514
/*
 * This function writes the command buffer address to the hardware and
 * enables it.
 */
static void iommu_enable_command_buffer(struct amd_iommu *iommu)
{
	u64 entry;

	BUG_ON(iommu->cmd_buf == NULL);

	entry = (u64)virt_to_phys(iommu->cmd_buf);
515
	entry |= MMIO_CMD_SIZE_512;
516

517
	memcpy_toio(iommu->mmio_base + MMIO_CMD_BUF_OFFSET,
518
		    &entry, sizeof(entry));
519

520
	amd_iommu_reset_cmd_buffer(iommu);
521
	iommu->cmd_buf_size &= ~(CMD_BUFFER_UNINITIALIZED);
522 523 524 525
}

static void __init free_command_buffer(struct amd_iommu *iommu)
{
526
	free_pages((unsigned long)iommu->cmd_buf,
527
		   get_order(iommu->cmd_buf_size & ~(CMD_BUFFER_UNINITIALIZED)));
528 529
}

530 531 532 533 534 535 536 537 538
/* allocates the memory where the IOMMU will log its events to */
static u8 * __init alloc_event_buffer(struct amd_iommu *iommu)
{
	iommu->evt_buf = (u8 *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
						get_order(EVT_BUFFER_SIZE));

	if (iommu->evt_buf == NULL)
		return NULL;

539 540
	iommu->evt_buf_size = EVT_BUFFER_SIZE;

541 542 543 544 545 546 547 548 549
	return iommu->evt_buf;
}

static void iommu_enable_event_buffer(struct amd_iommu *iommu)
{
	u64 entry;

	BUG_ON(iommu->evt_buf == NULL);

550
	entry = (u64)virt_to_phys(iommu->evt_buf) | EVT_LEN_MASK;
551

552 553 554
	memcpy_toio(iommu->mmio_base + MMIO_EVT_BUF_OFFSET,
		    &entry, sizeof(entry));

555 556 557 558
	/* set head and tail to zero manually */
	writel(0x00, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
	writel(0x00, iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);

559
	iommu_feature_enable(iommu, CONTROL_EVT_LOG_EN);
560 561 562 563 564 565 566
}

static void __init free_event_buffer(struct amd_iommu *iommu)
{
	free_pages((unsigned long)iommu->evt_buf, get_order(EVT_BUFFER_SIZE));
}

567
/* sets a specific bit in the device table entry. */
568 569 570 571 572 573 574 575
static void set_dev_entry_bit(u16 devid, u8 bit)
{
	int i = (bit >> 5) & 0x07;
	int _bit = bit & 0x1f;

	amd_iommu_dev_table[devid].data[i] |= (1 << _bit);
}

576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
static int get_dev_entry_bit(u16 devid, u8 bit)
{
	int i = (bit >> 5) & 0x07;
	int _bit = bit & 0x1f;

	return (amd_iommu_dev_table[devid].data[i] & (1 << _bit)) >> _bit;
}


void amd_iommu_apply_erratum_63(u16 devid)
{
	int sysmgt;

	sysmgt = get_dev_entry_bit(devid, DEV_ENTRY_SYSMGT1) |
		 (get_dev_entry_bit(devid, DEV_ENTRY_SYSMGT2) << 1);

	if (sysmgt == 0x01)
		set_dev_entry_bit(devid, DEV_ENTRY_IW);
}

596 597 598 599 600 601
/* Writes the specific IOMMU for a device into the rlookup table */
static void __init set_iommu_for_device(struct amd_iommu *iommu, u16 devid)
{
	amd_iommu_rlookup_table[devid] = iommu;
}

602 603 604 605
/*
 * This function takes the device specific flags read from the ACPI
 * table and sets up the device table entry with that information
 */
606 607
static void __init set_dev_entry_from_acpi(struct amd_iommu *iommu,
					   u16 devid, u32 flags, u32 ext_flags)
608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
{
	if (flags & ACPI_DEVFLAG_INITPASS)
		set_dev_entry_bit(devid, DEV_ENTRY_INIT_PASS);
	if (flags & ACPI_DEVFLAG_EXTINT)
		set_dev_entry_bit(devid, DEV_ENTRY_EINT_PASS);
	if (flags & ACPI_DEVFLAG_NMI)
		set_dev_entry_bit(devid, DEV_ENTRY_NMI_PASS);
	if (flags & ACPI_DEVFLAG_SYSMGT1)
		set_dev_entry_bit(devid, DEV_ENTRY_SYSMGT1);
	if (flags & ACPI_DEVFLAG_SYSMGT2)
		set_dev_entry_bit(devid, DEV_ENTRY_SYSMGT2);
	if (flags & ACPI_DEVFLAG_LINT0)
		set_dev_entry_bit(devid, DEV_ENTRY_LINT0_PASS);
	if (flags & ACPI_DEVFLAG_LINT1)
		set_dev_entry_bit(devid, DEV_ENTRY_LINT1_PASS);

624 625
	amd_iommu_apply_erratum_63(devid);

626
	set_iommu_for_device(iommu, devid);
627 628
}

629 630 631 632
/*
 * Reads the device exclusion range from ACPI and initialize IOMMU with
 * it
 */
633 634 635 636 637 638 639 640
static void __init set_device_exclusion_range(u16 devid, struct ivmd_header *m)
{
	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];

	if (!(m->flags & IVMD_FLAG_EXCL_RANGE))
		return;

	if (iommu) {
641 642 643 644 645
		/*
		 * We only can configure exclusion ranges per IOMMU, not
		 * per device. But we can enable the exclusion range per
		 * device. This is done here
		 */
646 647 648 649 650 651
		set_dev_entry_bit(m->devid, DEV_ENTRY_EX);
		iommu->exclusion_start = m->range_start;
		iommu->exclusion_length = m->range_length;
	}
}

652 653 654 655 656
/*
 * This function reads some important data from the IOMMU PCI space and
 * initializes the driver data structure with it. It reads the hardware
 * capabilities and the first/last device entries
 */
657 658 659
static void __init init_iommu_from_pci(struct amd_iommu *iommu)
{
	int cap_ptr = iommu->cap_ptr;
660
	u32 range, misc;
661
	int i, j;
662

663 664 665 666
	pci_read_config_dword(iommu->dev, cap_ptr + MMIO_CAP_HDR_OFFSET,
			      &iommu->cap);
	pci_read_config_dword(iommu->dev, cap_ptr + MMIO_RANGE_OFFSET,
			      &range);
667 668
	pci_read_config_dword(iommu->dev, cap_ptr + MMIO_MISC_OFFSET,
			      &misc);
669

670 671 672 673
	iommu->first_device = calc_devid(MMIO_GET_BUS(range),
					 MMIO_GET_FD(range));
	iommu->last_device = calc_devid(MMIO_GET_BUS(range),
					MMIO_GET_LD(range));
674
	iommu->evt_msi_num = MMIO_MSI_NUM(misc);
675

676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698
	if (!is_rd890_iommu(iommu->dev))
		return;

	/*
	 * Some rd890 systems may not be fully reconfigured by the BIOS, so
	 * it's necessary for us to store this information so it can be
	 * reprogrammed on resume
	 */

	pci_read_config_dword(iommu->dev, iommu->cap_ptr + 4,
			      &iommu->stored_addr_lo);
	pci_read_config_dword(iommu->dev, iommu->cap_ptr + 8,
			      &iommu->stored_addr_hi);

	/* Low bit locks writes to configuration space */
	iommu->stored_addr_lo &= ~1;

	for (i = 0; i < 6; i++)
		for (j = 0; j < 0x12; j++)
			iommu->stored_l1[i][j] = iommu_read_l1(iommu, i, j);

	for (i = 0; i < 0x83; i++)
		iommu->stored_l2[i] = iommu_read_l2(iommu, i);
699 700
}

701 702 703 704
/*
 * Takes a pointer to an AMD IOMMU entry in the ACPI table and
 * initializes the hardware and our data structures with it.
 */
705 706 707 708 709 710 711
static void __init init_iommu_from_acpi(struct amd_iommu *iommu,
					struct ivhd_header *h)
{
	u8 *p = (u8 *)h;
	u8 *end = p, flags = 0;
	u16 dev_i, devid = 0, devid_start = 0, devid_to = 0;
	u32 ext_flags = 0;
712
	bool alias = false;
713 714 715
	struct ivhd_entry *e;

	/*
716
	 * First save the recommended feature enable bits from ACPI
717
	 */
718
	iommu->acpi_flags = h->flags;
719 720 721 722 723 724 725

	/*
	 * Done. Now parse the device entries
	 */
	p += sizeof(struct ivhd_header);
	end += h->length;

726

727 728 729 730
	while (p < end) {
		e = (struct ivhd_entry *)p;
		switch (e->type) {
		case IVHD_DEV_ALL:
731 732 733 734 735 736 737 738 739 740 741

			DUMP_printk("  DEV_ALL\t\t\t first devid: %02x:%02x.%x"
				    " last device %02x:%02x.%x flags: %02x\n",
				    PCI_BUS(iommu->first_device),
				    PCI_SLOT(iommu->first_device),
				    PCI_FUNC(iommu->first_device),
				    PCI_BUS(iommu->last_device),
				    PCI_SLOT(iommu->last_device),
				    PCI_FUNC(iommu->last_device),
				    e->flags);

742 743
			for (dev_i = iommu->first_device;
					dev_i <= iommu->last_device; ++dev_i)
744 745
				set_dev_entry_from_acpi(iommu, dev_i,
							e->flags, 0);
746 747
			break;
		case IVHD_DEV_SELECT:
748 749 750 751 752 753 754 755

			DUMP_printk("  DEV_SELECT\t\t\t devid: %02x:%02x.%x "
				    "flags: %02x\n",
				    PCI_BUS(e->devid),
				    PCI_SLOT(e->devid),
				    PCI_FUNC(e->devid),
				    e->flags);

756
			devid = e->devid;
757
			set_dev_entry_from_acpi(iommu, devid, e->flags, 0);
758 759
			break;
		case IVHD_DEV_SELECT_RANGE_START:
760 761 762 763 764 765 766 767

			DUMP_printk("  DEV_SELECT_RANGE_START\t "
				    "devid: %02x:%02x.%x flags: %02x\n",
				    PCI_BUS(e->devid),
				    PCI_SLOT(e->devid),
				    PCI_FUNC(e->devid),
				    e->flags);

768 769 770
			devid_start = e->devid;
			flags = e->flags;
			ext_flags = 0;
771
			alias = false;
772 773
			break;
		case IVHD_DEV_ALIAS:
774 775 776 777 778 779 780 781 782 783 784

			DUMP_printk("  DEV_ALIAS\t\t\t devid: %02x:%02x.%x "
				    "flags: %02x devid_to: %02x:%02x.%x\n",
				    PCI_BUS(e->devid),
				    PCI_SLOT(e->devid),
				    PCI_FUNC(e->devid),
				    e->flags,
				    PCI_BUS(e->ext >> 8),
				    PCI_SLOT(e->ext >> 8),
				    PCI_FUNC(e->ext >> 8));

785 786
			devid = e->devid;
			devid_to = e->ext >> 8;
787
			set_dev_entry_from_acpi(iommu, devid   , e->flags, 0);
788
			set_dev_entry_from_acpi(iommu, devid_to, e->flags, 0);
789 790 791
			amd_iommu_alias_table[devid] = devid_to;
			break;
		case IVHD_DEV_ALIAS_RANGE:
792 793 794 795 796 797 798 799 800 801 802 803

			DUMP_printk("  DEV_ALIAS_RANGE\t\t "
				    "devid: %02x:%02x.%x flags: %02x "
				    "devid_to: %02x:%02x.%x\n",
				    PCI_BUS(e->devid),
				    PCI_SLOT(e->devid),
				    PCI_FUNC(e->devid),
				    e->flags,
				    PCI_BUS(e->ext >> 8),
				    PCI_SLOT(e->ext >> 8),
				    PCI_FUNC(e->ext >> 8));

804 805 806 807
			devid_start = e->devid;
			flags = e->flags;
			devid_to = e->ext >> 8;
			ext_flags = 0;
808
			alias = true;
809 810
			break;
		case IVHD_DEV_EXT_SELECT:
811 812 813 814 815 816 817 818

			DUMP_printk("  DEV_EXT_SELECT\t\t devid: %02x:%02x.%x "
				    "flags: %02x ext: %08x\n",
				    PCI_BUS(e->devid),
				    PCI_SLOT(e->devid),
				    PCI_FUNC(e->devid),
				    e->flags, e->ext);

819
			devid = e->devid;
820 821
			set_dev_entry_from_acpi(iommu, devid, e->flags,
						e->ext);
822 823
			break;
		case IVHD_DEV_EXT_SELECT_RANGE:
824 825 826 827 828 829 830 831

			DUMP_printk("  DEV_EXT_SELECT_RANGE\t devid: "
				    "%02x:%02x.%x flags: %02x ext: %08x\n",
				    PCI_BUS(e->devid),
				    PCI_SLOT(e->devid),
				    PCI_FUNC(e->devid),
				    e->flags, e->ext);

832 833 834
			devid_start = e->devid;
			flags = e->flags;
			ext_flags = e->ext;
835
			alias = false;
836 837
			break;
		case IVHD_DEV_RANGE_END:
838 839 840 841 842 843

			DUMP_printk("  DEV_RANGE_END\t\t devid: %02x:%02x.%x\n",
				    PCI_BUS(e->devid),
				    PCI_SLOT(e->devid),
				    PCI_FUNC(e->devid));

844 845
			devid = e->devid;
			for (dev_i = devid_start; dev_i <= devid; ++dev_i) {
846
				if (alias) {
847
					amd_iommu_alias_table[dev_i] = devid_to;
848 849 850 851 852
					set_dev_entry_from_acpi(iommu,
						devid_to, flags, ext_flags);
				}
				set_dev_entry_from_acpi(iommu, dev_i,
							flags, ext_flags);
853 854 855 856 857 858
			}
			break;
		default:
			break;
		}

859
		p += ivhd_entry_length(p);
860 861 862
	}
}

863
/* Initializes the device->iommu mapping for the driver */
864 865 866 867 868 869 870 871 872 873
static int __init init_iommu_devices(struct amd_iommu *iommu)
{
	u16 i;

	for (i = iommu->first_device; i <= iommu->last_device; ++i)
		set_iommu_for_device(iommu, i);

	return 0;
}

874 875 876
static void __init free_iommu_one(struct amd_iommu *iommu)
{
	free_command_buffer(iommu);
877
	free_event_buffer(iommu);
878 879 880 881 882 883 884
	iommu_unmap_mmio_space(iommu);
}

static void __init free_iommu_all(void)
{
	struct amd_iommu *iommu, *next;

885
	for_each_iommu_safe(iommu, next) {
886 887 888 889 890 891
		list_del(&iommu->list);
		free_iommu_one(iommu);
		kfree(iommu);
	}
}

892 893 894 895 896
/*
 * This function clues the initialization function for one IOMMU
 * together and also allocates the command buffer and programs the
 * hardware. It does NOT enable the IOMMU. This is done afterwards.
 */
897 898 899
static int __init init_iommu_one(struct amd_iommu *iommu, struct ivhd_header *h)
{
	spin_lock_init(&iommu->lock);
900 901

	/* Add IOMMU to internal data structures */
902
	list_add_tail(&iommu->list, &amd_iommu_list);
903 904 905 906 907 908 909 910 911
	iommu->index             = amd_iommus_present++;

	if (unlikely(iommu->index >= MAX_IOMMUS)) {
		WARN(1, "AMD-Vi: System has more IOMMUs than supported by this driver\n");
		return -ENOSYS;
	}

	/* Index is fine - add IOMMU to the array */
	amd_iommus[iommu->index] = iommu;
912 913 914 915

	/*
	 * Copy data from ACPI table entry to the iommu struct
	 */
916 917 918 919
	iommu->dev = pci_get_bus_and_slot(PCI_BUS(h->devid), h->devid & 0xff);
	if (!iommu->dev)
		return 1;

920
	iommu->cap_ptr = h->cap_ptr;
921
	iommu->pci_seg = h->pci_seg;
922 923 924 925 926 927 928 929 930
	iommu->mmio_phys = h->mmio_phys;
	iommu->mmio_base = iommu_map_mmio_space(h->mmio_phys);
	if (!iommu->mmio_base)
		return -ENOMEM;

	iommu->cmd_buf = alloc_command_buffer(iommu);
	if (!iommu->cmd_buf)
		return -ENOMEM;

931 932 933 934
	iommu->evt_buf = alloc_event_buffer(iommu);
	if (!iommu->evt_buf)
		return -ENOMEM;

935 936
	iommu->int_enabled = false;

937 938 939 940
	init_iommu_from_pci(iommu);
	init_iommu_from_acpi(iommu, h);
	init_iommu_devices(iommu);

941 942 943
	if (iommu->cap & (1UL << IOMMU_CAP_NPCACHE))
		amd_iommu_np_cache = true;

944
	return pci_enable_device(iommu->dev);
945 946
}

947 948 949 950
/*
 * Iterates over all IOMMU entries in the ACPI table, allocates the
 * IOMMU structure and initializes it with init_iommu_one()
 */
951 952 953 954 955 956 957 958 959 960 961 962 963 964
static int __init init_iommu_all(struct acpi_table_header *table)
{
	u8 *p = (u8 *)table, *end = (u8 *)table;
	struct ivhd_header *h;
	struct amd_iommu *iommu;
	int ret;

	end += table->length;
	p += IVRS_HEADER_LENGTH;

	while (p < end) {
		h = (struct ivhd_header *)p;
		switch (*p) {
		case ACPI_IVHD_TYPE:
965

966
			DUMP_printk("device: %02x:%02x.%01x cap: %04x "
967 968 969 970 971 972 973
				    "seg: %d flags: %01x info %04x\n",
				    PCI_BUS(h->devid), PCI_SLOT(h->devid),
				    PCI_FUNC(h->devid), h->cap_ptr,
				    h->pci_seg, h->flags, h->info);
			DUMP_printk("       mmio-addr: %016llx\n",
				    h->mmio_phys);

974
			iommu = kzalloc(sizeof(struct amd_iommu), GFP_KERNEL);
975 976 977 978 979
			if (iommu == NULL) {
				amd_iommu_init_err = -ENOMEM;
				return 0;
			}

980
			ret = init_iommu_one(iommu, h);
981 982 983 984
			if (ret) {
				amd_iommu_init_err = ret;
				return 0;
			}
985 986 987 988 989 990 991 992 993 994 995 996
			break;
		default:
			break;
		}
		p += h->length;

	}
	WARN_ON(p != end);

	return 0;
}

997 998 999 1000 1001 1002 1003 1004 1005
/****************************************************************************
 *
 * The following functions initialize the MSI interrupts for all IOMMUs
 * in the system. Its a bit challenging because there could be multiple
 * IOMMUs per PCI BDF but we can call pci_enable_msi(x) only once per
 * pci_dev.
 *
 ****************************************************************************/

1006
static int iommu_setup_msi(struct amd_iommu *iommu)
1007 1008 1009 1010 1011 1012 1013 1014
{
	int r;

	if (pci_enable_msi(iommu->dev))
		return 1;

	r = request_irq(iommu->dev->irq, amd_iommu_int_handler,
			IRQF_SAMPLE_RANDOM,
1015
			"AMD-Vi",
1016 1017 1018 1019 1020 1021 1022
			NULL);

	if (r) {
		pci_disable_msi(iommu->dev);
		return 1;
	}

1023
	iommu->int_enabled = true;
1024 1025
	iommu_feature_enable(iommu, CONTROL_EVT_INT_EN);

1026 1027 1028
	return 0;
}

1029
static int iommu_init_msi(struct amd_iommu *iommu)
1030 1031 1032 1033
{
	if (iommu->int_enabled)
		return 0;

1034
	if (pci_find_capability(iommu->dev, PCI_CAP_ID_MSI))
1035 1036 1037 1038 1039
		return iommu_setup_msi(iommu);

	return 1;
}

1040 1041 1042 1043 1044 1045 1046 1047
/****************************************************************************
 *
 * The next functions belong to the third pass of parsing the ACPI
 * table. In this last pass the memory mapping requirements are
 * gathered (like exclusion and unity mapping reanges).
 *
 ****************************************************************************/

1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
static void __init free_unity_maps(void)
{
	struct unity_map_entry *entry, *next;

	list_for_each_entry_safe(entry, next, &amd_iommu_unity_map, list) {
		list_del(&entry->list);
		kfree(entry);
	}
}

1058
/* called when we find an exclusion range definition in ACPI */
1059 1060 1061 1062 1063 1064 1065 1066 1067
static int __init init_exclusion_range(struct ivmd_header *m)
{
	int i;

	switch (m->type) {
	case ACPI_IVMD_TYPE:
		set_device_exclusion_range(m->devid, m);
		break;
	case ACPI_IVMD_TYPE_ALL:
1068
		for (i = 0; i <= amd_iommu_last_bdf; ++i)
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
			set_device_exclusion_range(i, m);
		break;
	case ACPI_IVMD_TYPE_RANGE:
		for (i = m->devid; i <= m->aux; ++i)
			set_device_exclusion_range(i, m);
		break;
	default:
		break;
	}

	return 0;
}

1082
/* called for unity map ACPI definition */
1083 1084 1085
static int __init init_unity_map_range(struct ivmd_header *m)
{
	struct unity_map_entry *e = 0;
1086
	char *s;
1087 1088 1089 1090 1091 1092 1093

	e = kzalloc(sizeof(*e), GFP_KERNEL);
	if (e == NULL)
		return -ENOMEM;

	switch (m->type) {
	default:
1094 1095
		kfree(e);
		return 0;
1096
	case ACPI_IVMD_TYPE:
1097
		s = "IVMD_TYPEi\t\t\t";
1098 1099 1100
		e->devid_start = e->devid_end = m->devid;
		break;
	case ACPI_IVMD_TYPE_ALL:
1101
		s = "IVMD_TYPE_ALL\t\t";
1102 1103 1104 1105
		e->devid_start = 0;
		e->devid_end = amd_iommu_last_bdf;
		break;
	case ACPI_IVMD_TYPE_RANGE:
1106
		s = "IVMD_TYPE_RANGE\t\t";
1107 1108 1109 1110 1111 1112 1113 1114
		e->devid_start = m->devid;
		e->devid_end = m->aux;
		break;
	}
	e->address_start = PAGE_ALIGN(m->range_start);
	e->address_end = e->address_start + PAGE_ALIGN(m->range_length);
	e->prot = m->flags >> 1;

1115 1116 1117 1118 1119 1120 1121
	DUMP_printk("%s devid_start: %02x:%02x.%x devid_end: %02x:%02x.%x"
		    " range_start: %016llx range_end: %016llx flags: %x\n", s,
		    PCI_BUS(e->devid_start), PCI_SLOT(e->devid_start),
		    PCI_FUNC(e->devid_start), PCI_BUS(e->devid_end),
		    PCI_SLOT(e->devid_end), PCI_FUNC(e->devid_end),
		    e->address_start, e->address_end, m->flags);

1122 1123 1124 1125 1126
	list_add_tail(&e->list, &amd_iommu_unity_map);

	return 0;
}

1127
/* iterates over all memory definitions we find in the ACPI table */
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
static int __init init_memory_definitions(struct acpi_table_header *table)
{
	u8 *p = (u8 *)table, *end = (u8 *)table;
	struct ivmd_header *m;

	end += table->length;
	p += IVRS_HEADER_LENGTH;

	while (p < end) {
		m = (struct ivmd_header *)p;
		if (m->flags & IVMD_FLAG_EXCL_RANGE)
			init_exclusion_range(m);
		else if (m->flags & IVMD_FLAG_UNITY_MAP)
			init_unity_map_range(m);

		p += m->length;
	}

	return 0;
}

1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
/*
 * Init the device table to not allow DMA access for devices and
 * suppress all page faults
 */
static void init_device_table(void)
{
	u16 devid;

	for (devid = 0; devid <= amd_iommu_last_bdf; ++devid) {
		set_dev_entry_bit(devid, DEV_ENTRY_VALID);
		set_dev_entry_bit(devid, DEV_ENTRY_TRANSLATION);
	}
}

1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
static void iommu_init_flags(struct amd_iommu *iommu)
{
	iommu->acpi_flags & IVHD_FLAG_HT_TUN_EN_MASK ?
		iommu_feature_enable(iommu, CONTROL_HT_TUN_EN) :
		iommu_feature_disable(iommu, CONTROL_HT_TUN_EN);

	iommu->acpi_flags & IVHD_FLAG_PASSPW_EN_MASK ?
		iommu_feature_enable(iommu, CONTROL_PASSPW_EN) :
		iommu_feature_disable(iommu, CONTROL_PASSPW_EN);

	iommu->acpi_flags & IVHD_FLAG_RESPASSPW_EN_MASK ?
		iommu_feature_enable(iommu, CONTROL_RESPASSPW_EN) :
		iommu_feature_disable(iommu, CONTROL_RESPASSPW_EN);

	iommu->acpi_flags & IVHD_FLAG_ISOC_EN_MASK ?
		iommu_feature_enable(iommu, CONTROL_ISOC_EN) :
		iommu_feature_disable(iommu, CONTROL_ISOC_EN);

	/*
	 * make IOMMU memory accesses cache coherent
	 */
	iommu_feature_enable(iommu, CONTROL_COHERENT_EN);
}

1187
static void iommu_apply_resume_quirks(struct amd_iommu *iommu)
1188
{
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
	int i, j;
	u32 ioc_feature_control;
	struct pci_dev *pdev = NULL;

	/* RD890 BIOSes may not have completely reconfigured the iommu */
	if (!is_rd890_iommu(iommu->dev))
		return;

	/*
	 * First, we need to ensure that the iommu is enabled. This is
	 * controlled by a register in the northbridge
	 */
	pdev = pci_get_bus_and_slot(iommu->dev->bus->number, PCI_DEVFN(0, 0));

	if (!pdev)
		return;

	/* Select Northbridge indirect register 0x75 and enable writing */
	pci_write_config_dword(pdev, 0x60, 0x75 | (1 << 7));
	pci_read_config_dword(pdev, 0x64, &ioc_feature_control);

	/* Enable the iommu */
	if (!(ioc_feature_control & 0x1))
		pci_write_config_dword(pdev, 0x64, ioc_feature_control | 1);

	pci_dev_put(pdev);

	/* Restore the iommu BAR */
	pci_write_config_dword(iommu->dev, iommu->cap_ptr + 4,
			       iommu->stored_addr_lo);
	pci_write_config_dword(iommu->dev, iommu->cap_ptr + 8,
			       iommu->stored_addr_hi);

	/* Restore the l1 indirect regs for each of the 6 l1s */
	for (i = 0; i < 6; i++)
		for (j = 0; j < 0x12; j++)
			iommu_write_l1(iommu, i, j, iommu->stored_l1[i][j]);

	/* Restore the l2 indirect regs */
	for (i = 0; i < 0x83; i++)
		iommu_write_l2(iommu, i, iommu->stored_l2[i]);

	/* Lock PCI setup registers */
	pci_write_config_dword(iommu->dev, iommu->cap_ptr + 4,
			       iommu->stored_addr_lo | 1);
1234 1235
}

1236 1237 1238 1239
/*
 * This function finally enables all IOMMUs found in the system after
 * they have been initialized
 */
1240
static void enable_iommus(void)
1241 1242 1243
{
	struct amd_iommu *iommu;

1244
	for_each_iommu(iommu) {
1245
		iommu_disable(iommu);
1246
		iommu_init_flags(iommu);
1247 1248 1249
		iommu_set_device_table(iommu);
		iommu_enable_command_buffer(iommu);
		iommu_enable_event_buffer(iommu);
1250
		iommu_set_exclusion_range(iommu);
1251
		iommu_init_msi(iommu);
1252
		iommu_enable(iommu);
1253
		iommu_flush_all_caches(iommu);
1254 1255 1256
	}
}

1257 1258 1259 1260 1261 1262 1263 1264
static void disable_iommus(void)
{
	struct amd_iommu *iommu;

	for_each_iommu(iommu)
		iommu_disable(iommu);
}

1265 1266 1267 1268 1269
/*
 * Suspend/Resume support
 * disable suspend until real resume implemented
 */

1270
static void amd_iommu_resume(void)
1271
{
1272 1273 1274 1275 1276
	struct amd_iommu *iommu;

	for_each_iommu(iommu)
		iommu_apply_resume_quirks(iommu);

1277 1278 1279 1280 1281 1282 1283
	/* re-load the hardware */
	enable_iommus();

	/*
	 * we have to flush after the IOMMUs are enabled because a
	 * disabled IOMMU will never execute the commands we send
	 */
1284 1285
	for_each_iommu(iommu)
		iommu_flush_all_caches(iommu);
1286 1287
}

1288
static int amd_iommu_suspend(void)
1289
{
1290 1291 1292 1293
	/* disable IOMMUs to go out of the way for BIOS */
	disable_iommus();

	return 0;
1294 1295
}

1296
static struct syscore_ops amd_iommu_syscore_ops = {
1297 1298 1299 1300
	.suspend = amd_iommu_suspend,
	.resume = amd_iommu_resume,
};

1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328
/*
 * This is the core init function for AMD IOMMU hardware in the system.
 * This function is called from the generic x86 DMA layer initialization
 * code.
 *
 * This function basically parses the ACPI table for AMD IOMMU (IVRS)
 * three times:
 *
 *	1 pass) Find the highest PCI device id the driver has to handle.
 *		Upon this information the size of the data structures is
 *		determined that needs to be allocated.
 *
 *	2 pass) Initialize the data structures just allocated with the
 *		information in the ACPI table about available AMD IOMMUs
 *		in the system. It also maps the PCI devices in the
 *		system to specific IOMMUs
 *
 *	3 pass) After the basic data structures are allocated and
 *		initialized we update them with information about memory
 *		remapping requirements parsed out of the ACPI table in
 *		this last pass.
 *
 * After that the hardware is initialized and ready to go. In the last
 * step we do some Linux specific things like registering the driver in
 * the dma_ops interface and initializing the suspend/resume support
 * functions. Finally it prints some information about AMD IOMMUs and
 * the driver state and enables the hardware.
 */
1329
static int __init amd_iommu_init(void)
1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
{
	int i, ret = 0;

	/*
	 * First parse ACPI tables to find the largest Bus/Dev/Func
	 * we need to handle. Upon this information the shared data
	 * structures for the IOMMUs in the system will be allocated
	 */
	if (acpi_table_parse("IVRS", find_last_devid_acpi) != 0)
		return -ENODEV;

1341 1342 1343 1344
	ret = amd_iommu_init_err;
	if (ret)
		goto out;

1345 1346 1347
	dev_table_size     = tbl_size(DEV_TABLE_ENTRY_SIZE);
	alias_table_size   = tbl_size(ALIAS_TABLE_ENTRY_SIZE);
	rlookup_table_size = tbl_size(RLOOKUP_TABLE_ENTRY_SIZE);
1348 1349 1350 1351

	ret = -ENOMEM;

	/* Device table - directly used by all IOMMUs */
1352
	amd_iommu_dev_table = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
				      get_order(dev_table_size));
	if (amd_iommu_dev_table == NULL)
		goto out;

	/*
	 * Alias table - map PCI Bus/Dev/Func to Bus/Dev/Func the
	 * IOMMU see for that device
	 */
	amd_iommu_alias_table = (void *)__get_free_pages(GFP_KERNEL,
			get_order(alias_table_size));
	if (amd_iommu_alias_table == NULL)
		goto free;

	/* IOMMU rlookup table - find the IOMMU for a specific device */
1367 1368
	amd_iommu_rlookup_table = (void *)__get_free_pages(
			GFP_KERNEL | __GFP_ZERO,
1369 1370 1371 1372
			get_order(rlookup_table_size));
	if (amd_iommu_rlookup_table == NULL)
		goto free;

1373 1374
	amd_iommu_pd_alloc_bitmap = (void *)__get_free_pages(
					    GFP_KERNEL | __GFP_ZERO,
1375 1376 1377 1378
					    get_order(MAX_DOMAIN_ID/8));
	if (amd_iommu_pd_alloc_bitmap == NULL)
		goto free;

1379 1380 1381
	/* init the device table */
	init_device_table();

1382
	/*
1383
	 * let all alias entries point to itself
1384
	 */
1385
	for (i = 0; i <= amd_iommu_last_bdf; ++i)
1386 1387 1388 1389 1390 1391 1392 1393
		amd_iommu_alias_table[i] = i;

	/*
	 * never allocate domain 0 because its used as the non-allocated and
	 * error value placeholder
	 */
	amd_iommu_pd_alloc_bitmap[0] = 1;

1394 1395
	spin_lock_init(&amd_iommu_pd_lock);

1396 1397 1398 1399 1400 1401 1402 1403
	/*
	 * now the data structures are allocated and basically initialized
	 * start the real acpi table scan
	 */
	ret = -ENODEV;
	if (acpi_table_parse("IVRS", init_iommu_all) != 0)
		goto free;

1404 1405
	if (amd_iommu_init_err) {
		ret = amd_iommu_init_err;
1406
		goto free;
1407
	}
1408

1409 1410 1411
	if (acpi_table_parse("IVRS", init_memory_definitions) != 0)
		goto free;

1412 1413 1414 1415 1416
	if (amd_iommu_init_err) {
		ret = amd_iommu_init_err;
		goto free;
	}

J
Joerg Roedel 已提交
1417 1418 1419 1420
	ret = amd_iommu_init_devices();
	if (ret)
		goto free;

1421 1422
	enable_iommus();

1423 1424 1425 1426
	if (iommu_pass_through)
		ret = amd_iommu_init_passthrough();
	else
		ret = amd_iommu_init_dma_ops();
1427

1428
	if (ret)
1429
		goto free_disable;
1430

1431 1432
	amd_iommu_init_api();

1433 1434
	amd_iommu_init_notifier();

1435 1436
	register_syscore_ops(&amd_iommu_syscore_ops);

1437 1438 1439
	if (iommu_pass_through)
		goto out;

1440
	if (amd_iommu_unmap_flush)
1441
		printk(KERN_INFO "AMD-Vi: IO/TLB flush on unmap enabled\n");
1442
	else
1443
		printk(KERN_INFO "AMD-Vi: Lazy IO/TLB flushing enabled\n");
1444

1445
	x86_platform.iommu_shutdown = disable_iommus;
1446 1447 1448
out:
	return ret;

1449
free_disable:
1450
	disable_iommus();
J
Joerg Roedel 已提交
1451

1452
free:
J
Joerg Roedel 已提交
1453 1454
	amd_iommu_uninit_devices();

1455 1456
	free_pages((unsigned long)amd_iommu_pd_alloc_bitmap,
		   get_order(MAX_DOMAIN_ID/8));
1457

1458 1459
	free_pages((unsigned long)amd_iommu_rlookup_table,
		   get_order(rlookup_table_size));
1460

1461 1462
	free_pages((unsigned long)amd_iommu_alias_table,
		   get_order(alias_table_size));
1463

1464 1465
	free_pages((unsigned long)amd_iommu_dev_table,
		   get_order(dev_table_size));
1466 1467 1468 1469 1470

	free_iommu_all();

	free_unity_maps();

1471 1472 1473 1474 1475 1476 1477 1478 1479
#ifdef CONFIG_GART_IOMMU
	/*
	 * We failed to initialize the AMD IOMMU - try fallback to GART
	 * if possible.
	 */
	gart_iommu_init();

#endif

1480 1481 1482
	goto out;
}

1483 1484 1485 1486 1487 1488 1489
/****************************************************************************
 *
 * Early detect code. This code runs at IOMMU detection time in the DMA
 * layer. It just looks if there is an IVRS ACPI table to detect AMD
 * IOMMUs
 *
 ****************************************************************************/
1490 1491 1492 1493 1494
static int __init early_amd_iommu_detect(struct acpi_table_header *table)
{
	return 0;
}

1495
int __init amd_iommu_detect(void)
1496
{
1497
	if (no_iommu || (iommu_detected && !gart_iommu_aperture))
1498
		return -ENODEV;
1499

1500
	if (amd_iommu_disabled)
1501
		return -ENODEV;
1502

1503 1504
	if (acpi_table_parse("IVRS", early_amd_iommu_detect) == 0) {
		iommu_detected = 1;
1505
		amd_iommu_detected = 1;
1506
		x86_init.iommu.iommu_init = amd_iommu_init;
1507

C
Chris Wright 已提交
1508 1509
		/* Make sure ACS will be enabled */
		pci_request_acs();
1510
		return 1;
1511
	}
1512
	return -ENODEV;
1513 1514
}

1515 1516 1517 1518 1519 1520 1521
/****************************************************************************
 *
 * Parsing functions for the AMD IOMMU specific kernel command line
 * options.
 *
 ****************************************************************************/

1522 1523 1524 1525 1526 1527 1528
static int __init parse_amd_iommu_dump(char *str)
{
	amd_iommu_dump = true;

	return 1;
}

1529 1530 1531
static int __init parse_amd_iommu_options(char *str)
{
	for (; *str; ++str) {
1532
		if (strncmp(str, "fullflush", 9) == 0)
1533
			amd_iommu_unmap_flush = true;
1534 1535
		if (strncmp(str, "off", 3) == 0)
			amd_iommu_disabled = true;
1536 1537 1538 1539 1540
	}

	return 1;
}

1541
__setup("amd_iommu_dump", parse_amd_iommu_dump);
1542
__setup("amd_iommu=", parse_amd_iommu_options);
1543 1544 1545 1546 1547

IOMMU_INIT_FINISH(amd_iommu_detect,
		  gart_iommu_hole_init,
		  0,
		  0);