amd_iommu_init.c 31.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/*
 * Copyright (C) 2007-2008 Advanced Micro Devices, Inc.
 * Author: Joerg Roedel <joerg.roedel@amd.com>
 *         Leo Duran <leo.duran@amd.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

#include <linux/pci.h>
#include <linux/acpi.h>
#include <linux/gfp.h>
#include <linux/list.h>
24
#include <linux/sysdev.h>
25 26
#include <linux/interrupt.h>
#include <linux/msi.h>
27 28
#include <asm/pci-direct.h>
#include <asm/amd_iommu_types.h>
29
#include <asm/amd_iommu.h>
30
#include <asm/iommu.h>
31
#include <asm/gart.h>
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

/*
 * definitions for the ACPI scanning code
 */
#define IVRS_HEADER_LENGTH 48

#define ACPI_IVHD_TYPE                  0x10
#define ACPI_IVMD_TYPE_ALL              0x20
#define ACPI_IVMD_TYPE                  0x21
#define ACPI_IVMD_TYPE_RANGE            0x22

#define IVHD_DEV_ALL                    0x01
#define IVHD_DEV_SELECT                 0x02
#define IVHD_DEV_SELECT_RANGE_START     0x03
#define IVHD_DEV_RANGE_END              0x04
#define IVHD_DEV_ALIAS                  0x42
#define IVHD_DEV_ALIAS_RANGE            0x43
#define IVHD_DEV_EXT_SELECT             0x46
#define IVHD_DEV_EXT_SELECT_RANGE       0x47

J
Joerg Roedel 已提交
52 53 54 55
#define IVHD_FLAG_HT_TUN_EN_MASK        0x01
#define IVHD_FLAG_PASSPW_EN_MASK        0x02
#define IVHD_FLAG_RESPASSPW_EN_MASK     0x04
#define IVHD_FLAG_ISOC_EN_MASK          0x08
56 57 58 59 60 61 62 63 64 65 66 67 68

#define IVMD_FLAG_EXCL_RANGE            0x08
#define IVMD_FLAG_UNITY_MAP             0x01

#define ACPI_DEVFLAG_INITPASS           0x01
#define ACPI_DEVFLAG_EXTINT             0x02
#define ACPI_DEVFLAG_NMI                0x04
#define ACPI_DEVFLAG_SYSMGT1            0x10
#define ACPI_DEVFLAG_SYSMGT2            0x20
#define ACPI_DEVFLAG_LINT0              0x40
#define ACPI_DEVFLAG_LINT1              0x80
#define ACPI_DEVFLAG_ATSDIS             0x10000000

69 70 71 72 73 74 75 76 77 78 79
/*
 * ACPI table definitions
 *
 * These data structures are laid over the table to parse the important values
 * out of it.
 */

/*
 * structure describing one IOMMU in the ACPI table. Typically followed by one
 * or more ivhd_entrys.
 */
80 81 82 83 84 85 86 87 88 89 90 91
struct ivhd_header {
	u8 type;
	u8 flags;
	u16 length;
	u16 devid;
	u16 cap_ptr;
	u64 mmio_phys;
	u16 pci_seg;
	u16 info;
	u32 reserved;
} __attribute__((packed));

92 93 94 95
/*
 * A device entry describing which devices a specific IOMMU translates and
 * which requestor ids they use.
 */
96 97 98 99 100 101 102
struct ivhd_entry {
	u8 type;
	u16 devid;
	u8 flags;
	u32 ext;
} __attribute__((packed));

103 104 105 106
/*
 * An AMD IOMMU memory definition structure. It defines things like exclusion
 * ranges for devices and regions that should be unity mapped.
 */
107 108 109 110 111 112 113 114 115 116 117
struct ivmd_header {
	u8 type;
	u8 flags;
	u16 length;
	u16 devid;
	u16 aux;
	u64 resv;
	u64 range_start;
	u64 range_length;
} __attribute__((packed));

118 119
static int __initdata amd_iommu_detected;

120 121
u16 amd_iommu_last_bdf;			/* largest PCI device id we have
					   to handle */
122
LIST_HEAD(amd_iommu_unity_map);		/* a list of required unity mappings
123 124
					   we find in ACPI */
unsigned amd_iommu_aperture_order = 26; /* size of aperture in power of 2 */
125 126
bool amd_iommu_isolate = true;		/* if true, device isolation is
					   enabled */
127
bool amd_iommu_unmap_flush;		/* if true, flush on every unmap */
128

129
LIST_HEAD(amd_iommu_list);		/* list of all AMD IOMMUs in the
130
					   system */
131

132 133 134 135 136 137
/*
 * Pointer to the device table which is shared by all AMD IOMMUs
 * it is indexed by the PCI device id or the HT unit id and contains
 * information about the domain the device belongs to as well as the
 * page table root pointer.
 */
138
struct dev_table_entry *amd_iommu_dev_table;
139 140 141 142 143 144

/*
 * The alias table is a driver specific data structure which contains the
 * mappings of the PCI device ids to the actual requestor ids on the IOMMU.
 * More than one device can share the same requestor id.
 */
145
u16 *amd_iommu_alias_table;
146 147 148 149 150

/*
 * The rlookup table is used to find the IOMMU which is responsible
 * for a specific device. It is also indexed by the PCI device id.
 */
151
struct amd_iommu **amd_iommu_rlookup_table;
152 153 154 155 156

/*
 * The pd table (protection domain table) is used to find the protection domain
 * data structure a device belongs to. Indexed with the PCI device id too.
 */
157
struct protection_domain **amd_iommu_pd_table;
158 159 160 161 162

/*
 * AMD IOMMU allows up to 2^16 differend protection domains. This is a bitmap
 * to know which ones are already in use.
 */
163 164
unsigned long *amd_iommu_pd_alloc_bitmap;

165 166 167
static u32 dev_table_size;	/* size of the device table */
static u32 alias_table_size;	/* size of the alias table */
static u32 rlookup_table_size;	/* size if the rlookup table */
168

169 170 171 172 173 174
static inline void update_last_devid(u16 devid)
{
	if (devid > amd_iommu_last_bdf)
		amd_iommu_last_bdf = devid;
}

175 176 177 178 179 180 181 182
static inline unsigned long tbl_size(int entry_size)
{
	unsigned shift = PAGE_SHIFT +
			 get_order(amd_iommu_last_bdf * entry_size);

	return 1UL << shift;
}

183 184 185 186 187 188 189 190
/****************************************************************************
 *
 * AMD IOMMU MMIO register space handling functions
 *
 * These functions are used to program the IOMMU device registers in
 * MMIO space required for that driver.
 *
 ****************************************************************************/
191

192 193 194 195
/*
 * This function set the exclusion range in the IOMMU. DMA accesses to the
 * exclusion range are passed through untranslated
 */
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
static void __init iommu_set_exclusion_range(struct amd_iommu *iommu)
{
	u64 start = iommu->exclusion_start & PAGE_MASK;
	u64 limit = (start + iommu->exclusion_length) & PAGE_MASK;
	u64 entry;

	if (!iommu->exclusion_start)
		return;

	entry = start | MMIO_EXCL_ENABLE_MASK;
	memcpy_toio(iommu->mmio_base + MMIO_EXCL_BASE_OFFSET,
			&entry, sizeof(entry));

	entry = limit;
	memcpy_toio(iommu->mmio_base + MMIO_EXCL_LIMIT_OFFSET,
			&entry, sizeof(entry));
}

214
/* Programs the physical address of the device table into the IOMMU hardware */
215 216
static void __init iommu_set_device_table(struct amd_iommu *iommu)
{
217
	u64 entry;
218 219 220 221 222 223 224 225 226

	BUG_ON(iommu->mmio_base == NULL);

	entry = virt_to_phys(amd_iommu_dev_table);
	entry |= (dev_table_size >> 12) - 1;
	memcpy_toio(iommu->mmio_base + MMIO_DEV_TABLE_OFFSET,
			&entry, sizeof(entry));
}

227
/* Generic functions to enable/disable certain features of the IOMMU. */
228 229 230 231 232 233 234 235 236 237 238 239 240
static void __init iommu_feature_enable(struct amd_iommu *iommu, u8 bit)
{
	u32 ctrl;

	ctrl = readl(iommu->mmio_base + MMIO_CONTROL_OFFSET);
	ctrl |= (1 << bit);
	writel(ctrl, iommu->mmio_base + MMIO_CONTROL_OFFSET);
}

static void __init iommu_feature_disable(struct amd_iommu *iommu, u8 bit)
{
	u32 ctrl;

241
	ctrl = readl(iommu->mmio_base + MMIO_CONTROL_OFFSET);
242 243 244 245
	ctrl &= ~(1 << bit);
	writel(ctrl, iommu->mmio_base + MMIO_CONTROL_OFFSET);
}

246
/* Function to enable the hardware */
247
static void __init iommu_enable(struct amd_iommu *iommu)
248
{
249 250
	printk(KERN_INFO "AMD IOMMU: Enabling IOMMU at %s cap 0x%hx\n",
	       dev_name(&iommu->dev->dev), iommu->cap_ptr);
251 252 253 254

	iommu_feature_enable(iommu, CONTROL_IOMMU_EN);
}

255 256 257 258
/*
 * mapping and unmapping functions for the IOMMU MMIO space. Each AMD IOMMU in
 * the system has one.
 */
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
static u8 * __init iommu_map_mmio_space(u64 address)
{
	u8 *ret;

	if (!request_mem_region(address, MMIO_REGION_LENGTH, "amd_iommu"))
		return NULL;

	ret = ioremap_nocache(address, MMIO_REGION_LENGTH);
	if (ret != NULL)
		return ret;

	release_mem_region(address, MMIO_REGION_LENGTH);

	return NULL;
}

static void __init iommu_unmap_mmio_space(struct amd_iommu *iommu)
{
	if (iommu->mmio_base)
		iounmap(iommu->mmio_base);
	release_mem_region(iommu->mmio_phys, MMIO_REGION_LENGTH);
}

282 283 284 285 286 287 288 289 290
/****************************************************************************
 *
 * The functions below belong to the first pass of AMD IOMMU ACPI table
 * parsing. In this pass we try to find out the highest device id this
 * code has to handle. Upon this information the size of the shared data
 * structures is determined later.
 *
 ****************************************************************************/

291 292 293 294 295 296 297 298
/*
 * This function calculates the length of a given IVHD entry
 */
static inline int ivhd_entry_length(u8 *ivhd)
{
	return 0x04 << (*ivhd >> 6);
}

299 300 301 302
/*
 * This function reads the last device id the IOMMU has to handle from the PCI
 * capability header for this IOMMU
 */
303 304 305 306 307
static int __init find_last_devid_on_pci(int bus, int dev, int fn, int cap_ptr)
{
	u32 cap;

	cap = read_pci_config(bus, dev, fn, cap_ptr+MMIO_RANGE_OFFSET);
308
	update_last_devid(calc_devid(MMIO_GET_BUS(cap), MMIO_GET_LD(cap)));
309 310 311 312

	return 0;
}

313 314 315 316
/*
 * After reading the highest device id from the IOMMU PCI capability header
 * this function looks if there is a higher device id defined in the ACPI table
 */
317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
static int __init find_last_devid_from_ivhd(struct ivhd_header *h)
{
	u8 *p = (void *)h, *end = (void *)h;
	struct ivhd_entry *dev;

	p += sizeof(*h);
	end += h->length;

	find_last_devid_on_pci(PCI_BUS(h->devid),
			PCI_SLOT(h->devid),
			PCI_FUNC(h->devid),
			h->cap_ptr);

	while (p < end) {
		dev = (struct ivhd_entry *)p;
		switch (dev->type) {
		case IVHD_DEV_SELECT:
		case IVHD_DEV_RANGE_END:
		case IVHD_DEV_ALIAS:
		case IVHD_DEV_EXT_SELECT:
337
			/* all the above subfield types refer to device ids */
338
			update_last_devid(dev->devid);
339 340 341 342
			break;
		default:
			break;
		}
343
		p += ivhd_entry_length(p);
344 345 346 347 348 349 350
	}

	WARN_ON(p != end);

	return 0;
}

351 352 353 354 355
/*
 * Iterate over all IVHD entries in the ACPI table and find the highest device
 * id which we need to handle. This is the first of three functions which parse
 * the ACPI table. So we check the checksum here.
 */
356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
static int __init find_last_devid_acpi(struct acpi_table_header *table)
{
	int i;
	u8 checksum = 0, *p = (u8 *)table, *end = (u8 *)table;
	struct ivhd_header *h;

	/*
	 * Validate checksum here so we don't need to do it when
	 * we actually parse the table
	 */
	for (i = 0; i < table->length; ++i)
		checksum += p[i];
	if (checksum != 0)
		/* ACPI table corrupt */
		return -ENODEV;

	p += IVRS_HEADER_LENGTH;

	end += table->length;
	while (p < end) {
		h = (struct ivhd_header *)p;
		switch (h->type) {
		case ACPI_IVHD_TYPE:
			find_last_devid_from_ivhd(h);
			break;
		default:
			break;
		}
		p += h->length;
	}
	WARN_ON(p != end);

	return 0;
}

391 392 393 394 395 396 397 398 399 400 401 402 403 404
/****************************************************************************
 *
 * The following functions belong the the code path which parses the ACPI table
 * the second time. In this ACPI parsing iteration we allocate IOMMU specific
 * data structures, initialize the device/alias/rlookup table and also
 * basically initialize the hardware.
 *
 ****************************************************************************/

/*
 * Allocates the command buffer. This buffer is per AMD IOMMU. We can
 * write commands to that buffer later and the IOMMU will execute them
 * asynchronously
 */
405 406
static u8 * __init alloc_command_buffer(struct amd_iommu *iommu)
{
407
	u8 *cmd_buf = (u8 *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
408 409 410 411 412 413 414
			get_order(CMD_BUFFER_SIZE));

	if (cmd_buf == NULL)
		return NULL;

	iommu->cmd_buf_size = CMD_BUFFER_SIZE;

415 416 417 418 419 420 421 422 423 424 425 426 427 428
	return cmd_buf;
}

/*
 * This function writes the command buffer address to the hardware and
 * enables it.
 */
static void iommu_enable_command_buffer(struct amd_iommu *iommu)
{
	u64 entry;

	BUG_ON(iommu->cmd_buf == NULL);

	entry = (u64)virt_to_phys(iommu->cmd_buf);
429
	entry |= MMIO_CMD_SIZE_512;
430

431
	memcpy_toio(iommu->mmio_base + MMIO_CMD_BUF_OFFSET,
432
		    &entry, sizeof(entry));
433

434 435 436 437
	/* set head and tail to zero manually */
	writel(0x00, iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
	writel(0x00, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);

438 439 440 441 442
	iommu_feature_enable(iommu, CONTROL_CMDBUF_EN);
}

static void __init free_command_buffer(struct amd_iommu *iommu)
{
443 444
	free_pages((unsigned long)iommu->cmd_buf,
		   get_order(iommu->cmd_buf_size));
445 446
}

447 448 449 450 451 452 453 454 455
/* allocates the memory where the IOMMU will log its events to */
static u8 * __init alloc_event_buffer(struct amd_iommu *iommu)
{
	iommu->evt_buf = (u8 *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
						get_order(EVT_BUFFER_SIZE));

	if (iommu->evt_buf == NULL)
		return NULL;

456 457 458 459 460 461 462 463 464
	return iommu->evt_buf;
}

static void iommu_enable_event_buffer(struct amd_iommu *iommu)
{
	u64 entry;

	BUG_ON(iommu->evt_buf == NULL);

465
	entry = (u64)virt_to_phys(iommu->evt_buf) | EVT_LEN_MASK;
466

467 468 469
	memcpy_toio(iommu->mmio_base + MMIO_EVT_BUF_OFFSET,
		    &entry, sizeof(entry));

470
	iommu_feature_enable(iommu, CONTROL_EVT_LOG_EN);
471 472 473 474 475 476 477
}

static void __init free_event_buffer(struct amd_iommu *iommu)
{
	free_pages((unsigned long)iommu->evt_buf, get_order(EVT_BUFFER_SIZE));
}

478
/* sets a specific bit in the device table entry. */
479 480 481 482 483 484 485 486
static void set_dev_entry_bit(u16 devid, u8 bit)
{
	int i = (bit >> 5) & 0x07;
	int _bit = bit & 0x1f;

	amd_iommu_dev_table[devid].data[i] |= (1 << _bit);
}

487 488 489 490 491 492
/* Writes the specific IOMMU for a device into the rlookup table */
static void __init set_iommu_for_device(struct amd_iommu *iommu, u16 devid)
{
	amd_iommu_rlookup_table[devid] = iommu;
}

493 494 495 496
/*
 * This function takes the device specific flags read from the ACPI
 * table and sets up the device table entry with that information
 */
497 498
static void __init set_dev_entry_from_acpi(struct amd_iommu *iommu,
					   u16 devid, u32 flags, u32 ext_flags)
499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
{
	if (flags & ACPI_DEVFLAG_INITPASS)
		set_dev_entry_bit(devid, DEV_ENTRY_INIT_PASS);
	if (flags & ACPI_DEVFLAG_EXTINT)
		set_dev_entry_bit(devid, DEV_ENTRY_EINT_PASS);
	if (flags & ACPI_DEVFLAG_NMI)
		set_dev_entry_bit(devid, DEV_ENTRY_NMI_PASS);
	if (flags & ACPI_DEVFLAG_SYSMGT1)
		set_dev_entry_bit(devid, DEV_ENTRY_SYSMGT1);
	if (flags & ACPI_DEVFLAG_SYSMGT2)
		set_dev_entry_bit(devid, DEV_ENTRY_SYSMGT2);
	if (flags & ACPI_DEVFLAG_LINT0)
		set_dev_entry_bit(devid, DEV_ENTRY_LINT0_PASS);
	if (flags & ACPI_DEVFLAG_LINT1)
		set_dev_entry_bit(devid, DEV_ENTRY_LINT1_PASS);

515
	set_iommu_for_device(iommu, devid);
516 517
}

518 519 520 521
/*
 * Reads the device exclusion range from ACPI and initialize IOMMU with
 * it
 */
522 523 524 525 526 527 528 529
static void __init set_device_exclusion_range(u16 devid, struct ivmd_header *m)
{
	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];

	if (!(m->flags & IVMD_FLAG_EXCL_RANGE))
		return;

	if (iommu) {
530 531 532 533 534
		/*
		 * We only can configure exclusion ranges per IOMMU, not
		 * per device. But we can enable the exclusion range per
		 * device. This is done here
		 */
535 536 537 538 539 540
		set_dev_entry_bit(m->devid, DEV_ENTRY_EX);
		iommu->exclusion_start = m->range_start;
		iommu->exclusion_length = m->range_length;
	}
}

541 542 543 544 545
/*
 * This function reads some important data from the IOMMU PCI space and
 * initializes the driver data structure with it. It reads the hardware
 * capabilities and the first/last device entries
 */
546 547 548
static void __init init_iommu_from_pci(struct amd_iommu *iommu)
{
	int cap_ptr = iommu->cap_ptr;
549
	u32 range, misc;
550

551 552 553 554
	pci_read_config_dword(iommu->dev, cap_ptr + MMIO_CAP_HDR_OFFSET,
			      &iommu->cap);
	pci_read_config_dword(iommu->dev, cap_ptr + MMIO_RANGE_OFFSET,
			      &range);
555 556
	pci_read_config_dword(iommu->dev, cap_ptr + MMIO_MISC_OFFSET,
			      &misc);
557

558 559 560 561
	iommu->first_device = calc_devid(MMIO_GET_BUS(range),
					 MMIO_GET_FD(range));
	iommu->last_device = calc_devid(MMIO_GET_BUS(range),
					MMIO_GET_LD(range));
562
	iommu->evt_msi_num = MMIO_MSI_NUM(misc);
563 564
}

565 566 567 568
/*
 * Takes a pointer to an AMD IOMMU entry in the ACPI table and
 * initializes the hardware and our data structures with it.
 */
569 570 571 572 573 574 575
static void __init init_iommu_from_acpi(struct amd_iommu *iommu,
					struct ivhd_header *h)
{
	u8 *p = (u8 *)h;
	u8 *end = p, flags = 0;
	u16 dev_i, devid = 0, devid_start = 0, devid_to = 0;
	u32 ext_flags = 0;
576
	bool alias = false;
577 578 579 580 581 582
	struct ivhd_entry *e;

	/*
	 * First set the recommended feature enable bits from ACPI
	 * into the IOMMU control registers
	 */
J
Joerg Roedel 已提交
583
	h->flags & IVHD_FLAG_HT_TUN_EN_MASK ?
584 585 586
		iommu_feature_enable(iommu, CONTROL_HT_TUN_EN) :
		iommu_feature_disable(iommu, CONTROL_HT_TUN_EN);

J
Joerg Roedel 已提交
587
	h->flags & IVHD_FLAG_PASSPW_EN_MASK ?
588 589 590
		iommu_feature_enable(iommu, CONTROL_PASSPW_EN) :
		iommu_feature_disable(iommu, CONTROL_PASSPW_EN);

J
Joerg Roedel 已提交
591
	h->flags & IVHD_FLAG_RESPASSPW_EN_MASK ?
592 593 594
		iommu_feature_enable(iommu, CONTROL_RESPASSPW_EN) :
		iommu_feature_disable(iommu, CONTROL_RESPASSPW_EN);

J
Joerg Roedel 已提交
595
	h->flags & IVHD_FLAG_ISOC_EN_MASK ?
596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
		iommu_feature_enable(iommu, CONTROL_ISOC_EN) :
		iommu_feature_disable(iommu, CONTROL_ISOC_EN);

	/*
	 * make IOMMU memory accesses cache coherent
	 */
	iommu_feature_enable(iommu, CONTROL_COHERENT_EN);

	/*
	 * Done. Now parse the device entries
	 */
	p += sizeof(struct ivhd_header);
	end += h->length;

	while (p < end) {
		e = (struct ivhd_entry *)p;
		switch (e->type) {
		case IVHD_DEV_ALL:
			for (dev_i = iommu->first_device;
					dev_i <= iommu->last_device; ++dev_i)
616 617
				set_dev_entry_from_acpi(iommu, dev_i,
							e->flags, 0);
618 619 620
			break;
		case IVHD_DEV_SELECT:
			devid = e->devid;
621
			set_dev_entry_from_acpi(iommu, devid, e->flags, 0);
622 623 624 625 626
			break;
		case IVHD_DEV_SELECT_RANGE_START:
			devid_start = e->devid;
			flags = e->flags;
			ext_flags = 0;
627
			alias = false;
628 629 630 631
			break;
		case IVHD_DEV_ALIAS:
			devid = e->devid;
			devid_to = e->ext >> 8;
632
			set_dev_entry_from_acpi(iommu, devid, e->flags, 0);
633 634 635 636 637 638 639
			amd_iommu_alias_table[devid] = devid_to;
			break;
		case IVHD_DEV_ALIAS_RANGE:
			devid_start = e->devid;
			flags = e->flags;
			devid_to = e->ext >> 8;
			ext_flags = 0;
640
			alias = true;
641 642 643
			break;
		case IVHD_DEV_EXT_SELECT:
			devid = e->devid;
644 645
			set_dev_entry_from_acpi(iommu, devid, e->flags,
						e->ext);
646 647 648 649 650
			break;
		case IVHD_DEV_EXT_SELECT_RANGE:
			devid_start = e->devid;
			flags = e->flags;
			ext_flags = e->ext;
651
			alias = false;
652 653 654 655 656 657
			break;
		case IVHD_DEV_RANGE_END:
			devid = e->devid;
			for (dev_i = devid_start; dev_i <= devid; ++dev_i) {
				if (alias)
					amd_iommu_alias_table[dev_i] = devid_to;
658
				set_dev_entry_from_acpi(iommu,
659 660 661 662 663 664 665 666
						amd_iommu_alias_table[dev_i],
						flags, ext_flags);
			}
			break;
		default:
			break;
		}

667
		p += ivhd_entry_length(p);
668 669 670
	}
}

671
/* Initializes the device->iommu mapping for the driver */
672 673 674 675 676 677 678 679 680 681
static int __init init_iommu_devices(struct amd_iommu *iommu)
{
	u16 i;

	for (i = iommu->first_device; i <= iommu->last_device; ++i)
		set_iommu_for_device(iommu, i);

	return 0;
}

682 683 684
static void __init free_iommu_one(struct amd_iommu *iommu)
{
	free_command_buffer(iommu);
685
	free_event_buffer(iommu);
686 687 688 689 690 691 692
	iommu_unmap_mmio_space(iommu);
}

static void __init free_iommu_all(void)
{
	struct amd_iommu *iommu, *next;

693
	for_each_iommu_safe(iommu, next) {
694 695 696 697 698 699
		list_del(&iommu->list);
		free_iommu_one(iommu);
		kfree(iommu);
	}
}

700 701 702 703 704
/*
 * This function clues the initialization function for one IOMMU
 * together and also allocates the command buffer and programs the
 * hardware. It does NOT enable the IOMMU. This is done afterwards.
 */
705 706 707 708 709 710 711 712
static int __init init_iommu_one(struct amd_iommu *iommu, struct ivhd_header *h)
{
	spin_lock_init(&iommu->lock);
	list_add_tail(&iommu->list, &amd_iommu_list);

	/*
	 * Copy data from ACPI table entry to the iommu struct
	 */
713 714 715 716
	iommu->dev = pci_get_bus_and_slot(PCI_BUS(h->devid), h->devid & 0xff);
	if (!iommu->dev)
		return 1;

717
	iommu->cap_ptr = h->cap_ptr;
718
	iommu->pci_seg = h->pci_seg;
719 720 721 722 723 724 725 726 727
	iommu->mmio_phys = h->mmio_phys;
	iommu->mmio_base = iommu_map_mmio_space(h->mmio_phys);
	if (!iommu->mmio_base)
		return -ENOMEM;

	iommu->cmd_buf = alloc_command_buffer(iommu);
	if (!iommu->cmd_buf)
		return -ENOMEM;

728 729 730 731
	iommu->evt_buf = alloc_event_buffer(iommu);
	if (!iommu->evt_buf)
		return -ENOMEM;

732 733
	iommu->int_enabled = false;

734 735 736 737
	init_iommu_from_pci(iommu);
	init_iommu_from_acpi(iommu, h);
	init_iommu_devices(iommu);

738
	return pci_enable_device(iommu->dev);
739 740
}

741 742 743 744
/*
 * Iterates over all IOMMU entries in the ACPI table, allocates the
 * IOMMU structure and initializes it with init_iommu_one()
 */
745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776
static int __init init_iommu_all(struct acpi_table_header *table)
{
	u8 *p = (u8 *)table, *end = (u8 *)table;
	struct ivhd_header *h;
	struct amd_iommu *iommu;
	int ret;

	end += table->length;
	p += IVRS_HEADER_LENGTH;

	while (p < end) {
		h = (struct ivhd_header *)p;
		switch (*p) {
		case ACPI_IVHD_TYPE:
			iommu = kzalloc(sizeof(struct amd_iommu), GFP_KERNEL);
			if (iommu == NULL)
				return -ENOMEM;
			ret = init_iommu_one(iommu, h);
			if (ret)
				return ret;
			break;
		default:
			break;
		}
		p += h->length;

	}
	WARN_ON(p != end);

	return 0;
}

777 778 779 780 781 782 783 784 785 786 787 788 789 790 791
/****************************************************************************
 *
 * The following functions initialize the MSI interrupts for all IOMMUs
 * in the system. Its a bit challenging because there could be multiple
 * IOMMUs per PCI BDF but we can call pci_enable_msi(x) only once per
 * pci_dev.
 *
 ****************************************************************************/

static int __init iommu_setup_msix(struct amd_iommu *iommu)
{
	struct amd_iommu *curr;
	struct msix_entry entries[32]; /* only 32 supported by AMD IOMMU */
	int nvec = 0, i;

792
	for_each_iommu(curr) {
793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842
		if (curr->dev == iommu->dev) {
			entries[nvec].entry = curr->evt_msi_num;
			entries[nvec].vector = 0;
			curr->int_enabled = true;
			nvec++;
		}
	}

	if (pci_enable_msix(iommu->dev, entries, nvec)) {
		pci_disable_msix(iommu->dev);
		return 1;
	}

	for (i = 0; i < nvec; ++i) {
		int r = request_irq(entries->vector, amd_iommu_int_handler,
				    IRQF_SAMPLE_RANDOM,
				    "AMD IOMMU",
				    NULL);
		if (r)
			goto out_free;
	}

	return 0;

out_free:
	for (i -= 1; i >= 0; --i)
		free_irq(entries->vector, NULL);

	pci_disable_msix(iommu->dev);

	return 1;
}

static int __init iommu_setup_msi(struct amd_iommu *iommu)
{
	int r;

	if (pci_enable_msi(iommu->dev))
		return 1;

	r = request_irq(iommu->dev->irq, amd_iommu_int_handler,
			IRQF_SAMPLE_RANDOM,
			"AMD IOMMU",
			NULL);

	if (r) {
		pci_disable_msi(iommu->dev);
		return 1;
	}

843
	iommu->int_enabled = true;
844 845
	iommu_feature_enable(iommu, CONTROL_EVT_INT_EN);

846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861
	return 0;
}

static int __init iommu_init_msi(struct amd_iommu *iommu)
{
	if (iommu->int_enabled)
		return 0;

	if (pci_find_capability(iommu->dev, PCI_CAP_ID_MSIX))
		return iommu_setup_msix(iommu);
	else if (pci_find_capability(iommu->dev, PCI_CAP_ID_MSI))
		return iommu_setup_msi(iommu);

	return 1;
}

862 863 864 865 866 867 868 869
/****************************************************************************
 *
 * The next functions belong to the third pass of parsing the ACPI
 * table. In this last pass the memory mapping requirements are
 * gathered (like exclusion and unity mapping reanges).
 *
 ****************************************************************************/

870 871 872 873 874 875 876 877 878 879
static void __init free_unity_maps(void)
{
	struct unity_map_entry *entry, *next;

	list_for_each_entry_safe(entry, next, &amd_iommu_unity_map, list) {
		list_del(&entry->list);
		kfree(entry);
	}
}

880
/* called when we find an exclusion range definition in ACPI */
881 882 883 884 885 886 887 888 889
static int __init init_exclusion_range(struct ivmd_header *m)
{
	int i;

	switch (m->type) {
	case ACPI_IVMD_TYPE:
		set_device_exclusion_range(m->devid, m);
		break;
	case ACPI_IVMD_TYPE_ALL:
890
		for (i = 0; i <= amd_iommu_last_bdf; ++i)
891 892 893 894 895 896 897 898 899 900 901 902 903
			set_device_exclusion_range(i, m);
		break;
	case ACPI_IVMD_TYPE_RANGE:
		for (i = m->devid; i <= m->aux; ++i)
			set_device_exclusion_range(i, m);
		break;
	default:
		break;
	}

	return 0;
}

904
/* called for unity map ACPI definition */
905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935
static int __init init_unity_map_range(struct ivmd_header *m)
{
	struct unity_map_entry *e = 0;

	e = kzalloc(sizeof(*e), GFP_KERNEL);
	if (e == NULL)
		return -ENOMEM;

	switch (m->type) {
	default:
	case ACPI_IVMD_TYPE:
		e->devid_start = e->devid_end = m->devid;
		break;
	case ACPI_IVMD_TYPE_ALL:
		e->devid_start = 0;
		e->devid_end = amd_iommu_last_bdf;
		break;
	case ACPI_IVMD_TYPE_RANGE:
		e->devid_start = m->devid;
		e->devid_end = m->aux;
		break;
	}
	e->address_start = PAGE_ALIGN(m->range_start);
	e->address_end = e->address_start + PAGE_ALIGN(m->range_length);
	e->prot = m->flags >> 1;

	list_add_tail(&e->list, &amd_iommu_unity_map);

	return 0;
}

936
/* iterates over all memory definitions we find in the ACPI table */
937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957
static int __init init_memory_definitions(struct acpi_table_header *table)
{
	u8 *p = (u8 *)table, *end = (u8 *)table;
	struct ivmd_header *m;

	end += table->length;
	p += IVRS_HEADER_LENGTH;

	while (p < end) {
		m = (struct ivmd_header *)p;
		if (m->flags & IVMD_FLAG_EXCL_RANGE)
			init_exclusion_range(m);
		else if (m->flags & IVMD_FLAG_UNITY_MAP)
			init_unity_map_range(m);

		p += m->length;
	}

	return 0;
}

958 959 960 961 962 963 964 965 966 967 968 969 970 971
/*
 * Init the device table to not allow DMA access for devices and
 * suppress all page faults
 */
static void init_device_table(void)
{
	u16 devid;

	for (devid = 0; devid <= amd_iommu_last_bdf; ++devid) {
		set_dev_entry_bit(devid, DEV_ENTRY_VALID);
		set_dev_entry_bit(devid, DEV_ENTRY_TRANSLATION);
	}
}

972 973 974 975
/*
 * This function finally enables all IOMMUs found in the system after
 * they have been initialized
 */
976 977 978 979
static void __init enable_iommus(void)
{
	struct amd_iommu *iommu;

980
	for_each_iommu(iommu) {
981 982 983
		iommu_set_device_table(iommu);
		iommu_enable_command_buffer(iommu);
		iommu_enable_event_buffer(iommu);
984
		iommu_set_exclusion_range(iommu);
985
		iommu_init_msi(iommu);
986 987 988 989
		iommu_enable(iommu);
	}
}

990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
/*
 * Suspend/Resume support
 * disable suspend until real resume implemented
 */

static int amd_iommu_resume(struct sys_device *dev)
{
	return 0;
}

static int amd_iommu_suspend(struct sys_device *dev, pm_message_t state)
{
	return -EINVAL;
}

static struct sysdev_class amd_iommu_sysdev_class = {
	.name = "amd_iommu",
	.suspend = amd_iommu_suspend,
	.resume = amd_iommu_resume,
};

static struct sys_device device_amd_iommu = {
	.id = 0,
	.cls = &amd_iommu_sysdev_class,
};

1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
/*
 * This is the core init function for AMD IOMMU hardware in the system.
 * This function is called from the generic x86 DMA layer initialization
 * code.
 *
 * This function basically parses the ACPI table for AMD IOMMU (IVRS)
 * three times:
 *
 *	1 pass) Find the highest PCI device id the driver has to handle.
 *		Upon this information the size of the data structures is
 *		determined that needs to be allocated.
 *
 *	2 pass) Initialize the data structures just allocated with the
 *		information in the ACPI table about available AMD IOMMUs
 *		in the system. It also maps the PCI devices in the
 *		system to specific IOMMUs
 *
 *	3 pass) After the basic data structures are allocated and
 *		initialized we update them with information about memory
 *		remapping requirements parsed out of the ACPI table in
 *		this last pass.
 *
 * After that the hardware is initialized and ready to go. In the last
 * step we do some Linux specific things like registering the driver in
 * the dma_ops interface and initializing the suspend/resume support
 * functions. Finally it prints some information about AMD IOMMUs and
 * the driver state and enables the hardware.
 */
1044 1045 1046 1047 1048
int __init amd_iommu_init(void)
{
	int i, ret = 0;


1049
	if (no_iommu) {
1050 1051 1052 1053
		printk(KERN_INFO "AMD IOMMU disabled by kernel command line\n");
		return 0;
	}

1054 1055 1056
	if (!amd_iommu_detected)
		return -ENODEV;

1057 1058 1059 1060 1061 1062 1063 1064
	/*
	 * First parse ACPI tables to find the largest Bus/Dev/Func
	 * we need to handle. Upon this information the shared data
	 * structures for the IOMMUs in the system will be allocated
	 */
	if (acpi_table_parse("IVRS", find_last_devid_acpi) != 0)
		return -ENODEV;

1065 1066 1067
	dev_table_size     = tbl_size(DEV_TABLE_ENTRY_SIZE);
	alias_table_size   = tbl_size(ALIAS_TABLE_ENTRY_SIZE);
	rlookup_table_size = tbl_size(RLOOKUP_TABLE_ENTRY_SIZE);
1068 1069 1070 1071

	ret = -ENOMEM;

	/* Device table - directly used by all IOMMUs */
1072
	amd_iommu_dev_table = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
				      get_order(dev_table_size));
	if (amd_iommu_dev_table == NULL)
		goto out;

	/*
	 * Alias table - map PCI Bus/Dev/Func to Bus/Dev/Func the
	 * IOMMU see for that device
	 */
	amd_iommu_alias_table = (void *)__get_free_pages(GFP_KERNEL,
			get_order(alias_table_size));
	if (amd_iommu_alias_table == NULL)
		goto free;

	/* IOMMU rlookup table - find the IOMMU for a specific device */
1087 1088
	amd_iommu_rlookup_table = (void *)__get_free_pages(
			GFP_KERNEL | __GFP_ZERO,
1089 1090 1091 1092 1093 1094 1095 1096
			get_order(rlookup_table_size));
	if (amd_iommu_rlookup_table == NULL)
		goto free;

	/*
	 * Protection Domain table - maps devices to protection domains
	 * This table has the same size as the rlookup_table
	 */
1097
	amd_iommu_pd_table = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
1098 1099 1100 1101
				     get_order(rlookup_table_size));
	if (amd_iommu_pd_table == NULL)
		goto free;

1102 1103
	amd_iommu_pd_alloc_bitmap = (void *)__get_free_pages(
					    GFP_KERNEL | __GFP_ZERO,
1104 1105 1106 1107
					    get_order(MAX_DOMAIN_ID/8));
	if (amd_iommu_pd_alloc_bitmap == NULL)
		goto free;

1108 1109 1110
	/* init the device table */
	init_device_table();

1111
	/*
1112
	 * let all alias entries point to itself
1113
	 */
1114
	for (i = 0; i <= amd_iommu_last_bdf; ++i)
1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
		amd_iommu_alias_table[i] = i;

	/*
	 * never allocate domain 0 because its used as the non-allocated and
	 * error value placeholder
	 */
	amd_iommu_pd_alloc_bitmap[0] = 1;

	/*
	 * now the data structures are allocated and basically initialized
	 * start the real acpi table scan
	 */
	ret = -ENODEV;
	if (acpi_table_parse("IVRS", init_iommu_all) != 0)
		goto free;

	if (acpi_table_parse("IVRS", init_memory_definitions) != 0)
		goto free;

1134
	ret = sysdev_class_register(&amd_iommu_sysdev_class);
1135 1136 1137
	if (ret)
		goto free;

1138
	ret = sysdev_register(&device_amd_iommu);
1139 1140 1141
	if (ret)
		goto free;

1142
	ret = amd_iommu_init_dma_ops();
1143 1144 1145
	if (ret)
		goto free;

1146 1147
	enable_iommus();

1148 1149 1150 1151 1152 1153 1154 1155 1156
	printk(KERN_INFO "AMD IOMMU: aperture size is %d MB\n",
			(1 << (amd_iommu_aperture_order-20)));

	printk(KERN_INFO "AMD IOMMU: device isolation ");
	if (amd_iommu_isolate)
		printk("enabled\n");
	else
		printk("disabled\n");

1157
	if (amd_iommu_unmap_flush)
1158 1159 1160 1161
		printk(KERN_INFO "AMD IOMMU: IO/TLB flush on unmap enabled\n");
	else
		printk(KERN_INFO "AMD IOMMU: Lazy IO/TLB flushing enabled\n");

1162 1163 1164 1165
out:
	return ret;

free:
1166 1167
	free_pages((unsigned long)amd_iommu_pd_alloc_bitmap,
		   get_order(MAX_DOMAIN_ID/8));
1168

1169 1170
	free_pages((unsigned long)amd_iommu_pd_table,
		   get_order(rlookup_table_size));
1171

1172 1173
	free_pages((unsigned long)amd_iommu_rlookup_table,
		   get_order(rlookup_table_size));
1174

1175 1176
	free_pages((unsigned long)amd_iommu_alias_table,
		   get_order(alias_table_size));
1177

1178 1179
	free_pages((unsigned long)amd_iommu_dev_table,
		   get_order(dev_table_size));
1180 1181 1182 1183 1184 1185 1186 1187

	free_iommu_all();

	free_unity_maps();

	goto out;
}

1188 1189 1190 1191 1192 1193 1194
/****************************************************************************
 *
 * Early detect code. This code runs at IOMMU detection time in the DMA
 * layer. It just looks if there is an IVRS ACPI table to detect AMD
 * IOMMUs
 *
 ****************************************************************************/
1195 1196 1197 1198 1199 1200 1201
static int __init early_amd_iommu_detect(struct acpi_table_header *table)
{
	return 0;
}

void __init amd_iommu_detect(void)
{
1202
	if (swiotlb || no_iommu || (iommu_detected && !gart_iommu_aperture))
1203 1204 1205 1206
		return;

	if (acpi_table_parse("IVRS", early_amd_iommu_detect) == 0) {
		iommu_detected = 1;
1207
		amd_iommu_detected = 1;
I
Ingo Molnar 已提交
1208
#ifdef CONFIG_GART_IOMMU
1209 1210
		gart_iommu_aperture_disabled = 1;
		gart_iommu_aperture = 0;
I
Ingo Molnar 已提交
1211
#endif
1212 1213 1214
	}
}

1215 1216 1217 1218 1219 1220 1221
/****************************************************************************
 *
 * Parsing functions for the AMD IOMMU specific kernel command line
 * options.
 *
 ****************************************************************************/

1222 1223 1224
static int __init parse_amd_iommu_options(char *str)
{
	for (; *str; ++str) {
1225
		if (strncmp(str, "isolate", 7) == 0)
1226
			amd_iommu_isolate = true;
1227
		if (strncmp(str, "share", 5) == 0)
1228
			amd_iommu_isolate = false;
1229
		if (strncmp(str, "fullflush", 9) == 0)
1230
			amd_iommu_unmap_flush = true;
1231 1232 1233 1234 1235 1236 1237
	}

	return 1;
}

static int __init parse_amd_iommu_size_options(char *str)
{
1238 1239 1240 1241
	unsigned order = PAGE_SHIFT + get_order(memparse(str, &str));

	if ((order > 24) && (order < 31))
		amd_iommu_aperture_order = order;
1242 1243 1244 1245 1246 1247

	return 1;
}

__setup("amd_iommu=", parse_amd_iommu_options);
__setup("amd_iommu_size=", parse_amd_iommu_size_options);