amd_iommu_init.c 35.3 KB
Newer Older
1
/*
2
 * Copyright (C) 2007-2009 Advanced Micro Devices, Inc.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
 * Author: Joerg Roedel <joerg.roedel@amd.com>
 *         Leo Duran <leo.duran@amd.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

#include <linux/pci.h>
#include <linux/acpi.h>
#include <linux/gfp.h>
#include <linux/list.h>
24
#include <linux/sysdev.h>
25 26
#include <linux/interrupt.h>
#include <linux/msi.h>
27
#include <asm/pci-direct.h>
28
#include <asm/amd_iommu_proto.h>
29
#include <asm/amd_iommu_types.h>
30
#include <asm/amd_iommu.h>
31
#include <asm/iommu.h>
32
#include <asm/gart.h>
33
#include <asm/x86_init.h>
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53

/*
 * definitions for the ACPI scanning code
 */
#define IVRS_HEADER_LENGTH 48

#define ACPI_IVHD_TYPE                  0x10
#define ACPI_IVMD_TYPE_ALL              0x20
#define ACPI_IVMD_TYPE                  0x21
#define ACPI_IVMD_TYPE_RANGE            0x22

#define IVHD_DEV_ALL                    0x01
#define IVHD_DEV_SELECT                 0x02
#define IVHD_DEV_SELECT_RANGE_START     0x03
#define IVHD_DEV_RANGE_END              0x04
#define IVHD_DEV_ALIAS                  0x42
#define IVHD_DEV_ALIAS_RANGE            0x43
#define IVHD_DEV_EXT_SELECT             0x46
#define IVHD_DEV_EXT_SELECT_RANGE       0x47

J
Joerg Roedel 已提交
54 55 56 57
#define IVHD_FLAG_HT_TUN_EN_MASK        0x01
#define IVHD_FLAG_PASSPW_EN_MASK        0x02
#define IVHD_FLAG_RESPASSPW_EN_MASK     0x04
#define IVHD_FLAG_ISOC_EN_MASK          0x08
58 59 60 61 62 63 64 65 66 67 68 69 70

#define IVMD_FLAG_EXCL_RANGE            0x08
#define IVMD_FLAG_UNITY_MAP             0x01

#define ACPI_DEVFLAG_INITPASS           0x01
#define ACPI_DEVFLAG_EXTINT             0x02
#define ACPI_DEVFLAG_NMI                0x04
#define ACPI_DEVFLAG_SYSMGT1            0x10
#define ACPI_DEVFLAG_SYSMGT2            0x20
#define ACPI_DEVFLAG_LINT0              0x40
#define ACPI_DEVFLAG_LINT1              0x80
#define ACPI_DEVFLAG_ATSDIS             0x10000000

71 72 73 74 75 76 77 78 79 80 81
/*
 * ACPI table definitions
 *
 * These data structures are laid over the table to parse the important values
 * out of it.
 */

/*
 * structure describing one IOMMU in the ACPI table. Typically followed by one
 * or more ivhd_entrys.
 */
82 83 84 85 86 87 88 89 90 91 92 93
struct ivhd_header {
	u8 type;
	u8 flags;
	u16 length;
	u16 devid;
	u16 cap_ptr;
	u64 mmio_phys;
	u16 pci_seg;
	u16 info;
	u32 reserved;
} __attribute__((packed));

94 95 96 97
/*
 * A device entry describing which devices a specific IOMMU translates and
 * which requestor ids they use.
 */
98 99 100 101 102 103 104
struct ivhd_entry {
	u8 type;
	u16 devid;
	u8 flags;
	u32 ext;
} __attribute__((packed));

105 106 107 108
/*
 * An AMD IOMMU memory definition structure. It defines things like exclusion
 * ranges for devices and regions that should be unity mapped.
 */
109 110 111 112 113 114 115 116 117 118 119
struct ivmd_header {
	u8 type;
	u8 flags;
	u16 length;
	u16 devid;
	u16 aux;
	u64 resv;
	u64 range_start;
	u64 range_length;
} __attribute__((packed));

120 121
bool amd_iommu_dump;

122 123
static int __initdata amd_iommu_detected;

124 125
u16 amd_iommu_last_bdf;			/* largest PCI device id we have
					   to handle */
126
LIST_HEAD(amd_iommu_unity_map);		/* a list of required unity mappings
127
					   we find in ACPI */
128 129 130
#ifdef CONFIG_IOMMU_STRESS
bool amd_iommu_isolate = false;
#else
131 132
bool amd_iommu_isolate = true;		/* if true, device isolation is
					   enabled */
133 134
#endif

135
bool amd_iommu_unmap_flush;		/* if true, flush on every unmap */
136

137
LIST_HEAD(amd_iommu_list);		/* list of all AMD IOMMUs in the
138
					   system */
139

140 141 142 143
/* Array to assign indices to IOMMUs*/
struct amd_iommu *amd_iommus[MAX_IOMMUS];
int amd_iommus_present;

144 145 146 147 148 149
/*
 * List of protection domains - used during resume
 */
LIST_HEAD(amd_iommu_pd_list);
spinlock_t amd_iommu_pd_lock;

150 151 152 153 154 155
/*
 * Pointer to the device table which is shared by all AMD IOMMUs
 * it is indexed by the PCI device id or the HT unit id and contains
 * information about the domain the device belongs to as well as the
 * page table root pointer.
 */
156
struct dev_table_entry *amd_iommu_dev_table;
157 158 159 160 161 162

/*
 * The alias table is a driver specific data structure which contains the
 * mappings of the PCI device ids to the actual requestor ids on the IOMMU.
 * More than one device can share the same requestor id.
 */
163
u16 *amd_iommu_alias_table;
164 165 166 167 168

/*
 * The rlookup table is used to find the IOMMU which is responsible
 * for a specific device. It is also indexed by the PCI device id.
 */
169
struct amd_iommu **amd_iommu_rlookup_table;
170 171 172 173 174

/*
 * The pd table (protection domain table) is used to find the protection domain
 * data structure a device belongs to. Indexed with the PCI device id too.
 */
175
struct protection_domain **amd_iommu_pd_table;
176 177 178 179 180

/*
 * AMD IOMMU allows up to 2^16 differend protection domains. This is a bitmap
 * to know which ones are already in use.
 */
181 182
unsigned long *amd_iommu_pd_alloc_bitmap;

183 184 185
static u32 dev_table_size;	/* size of the device table */
static u32 alias_table_size;	/* size of the alias table */
static u32 rlookup_table_size;	/* size if the rlookup table */
186

187 188 189 190 191 192
static inline void update_last_devid(u16 devid)
{
	if (devid > amd_iommu_last_bdf)
		amd_iommu_last_bdf = devid;
}

193 194 195
static inline unsigned long tbl_size(int entry_size)
{
	unsigned shift = PAGE_SHIFT +
196
			 get_order(((int)amd_iommu_last_bdf + 1) * entry_size);
197 198 199 200

	return 1UL << shift;
}

201 202 203 204 205 206 207 208
/****************************************************************************
 *
 * AMD IOMMU MMIO register space handling functions
 *
 * These functions are used to program the IOMMU device registers in
 * MMIO space required for that driver.
 *
 ****************************************************************************/
209

210 211 212 213
/*
 * This function set the exclusion range in the IOMMU. DMA accesses to the
 * exclusion range are passed through untranslated
 */
214
static void iommu_set_exclusion_range(struct amd_iommu *iommu)
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
{
	u64 start = iommu->exclusion_start & PAGE_MASK;
	u64 limit = (start + iommu->exclusion_length) & PAGE_MASK;
	u64 entry;

	if (!iommu->exclusion_start)
		return;

	entry = start | MMIO_EXCL_ENABLE_MASK;
	memcpy_toio(iommu->mmio_base + MMIO_EXCL_BASE_OFFSET,
			&entry, sizeof(entry));

	entry = limit;
	memcpy_toio(iommu->mmio_base + MMIO_EXCL_LIMIT_OFFSET,
			&entry, sizeof(entry));
}

232
/* Programs the physical address of the device table into the IOMMU hardware */
233 234
static void __init iommu_set_device_table(struct amd_iommu *iommu)
{
235
	u64 entry;
236 237 238 239 240 241 242 243 244

	BUG_ON(iommu->mmio_base == NULL);

	entry = virt_to_phys(amd_iommu_dev_table);
	entry |= (dev_table_size >> 12) - 1;
	memcpy_toio(iommu->mmio_base + MMIO_DEV_TABLE_OFFSET,
			&entry, sizeof(entry));
}

245
/* Generic functions to enable/disable certain features of the IOMMU. */
246
static void iommu_feature_enable(struct amd_iommu *iommu, u8 bit)
247 248 249 250 251 252 253 254
{
	u32 ctrl;

	ctrl = readl(iommu->mmio_base + MMIO_CONTROL_OFFSET);
	ctrl |= (1 << bit);
	writel(ctrl, iommu->mmio_base + MMIO_CONTROL_OFFSET);
}

255
static void iommu_feature_disable(struct amd_iommu *iommu, u8 bit)
256 257 258
{
	u32 ctrl;

259
	ctrl = readl(iommu->mmio_base + MMIO_CONTROL_OFFSET);
260 261 262 263
	ctrl &= ~(1 << bit);
	writel(ctrl, iommu->mmio_base + MMIO_CONTROL_OFFSET);
}

264
/* Function to enable the hardware */
265
static void iommu_enable(struct amd_iommu *iommu)
266
{
267
	printk(KERN_INFO "AMD-Vi: Enabling IOMMU at %s cap 0x%hx\n",
268
	       dev_name(&iommu->dev->dev), iommu->cap_ptr);
269 270 271 272

	iommu_feature_enable(iommu, CONTROL_IOMMU_EN);
}

273
static void iommu_disable(struct amd_iommu *iommu)
J
Joerg Roedel 已提交
274
{
275 276 277 278 279 280 281 282
	/* Disable command buffer */
	iommu_feature_disable(iommu, CONTROL_CMDBUF_EN);

	/* Disable event logging and event interrupts */
	iommu_feature_disable(iommu, CONTROL_EVT_INT_EN);
	iommu_feature_disable(iommu, CONTROL_EVT_LOG_EN);

	/* Disable IOMMU hardware itself */
283
	iommu_feature_disable(iommu, CONTROL_IOMMU_EN);
J
Joerg Roedel 已提交
284 285
}

286 287 288 289
/*
 * mapping and unmapping functions for the IOMMU MMIO space. Each AMD IOMMU in
 * the system has one.
 */
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
static u8 * __init iommu_map_mmio_space(u64 address)
{
	u8 *ret;

	if (!request_mem_region(address, MMIO_REGION_LENGTH, "amd_iommu"))
		return NULL;

	ret = ioremap_nocache(address, MMIO_REGION_LENGTH);
	if (ret != NULL)
		return ret;

	release_mem_region(address, MMIO_REGION_LENGTH);

	return NULL;
}

static void __init iommu_unmap_mmio_space(struct amd_iommu *iommu)
{
	if (iommu->mmio_base)
		iounmap(iommu->mmio_base);
	release_mem_region(iommu->mmio_phys, MMIO_REGION_LENGTH);
}

313 314 315 316 317 318 319 320 321
/****************************************************************************
 *
 * The functions below belong to the first pass of AMD IOMMU ACPI table
 * parsing. In this pass we try to find out the highest device id this
 * code has to handle. Upon this information the size of the shared data
 * structures is determined later.
 *
 ****************************************************************************/

322 323 324 325 326 327 328 329
/*
 * This function calculates the length of a given IVHD entry
 */
static inline int ivhd_entry_length(u8 *ivhd)
{
	return 0x04 << (*ivhd >> 6);
}

330 331 332 333
/*
 * This function reads the last device id the IOMMU has to handle from the PCI
 * capability header for this IOMMU
 */
334 335 336 337 338
static int __init find_last_devid_on_pci(int bus, int dev, int fn, int cap_ptr)
{
	u32 cap;

	cap = read_pci_config(bus, dev, fn, cap_ptr+MMIO_RANGE_OFFSET);
339
	update_last_devid(calc_devid(MMIO_GET_BUS(cap), MMIO_GET_LD(cap)));
340 341 342 343

	return 0;
}

344 345 346 347
/*
 * After reading the highest device id from the IOMMU PCI capability header
 * this function looks if there is a higher device id defined in the ACPI table
 */
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
static int __init find_last_devid_from_ivhd(struct ivhd_header *h)
{
	u8 *p = (void *)h, *end = (void *)h;
	struct ivhd_entry *dev;

	p += sizeof(*h);
	end += h->length;

	find_last_devid_on_pci(PCI_BUS(h->devid),
			PCI_SLOT(h->devid),
			PCI_FUNC(h->devid),
			h->cap_ptr);

	while (p < end) {
		dev = (struct ivhd_entry *)p;
		switch (dev->type) {
		case IVHD_DEV_SELECT:
		case IVHD_DEV_RANGE_END:
		case IVHD_DEV_ALIAS:
		case IVHD_DEV_EXT_SELECT:
368
			/* all the above subfield types refer to device ids */
369
			update_last_devid(dev->devid);
370 371 372 373
			break;
		default:
			break;
		}
374
		p += ivhd_entry_length(p);
375 376 377 378 379 380 381
	}

	WARN_ON(p != end);

	return 0;
}

382 383 384 385 386
/*
 * Iterate over all IVHD entries in the ACPI table and find the highest device
 * id which we need to handle. This is the first of three functions which parse
 * the ACPI table. So we check the checksum here.
 */
387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
static int __init find_last_devid_acpi(struct acpi_table_header *table)
{
	int i;
	u8 checksum = 0, *p = (u8 *)table, *end = (u8 *)table;
	struct ivhd_header *h;

	/*
	 * Validate checksum here so we don't need to do it when
	 * we actually parse the table
	 */
	for (i = 0; i < table->length; ++i)
		checksum += p[i];
	if (checksum != 0)
		/* ACPI table corrupt */
		return -ENODEV;

	p += IVRS_HEADER_LENGTH;

	end += table->length;
	while (p < end) {
		h = (struct ivhd_header *)p;
		switch (h->type) {
		case ACPI_IVHD_TYPE:
			find_last_devid_from_ivhd(h);
			break;
		default:
			break;
		}
		p += h->length;
	}
	WARN_ON(p != end);

	return 0;
}

422 423 424 425 426 427 428 429 430 431 432 433 434 435
/****************************************************************************
 *
 * The following functions belong the the code path which parses the ACPI table
 * the second time. In this ACPI parsing iteration we allocate IOMMU specific
 * data structures, initialize the device/alias/rlookup table and also
 * basically initialize the hardware.
 *
 ****************************************************************************/

/*
 * Allocates the command buffer. This buffer is per AMD IOMMU. We can
 * write commands to that buffer later and the IOMMU will execute them
 * asynchronously
 */
436 437
static u8 * __init alloc_command_buffer(struct amd_iommu *iommu)
{
438
	u8 *cmd_buf = (u8 *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
439 440 441 442 443 444 445
			get_order(CMD_BUFFER_SIZE));

	if (cmd_buf == NULL)
		return NULL;

	iommu->cmd_buf_size = CMD_BUFFER_SIZE;

446 447 448
	return cmd_buf;
}

449 450 451 452 453 454 455 456 457 458 459 460 461 462
/*
 * This function resets the command buffer if the IOMMU stopped fetching
 * commands from it.
 */
void amd_iommu_reset_cmd_buffer(struct amd_iommu *iommu)
{
	iommu_feature_disable(iommu, CONTROL_CMDBUF_EN);

	writel(0x00, iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
	writel(0x00, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);

	iommu_feature_enable(iommu, CONTROL_CMDBUF_EN);
}

463 464 465 466 467 468 469 470 471 472 473
/*
 * This function writes the command buffer address to the hardware and
 * enables it.
 */
static void iommu_enable_command_buffer(struct amd_iommu *iommu)
{
	u64 entry;

	BUG_ON(iommu->cmd_buf == NULL);

	entry = (u64)virt_to_phys(iommu->cmd_buf);
474
	entry |= MMIO_CMD_SIZE_512;
475

476
	memcpy_toio(iommu->mmio_base + MMIO_CMD_BUF_OFFSET,
477
		    &entry, sizeof(entry));
478

479
	amd_iommu_reset_cmd_buffer(iommu);
480 481 482 483
}

static void __init free_command_buffer(struct amd_iommu *iommu)
{
484 485
	free_pages((unsigned long)iommu->cmd_buf,
		   get_order(iommu->cmd_buf_size));
486 487
}

488 489 490 491 492 493 494 495 496
/* allocates the memory where the IOMMU will log its events to */
static u8 * __init alloc_event_buffer(struct amd_iommu *iommu)
{
	iommu->evt_buf = (u8 *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
						get_order(EVT_BUFFER_SIZE));

	if (iommu->evt_buf == NULL)
		return NULL;

497 498
	iommu->evt_buf_size = EVT_BUFFER_SIZE;

499 500 501 502 503 504 505 506 507
	return iommu->evt_buf;
}

static void iommu_enable_event_buffer(struct amd_iommu *iommu)
{
	u64 entry;

	BUG_ON(iommu->evt_buf == NULL);

508
	entry = (u64)virt_to_phys(iommu->evt_buf) | EVT_LEN_MASK;
509

510 511 512
	memcpy_toio(iommu->mmio_base + MMIO_EVT_BUF_OFFSET,
		    &entry, sizeof(entry));

513 514 515 516
	/* set head and tail to zero manually */
	writel(0x00, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
	writel(0x00, iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);

517
	iommu_feature_enable(iommu, CONTROL_EVT_LOG_EN);
518 519 520 521 522 523 524
}

static void __init free_event_buffer(struct amd_iommu *iommu)
{
	free_pages((unsigned long)iommu->evt_buf, get_order(EVT_BUFFER_SIZE));
}

525
/* sets a specific bit in the device table entry. */
526 527 528 529 530 531 532 533
static void set_dev_entry_bit(u16 devid, u8 bit)
{
	int i = (bit >> 5) & 0x07;
	int _bit = bit & 0x1f;

	amd_iommu_dev_table[devid].data[i] |= (1 << _bit);
}

534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
static int get_dev_entry_bit(u16 devid, u8 bit)
{
	int i = (bit >> 5) & 0x07;
	int _bit = bit & 0x1f;

	return (amd_iommu_dev_table[devid].data[i] & (1 << _bit)) >> _bit;
}


void amd_iommu_apply_erratum_63(u16 devid)
{
	int sysmgt;

	sysmgt = get_dev_entry_bit(devid, DEV_ENTRY_SYSMGT1) |
		 (get_dev_entry_bit(devid, DEV_ENTRY_SYSMGT2) << 1);

	if (sysmgt == 0x01)
		set_dev_entry_bit(devid, DEV_ENTRY_IW);
}

554 555 556 557 558 559
/* Writes the specific IOMMU for a device into the rlookup table */
static void __init set_iommu_for_device(struct amd_iommu *iommu, u16 devid)
{
	amd_iommu_rlookup_table[devid] = iommu;
}

560 561 562 563
/*
 * This function takes the device specific flags read from the ACPI
 * table and sets up the device table entry with that information
 */
564 565
static void __init set_dev_entry_from_acpi(struct amd_iommu *iommu,
					   u16 devid, u32 flags, u32 ext_flags)
566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
{
	if (flags & ACPI_DEVFLAG_INITPASS)
		set_dev_entry_bit(devid, DEV_ENTRY_INIT_PASS);
	if (flags & ACPI_DEVFLAG_EXTINT)
		set_dev_entry_bit(devid, DEV_ENTRY_EINT_PASS);
	if (flags & ACPI_DEVFLAG_NMI)
		set_dev_entry_bit(devid, DEV_ENTRY_NMI_PASS);
	if (flags & ACPI_DEVFLAG_SYSMGT1)
		set_dev_entry_bit(devid, DEV_ENTRY_SYSMGT1);
	if (flags & ACPI_DEVFLAG_SYSMGT2)
		set_dev_entry_bit(devid, DEV_ENTRY_SYSMGT2);
	if (flags & ACPI_DEVFLAG_LINT0)
		set_dev_entry_bit(devid, DEV_ENTRY_LINT0_PASS);
	if (flags & ACPI_DEVFLAG_LINT1)
		set_dev_entry_bit(devid, DEV_ENTRY_LINT1_PASS);

582 583
	amd_iommu_apply_erratum_63(devid);

584
	set_iommu_for_device(iommu, devid);
585 586
}

587 588 589 590
/*
 * Reads the device exclusion range from ACPI and initialize IOMMU with
 * it
 */
591 592 593 594 595 596 597 598
static void __init set_device_exclusion_range(u16 devid, struct ivmd_header *m)
{
	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];

	if (!(m->flags & IVMD_FLAG_EXCL_RANGE))
		return;

	if (iommu) {
599 600 601 602 603
		/*
		 * We only can configure exclusion ranges per IOMMU, not
		 * per device. But we can enable the exclusion range per
		 * device. This is done here
		 */
604 605 606 607 608 609
		set_dev_entry_bit(m->devid, DEV_ENTRY_EX);
		iommu->exclusion_start = m->range_start;
		iommu->exclusion_length = m->range_length;
	}
}

610 611 612 613 614
/*
 * This function reads some important data from the IOMMU PCI space and
 * initializes the driver data structure with it. It reads the hardware
 * capabilities and the first/last device entries
 */
615 616 617
static void __init init_iommu_from_pci(struct amd_iommu *iommu)
{
	int cap_ptr = iommu->cap_ptr;
618
	u32 range, misc;
619

620 621 622 623
	pci_read_config_dword(iommu->dev, cap_ptr + MMIO_CAP_HDR_OFFSET,
			      &iommu->cap);
	pci_read_config_dword(iommu->dev, cap_ptr + MMIO_RANGE_OFFSET,
			      &range);
624 625
	pci_read_config_dword(iommu->dev, cap_ptr + MMIO_MISC_OFFSET,
			      &misc);
626

627 628 629 630
	iommu->first_device = calc_devid(MMIO_GET_BUS(range),
					 MMIO_GET_FD(range));
	iommu->last_device = calc_devid(MMIO_GET_BUS(range),
					MMIO_GET_LD(range));
631
	iommu->evt_msi_num = MMIO_MSI_NUM(misc);
632 633
}

634 635 636 637
/*
 * Takes a pointer to an AMD IOMMU entry in the ACPI table and
 * initializes the hardware and our data structures with it.
 */
638 639 640 641 642 643 644
static void __init init_iommu_from_acpi(struct amd_iommu *iommu,
					struct ivhd_header *h)
{
	u8 *p = (u8 *)h;
	u8 *end = p, flags = 0;
	u16 dev_i, devid = 0, devid_start = 0, devid_to = 0;
	u32 ext_flags = 0;
645
	bool alias = false;
646 647 648 649 650 651
	struct ivhd_entry *e;

	/*
	 * First set the recommended feature enable bits from ACPI
	 * into the IOMMU control registers
	 */
J
Joerg Roedel 已提交
652
	h->flags & IVHD_FLAG_HT_TUN_EN_MASK ?
653 654 655
		iommu_feature_enable(iommu, CONTROL_HT_TUN_EN) :
		iommu_feature_disable(iommu, CONTROL_HT_TUN_EN);

J
Joerg Roedel 已提交
656
	h->flags & IVHD_FLAG_PASSPW_EN_MASK ?
657 658 659
		iommu_feature_enable(iommu, CONTROL_PASSPW_EN) :
		iommu_feature_disable(iommu, CONTROL_PASSPW_EN);

J
Joerg Roedel 已提交
660
	h->flags & IVHD_FLAG_RESPASSPW_EN_MASK ?
661 662 663
		iommu_feature_enable(iommu, CONTROL_RESPASSPW_EN) :
		iommu_feature_disable(iommu, CONTROL_RESPASSPW_EN);

J
Joerg Roedel 已提交
664
	h->flags & IVHD_FLAG_ISOC_EN_MASK ?
665 666 667 668 669 670 671 672 673 674 675 676 677 678
		iommu_feature_enable(iommu, CONTROL_ISOC_EN) :
		iommu_feature_disable(iommu, CONTROL_ISOC_EN);

	/*
	 * make IOMMU memory accesses cache coherent
	 */
	iommu_feature_enable(iommu, CONTROL_COHERENT_EN);

	/*
	 * Done. Now parse the device entries
	 */
	p += sizeof(struct ivhd_header);
	end += h->length;

679

680 681 682 683
	while (p < end) {
		e = (struct ivhd_entry *)p;
		switch (e->type) {
		case IVHD_DEV_ALL:
684 685 686 687 688 689 690 691 692 693 694

			DUMP_printk("  DEV_ALL\t\t\t first devid: %02x:%02x.%x"
				    " last device %02x:%02x.%x flags: %02x\n",
				    PCI_BUS(iommu->first_device),
				    PCI_SLOT(iommu->first_device),
				    PCI_FUNC(iommu->first_device),
				    PCI_BUS(iommu->last_device),
				    PCI_SLOT(iommu->last_device),
				    PCI_FUNC(iommu->last_device),
				    e->flags);

695 696
			for (dev_i = iommu->first_device;
					dev_i <= iommu->last_device; ++dev_i)
697 698
				set_dev_entry_from_acpi(iommu, dev_i,
							e->flags, 0);
699 700
			break;
		case IVHD_DEV_SELECT:
701 702 703 704 705 706 707 708

			DUMP_printk("  DEV_SELECT\t\t\t devid: %02x:%02x.%x "
				    "flags: %02x\n",
				    PCI_BUS(e->devid),
				    PCI_SLOT(e->devid),
				    PCI_FUNC(e->devid),
				    e->flags);

709
			devid = e->devid;
710
			set_dev_entry_from_acpi(iommu, devid, e->flags, 0);
711 712
			break;
		case IVHD_DEV_SELECT_RANGE_START:
713 714 715 716 717 718 719 720

			DUMP_printk("  DEV_SELECT_RANGE_START\t "
				    "devid: %02x:%02x.%x flags: %02x\n",
				    PCI_BUS(e->devid),
				    PCI_SLOT(e->devid),
				    PCI_FUNC(e->devid),
				    e->flags);

721 722 723
			devid_start = e->devid;
			flags = e->flags;
			ext_flags = 0;
724
			alias = false;
725 726
			break;
		case IVHD_DEV_ALIAS:
727 728 729 730 731 732 733 734 735 736 737

			DUMP_printk("  DEV_ALIAS\t\t\t devid: %02x:%02x.%x "
				    "flags: %02x devid_to: %02x:%02x.%x\n",
				    PCI_BUS(e->devid),
				    PCI_SLOT(e->devid),
				    PCI_FUNC(e->devid),
				    e->flags,
				    PCI_BUS(e->ext >> 8),
				    PCI_SLOT(e->ext >> 8),
				    PCI_FUNC(e->ext >> 8));

738 739
			devid = e->devid;
			devid_to = e->ext >> 8;
740
			set_dev_entry_from_acpi(iommu, devid   , e->flags, 0);
741
			set_dev_entry_from_acpi(iommu, devid_to, e->flags, 0);
742 743 744
			amd_iommu_alias_table[devid] = devid_to;
			break;
		case IVHD_DEV_ALIAS_RANGE:
745 746 747 748 749 750 751 752 753 754 755 756

			DUMP_printk("  DEV_ALIAS_RANGE\t\t "
				    "devid: %02x:%02x.%x flags: %02x "
				    "devid_to: %02x:%02x.%x\n",
				    PCI_BUS(e->devid),
				    PCI_SLOT(e->devid),
				    PCI_FUNC(e->devid),
				    e->flags,
				    PCI_BUS(e->ext >> 8),
				    PCI_SLOT(e->ext >> 8),
				    PCI_FUNC(e->ext >> 8));

757 758 759 760
			devid_start = e->devid;
			flags = e->flags;
			devid_to = e->ext >> 8;
			ext_flags = 0;
761
			alias = true;
762 763
			break;
		case IVHD_DEV_EXT_SELECT:
764 765 766 767 768 769 770 771

			DUMP_printk("  DEV_EXT_SELECT\t\t devid: %02x:%02x.%x "
				    "flags: %02x ext: %08x\n",
				    PCI_BUS(e->devid),
				    PCI_SLOT(e->devid),
				    PCI_FUNC(e->devid),
				    e->flags, e->ext);

772
			devid = e->devid;
773 774
			set_dev_entry_from_acpi(iommu, devid, e->flags,
						e->ext);
775 776
			break;
		case IVHD_DEV_EXT_SELECT_RANGE:
777 778 779 780 781 782 783 784

			DUMP_printk("  DEV_EXT_SELECT_RANGE\t devid: "
				    "%02x:%02x.%x flags: %02x ext: %08x\n",
				    PCI_BUS(e->devid),
				    PCI_SLOT(e->devid),
				    PCI_FUNC(e->devid),
				    e->flags, e->ext);

785 786 787
			devid_start = e->devid;
			flags = e->flags;
			ext_flags = e->ext;
788
			alias = false;
789 790
			break;
		case IVHD_DEV_RANGE_END:
791 792 793 794 795 796

			DUMP_printk("  DEV_RANGE_END\t\t devid: %02x:%02x.%x\n",
				    PCI_BUS(e->devid),
				    PCI_SLOT(e->devid),
				    PCI_FUNC(e->devid));

797 798
			devid = e->devid;
			for (dev_i = devid_start; dev_i <= devid; ++dev_i) {
799
				if (alias) {
800
					amd_iommu_alias_table[dev_i] = devid_to;
801 802 803 804 805
					set_dev_entry_from_acpi(iommu,
						devid_to, flags, ext_flags);
				}
				set_dev_entry_from_acpi(iommu, dev_i,
							flags, ext_flags);
806 807 808 809 810 811
			}
			break;
		default:
			break;
		}

812
		p += ivhd_entry_length(p);
813 814 815
	}
}

816
/* Initializes the device->iommu mapping for the driver */
817 818 819 820 821 822 823 824 825 826
static int __init init_iommu_devices(struct amd_iommu *iommu)
{
	u16 i;

	for (i = iommu->first_device; i <= iommu->last_device; ++i)
		set_iommu_for_device(iommu, i);

	return 0;
}

827 828 829
static void __init free_iommu_one(struct amd_iommu *iommu)
{
	free_command_buffer(iommu);
830
	free_event_buffer(iommu);
831 832 833 834 835 836 837
	iommu_unmap_mmio_space(iommu);
}

static void __init free_iommu_all(void)
{
	struct amd_iommu *iommu, *next;

838
	for_each_iommu_safe(iommu, next) {
839 840 841 842 843 844
		list_del(&iommu->list);
		free_iommu_one(iommu);
		kfree(iommu);
	}
}

845 846 847 848 849
/*
 * This function clues the initialization function for one IOMMU
 * together and also allocates the command buffer and programs the
 * hardware. It does NOT enable the IOMMU. This is done afterwards.
 */
850 851 852
static int __init init_iommu_one(struct amd_iommu *iommu, struct ivhd_header *h)
{
	spin_lock_init(&iommu->lock);
853 854

	/* Add IOMMU to internal data structures */
855
	list_add_tail(&iommu->list, &amd_iommu_list);
856 857 858 859 860 861 862 863 864
	iommu->index             = amd_iommus_present++;

	if (unlikely(iommu->index >= MAX_IOMMUS)) {
		WARN(1, "AMD-Vi: System has more IOMMUs than supported by this driver\n");
		return -ENOSYS;
	}

	/* Index is fine - add IOMMU to the array */
	amd_iommus[iommu->index] = iommu;
865 866 867 868

	/*
	 * Copy data from ACPI table entry to the iommu struct
	 */
869 870 871 872
	iommu->dev = pci_get_bus_and_slot(PCI_BUS(h->devid), h->devid & 0xff);
	if (!iommu->dev)
		return 1;

873
	iommu->cap_ptr = h->cap_ptr;
874
	iommu->pci_seg = h->pci_seg;
875 876 877 878 879 880 881 882 883
	iommu->mmio_phys = h->mmio_phys;
	iommu->mmio_base = iommu_map_mmio_space(h->mmio_phys);
	if (!iommu->mmio_base)
		return -ENOMEM;

	iommu->cmd_buf = alloc_command_buffer(iommu);
	if (!iommu->cmd_buf)
		return -ENOMEM;

884 885 886 887
	iommu->evt_buf = alloc_event_buffer(iommu);
	if (!iommu->evt_buf)
		return -ENOMEM;

888 889
	iommu->int_enabled = false;

890 891 892 893
	init_iommu_from_pci(iommu);
	init_iommu_from_acpi(iommu, h);
	init_iommu_devices(iommu);

894
	return pci_enable_device(iommu->dev);
895 896
}

897 898 899 900
/*
 * Iterates over all IOMMU entries in the ACPI table, allocates the
 * IOMMU structure and initializes it with init_iommu_one()
 */
901 902 903 904 905 906 907 908 909 910 911 912 913 914
static int __init init_iommu_all(struct acpi_table_header *table)
{
	u8 *p = (u8 *)table, *end = (u8 *)table;
	struct ivhd_header *h;
	struct amd_iommu *iommu;
	int ret;

	end += table->length;
	p += IVRS_HEADER_LENGTH;

	while (p < end) {
		h = (struct ivhd_header *)p;
		switch (*p) {
		case ACPI_IVHD_TYPE:
915

916
			DUMP_printk("device: %02x:%02x.%01x cap: %04x "
917 918 919 920 921 922 923
				    "seg: %d flags: %01x info %04x\n",
				    PCI_BUS(h->devid), PCI_SLOT(h->devid),
				    PCI_FUNC(h->devid), h->cap_ptr,
				    h->pci_seg, h->flags, h->info);
			DUMP_printk("       mmio-addr: %016llx\n",
				    h->mmio_phys);

924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941
			iommu = kzalloc(sizeof(struct amd_iommu), GFP_KERNEL);
			if (iommu == NULL)
				return -ENOMEM;
			ret = init_iommu_one(iommu, h);
			if (ret)
				return ret;
			break;
		default:
			break;
		}
		p += h->length;

	}
	WARN_ON(p != end);

	return 0;
}

942 943 944 945 946 947 948 949 950
/****************************************************************************
 *
 * The following functions initialize the MSI interrupts for all IOMMUs
 * in the system. Its a bit challenging because there could be multiple
 * IOMMUs per PCI BDF but we can call pci_enable_msi(x) only once per
 * pci_dev.
 *
 ****************************************************************************/

951
static int iommu_setup_msi(struct amd_iommu *iommu)
952 953 954 955 956 957 958 959
{
	int r;

	if (pci_enable_msi(iommu->dev))
		return 1;

	r = request_irq(iommu->dev->irq, amd_iommu_int_handler,
			IRQF_SAMPLE_RANDOM,
960
			"AMD-Vi",
961 962 963 964 965 966 967
			NULL);

	if (r) {
		pci_disable_msi(iommu->dev);
		return 1;
	}

968
	iommu->int_enabled = true;
969 970
	iommu_feature_enable(iommu, CONTROL_EVT_INT_EN);

971 972 973
	return 0;
}

974
static int iommu_init_msi(struct amd_iommu *iommu)
975 976 977 978
{
	if (iommu->int_enabled)
		return 0;

979
	if (pci_find_capability(iommu->dev, PCI_CAP_ID_MSI))
980 981 982 983 984
		return iommu_setup_msi(iommu);

	return 1;
}

985 986 987 988 989 990 991 992
/****************************************************************************
 *
 * The next functions belong to the third pass of parsing the ACPI
 * table. In this last pass the memory mapping requirements are
 * gathered (like exclusion and unity mapping reanges).
 *
 ****************************************************************************/

993 994 995 996 997 998 999 1000 1001 1002
static void __init free_unity_maps(void)
{
	struct unity_map_entry *entry, *next;

	list_for_each_entry_safe(entry, next, &amd_iommu_unity_map, list) {
		list_del(&entry->list);
		kfree(entry);
	}
}

1003
/* called when we find an exclusion range definition in ACPI */
1004 1005 1006 1007 1008 1009 1010 1011 1012
static int __init init_exclusion_range(struct ivmd_header *m)
{
	int i;

	switch (m->type) {
	case ACPI_IVMD_TYPE:
		set_device_exclusion_range(m->devid, m);
		break;
	case ACPI_IVMD_TYPE_ALL:
1013
		for (i = 0; i <= amd_iommu_last_bdf; ++i)
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
			set_device_exclusion_range(i, m);
		break;
	case ACPI_IVMD_TYPE_RANGE:
		for (i = m->devid; i <= m->aux; ++i)
			set_device_exclusion_range(i, m);
		break;
	default:
		break;
	}

	return 0;
}

1027
/* called for unity map ACPI definition */
1028 1029 1030
static int __init init_unity_map_range(struct ivmd_header *m)
{
	struct unity_map_entry *e = 0;
1031
	char *s;
1032 1033 1034 1035 1036 1037 1038

	e = kzalloc(sizeof(*e), GFP_KERNEL);
	if (e == NULL)
		return -ENOMEM;

	switch (m->type) {
	default:
1039 1040
		kfree(e);
		return 0;
1041
	case ACPI_IVMD_TYPE:
1042
		s = "IVMD_TYPEi\t\t\t";
1043 1044 1045
		e->devid_start = e->devid_end = m->devid;
		break;
	case ACPI_IVMD_TYPE_ALL:
1046
		s = "IVMD_TYPE_ALL\t\t";
1047 1048 1049 1050
		e->devid_start = 0;
		e->devid_end = amd_iommu_last_bdf;
		break;
	case ACPI_IVMD_TYPE_RANGE:
1051
		s = "IVMD_TYPE_RANGE\t\t";
1052 1053 1054 1055 1056 1057 1058 1059
		e->devid_start = m->devid;
		e->devid_end = m->aux;
		break;
	}
	e->address_start = PAGE_ALIGN(m->range_start);
	e->address_end = e->address_start + PAGE_ALIGN(m->range_length);
	e->prot = m->flags >> 1;

1060 1061 1062 1063 1064 1065 1066
	DUMP_printk("%s devid_start: %02x:%02x.%x devid_end: %02x:%02x.%x"
		    " range_start: %016llx range_end: %016llx flags: %x\n", s,
		    PCI_BUS(e->devid_start), PCI_SLOT(e->devid_start),
		    PCI_FUNC(e->devid_start), PCI_BUS(e->devid_end),
		    PCI_SLOT(e->devid_end), PCI_FUNC(e->devid_end),
		    e->address_start, e->address_end, m->flags);

1067 1068 1069 1070 1071
	list_add_tail(&e->list, &amd_iommu_unity_map);

	return 0;
}

1072
/* iterates over all memory definitions we find in the ACPI table */
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
static int __init init_memory_definitions(struct acpi_table_header *table)
{
	u8 *p = (u8 *)table, *end = (u8 *)table;
	struct ivmd_header *m;

	end += table->length;
	p += IVRS_HEADER_LENGTH;

	while (p < end) {
		m = (struct ivmd_header *)p;
		if (m->flags & IVMD_FLAG_EXCL_RANGE)
			init_exclusion_range(m);
		else if (m->flags & IVMD_FLAG_UNITY_MAP)
			init_unity_map_range(m);

		p += m->length;
	}

	return 0;
}

1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
/*
 * Init the device table to not allow DMA access for devices and
 * suppress all page faults
 */
static void init_device_table(void)
{
	u16 devid;

	for (devid = 0; devid <= amd_iommu_last_bdf; ++devid) {
		set_dev_entry_bit(devid, DEV_ENTRY_VALID);
		set_dev_entry_bit(devid, DEV_ENTRY_TRANSLATION);
	}
}

1108 1109 1110 1111
/*
 * This function finally enables all IOMMUs found in the system after
 * they have been initialized
 */
1112
static void enable_iommus(void)
1113 1114 1115
{
	struct amd_iommu *iommu;

1116
	for_each_iommu(iommu) {
1117
		iommu_disable(iommu);
1118 1119 1120
		iommu_set_device_table(iommu);
		iommu_enable_command_buffer(iommu);
		iommu_enable_event_buffer(iommu);
1121
		iommu_set_exclusion_range(iommu);
1122
		iommu_init_msi(iommu);
1123 1124 1125 1126
		iommu_enable(iommu);
	}
}

1127 1128 1129 1130 1131 1132 1133 1134
static void disable_iommus(void)
{
	struct amd_iommu *iommu;

	for_each_iommu(iommu)
		iommu_disable(iommu);
}

1135 1136 1137 1138 1139 1140 1141
/*
 * Suspend/Resume support
 * disable suspend until real resume implemented
 */

static int amd_iommu_resume(struct sys_device *dev)
{
1142 1143 1144 1145 1146 1147 1148 1149
	/* re-load the hardware */
	enable_iommus();

	/*
	 * we have to flush after the IOMMUs are enabled because a
	 * disabled IOMMU will never execute the commands we send
	 */
	amd_iommu_flush_all_devices();
C
Chris Wright 已提交
1150
	amd_iommu_flush_all_domains();
1151

1152 1153 1154 1155 1156
	return 0;
}

static int amd_iommu_suspend(struct sys_device *dev, pm_message_t state)
{
1157 1158 1159 1160
	/* disable IOMMUs to go out of the way for BIOS */
	disable_iommus();

	return 0;
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
}

static struct sysdev_class amd_iommu_sysdev_class = {
	.name = "amd_iommu",
	.suspend = amd_iommu_suspend,
	.resume = amd_iommu_resume,
};

static struct sys_device device_amd_iommu = {
	.id = 0,
	.cls = &amd_iommu_sysdev_class,
};

1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
/*
 * This is the core init function for AMD IOMMU hardware in the system.
 * This function is called from the generic x86 DMA layer initialization
 * code.
 *
 * This function basically parses the ACPI table for AMD IOMMU (IVRS)
 * three times:
 *
 *	1 pass) Find the highest PCI device id the driver has to handle.
 *		Upon this information the size of the data structures is
 *		determined that needs to be allocated.
 *
 *	2 pass) Initialize the data structures just allocated with the
 *		information in the ACPI table about available AMD IOMMUs
 *		in the system. It also maps the PCI devices in the
 *		system to specific IOMMUs
 *
 *	3 pass) After the basic data structures are allocated and
 *		initialized we update them with information about memory
 *		remapping requirements parsed out of the ACPI table in
 *		this last pass.
 *
 * After that the hardware is initialized and ready to go. In the last
 * step we do some Linux specific things like registering the driver in
 * the dma_ops interface and initializing the suspend/resume support
 * functions. Finally it prints some information about AMD IOMMUs and
 * the driver state and enables the hardware.
 */
1202
static int __init amd_iommu_init(void)
1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
{
	int i, ret = 0;

	/*
	 * First parse ACPI tables to find the largest Bus/Dev/Func
	 * we need to handle. Upon this information the shared data
	 * structures for the IOMMUs in the system will be allocated
	 */
	if (acpi_table_parse("IVRS", find_last_devid_acpi) != 0)
		return -ENODEV;

1214 1215 1216
	dev_table_size     = tbl_size(DEV_TABLE_ENTRY_SIZE);
	alias_table_size   = tbl_size(ALIAS_TABLE_ENTRY_SIZE);
	rlookup_table_size = tbl_size(RLOOKUP_TABLE_ENTRY_SIZE);
1217 1218 1219 1220

	ret = -ENOMEM;

	/* Device table - directly used by all IOMMUs */
1221
	amd_iommu_dev_table = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
				      get_order(dev_table_size));
	if (amd_iommu_dev_table == NULL)
		goto out;

	/*
	 * Alias table - map PCI Bus/Dev/Func to Bus/Dev/Func the
	 * IOMMU see for that device
	 */
	amd_iommu_alias_table = (void *)__get_free_pages(GFP_KERNEL,
			get_order(alias_table_size));
	if (amd_iommu_alias_table == NULL)
		goto free;

	/* IOMMU rlookup table - find the IOMMU for a specific device */
1236 1237
	amd_iommu_rlookup_table = (void *)__get_free_pages(
			GFP_KERNEL | __GFP_ZERO,
1238 1239 1240 1241 1242 1243 1244 1245
			get_order(rlookup_table_size));
	if (amd_iommu_rlookup_table == NULL)
		goto free;

	/*
	 * Protection Domain table - maps devices to protection domains
	 * This table has the same size as the rlookup_table
	 */
1246
	amd_iommu_pd_table = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
1247 1248 1249 1250
				     get_order(rlookup_table_size));
	if (amd_iommu_pd_table == NULL)
		goto free;

1251 1252
	amd_iommu_pd_alloc_bitmap = (void *)__get_free_pages(
					    GFP_KERNEL | __GFP_ZERO,
1253 1254 1255 1256
					    get_order(MAX_DOMAIN_ID/8));
	if (amd_iommu_pd_alloc_bitmap == NULL)
		goto free;

1257 1258 1259
	/* init the device table */
	init_device_table();

1260
	/*
1261
	 * let all alias entries point to itself
1262
	 */
1263
	for (i = 0; i <= amd_iommu_last_bdf; ++i)
1264 1265 1266 1267 1268 1269 1270 1271
		amd_iommu_alias_table[i] = i;

	/*
	 * never allocate domain 0 because its used as the non-allocated and
	 * error value placeholder
	 */
	amd_iommu_pd_alloc_bitmap[0] = 1;

1272 1273
	spin_lock_init(&amd_iommu_pd_lock);

1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
	/*
	 * now the data structures are allocated and basically initialized
	 * start the real acpi table scan
	 */
	ret = -ENODEV;
	if (acpi_table_parse("IVRS", init_iommu_all) != 0)
		goto free;

	if (acpi_table_parse("IVRS", init_memory_definitions) != 0)
		goto free;

1285
	ret = sysdev_class_register(&amd_iommu_sysdev_class);
1286 1287 1288
	if (ret)
		goto free;

1289
	ret = sysdev_register(&device_amd_iommu);
1290 1291 1292
	if (ret)
		goto free;

1293 1294 1295 1296
	if (iommu_pass_through)
		ret = amd_iommu_init_passthrough();
	else
		ret = amd_iommu_init_dma_ops();
1297 1298 1299
	if (ret)
		goto free;

1300 1301
	enable_iommus();

1302 1303 1304
	if (iommu_pass_through)
		goto out;

1305
	printk(KERN_INFO "AMD-Vi: device isolation ");
1306 1307 1308 1309 1310
	if (amd_iommu_isolate)
		printk("enabled\n");
	else
		printk("disabled\n");

1311
	if (amd_iommu_unmap_flush)
1312
		printk(KERN_INFO "AMD-Vi: IO/TLB flush on unmap enabled\n");
1313
	else
1314
		printk(KERN_INFO "AMD-Vi: Lazy IO/TLB flushing enabled\n");
1315

1316
	x86_platform.iommu_shutdown = disable_iommus;
1317 1318 1319 1320
out:
	return ret;

free:
1321 1322
	free_pages((unsigned long)amd_iommu_pd_alloc_bitmap,
		   get_order(MAX_DOMAIN_ID/8));
1323

1324 1325
	free_pages((unsigned long)amd_iommu_pd_table,
		   get_order(rlookup_table_size));
1326

1327 1328
	free_pages((unsigned long)amd_iommu_rlookup_table,
		   get_order(rlookup_table_size));
1329

1330 1331
	free_pages((unsigned long)amd_iommu_alias_table,
		   get_order(alias_table_size));
1332

1333 1334
	free_pages((unsigned long)amd_iommu_dev_table,
		   get_order(dev_table_size));
1335 1336 1337 1338 1339 1340 1341 1342

	free_iommu_all();

	free_unity_maps();

	goto out;
}

1343 1344 1345 1346 1347 1348 1349
/****************************************************************************
 *
 * Early detect code. This code runs at IOMMU detection time in the DMA
 * layer. It just looks if there is an IVRS ACPI table to detect AMD
 * IOMMUs
 *
 ****************************************************************************/
1350 1351 1352 1353 1354 1355 1356
static int __init early_amd_iommu_detect(struct acpi_table_header *table)
{
	return 0;
}

void __init amd_iommu_detect(void)
{
1357
	if (no_iommu || (iommu_detected && !gart_iommu_aperture))
1358 1359 1360 1361
		return;

	if (acpi_table_parse("IVRS", early_amd_iommu_detect) == 0) {
		iommu_detected = 1;
1362
		amd_iommu_detected = 1;
1363
		x86_init.iommu.iommu_init = amd_iommu_init;
1364 1365 1366
	}
}

1367 1368 1369 1370 1371 1372 1373
/****************************************************************************
 *
 * Parsing functions for the AMD IOMMU specific kernel command line
 * options.
 *
 ****************************************************************************/

1374 1375 1376 1377 1378 1379 1380
static int __init parse_amd_iommu_dump(char *str)
{
	amd_iommu_dump = true;

	return 1;
}

1381 1382 1383
static int __init parse_amd_iommu_options(char *str)
{
	for (; *str; ++str) {
1384
		if (strncmp(str, "isolate", 7) == 0)
1385
			amd_iommu_isolate = true;
1386
		if (strncmp(str, "share", 5) == 0)
1387
			amd_iommu_isolate = false;
1388
		if (strncmp(str, "fullflush", 9) == 0)
1389
			amd_iommu_unmap_flush = true;
1390 1391 1392 1393 1394
	}

	return 1;
}

1395
__setup("amd_iommu_dump", parse_amd_iommu_dump);
1396
__setup("amd_iommu=", parse_amd_iommu_options);