amd_iommu_init.c 35.8 KB
Newer Older
1
/*
2
 * Copyright (C) 2007-2009 Advanced Micro Devices, Inc.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
 * Author: Joerg Roedel <joerg.roedel@amd.com>
 *         Leo Duran <leo.duran@amd.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

#include <linux/pci.h>
#include <linux/acpi.h>
#include <linux/list.h>
23
#include <linux/slab.h>
24
#include <linux/sysdev.h>
25 26
#include <linux/interrupt.h>
#include <linux/msi.h>
27
#include <asm/pci-direct.h>
28
#include <asm/amd_iommu_proto.h>
29
#include <asm/amd_iommu_types.h>
30
#include <asm/amd_iommu.h>
31
#include <asm/iommu.h>
32
#include <asm/gart.h>
33
#include <asm/x86_init.h>
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53

/*
 * definitions for the ACPI scanning code
 */
#define IVRS_HEADER_LENGTH 48

#define ACPI_IVHD_TYPE                  0x10
#define ACPI_IVMD_TYPE_ALL              0x20
#define ACPI_IVMD_TYPE                  0x21
#define ACPI_IVMD_TYPE_RANGE            0x22

#define IVHD_DEV_ALL                    0x01
#define IVHD_DEV_SELECT                 0x02
#define IVHD_DEV_SELECT_RANGE_START     0x03
#define IVHD_DEV_RANGE_END              0x04
#define IVHD_DEV_ALIAS                  0x42
#define IVHD_DEV_ALIAS_RANGE            0x43
#define IVHD_DEV_EXT_SELECT             0x46
#define IVHD_DEV_EXT_SELECT_RANGE       0x47

J
Joerg Roedel 已提交
54 55 56 57
#define IVHD_FLAG_HT_TUN_EN_MASK        0x01
#define IVHD_FLAG_PASSPW_EN_MASK        0x02
#define IVHD_FLAG_RESPASSPW_EN_MASK     0x04
#define IVHD_FLAG_ISOC_EN_MASK          0x08
58 59 60 61 62 63 64 65 66 67 68 69 70

#define IVMD_FLAG_EXCL_RANGE            0x08
#define IVMD_FLAG_UNITY_MAP             0x01

#define ACPI_DEVFLAG_INITPASS           0x01
#define ACPI_DEVFLAG_EXTINT             0x02
#define ACPI_DEVFLAG_NMI                0x04
#define ACPI_DEVFLAG_SYSMGT1            0x10
#define ACPI_DEVFLAG_SYSMGT2            0x20
#define ACPI_DEVFLAG_LINT0              0x40
#define ACPI_DEVFLAG_LINT1              0x80
#define ACPI_DEVFLAG_ATSDIS             0x10000000

71 72 73 74 75 76 77 78 79 80 81
/*
 * ACPI table definitions
 *
 * These data structures are laid over the table to parse the important values
 * out of it.
 */

/*
 * structure describing one IOMMU in the ACPI table. Typically followed by one
 * or more ivhd_entrys.
 */
82 83 84 85 86 87 88 89 90 91 92 93
struct ivhd_header {
	u8 type;
	u8 flags;
	u16 length;
	u16 devid;
	u16 cap_ptr;
	u64 mmio_phys;
	u16 pci_seg;
	u16 info;
	u32 reserved;
} __attribute__((packed));

94 95 96 97
/*
 * A device entry describing which devices a specific IOMMU translates and
 * which requestor ids they use.
 */
98 99 100 101 102 103 104
struct ivhd_entry {
	u8 type;
	u16 devid;
	u8 flags;
	u32 ext;
} __attribute__((packed));

105 106 107 108
/*
 * An AMD IOMMU memory definition structure. It defines things like exclusion
 * ranges for devices and regions that should be unity mapped.
 */
109 110 111 112 113 114 115 116 117 118 119
struct ivmd_header {
	u8 type;
	u8 flags;
	u16 length;
	u16 devid;
	u16 aux;
	u64 resv;
	u64 range_start;
	u64 range_length;
} __attribute__((packed));

120 121
bool amd_iommu_dump;

122
static int __initdata amd_iommu_detected;
123
static bool __initdata amd_iommu_disabled;
124

125 126
u16 amd_iommu_last_bdf;			/* largest PCI device id we have
					   to handle */
127
LIST_HEAD(amd_iommu_unity_map);		/* a list of required unity mappings
128
					   we find in ACPI */
129
bool amd_iommu_unmap_flush;		/* if true, flush on every unmap */
130

131
LIST_HEAD(amd_iommu_list);		/* list of all AMD IOMMUs in the
132
					   system */
133

134 135 136 137
/* Array to assign indices to IOMMUs*/
struct amd_iommu *amd_iommus[MAX_IOMMUS];
int amd_iommus_present;

138 139 140
/* IOMMUs have a non-present cache? */
bool amd_iommu_np_cache __read_mostly;

141
/*
142
 * The ACPI table parsing functions set this variable on an error
143
 */
144
static int __initdata amd_iommu_init_err;
145

146 147 148 149 150 151
/*
 * List of protection domains - used during resume
 */
LIST_HEAD(amd_iommu_pd_list);
spinlock_t amd_iommu_pd_lock;

152 153 154 155 156 157
/*
 * Pointer to the device table which is shared by all AMD IOMMUs
 * it is indexed by the PCI device id or the HT unit id and contains
 * information about the domain the device belongs to as well as the
 * page table root pointer.
 */
158
struct dev_table_entry *amd_iommu_dev_table;
159 160 161 162 163 164

/*
 * The alias table is a driver specific data structure which contains the
 * mappings of the PCI device ids to the actual requestor ids on the IOMMU.
 * More than one device can share the same requestor id.
 */
165
u16 *amd_iommu_alias_table;
166 167 168 169 170

/*
 * The rlookup table is used to find the IOMMU which is responsible
 * for a specific device. It is also indexed by the PCI device id.
 */
171
struct amd_iommu **amd_iommu_rlookup_table;
172 173 174 175 176

/*
 * AMD IOMMU allows up to 2^16 differend protection domains. This is a bitmap
 * to know which ones are already in use.
 */
177 178
unsigned long *amd_iommu_pd_alloc_bitmap;

179 180 181
static u32 dev_table_size;	/* size of the device table */
static u32 alias_table_size;	/* size of the alias table */
static u32 rlookup_table_size;	/* size if the rlookup table */
182

183 184 185 186 187 188
static inline void update_last_devid(u16 devid)
{
	if (devid > amd_iommu_last_bdf)
		amd_iommu_last_bdf = devid;
}

189 190 191
static inline unsigned long tbl_size(int entry_size)
{
	unsigned shift = PAGE_SHIFT +
192
			 get_order(((int)amd_iommu_last_bdf + 1) * entry_size);
193 194 195 196

	return 1UL << shift;
}

197 198 199 200 201 202 203 204
/****************************************************************************
 *
 * AMD IOMMU MMIO register space handling functions
 *
 * These functions are used to program the IOMMU device registers in
 * MMIO space required for that driver.
 *
 ****************************************************************************/
205

206 207 208 209
/*
 * This function set the exclusion range in the IOMMU. DMA accesses to the
 * exclusion range are passed through untranslated
 */
210
static void iommu_set_exclusion_range(struct amd_iommu *iommu)
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
{
	u64 start = iommu->exclusion_start & PAGE_MASK;
	u64 limit = (start + iommu->exclusion_length) & PAGE_MASK;
	u64 entry;

	if (!iommu->exclusion_start)
		return;

	entry = start | MMIO_EXCL_ENABLE_MASK;
	memcpy_toio(iommu->mmio_base + MMIO_EXCL_BASE_OFFSET,
			&entry, sizeof(entry));

	entry = limit;
	memcpy_toio(iommu->mmio_base + MMIO_EXCL_LIMIT_OFFSET,
			&entry, sizeof(entry));
}

228
/* Programs the physical address of the device table into the IOMMU hardware */
229 230
static void __init iommu_set_device_table(struct amd_iommu *iommu)
{
231
	u64 entry;
232 233 234 235 236 237 238 239 240

	BUG_ON(iommu->mmio_base == NULL);

	entry = virt_to_phys(amd_iommu_dev_table);
	entry |= (dev_table_size >> 12) - 1;
	memcpy_toio(iommu->mmio_base + MMIO_DEV_TABLE_OFFSET,
			&entry, sizeof(entry));
}

241
/* Generic functions to enable/disable certain features of the IOMMU. */
242
static void iommu_feature_enable(struct amd_iommu *iommu, u8 bit)
243 244 245 246 247 248 249 250
{
	u32 ctrl;

	ctrl = readl(iommu->mmio_base + MMIO_CONTROL_OFFSET);
	ctrl |= (1 << bit);
	writel(ctrl, iommu->mmio_base + MMIO_CONTROL_OFFSET);
}

251
static void iommu_feature_disable(struct amd_iommu *iommu, u8 bit)
252 253 254
{
	u32 ctrl;

255
	ctrl = readl(iommu->mmio_base + MMIO_CONTROL_OFFSET);
256 257 258 259
	ctrl &= ~(1 << bit);
	writel(ctrl, iommu->mmio_base + MMIO_CONTROL_OFFSET);
}

260
/* Function to enable the hardware */
261
static void iommu_enable(struct amd_iommu *iommu)
262
{
263
	printk(KERN_INFO "AMD-Vi: Enabling IOMMU at %s cap 0x%hx\n",
264
	       dev_name(&iommu->dev->dev), iommu->cap_ptr);
265 266 267 268

	iommu_feature_enable(iommu, CONTROL_IOMMU_EN);
}

269
static void iommu_disable(struct amd_iommu *iommu)
J
Joerg Roedel 已提交
270
{
271 272 273 274 275 276 277 278
	/* Disable command buffer */
	iommu_feature_disable(iommu, CONTROL_CMDBUF_EN);

	/* Disable event logging and event interrupts */
	iommu_feature_disable(iommu, CONTROL_EVT_INT_EN);
	iommu_feature_disable(iommu, CONTROL_EVT_LOG_EN);

	/* Disable IOMMU hardware itself */
279
	iommu_feature_disable(iommu, CONTROL_IOMMU_EN);
J
Joerg Roedel 已提交
280 281
}

282 283 284 285
/*
 * mapping and unmapping functions for the IOMMU MMIO space. Each AMD IOMMU in
 * the system has one.
 */
286 287 288 289
static u8 * __init iommu_map_mmio_space(u64 address)
{
	u8 *ret;

290 291 292 293
	if (!request_mem_region(address, MMIO_REGION_LENGTH, "amd_iommu")) {
		pr_err("AMD-Vi: Can not reserve memory region %llx for mmio\n",
			address);
		pr_err("AMD-Vi: This is a BIOS bug. Please contact your hardware vendor\n");
294
		return NULL;
295
	}
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312

	ret = ioremap_nocache(address, MMIO_REGION_LENGTH);
	if (ret != NULL)
		return ret;

	release_mem_region(address, MMIO_REGION_LENGTH);

	return NULL;
}

static void __init iommu_unmap_mmio_space(struct amd_iommu *iommu)
{
	if (iommu->mmio_base)
		iounmap(iommu->mmio_base);
	release_mem_region(iommu->mmio_phys, MMIO_REGION_LENGTH);
}

313 314 315 316 317 318 319 320 321
/****************************************************************************
 *
 * The functions below belong to the first pass of AMD IOMMU ACPI table
 * parsing. In this pass we try to find out the highest device id this
 * code has to handle. Upon this information the size of the shared data
 * structures is determined later.
 *
 ****************************************************************************/

322 323 324 325 326 327 328 329
/*
 * This function calculates the length of a given IVHD entry
 */
static inline int ivhd_entry_length(u8 *ivhd)
{
	return 0x04 << (*ivhd >> 6);
}

330 331 332 333
/*
 * This function reads the last device id the IOMMU has to handle from the PCI
 * capability header for this IOMMU
 */
334 335 336 337 338
static int __init find_last_devid_on_pci(int bus, int dev, int fn, int cap_ptr)
{
	u32 cap;

	cap = read_pci_config(bus, dev, fn, cap_ptr+MMIO_RANGE_OFFSET);
339
	update_last_devid(calc_devid(MMIO_GET_BUS(cap), MMIO_GET_LD(cap)));
340 341 342 343

	return 0;
}

344 345 346 347
/*
 * After reading the highest device id from the IOMMU PCI capability header
 * this function looks if there is a higher device id defined in the ACPI table
 */
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
static int __init find_last_devid_from_ivhd(struct ivhd_header *h)
{
	u8 *p = (void *)h, *end = (void *)h;
	struct ivhd_entry *dev;

	p += sizeof(*h);
	end += h->length;

	find_last_devid_on_pci(PCI_BUS(h->devid),
			PCI_SLOT(h->devid),
			PCI_FUNC(h->devid),
			h->cap_ptr);

	while (p < end) {
		dev = (struct ivhd_entry *)p;
		switch (dev->type) {
		case IVHD_DEV_SELECT:
		case IVHD_DEV_RANGE_END:
		case IVHD_DEV_ALIAS:
		case IVHD_DEV_EXT_SELECT:
368
			/* all the above subfield types refer to device ids */
369
			update_last_devid(dev->devid);
370 371 372 373
			break;
		default:
			break;
		}
374
		p += ivhd_entry_length(p);
375 376 377 378 379 380 381
	}

	WARN_ON(p != end);

	return 0;
}

382 383 384 385 386
/*
 * Iterate over all IVHD entries in the ACPI table and find the highest device
 * id which we need to handle. This is the first of three functions which parse
 * the ACPI table. So we check the checksum here.
 */
387 388 389 390 391 392 393 394 395 396 397 398
static int __init find_last_devid_acpi(struct acpi_table_header *table)
{
	int i;
	u8 checksum = 0, *p = (u8 *)table, *end = (u8 *)table;
	struct ivhd_header *h;

	/*
	 * Validate checksum here so we don't need to do it when
	 * we actually parse the table
	 */
	for (i = 0; i < table->length; ++i)
		checksum += p[i];
399
	if (checksum != 0) {
400
		/* ACPI table corrupt */
401 402 403
		amd_iommu_init_err = -ENODEV;
		return 0;
	}
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423

	p += IVRS_HEADER_LENGTH;

	end += table->length;
	while (p < end) {
		h = (struct ivhd_header *)p;
		switch (h->type) {
		case ACPI_IVHD_TYPE:
			find_last_devid_from_ivhd(h);
			break;
		default:
			break;
		}
		p += h->length;
	}
	WARN_ON(p != end);

	return 0;
}

424 425 426 427 428 429 430 431 432 433 434 435 436 437
/****************************************************************************
 *
 * The following functions belong the the code path which parses the ACPI table
 * the second time. In this ACPI parsing iteration we allocate IOMMU specific
 * data structures, initialize the device/alias/rlookup table and also
 * basically initialize the hardware.
 *
 ****************************************************************************/

/*
 * Allocates the command buffer. This buffer is per AMD IOMMU. We can
 * write commands to that buffer later and the IOMMU will execute them
 * asynchronously
 */
438 439
static u8 * __init alloc_command_buffer(struct amd_iommu *iommu)
{
440
	u8 *cmd_buf = (u8 *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
441 442 443 444 445
			get_order(CMD_BUFFER_SIZE));

	if (cmd_buf == NULL)
		return NULL;

446
	iommu->cmd_buf_size = CMD_BUFFER_SIZE | CMD_BUFFER_UNINITIALIZED;
447

448 449 450
	return cmd_buf;
}

451 452 453 454 455 456 457 458 459 460 461 462 463 464
/*
 * This function resets the command buffer if the IOMMU stopped fetching
 * commands from it.
 */
void amd_iommu_reset_cmd_buffer(struct amd_iommu *iommu)
{
	iommu_feature_disable(iommu, CONTROL_CMDBUF_EN);

	writel(0x00, iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
	writel(0x00, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);

	iommu_feature_enable(iommu, CONTROL_CMDBUF_EN);
}

465 466 467 468 469 470 471 472 473 474 475
/*
 * This function writes the command buffer address to the hardware and
 * enables it.
 */
static void iommu_enable_command_buffer(struct amd_iommu *iommu)
{
	u64 entry;

	BUG_ON(iommu->cmd_buf == NULL);

	entry = (u64)virt_to_phys(iommu->cmd_buf);
476
	entry |= MMIO_CMD_SIZE_512;
477

478
	memcpy_toio(iommu->mmio_base + MMIO_CMD_BUF_OFFSET,
479
		    &entry, sizeof(entry));
480

481
	amd_iommu_reset_cmd_buffer(iommu);
482
	iommu->cmd_buf_size &= ~(CMD_BUFFER_UNINITIALIZED);
483 484 485 486
}

static void __init free_command_buffer(struct amd_iommu *iommu)
{
487
	free_pages((unsigned long)iommu->cmd_buf,
488
		   get_order(iommu->cmd_buf_size & ~(CMD_BUFFER_UNINITIALIZED)));
489 490
}

491 492 493 494 495 496 497 498 499
/* allocates the memory where the IOMMU will log its events to */
static u8 * __init alloc_event_buffer(struct amd_iommu *iommu)
{
	iommu->evt_buf = (u8 *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
						get_order(EVT_BUFFER_SIZE));

	if (iommu->evt_buf == NULL)
		return NULL;

500 501
	iommu->evt_buf_size = EVT_BUFFER_SIZE;

502 503 504 505 506 507 508 509 510
	return iommu->evt_buf;
}

static void iommu_enable_event_buffer(struct amd_iommu *iommu)
{
	u64 entry;

	BUG_ON(iommu->evt_buf == NULL);

511
	entry = (u64)virt_to_phys(iommu->evt_buf) | EVT_LEN_MASK;
512

513 514 515
	memcpy_toio(iommu->mmio_base + MMIO_EVT_BUF_OFFSET,
		    &entry, sizeof(entry));

516 517 518 519
	/* set head and tail to zero manually */
	writel(0x00, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
	writel(0x00, iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);

520
	iommu_feature_enable(iommu, CONTROL_EVT_LOG_EN);
521 522 523 524 525 526 527
}

static void __init free_event_buffer(struct amd_iommu *iommu)
{
	free_pages((unsigned long)iommu->evt_buf, get_order(EVT_BUFFER_SIZE));
}

528
/* sets a specific bit in the device table entry. */
529 530 531 532 533 534 535 536
static void set_dev_entry_bit(u16 devid, u8 bit)
{
	int i = (bit >> 5) & 0x07;
	int _bit = bit & 0x1f;

	amd_iommu_dev_table[devid].data[i] |= (1 << _bit);
}

537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
static int get_dev_entry_bit(u16 devid, u8 bit)
{
	int i = (bit >> 5) & 0x07;
	int _bit = bit & 0x1f;

	return (amd_iommu_dev_table[devid].data[i] & (1 << _bit)) >> _bit;
}


void amd_iommu_apply_erratum_63(u16 devid)
{
	int sysmgt;

	sysmgt = get_dev_entry_bit(devid, DEV_ENTRY_SYSMGT1) |
		 (get_dev_entry_bit(devid, DEV_ENTRY_SYSMGT2) << 1);

	if (sysmgt == 0x01)
		set_dev_entry_bit(devid, DEV_ENTRY_IW);
}

557 558 559 560 561 562
/* Writes the specific IOMMU for a device into the rlookup table */
static void __init set_iommu_for_device(struct amd_iommu *iommu, u16 devid)
{
	amd_iommu_rlookup_table[devid] = iommu;
}

563 564 565 566
/*
 * This function takes the device specific flags read from the ACPI
 * table and sets up the device table entry with that information
 */
567 568
static void __init set_dev_entry_from_acpi(struct amd_iommu *iommu,
					   u16 devid, u32 flags, u32 ext_flags)
569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584
{
	if (flags & ACPI_DEVFLAG_INITPASS)
		set_dev_entry_bit(devid, DEV_ENTRY_INIT_PASS);
	if (flags & ACPI_DEVFLAG_EXTINT)
		set_dev_entry_bit(devid, DEV_ENTRY_EINT_PASS);
	if (flags & ACPI_DEVFLAG_NMI)
		set_dev_entry_bit(devid, DEV_ENTRY_NMI_PASS);
	if (flags & ACPI_DEVFLAG_SYSMGT1)
		set_dev_entry_bit(devid, DEV_ENTRY_SYSMGT1);
	if (flags & ACPI_DEVFLAG_SYSMGT2)
		set_dev_entry_bit(devid, DEV_ENTRY_SYSMGT2);
	if (flags & ACPI_DEVFLAG_LINT0)
		set_dev_entry_bit(devid, DEV_ENTRY_LINT0_PASS);
	if (flags & ACPI_DEVFLAG_LINT1)
		set_dev_entry_bit(devid, DEV_ENTRY_LINT1_PASS);

585 586
	amd_iommu_apply_erratum_63(devid);

587
	set_iommu_for_device(iommu, devid);
588 589
}

590 591 592 593
/*
 * Reads the device exclusion range from ACPI and initialize IOMMU with
 * it
 */
594 595 596 597 598 599 600 601
static void __init set_device_exclusion_range(u16 devid, struct ivmd_header *m)
{
	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];

	if (!(m->flags & IVMD_FLAG_EXCL_RANGE))
		return;

	if (iommu) {
602 603 604 605 606
		/*
		 * We only can configure exclusion ranges per IOMMU, not
		 * per device. But we can enable the exclusion range per
		 * device. This is done here
		 */
607 608 609 610 611 612
		set_dev_entry_bit(m->devid, DEV_ENTRY_EX);
		iommu->exclusion_start = m->range_start;
		iommu->exclusion_length = m->range_length;
	}
}

613 614 615 616 617
/*
 * This function reads some important data from the IOMMU PCI space and
 * initializes the driver data structure with it. It reads the hardware
 * capabilities and the first/last device entries
 */
618 619 620
static void __init init_iommu_from_pci(struct amd_iommu *iommu)
{
	int cap_ptr = iommu->cap_ptr;
621
	u32 range, misc;
622

623 624 625 626
	pci_read_config_dword(iommu->dev, cap_ptr + MMIO_CAP_HDR_OFFSET,
			      &iommu->cap);
	pci_read_config_dword(iommu->dev, cap_ptr + MMIO_RANGE_OFFSET,
			      &range);
627 628
	pci_read_config_dword(iommu->dev, cap_ptr + MMIO_MISC_OFFSET,
			      &misc);
629

630 631 632 633
	iommu->first_device = calc_devid(MMIO_GET_BUS(range),
					 MMIO_GET_FD(range));
	iommu->last_device = calc_devid(MMIO_GET_BUS(range),
					MMIO_GET_LD(range));
634
	iommu->evt_msi_num = MMIO_MSI_NUM(misc);
635 636
}

637 638 639 640
/*
 * Takes a pointer to an AMD IOMMU entry in the ACPI table and
 * initializes the hardware and our data structures with it.
 */
641 642 643 644 645 646 647
static void __init init_iommu_from_acpi(struct amd_iommu *iommu,
					struct ivhd_header *h)
{
	u8 *p = (u8 *)h;
	u8 *end = p, flags = 0;
	u16 dev_i, devid = 0, devid_start = 0, devid_to = 0;
	u32 ext_flags = 0;
648
	bool alias = false;
649 650 651
	struct ivhd_entry *e;

	/*
652
	 * First save the recommended feature enable bits from ACPI
653
	 */
654
	iommu->acpi_flags = h->flags;
655 656 657 658 659 660 661

	/*
	 * Done. Now parse the device entries
	 */
	p += sizeof(struct ivhd_header);
	end += h->length;

662

663 664 665 666
	while (p < end) {
		e = (struct ivhd_entry *)p;
		switch (e->type) {
		case IVHD_DEV_ALL:
667 668 669 670 671 672 673 674 675 676 677

			DUMP_printk("  DEV_ALL\t\t\t first devid: %02x:%02x.%x"
				    " last device %02x:%02x.%x flags: %02x\n",
				    PCI_BUS(iommu->first_device),
				    PCI_SLOT(iommu->first_device),
				    PCI_FUNC(iommu->first_device),
				    PCI_BUS(iommu->last_device),
				    PCI_SLOT(iommu->last_device),
				    PCI_FUNC(iommu->last_device),
				    e->flags);

678 679
			for (dev_i = iommu->first_device;
					dev_i <= iommu->last_device; ++dev_i)
680 681
				set_dev_entry_from_acpi(iommu, dev_i,
							e->flags, 0);
682 683
			break;
		case IVHD_DEV_SELECT:
684 685 686 687 688 689 690 691

			DUMP_printk("  DEV_SELECT\t\t\t devid: %02x:%02x.%x "
				    "flags: %02x\n",
				    PCI_BUS(e->devid),
				    PCI_SLOT(e->devid),
				    PCI_FUNC(e->devid),
				    e->flags);

692
			devid = e->devid;
693
			set_dev_entry_from_acpi(iommu, devid, e->flags, 0);
694 695
			break;
		case IVHD_DEV_SELECT_RANGE_START:
696 697 698 699 700 701 702 703

			DUMP_printk("  DEV_SELECT_RANGE_START\t "
				    "devid: %02x:%02x.%x flags: %02x\n",
				    PCI_BUS(e->devid),
				    PCI_SLOT(e->devid),
				    PCI_FUNC(e->devid),
				    e->flags);

704 705 706
			devid_start = e->devid;
			flags = e->flags;
			ext_flags = 0;
707
			alias = false;
708 709
			break;
		case IVHD_DEV_ALIAS:
710 711 712 713 714 715 716 717 718 719 720

			DUMP_printk("  DEV_ALIAS\t\t\t devid: %02x:%02x.%x "
				    "flags: %02x devid_to: %02x:%02x.%x\n",
				    PCI_BUS(e->devid),
				    PCI_SLOT(e->devid),
				    PCI_FUNC(e->devid),
				    e->flags,
				    PCI_BUS(e->ext >> 8),
				    PCI_SLOT(e->ext >> 8),
				    PCI_FUNC(e->ext >> 8));

721 722
			devid = e->devid;
			devid_to = e->ext >> 8;
723
			set_dev_entry_from_acpi(iommu, devid   , e->flags, 0);
724
			set_dev_entry_from_acpi(iommu, devid_to, e->flags, 0);
725 726 727
			amd_iommu_alias_table[devid] = devid_to;
			break;
		case IVHD_DEV_ALIAS_RANGE:
728 729 730 731 732 733 734 735 736 737 738 739

			DUMP_printk("  DEV_ALIAS_RANGE\t\t "
				    "devid: %02x:%02x.%x flags: %02x "
				    "devid_to: %02x:%02x.%x\n",
				    PCI_BUS(e->devid),
				    PCI_SLOT(e->devid),
				    PCI_FUNC(e->devid),
				    e->flags,
				    PCI_BUS(e->ext >> 8),
				    PCI_SLOT(e->ext >> 8),
				    PCI_FUNC(e->ext >> 8));

740 741 742 743
			devid_start = e->devid;
			flags = e->flags;
			devid_to = e->ext >> 8;
			ext_flags = 0;
744
			alias = true;
745 746
			break;
		case IVHD_DEV_EXT_SELECT:
747 748 749 750 751 752 753 754

			DUMP_printk("  DEV_EXT_SELECT\t\t devid: %02x:%02x.%x "
				    "flags: %02x ext: %08x\n",
				    PCI_BUS(e->devid),
				    PCI_SLOT(e->devid),
				    PCI_FUNC(e->devid),
				    e->flags, e->ext);

755
			devid = e->devid;
756 757
			set_dev_entry_from_acpi(iommu, devid, e->flags,
						e->ext);
758 759
			break;
		case IVHD_DEV_EXT_SELECT_RANGE:
760 761 762 763 764 765 766 767

			DUMP_printk("  DEV_EXT_SELECT_RANGE\t devid: "
				    "%02x:%02x.%x flags: %02x ext: %08x\n",
				    PCI_BUS(e->devid),
				    PCI_SLOT(e->devid),
				    PCI_FUNC(e->devid),
				    e->flags, e->ext);

768 769 770
			devid_start = e->devid;
			flags = e->flags;
			ext_flags = e->ext;
771
			alias = false;
772 773
			break;
		case IVHD_DEV_RANGE_END:
774 775 776 777 778 779

			DUMP_printk("  DEV_RANGE_END\t\t devid: %02x:%02x.%x\n",
				    PCI_BUS(e->devid),
				    PCI_SLOT(e->devid),
				    PCI_FUNC(e->devid));

780 781
			devid = e->devid;
			for (dev_i = devid_start; dev_i <= devid; ++dev_i) {
782
				if (alias) {
783
					amd_iommu_alias_table[dev_i] = devid_to;
784 785 786 787 788
					set_dev_entry_from_acpi(iommu,
						devid_to, flags, ext_flags);
				}
				set_dev_entry_from_acpi(iommu, dev_i,
							flags, ext_flags);
789 790 791 792 793 794
			}
			break;
		default:
			break;
		}

795
		p += ivhd_entry_length(p);
796 797 798
	}
}

799
/* Initializes the device->iommu mapping for the driver */
800 801 802 803 804 805 806 807 808 809
static int __init init_iommu_devices(struct amd_iommu *iommu)
{
	u16 i;

	for (i = iommu->first_device; i <= iommu->last_device; ++i)
		set_iommu_for_device(iommu, i);

	return 0;
}

810 811 812
static void __init free_iommu_one(struct amd_iommu *iommu)
{
	free_command_buffer(iommu);
813
	free_event_buffer(iommu);
814 815 816 817 818 819 820
	iommu_unmap_mmio_space(iommu);
}

static void __init free_iommu_all(void)
{
	struct amd_iommu *iommu, *next;

821
	for_each_iommu_safe(iommu, next) {
822 823 824 825 826 827
		list_del(&iommu->list);
		free_iommu_one(iommu);
		kfree(iommu);
	}
}

828 829 830 831 832
/*
 * This function clues the initialization function for one IOMMU
 * together and also allocates the command buffer and programs the
 * hardware. It does NOT enable the IOMMU. This is done afterwards.
 */
833 834 835
static int __init init_iommu_one(struct amd_iommu *iommu, struct ivhd_header *h)
{
	spin_lock_init(&iommu->lock);
836 837

	/* Add IOMMU to internal data structures */
838
	list_add_tail(&iommu->list, &amd_iommu_list);
839 840 841 842 843 844 845 846 847
	iommu->index             = amd_iommus_present++;

	if (unlikely(iommu->index >= MAX_IOMMUS)) {
		WARN(1, "AMD-Vi: System has more IOMMUs than supported by this driver\n");
		return -ENOSYS;
	}

	/* Index is fine - add IOMMU to the array */
	amd_iommus[iommu->index] = iommu;
848 849 850 851

	/*
	 * Copy data from ACPI table entry to the iommu struct
	 */
852 853 854 855
	iommu->dev = pci_get_bus_and_slot(PCI_BUS(h->devid), h->devid & 0xff);
	if (!iommu->dev)
		return 1;

856
	iommu->cap_ptr = h->cap_ptr;
857
	iommu->pci_seg = h->pci_seg;
858 859 860 861 862 863 864 865 866
	iommu->mmio_phys = h->mmio_phys;
	iommu->mmio_base = iommu_map_mmio_space(h->mmio_phys);
	if (!iommu->mmio_base)
		return -ENOMEM;

	iommu->cmd_buf = alloc_command_buffer(iommu);
	if (!iommu->cmd_buf)
		return -ENOMEM;

867 868 869 870
	iommu->evt_buf = alloc_event_buffer(iommu);
	if (!iommu->evt_buf)
		return -ENOMEM;

871 872
	iommu->int_enabled = false;

873 874 875 876
	init_iommu_from_pci(iommu);
	init_iommu_from_acpi(iommu, h);
	init_iommu_devices(iommu);

877 878 879
	if (iommu->cap & (1UL << IOMMU_CAP_NPCACHE))
		amd_iommu_np_cache = true;

880
	return pci_enable_device(iommu->dev);
881 882
}

883 884 885 886
/*
 * Iterates over all IOMMU entries in the ACPI table, allocates the
 * IOMMU structure and initializes it with init_iommu_one()
 */
887 888 889 890 891 892 893 894 895 896 897 898 899 900
static int __init init_iommu_all(struct acpi_table_header *table)
{
	u8 *p = (u8 *)table, *end = (u8 *)table;
	struct ivhd_header *h;
	struct amd_iommu *iommu;
	int ret;

	end += table->length;
	p += IVRS_HEADER_LENGTH;

	while (p < end) {
		h = (struct ivhd_header *)p;
		switch (*p) {
		case ACPI_IVHD_TYPE:
901

902
			DUMP_printk("device: %02x:%02x.%01x cap: %04x "
903 904 905 906 907 908 909
				    "seg: %d flags: %01x info %04x\n",
				    PCI_BUS(h->devid), PCI_SLOT(h->devid),
				    PCI_FUNC(h->devid), h->cap_ptr,
				    h->pci_seg, h->flags, h->info);
			DUMP_printk("       mmio-addr: %016llx\n",
				    h->mmio_phys);

910
			iommu = kzalloc(sizeof(struct amd_iommu), GFP_KERNEL);
911 912 913 914 915
			if (iommu == NULL) {
				amd_iommu_init_err = -ENOMEM;
				return 0;
			}

916
			ret = init_iommu_one(iommu, h);
917 918 919 920
			if (ret) {
				amd_iommu_init_err = ret;
				return 0;
			}
921 922 923 924 925 926 927 928 929 930 931 932
			break;
		default:
			break;
		}
		p += h->length;

	}
	WARN_ON(p != end);

	return 0;
}

933 934 935 936 937 938 939 940 941
/****************************************************************************
 *
 * The following functions initialize the MSI interrupts for all IOMMUs
 * in the system. Its a bit challenging because there could be multiple
 * IOMMUs per PCI BDF but we can call pci_enable_msi(x) only once per
 * pci_dev.
 *
 ****************************************************************************/

942
static int iommu_setup_msi(struct amd_iommu *iommu)
943 944 945 946 947 948 949 950
{
	int r;

	if (pci_enable_msi(iommu->dev))
		return 1;

	r = request_irq(iommu->dev->irq, amd_iommu_int_handler,
			IRQF_SAMPLE_RANDOM,
951
			"AMD-Vi",
952 953 954 955 956 957 958
			NULL);

	if (r) {
		pci_disable_msi(iommu->dev);
		return 1;
	}

959
	iommu->int_enabled = true;
960 961
	iommu_feature_enable(iommu, CONTROL_EVT_INT_EN);

962 963 964
	return 0;
}

965
static int iommu_init_msi(struct amd_iommu *iommu)
966 967 968 969
{
	if (iommu->int_enabled)
		return 0;

970
	if (pci_find_capability(iommu->dev, PCI_CAP_ID_MSI))
971 972 973 974 975
		return iommu_setup_msi(iommu);

	return 1;
}

976 977 978 979 980 981 982 983
/****************************************************************************
 *
 * The next functions belong to the third pass of parsing the ACPI
 * table. In this last pass the memory mapping requirements are
 * gathered (like exclusion and unity mapping reanges).
 *
 ****************************************************************************/

984 985 986 987 988 989 990 991 992 993
static void __init free_unity_maps(void)
{
	struct unity_map_entry *entry, *next;

	list_for_each_entry_safe(entry, next, &amd_iommu_unity_map, list) {
		list_del(&entry->list);
		kfree(entry);
	}
}

994
/* called when we find an exclusion range definition in ACPI */
995 996 997 998 999 1000 1001 1002 1003
static int __init init_exclusion_range(struct ivmd_header *m)
{
	int i;

	switch (m->type) {
	case ACPI_IVMD_TYPE:
		set_device_exclusion_range(m->devid, m);
		break;
	case ACPI_IVMD_TYPE_ALL:
1004
		for (i = 0; i <= amd_iommu_last_bdf; ++i)
1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
			set_device_exclusion_range(i, m);
		break;
	case ACPI_IVMD_TYPE_RANGE:
		for (i = m->devid; i <= m->aux; ++i)
			set_device_exclusion_range(i, m);
		break;
	default:
		break;
	}

	return 0;
}

1018
/* called for unity map ACPI definition */
1019 1020 1021
static int __init init_unity_map_range(struct ivmd_header *m)
{
	struct unity_map_entry *e = 0;
1022
	char *s;
1023 1024 1025 1026 1027 1028 1029

	e = kzalloc(sizeof(*e), GFP_KERNEL);
	if (e == NULL)
		return -ENOMEM;

	switch (m->type) {
	default:
1030 1031
		kfree(e);
		return 0;
1032
	case ACPI_IVMD_TYPE:
1033
		s = "IVMD_TYPEi\t\t\t";
1034 1035 1036
		e->devid_start = e->devid_end = m->devid;
		break;
	case ACPI_IVMD_TYPE_ALL:
1037
		s = "IVMD_TYPE_ALL\t\t";
1038 1039 1040 1041
		e->devid_start = 0;
		e->devid_end = amd_iommu_last_bdf;
		break;
	case ACPI_IVMD_TYPE_RANGE:
1042
		s = "IVMD_TYPE_RANGE\t\t";
1043 1044 1045 1046 1047 1048 1049 1050
		e->devid_start = m->devid;
		e->devid_end = m->aux;
		break;
	}
	e->address_start = PAGE_ALIGN(m->range_start);
	e->address_end = e->address_start + PAGE_ALIGN(m->range_length);
	e->prot = m->flags >> 1;

1051 1052 1053 1054 1055 1056 1057
	DUMP_printk("%s devid_start: %02x:%02x.%x devid_end: %02x:%02x.%x"
		    " range_start: %016llx range_end: %016llx flags: %x\n", s,
		    PCI_BUS(e->devid_start), PCI_SLOT(e->devid_start),
		    PCI_FUNC(e->devid_start), PCI_BUS(e->devid_end),
		    PCI_SLOT(e->devid_end), PCI_FUNC(e->devid_end),
		    e->address_start, e->address_end, m->flags);

1058 1059 1060 1061 1062
	list_add_tail(&e->list, &amd_iommu_unity_map);

	return 0;
}

1063
/* iterates over all memory definitions we find in the ACPI table */
1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
static int __init init_memory_definitions(struct acpi_table_header *table)
{
	u8 *p = (u8 *)table, *end = (u8 *)table;
	struct ivmd_header *m;

	end += table->length;
	p += IVRS_HEADER_LENGTH;

	while (p < end) {
		m = (struct ivmd_header *)p;
		if (m->flags & IVMD_FLAG_EXCL_RANGE)
			init_exclusion_range(m);
		else if (m->flags & IVMD_FLAG_UNITY_MAP)
			init_unity_map_range(m);

		p += m->length;
	}

	return 0;
}

1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
/*
 * Init the device table to not allow DMA access for devices and
 * suppress all page faults
 */
static void init_device_table(void)
{
	u16 devid;

	for (devid = 0; devid <= amd_iommu_last_bdf; ++devid) {
		set_dev_entry_bit(devid, DEV_ENTRY_VALID);
		set_dev_entry_bit(devid, DEV_ENTRY_TRANSLATION);
	}
}

1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
static void iommu_init_flags(struct amd_iommu *iommu)
{
	iommu->acpi_flags & IVHD_FLAG_HT_TUN_EN_MASK ?
		iommu_feature_enable(iommu, CONTROL_HT_TUN_EN) :
		iommu_feature_disable(iommu, CONTROL_HT_TUN_EN);

	iommu->acpi_flags & IVHD_FLAG_PASSPW_EN_MASK ?
		iommu_feature_enable(iommu, CONTROL_PASSPW_EN) :
		iommu_feature_disable(iommu, CONTROL_PASSPW_EN);

	iommu->acpi_flags & IVHD_FLAG_RESPASSPW_EN_MASK ?
		iommu_feature_enable(iommu, CONTROL_RESPASSPW_EN) :
		iommu_feature_disable(iommu, CONTROL_RESPASSPW_EN);

	iommu->acpi_flags & IVHD_FLAG_ISOC_EN_MASK ?
		iommu_feature_enable(iommu, CONTROL_ISOC_EN) :
		iommu_feature_disable(iommu, CONTROL_ISOC_EN);

	/*
	 * make IOMMU memory accesses cache coherent
	 */
	iommu_feature_enable(iommu, CONTROL_COHERENT_EN);
}

1123 1124 1125 1126
/*
 * This function finally enables all IOMMUs found in the system after
 * they have been initialized
 */
1127
static void enable_iommus(void)
1128 1129 1130
{
	struct amd_iommu *iommu;

1131
	for_each_iommu(iommu) {
1132
		iommu_disable(iommu);
1133
		iommu_init_flags(iommu);
1134 1135 1136
		iommu_set_device_table(iommu);
		iommu_enable_command_buffer(iommu);
		iommu_enable_event_buffer(iommu);
1137
		iommu_set_exclusion_range(iommu);
1138
		iommu_init_msi(iommu);
1139 1140 1141 1142
		iommu_enable(iommu);
	}
}

1143 1144 1145 1146 1147 1148 1149 1150
static void disable_iommus(void)
{
	struct amd_iommu *iommu;

	for_each_iommu(iommu)
		iommu_disable(iommu);
}

1151 1152 1153 1154 1155 1156 1157
/*
 * Suspend/Resume support
 * disable suspend until real resume implemented
 */

static int amd_iommu_resume(struct sys_device *dev)
{
1158 1159 1160 1161 1162 1163 1164 1165
	/* re-load the hardware */
	enable_iommus();

	/*
	 * we have to flush after the IOMMUs are enabled because a
	 * disabled IOMMU will never execute the commands we send
	 */
	amd_iommu_flush_all_devices();
C
Chris Wright 已提交
1166
	amd_iommu_flush_all_domains();
1167

1168 1169 1170 1171 1172
	return 0;
}

static int amd_iommu_suspend(struct sys_device *dev, pm_message_t state)
{
1173 1174 1175 1176
	/* disable IOMMUs to go out of the way for BIOS */
	disable_iommus();

	return 0;
1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
}

static struct sysdev_class amd_iommu_sysdev_class = {
	.name = "amd_iommu",
	.suspend = amd_iommu_suspend,
	.resume = amd_iommu_resume,
};

static struct sys_device device_amd_iommu = {
	.id = 0,
	.cls = &amd_iommu_sysdev_class,
};

1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
/*
 * This is the core init function for AMD IOMMU hardware in the system.
 * This function is called from the generic x86 DMA layer initialization
 * code.
 *
 * This function basically parses the ACPI table for AMD IOMMU (IVRS)
 * three times:
 *
 *	1 pass) Find the highest PCI device id the driver has to handle.
 *		Upon this information the size of the data structures is
 *		determined that needs to be allocated.
 *
 *	2 pass) Initialize the data structures just allocated with the
 *		information in the ACPI table about available AMD IOMMUs
 *		in the system. It also maps the PCI devices in the
 *		system to specific IOMMUs
 *
 *	3 pass) After the basic data structures are allocated and
 *		initialized we update them with information about memory
 *		remapping requirements parsed out of the ACPI table in
 *		this last pass.
 *
 * After that the hardware is initialized and ready to go. In the last
 * step we do some Linux specific things like registering the driver in
 * the dma_ops interface and initializing the suspend/resume support
 * functions. Finally it prints some information about AMD IOMMUs and
 * the driver state and enables the hardware.
 */
1218
static int __init amd_iommu_init(void)
1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
{
	int i, ret = 0;

	/*
	 * First parse ACPI tables to find the largest Bus/Dev/Func
	 * we need to handle. Upon this information the shared data
	 * structures for the IOMMUs in the system will be allocated
	 */
	if (acpi_table_parse("IVRS", find_last_devid_acpi) != 0)
		return -ENODEV;

1230 1231 1232 1233
	ret = amd_iommu_init_err;
	if (ret)
		goto out;

1234 1235 1236
	dev_table_size     = tbl_size(DEV_TABLE_ENTRY_SIZE);
	alias_table_size   = tbl_size(ALIAS_TABLE_ENTRY_SIZE);
	rlookup_table_size = tbl_size(RLOOKUP_TABLE_ENTRY_SIZE);
1237 1238 1239 1240

	ret = -ENOMEM;

	/* Device table - directly used by all IOMMUs */
1241
	amd_iommu_dev_table = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
				      get_order(dev_table_size));
	if (amd_iommu_dev_table == NULL)
		goto out;

	/*
	 * Alias table - map PCI Bus/Dev/Func to Bus/Dev/Func the
	 * IOMMU see for that device
	 */
	amd_iommu_alias_table = (void *)__get_free_pages(GFP_KERNEL,
			get_order(alias_table_size));
	if (amd_iommu_alias_table == NULL)
		goto free;

	/* IOMMU rlookup table - find the IOMMU for a specific device */
1256 1257
	amd_iommu_rlookup_table = (void *)__get_free_pages(
			GFP_KERNEL | __GFP_ZERO,
1258 1259 1260 1261
			get_order(rlookup_table_size));
	if (amd_iommu_rlookup_table == NULL)
		goto free;

1262 1263
	amd_iommu_pd_alloc_bitmap = (void *)__get_free_pages(
					    GFP_KERNEL | __GFP_ZERO,
1264 1265 1266 1267
					    get_order(MAX_DOMAIN_ID/8));
	if (amd_iommu_pd_alloc_bitmap == NULL)
		goto free;

1268 1269 1270
	/* init the device table */
	init_device_table();

1271
	/*
1272
	 * let all alias entries point to itself
1273
	 */
1274
	for (i = 0; i <= amd_iommu_last_bdf; ++i)
1275 1276 1277 1278 1279 1280 1281 1282
		amd_iommu_alias_table[i] = i;

	/*
	 * never allocate domain 0 because its used as the non-allocated and
	 * error value placeholder
	 */
	amd_iommu_pd_alloc_bitmap[0] = 1;

1283 1284
	spin_lock_init(&amd_iommu_pd_lock);

1285 1286 1287 1288 1289 1290 1291 1292
	/*
	 * now the data structures are allocated and basically initialized
	 * start the real acpi table scan
	 */
	ret = -ENODEV;
	if (acpi_table_parse("IVRS", init_iommu_all) != 0)
		goto free;

1293 1294
	if (amd_iommu_init_err) {
		ret = amd_iommu_init_err;
1295
		goto free;
1296
	}
1297

1298 1299 1300
	if (acpi_table_parse("IVRS", init_memory_definitions) != 0)
		goto free;

1301 1302 1303 1304 1305
	if (amd_iommu_init_err) {
		ret = amd_iommu_init_err;
		goto free;
	}

1306
	ret = sysdev_class_register(&amd_iommu_sysdev_class);
1307 1308 1309
	if (ret)
		goto free;

1310
	ret = sysdev_register(&device_amd_iommu);
1311 1312 1313
	if (ret)
		goto free;

J
Joerg Roedel 已提交
1314 1315 1316 1317
	ret = amd_iommu_init_devices();
	if (ret)
		goto free;

1318 1319
	enable_iommus();

1320 1321 1322 1323
	if (iommu_pass_through)
		ret = amd_iommu_init_passthrough();
	else
		ret = amd_iommu_init_dma_ops();
1324

1325
	if (ret)
1326
		goto free_disable;
1327

1328 1329
	amd_iommu_init_api();

1330 1331
	amd_iommu_init_notifier();

1332 1333 1334
	if (iommu_pass_through)
		goto out;

1335
	if (amd_iommu_unmap_flush)
1336
		printk(KERN_INFO "AMD-Vi: IO/TLB flush on unmap enabled\n");
1337
	else
1338
		printk(KERN_INFO "AMD-Vi: Lazy IO/TLB flushing enabled\n");
1339

1340
	x86_platform.iommu_shutdown = disable_iommus;
1341 1342 1343
out:
	return ret;

1344
free_disable:
1345
	disable_iommus();
J
Joerg Roedel 已提交
1346

1347
free:
J
Joerg Roedel 已提交
1348 1349
	amd_iommu_uninit_devices();

1350 1351
	free_pages((unsigned long)amd_iommu_pd_alloc_bitmap,
		   get_order(MAX_DOMAIN_ID/8));
1352

1353 1354
	free_pages((unsigned long)amd_iommu_rlookup_table,
		   get_order(rlookup_table_size));
1355

1356 1357
	free_pages((unsigned long)amd_iommu_alias_table,
		   get_order(alias_table_size));
1358

1359 1360
	free_pages((unsigned long)amd_iommu_dev_table,
		   get_order(dev_table_size));
1361 1362 1363 1364 1365

	free_iommu_all();

	free_unity_maps();

1366 1367 1368 1369 1370 1371 1372 1373 1374
#ifdef CONFIG_GART_IOMMU
	/*
	 * We failed to initialize the AMD IOMMU - try fallback to GART
	 * if possible.
	 */
	gart_iommu_init();

#endif

1375 1376 1377
	goto out;
}

1378 1379 1380 1381 1382 1383 1384
/****************************************************************************
 *
 * Early detect code. This code runs at IOMMU detection time in the DMA
 * layer. It just looks if there is an IVRS ACPI table to detect AMD
 * IOMMUs
 *
 ****************************************************************************/
1385 1386 1387 1388 1389 1390 1391
static int __init early_amd_iommu_detect(struct acpi_table_header *table)
{
	return 0;
}

void __init amd_iommu_detect(void)
{
1392
	if (no_iommu || (iommu_detected && !gart_iommu_aperture))
1393 1394
		return;

1395 1396 1397
	if (amd_iommu_disabled)
		return;

1398 1399
	if (acpi_table_parse("IVRS", early_amd_iommu_detect) == 0) {
		iommu_detected = 1;
1400
		amd_iommu_detected = 1;
1401
		x86_init.iommu.iommu_init = amd_iommu_init;
1402

C
Chris Wright 已提交
1403 1404
		/* Make sure ACS will be enabled */
		pci_request_acs();
1405 1406 1407
	}
}

1408 1409 1410 1411 1412 1413 1414
/****************************************************************************
 *
 * Parsing functions for the AMD IOMMU specific kernel command line
 * options.
 *
 ****************************************************************************/

1415 1416 1417 1418 1419 1420 1421
static int __init parse_amd_iommu_dump(char *str)
{
	amd_iommu_dump = true;

	return 1;
}

1422 1423 1424
static int __init parse_amd_iommu_options(char *str)
{
	for (; *str; ++str) {
1425
		if (strncmp(str, "fullflush", 9) == 0)
1426
			amd_iommu_unmap_flush = true;
1427 1428
		if (strncmp(str, "off", 3) == 0)
			amd_iommu_disabled = true;
1429 1430 1431 1432 1433
	}

	return 1;
}

1434
__setup("amd_iommu_dump", parse_amd_iommu_dump);
1435
__setup("amd_iommu=", parse_amd_iommu_options);