property.c 41.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
/*
 * property.c - Unified device property interface.
 *
 * Copyright (C) 2014, Intel Corporation
 * Authors: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
 *          Mika Westerberg <mika.westerberg@linux.intel.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/acpi.h>
14 15
#include <linux/export.h>
#include <linux/kernel.h>
16
#include <linux/of.h>
17
#include <linux/of_address.h>
18
#include <linux/of_graph.h>
19
#include <linux/of_irq.h>
20
#include <linux/property.h>
21 22
#include <linux/etherdevice.h>
#include <linux/phy.h>
23

24
struct property_set {
25
	struct device *dev;
26
	struct fwnode_handle fwnode;
27
	const struct property_entry *properties;
28 29
};

30 31
static const struct fwnode_operations pset_fwnode_ops;

32
static inline bool is_pset_node(const struct fwnode_handle *fwnode)
33
{
34
	return !IS_ERR_OR_NULL(fwnode) && fwnode->ops == &pset_fwnode_ops;
35 36
}

37 38 39 40 41 42 43 44 45 46 47 48
#define to_pset_node(__fwnode)						\
	({								\
		typeof(__fwnode) __to_pset_node_fwnode = __fwnode;	\
									\
		is_pset_node(__to_pset_node_fwnode) ?			\
			container_of(__to_pset_node_fwnode,		\
				     struct property_set, fwnode) :	\
			NULL;						\
	})

static const struct property_entry *
pset_prop_get(const struct property_set *pset, const char *name)
49
{
50
	const struct property_entry *prop;
51 52 53 54 55 56 57 58 59 60 61

	if (!pset || !pset->properties)
		return NULL;

	for (prop = pset->properties; prop->name; prop++)
		if (!strcmp(name, prop->name))
			return prop;

	return NULL;
}

62
static const void *pset_prop_find(const struct property_set *pset,
63
				  const char *propname, size_t length)
64
{
65 66
	const struct property_entry *prop;
	const void *pointer;
67

68 69 70
	prop = pset_prop_get(pset, propname);
	if (!prop)
		return ERR_PTR(-EINVAL);
71 72 73 74
	if (prop->is_array)
		pointer = prop->pointer.raw_data;
	else
		pointer = &prop->value.raw_data;
75 76 77 78 79 80 81
	if (!pointer)
		return ERR_PTR(-ENODATA);
	if (length > prop->length)
		return ERR_PTR(-EOVERFLOW);
	return pointer;
}

82
static int pset_prop_read_u8_array(const struct property_set *pset,
83 84 85
				   const char *propname,
				   u8 *values, size_t nval)
{
86
	const void *pointer;
87 88 89 90 91 92 93 94 95 96
	size_t length = nval * sizeof(*values);

	pointer = pset_prop_find(pset, propname, length);
	if (IS_ERR(pointer))
		return PTR_ERR(pointer);

	memcpy(values, pointer, length);
	return 0;
}

97
static int pset_prop_read_u16_array(const struct property_set *pset,
98 99 100
				    const char *propname,
				    u16 *values, size_t nval)
{
101
	const void *pointer;
102 103 104 105 106 107 108 109 110 111
	size_t length = nval * sizeof(*values);

	pointer = pset_prop_find(pset, propname, length);
	if (IS_ERR(pointer))
		return PTR_ERR(pointer);

	memcpy(values, pointer, length);
	return 0;
}

112
static int pset_prop_read_u32_array(const struct property_set *pset,
113 114 115
				    const char *propname,
				    u32 *values, size_t nval)
{
116
	const void *pointer;
117 118 119 120 121 122 123 124 125 126
	size_t length = nval * sizeof(*values);

	pointer = pset_prop_find(pset, propname, length);
	if (IS_ERR(pointer))
		return PTR_ERR(pointer);

	memcpy(values, pointer, length);
	return 0;
}

127
static int pset_prop_read_u64_array(const struct property_set *pset,
128 129 130
				    const char *propname,
				    u64 *values, size_t nval)
{
131
	const void *pointer;
132 133 134 135 136 137 138 139 140 141
	size_t length = nval * sizeof(*values);

	pointer = pset_prop_find(pset, propname, length);
	if (IS_ERR(pointer))
		return PTR_ERR(pointer);

	memcpy(values, pointer, length);
	return 0;
}

142
static int pset_prop_count_elems_of_size(const struct property_set *pset,
143 144
					 const char *propname, size_t length)
{
145
	const struct property_entry *prop;
146 147

	prop = pset_prop_get(pset, propname);
148 149
	if (!prop)
		return -EINVAL;
150 151 152 153

	return prop->length / length;
}

154
static int pset_prop_read_string_array(const struct property_set *pset,
155 156 157
				       const char *propname,
				       const char **strings, size_t nval)
{
158
	const struct property_entry *prop;
159
	const void *pointer;
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
	size_t array_len, length;

	/* Find out the array length. */
	prop = pset_prop_get(pset, propname);
	if (!prop)
		return -EINVAL;

	if (!prop->is_array)
		/* The array length for a non-array string property is 1. */
		array_len = 1;
	else
		/* Find the length of an array. */
		array_len = pset_prop_count_elems_of_size(pset, propname,
							  sizeof(const char *));

	/* Return how many there are if strings is NULL. */
	if (!strings)
		return array_len;

	array_len = min(nval, array_len);
	length = array_len * sizeof(*strings);
181 182 183 184 185 186

	pointer = pset_prop_find(pset, propname, length);
	if (IS_ERR(pointer))
		return PTR_ERR(pointer);

	memcpy(strings, pointer, length);
187

188
	return array_len;
189
}
190

191
struct fwnode_handle *dev_fwnode(struct device *dev)
192 193 194 195
{
	return IS_ENABLED(CONFIG_OF) && dev->of_node ?
		&dev->of_node->fwnode : dev->fwnode;
}
196
EXPORT_SYMBOL_GPL(dev_fwnode);
197

198
static bool pset_fwnode_property_present(const struct fwnode_handle *fwnode,
199 200 201 202 203
					 const char *propname)
{
	return !!pset_prop_get(to_pset_node(fwnode), propname);
}

204
static int pset_fwnode_read_int_array(const struct fwnode_handle *fwnode,
205 206 207 208
				      const char *propname,
				      unsigned int elem_size, void *val,
				      size_t nval)
{
209
	const struct property_set *node = to_pset_node(fwnode);
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227

	if (!val)
		return pset_prop_count_elems_of_size(node, propname, elem_size);

	switch (elem_size) {
	case sizeof(u8):
		return pset_prop_read_u8_array(node, propname, val, nval);
	case sizeof(u16):
		return pset_prop_read_u16_array(node, propname, val, nval);
	case sizeof(u32):
		return pset_prop_read_u32_array(node, propname, val, nval);
	case sizeof(u64):
		return pset_prop_read_u64_array(node, propname, val, nval);
	}

	return -ENXIO;
}

228 229 230 231
static int
pset_fwnode_property_read_string_array(const struct fwnode_handle *fwnode,
				       const char *propname,
				       const char **val, size_t nval)
232 233 234 235 236 237 238 239 240 241 242
{
	return pset_prop_read_string_array(to_pset_node(fwnode), propname,
					   val, nval);
}

static const struct fwnode_operations pset_fwnode_ops = {
	.property_present = pset_fwnode_property_present,
	.property_read_int_array = pset_fwnode_read_int_array,
	.property_read_string_array = pset_fwnode_property_read_string_array,
};

243 244 245 246 247 248 249 250 251
/**
 * device_property_present - check if a property of a device is present
 * @dev: Device whose property is being checked
 * @propname: Name of the property
 *
 * Check if property @propname is present in the device firmware description.
 */
bool device_property_present(struct device *dev, const char *propname)
{
252
	return fwnode_property_present(dev_fwnode(dev), propname);
253 254 255
}
EXPORT_SYMBOL_GPL(device_property_present);

256 257 258 259 260
/**
 * fwnode_property_present - check if a property of a firmware node is present
 * @fwnode: Firmware node whose property to check
 * @propname: Name of the property
 */
261 262
bool fwnode_property_present(const struct fwnode_handle *fwnode,
			     const char *propname)
263 264 265
{
	bool ret;

266
	ret = fwnode_call_bool_op(fwnode, property_present, propname);
267 268
	if (ret == false && !IS_ERR_OR_NULL(fwnode) &&
	    !IS_ERR_OR_NULL(fwnode->secondary))
269
		ret = fwnode_call_bool_op(fwnode->secondary, property_present,
270
					 propname);
271 272
	return ret;
}
273 274
EXPORT_SYMBOL_GPL(fwnode_property_present);

275 276 277 278
/**
 * device_property_read_u8_array - return a u8 array property of a device
 * @dev: Device to get the property of
 * @propname: Name of the property
279
 * @val: The values are stored here or %NULL to return the number of values
280 281 282 283 284
 * @nval: Size of the @val array
 *
 * Function reads an array of u8 properties with @propname from the device
 * firmware description and stores them to @val if found.
 *
285 286
 * Return: number of values if @val was %NULL,
 *         %0 if the property was found (success),
287 288 289 290
 *	   %-EINVAL if given arguments are not valid,
 *	   %-ENODATA if the property does not have a value,
 *	   %-EPROTO if the property is not an array of numbers,
 *	   %-EOVERFLOW if the size of the property is not as expected.
291
 *	   %-ENXIO if no suitable firmware interface is present.
292 293 294 295
 */
int device_property_read_u8_array(struct device *dev, const char *propname,
				  u8 *val, size_t nval)
{
296
	return fwnode_property_read_u8_array(dev_fwnode(dev), propname, val, nval);
297 298 299 300 301 302 303
}
EXPORT_SYMBOL_GPL(device_property_read_u8_array);

/**
 * device_property_read_u16_array - return a u16 array property of a device
 * @dev: Device to get the property of
 * @propname: Name of the property
304
 * @val: The values are stored here or %NULL to return the number of values
305 306 307 308 309
 * @nval: Size of the @val array
 *
 * Function reads an array of u16 properties with @propname from the device
 * firmware description and stores them to @val if found.
 *
310 311
 * Return: number of values if @val was %NULL,
 *         %0 if the property was found (success),
312 313 314 315
 *	   %-EINVAL if given arguments are not valid,
 *	   %-ENODATA if the property does not have a value,
 *	   %-EPROTO if the property is not an array of numbers,
 *	   %-EOVERFLOW if the size of the property is not as expected.
316
 *	   %-ENXIO if no suitable firmware interface is present.
317 318 319 320
 */
int device_property_read_u16_array(struct device *dev, const char *propname,
				   u16 *val, size_t nval)
{
321
	return fwnode_property_read_u16_array(dev_fwnode(dev), propname, val, nval);
322 323 324 325 326 327 328
}
EXPORT_SYMBOL_GPL(device_property_read_u16_array);

/**
 * device_property_read_u32_array - return a u32 array property of a device
 * @dev: Device to get the property of
 * @propname: Name of the property
329
 * @val: The values are stored here or %NULL to return the number of values
330 331 332 333 334
 * @nval: Size of the @val array
 *
 * Function reads an array of u32 properties with @propname from the device
 * firmware description and stores them to @val if found.
 *
335 336
 * Return: number of values if @val was %NULL,
 *         %0 if the property was found (success),
337 338 339 340
 *	   %-EINVAL if given arguments are not valid,
 *	   %-ENODATA if the property does not have a value,
 *	   %-EPROTO if the property is not an array of numbers,
 *	   %-EOVERFLOW if the size of the property is not as expected.
341
 *	   %-ENXIO if no suitable firmware interface is present.
342 343 344 345
 */
int device_property_read_u32_array(struct device *dev, const char *propname,
				   u32 *val, size_t nval)
{
346
	return fwnode_property_read_u32_array(dev_fwnode(dev), propname, val, nval);
347 348 349 350 351 352 353
}
EXPORT_SYMBOL_GPL(device_property_read_u32_array);

/**
 * device_property_read_u64_array - return a u64 array property of a device
 * @dev: Device to get the property of
 * @propname: Name of the property
354
 * @val: The values are stored here or %NULL to return the number of values
355 356 357 358 359
 * @nval: Size of the @val array
 *
 * Function reads an array of u64 properties with @propname from the device
 * firmware description and stores them to @val if found.
 *
360 361
 * Return: number of values if @val was %NULL,
 *         %0 if the property was found (success),
362 363 364 365
 *	   %-EINVAL if given arguments are not valid,
 *	   %-ENODATA if the property does not have a value,
 *	   %-EPROTO if the property is not an array of numbers,
 *	   %-EOVERFLOW if the size of the property is not as expected.
366
 *	   %-ENXIO if no suitable firmware interface is present.
367 368 369 370
 */
int device_property_read_u64_array(struct device *dev, const char *propname,
				   u64 *val, size_t nval)
{
371
	return fwnode_property_read_u64_array(dev_fwnode(dev), propname, val, nval);
372 373 374 375 376 377 378
}
EXPORT_SYMBOL_GPL(device_property_read_u64_array);

/**
 * device_property_read_string_array - return a string array property of device
 * @dev: Device to get the property of
 * @propname: Name of the property
379
 * @val: The values are stored here or %NULL to return the number of values
380 381 382 383 384
 * @nval: Size of the @val array
 *
 * Function reads an array of string properties with @propname from the device
 * firmware description and stores them to @val if found.
 *
385 386
 * Return: number of values read on success if @val is non-NULL,
 *	   number of values available on success if @val is NULL,
387 388 389 390
 *	   %-EINVAL if given arguments are not valid,
 *	   %-ENODATA if the property does not have a value,
 *	   %-EPROTO or %-EILSEQ if the property is not an array of strings,
 *	   %-EOVERFLOW if the size of the property is not as expected.
391
 *	   %-ENXIO if no suitable firmware interface is present.
392 393 394 395
 */
int device_property_read_string_array(struct device *dev, const char *propname,
				      const char **val, size_t nval)
{
396
	return fwnode_property_read_string_array(dev_fwnode(dev), propname, val, nval);
397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
}
EXPORT_SYMBOL_GPL(device_property_read_string_array);

/**
 * device_property_read_string - return a string property of a device
 * @dev: Device to get the property of
 * @propname: Name of the property
 * @val: The value is stored here
 *
 * Function reads property @propname from the device firmware description and
 * stores the value into @val if found. The value is checked to be a string.
 *
 * Return: %0 if the property was found (success),
 *	   %-EINVAL if given arguments are not valid,
 *	   %-ENODATA if the property does not have a value,
 *	   %-EPROTO or %-EILSEQ if the property type is not a string.
413
 *	   %-ENXIO if no suitable firmware interface is present.
414 415 416 417
 */
int device_property_read_string(struct device *dev, const char *propname,
				const char **val)
{
418
	return fwnode_property_read_string(dev_fwnode(dev), propname, val);
419 420
}
EXPORT_SYMBOL_GPL(device_property_read_string);
421

422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
/**
 * device_property_match_string - find a string in an array and return index
 * @dev: Device to get the property of
 * @propname: Name of the property holding the array
 * @string: String to look for
 *
 * Find a given string in a string array and if it is found return the
 * index back.
 *
 * Return: %0 if the property was found (success),
 *	   %-EINVAL if given arguments are not valid,
 *	   %-ENODATA if the property does not have a value,
 *	   %-EPROTO if the property is not an array of strings,
 *	   %-ENXIO if no suitable firmware interface is present.
 */
int device_property_match_string(struct device *dev, const char *propname,
				 const char *string)
{
	return fwnode_property_match_string(dev_fwnode(dev), propname, string);
}
EXPORT_SYMBOL_GPL(device_property_match_string);

444
static int fwnode_property_read_int_array(const struct fwnode_handle *fwnode,
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
					  const char *propname,
					  unsigned int elem_size, void *val,
					  size_t nval)
{
	int ret;

	ret = fwnode_call_int_op(fwnode, property_read_int_array, propname,
				 elem_size, val, nval);
	if (ret == -EINVAL && !IS_ERR_OR_NULL(fwnode) &&
	    !IS_ERR_OR_NULL(fwnode->secondary))
		ret = fwnode_call_int_op(
			fwnode->secondary, property_read_int_array, propname,
			elem_size, val, nval);

	return ret;
}
461

462 463 464 465
/**
 * fwnode_property_read_u8_array - return a u8 array property of firmware node
 * @fwnode: Firmware node to get the property of
 * @propname: Name of the property
466
 * @val: The values are stored here or %NULL to return the number of values
467 468 469 470 471
 * @nval: Size of the @val array
 *
 * Read an array of u8 properties with @propname from @fwnode and stores them to
 * @val if found.
 *
472 473
 * Return: number of values if @val was %NULL,
 *         %0 if the property was found (success),
474 475 476 477 478 479
 *	   %-EINVAL if given arguments are not valid,
 *	   %-ENODATA if the property does not have a value,
 *	   %-EPROTO if the property is not an array of numbers,
 *	   %-EOVERFLOW if the size of the property is not as expected,
 *	   %-ENXIO if no suitable firmware interface is present.
 */
480
int fwnode_property_read_u8_array(const struct fwnode_handle *fwnode,
481 482
				  const char *propname, u8 *val, size_t nval)
{
483 484
	return fwnode_property_read_int_array(fwnode, propname, sizeof(u8),
					      val, nval);
485 486 487 488 489 490 491
}
EXPORT_SYMBOL_GPL(fwnode_property_read_u8_array);

/**
 * fwnode_property_read_u16_array - return a u16 array property of firmware node
 * @fwnode: Firmware node to get the property of
 * @propname: Name of the property
492
 * @val: The values are stored here or %NULL to return the number of values
493 494 495 496 497
 * @nval: Size of the @val array
 *
 * Read an array of u16 properties with @propname from @fwnode and store them to
 * @val if found.
 *
498 499
 * Return: number of values if @val was %NULL,
 *         %0 if the property was found (success),
500 501 502 503 504 505
 *	   %-EINVAL if given arguments are not valid,
 *	   %-ENODATA if the property does not have a value,
 *	   %-EPROTO if the property is not an array of numbers,
 *	   %-EOVERFLOW if the size of the property is not as expected,
 *	   %-ENXIO if no suitable firmware interface is present.
 */
506
int fwnode_property_read_u16_array(const struct fwnode_handle *fwnode,
507 508
				   const char *propname, u16 *val, size_t nval)
{
509 510
	return fwnode_property_read_int_array(fwnode, propname, sizeof(u16),
					      val, nval);
511 512 513 514 515 516 517
}
EXPORT_SYMBOL_GPL(fwnode_property_read_u16_array);

/**
 * fwnode_property_read_u32_array - return a u32 array property of firmware node
 * @fwnode: Firmware node to get the property of
 * @propname: Name of the property
518
 * @val: The values are stored here or %NULL to return the number of values
519 520 521 522 523
 * @nval: Size of the @val array
 *
 * Read an array of u32 properties with @propname from @fwnode store them to
 * @val if found.
 *
524 525
 * Return: number of values if @val was %NULL,
 *         %0 if the property was found (success),
526 527 528 529 530 531
 *	   %-EINVAL if given arguments are not valid,
 *	   %-ENODATA if the property does not have a value,
 *	   %-EPROTO if the property is not an array of numbers,
 *	   %-EOVERFLOW if the size of the property is not as expected,
 *	   %-ENXIO if no suitable firmware interface is present.
 */
532
int fwnode_property_read_u32_array(const struct fwnode_handle *fwnode,
533 534
				   const char *propname, u32 *val, size_t nval)
{
535 536
	return fwnode_property_read_int_array(fwnode, propname, sizeof(u32),
					      val, nval);
537 538 539 540 541 542 543
}
EXPORT_SYMBOL_GPL(fwnode_property_read_u32_array);

/**
 * fwnode_property_read_u64_array - return a u64 array property firmware node
 * @fwnode: Firmware node to get the property of
 * @propname: Name of the property
544
 * @val: The values are stored here or %NULL to return the number of values
545 546 547 548 549
 * @nval: Size of the @val array
 *
 * Read an array of u64 properties with @propname from @fwnode and store them to
 * @val if found.
 *
550 551
 * Return: number of values if @val was %NULL,
 *         %0 if the property was found (success),
552 553 554 555 556 557
 *	   %-EINVAL if given arguments are not valid,
 *	   %-ENODATA if the property does not have a value,
 *	   %-EPROTO if the property is not an array of numbers,
 *	   %-EOVERFLOW if the size of the property is not as expected,
 *	   %-ENXIO if no suitable firmware interface is present.
 */
558
int fwnode_property_read_u64_array(const struct fwnode_handle *fwnode,
559 560
				   const char *propname, u64 *val, size_t nval)
{
561 562
	return fwnode_property_read_int_array(fwnode, propname, sizeof(u64),
					      val, nval);
563 564 565 566 567 568 569
}
EXPORT_SYMBOL_GPL(fwnode_property_read_u64_array);

/**
 * fwnode_property_read_string_array - return string array property of a node
 * @fwnode: Firmware node to get the property of
 * @propname: Name of the property
570
 * @val: The values are stored here or %NULL to return the number of values
571 572 573 574 575
 * @nval: Size of the @val array
 *
 * Read an string list property @propname from the given firmware node and store
 * them to @val if found.
 *
576 577
 * Return: number of values read on success if @val is non-NULL,
 *	   number of values available on success if @val is NULL,
578 579
 *	   %-EINVAL if given arguments are not valid,
 *	   %-ENODATA if the property does not have a value,
580
 *	   %-EPROTO or %-EILSEQ if the property is not an array of strings,
581 582 583
 *	   %-EOVERFLOW if the size of the property is not as expected,
 *	   %-ENXIO if no suitable firmware interface is present.
 */
584
int fwnode_property_read_string_array(const struct fwnode_handle *fwnode,
585 586 587
				      const char *propname, const char **val,
				      size_t nval)
{
588 589
	int ret;

590 591
	ret = fwnode_call_int_op(fwnode, property_read_string_array, propname,
				 val, nval);
592 593
	if (ret == -EINVAL && !IS_ERR_OR_NULL(fwnode) &&
	    !IS_ERR_OR_NULL(fwnode->secondary))
594 595 596
		ret = fwnode_call_int_op(fwnode->secondary,
					 property_read_string_array, propname,
					 val, nval);
597
	return ret;
598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
}
EXPORT_SYMBOL_GPL(fwnode_property_read_string_array);

/**
 * fwnode_property_read_string - return a string property of a firmware node
 * @fwnode: Firmware node to get the property of
 * @propname: Name of the property
 * @val: The value is stored here
 *
 * Read property @propname from the given firmware node and store the value into
 * @val if found.  The value is checked to be a string.
 *
 * Return: %0 if the property was found (success),
 *	   %-EINVAL if given arguments are not valid,
 *	   %-ENODATA if the property does not have a value,
 *	   %-EPROTO or %-EILSEQ if the property is not a string,
 *	   %-ENXIO if no suitable firmware interface is present.
 */
616
int fwnode_property_read_string(const struct fwnode_handle *fwnode,
617 618
				const char *propname, const char **val)
{
619
	int ret = fwnode_property_read_string_array(fwnode, propname, val, 1);
620

621
	return ret < 0 ? ret : 0;
622 623 624
}
EXPORT_SYMBOL_GPL(fwnode_property_read_string);

625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
/**
 * fwnode_property_match_string - find a string in an array and return index
 * @fwnode: Firmware node to get the property of
 * @propname: Name of the property holding the array
 * @string: String to look for
 *
 * Find a given string in a string array and if it is found return the
 * index back.
 *
 * Return: %0 if the property was found (success),
 *	   %-EINVAL if given arguments are not valid,
 *	   %-ENODATA if the property does not have a value,
 *	   %-EPROTO if the property is not an array of strings,
 *	   %-ENXIO if no suitable firmware interface is present.
 */
640
int fwnode_property_match_string(const struct fwnode_handle *fwnode,
641 642 643
	const char *propname, const char *string)
{
	const char **values;
644
	int nval, ret;
645 646 647 648 649

	nval = fwnode_property_read_string_array(fwnode, propname, NULL, 0);
	if (nval < 0)
		return nval;

650 651 652
	if (nval == 0)
		return -ENODATA;

653 654 655 656 657 658 659 660
	values = kcalloc(nval, sizeof(*values), GFP_KERNEL);
	if (!values)
		return -ENOMEM;

	ret = fwnode_property_read_string_array(fwnode, propname, values, nval);
	if (ret < 0)
		goto out;

661 662 663
	ret = match_string(values, nval, string);
	if (ret < 0)
		ret = -ENODATA;
664 665 666 667 668 669
out:
	kfree(values);
	return ret;
}
EXPORT_SYMBOL_GPL(fwnode_property_match_string);

670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686
/**
 * fwnode_property_get_reference_args() - Find a reference with arguments
 * @fwnode:	Firmware node where to look for the reference
 * @prop:	The name of the property
 * @nargs_prop:	The name of the property telling the number of
 *		arguments in the referred node. NULL if @nargs is known,
 *		otherwise @nargs is ignored. Only relevant on OF.
 * @nargs:	Number of arguments. Ignored if @nargs_prop is non-NULL.
 * @index:	Index of the reference, from zero onwards.
 * @args:	Result structure with reference and integer arguments.
 *
 * Obtain a reference based on a named property in an fwnode, with
 * integer arguments.
 *
 * Caller is responsible to call fwnode_handle_put() on the returned
 * args->fwnode pointer.
 *
687 688 689 690
 * Returns: %0 on success
 *	    %-ENOENT when the index is out of bounds, the index has an empty
 *		     reference or the property was not found
 *	    %-EINVAL on parse error
691 692 693 694 695 696 697 698 699 700 701
 */
int fwnode_property_get_reference_args(const struct fwnode_handle *fwnode,
				       const char *prop, const char *nargs_prop,
				       unsigned int nargs, unsigned int index,
				       struct fwnode_reference_args *args)
{
	return fwnode_call_int_op(fwnode, get_reference_args, prop, nargs_prop,
				  nargs, index, args);
}
EXPORT_SYMBOL_GPL(fwnode_property_get_reference_args);

702 703
static int property_copy_string_array(struct property_entry *dst,
				      const struct property_entry *src)
704
{
705 706 707
	char **d;
	size_t nval = src->length / sizeof(*d);
	int i;
708

709 710 711
	d = kcalloc(nval, sizeof(*d), GFP_KERNEL);
	if (!d)
		return -ENOMEM;
712

713 714 715 716 717 718 719
	for (i = 0; i < nval; i++) {
		d[i] = kstrdup(src->pointer.str[i], GFP_KERNEL);
		if (!d[i] && src->pointer.str[i]) {
			while (--i >= 0)
				kfree(d[i]);
			kfree(d);
			return -ENOMEM;
720 721 722
		}
	}

723 724
	dst->pointer.raw_data = d;
	return 0;
725 726
}

727 728
static int property_entry_copy_data(struct property_entry *dst,
				    const struct property_entry *src)
729
{
730
	int error;
731 732 733 734 735 736

	dst->name = kstrdup(src->name, GFP_KERNEL);
	if (!dst->name)
		return -ENOMEM;

	if (src->is_array) {
737 738 739 740
		if (!src->length) {
			error = -ENODATA;
			goto out_free_name;
		}
741

742
		if (src->is_string) {
743 744 745
			error = property_copy_string_array(dst, src);
			if (error)
				goto out_free_name;
746 747 748
		} else {
			dst->pointer.raw_data = kmemdup(src->pointer.raw_data,
							src->length, GFP_KERNEL);
749 750 751 752
			if (!dst->pointer.raw_data) {
				error = -ENOMEM;
				goto out_free_name;
			}
753 754 755
		}
	} else if (src->is_string) {
		dst->value.str = kstrdup(src->value.str, GFP_KERNEL);
756 757 758 759
		if (!dst->value.str && src->value.str) {
			error = -ENOMEM;
			goto out_free_name;
		}
760 761 762 763 764 765 766 767 768
	} else {
		dst->value.raw_data = src->value.raw_data;
	}

	dst->length = src->length;
	dst->is_array = src->is_array;
	dst->is_string = src->is_string;

	return 0;
769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857

out_free_name:
	kfree(dst->name);
	return error;
}

static void property_entry_free_data(const struct property_entry *p)
{
	size_t i, nval;

	if (p->is_array) {
		if (p->is_string && p->pointer.str) {
			nval = p->length / sizeof(const char *);
			for (i = 0; i < nval; i++)
				kfree(p->pointer.str[i]);
		}
		kfree(p->pointer.raw_data);
	} else if (p->is_string) {
		kfree(p->value.str);
	}
	kfree(p->name);
}

/**
 * property_entries_dup - duplicate array of properties
 * @properties: array of properties to copy
 *
 * This function creates a deep copy of the given NULL-terminated array
 * of property entries.
 */
struct property_entry *
property_entries_dup(const struct property_entry *properties)
{
	struct property_entry *p;
	int i, n = 0;

	while (properties[n].name)
		n++;

	p = kcalloc(n + 1, sizeof(*p), GFP_KERNEL);
	if (!p)
		return ERR_PTR(-ENOMEM);

	for (i = 0; i < n; i++) {
		int ret = property_entry_copy_data(&p[i], &properties[i]);
		if (ret) {
			while (--i >= 0)
				property_entry_free_data(&p[i]);
			kfree(p);
			return ERR_PTR(ret);
		}
	}

	return p;
}
EXPORT_SYMBOL_GPL(property_entries_dup);

/**
 * property_entries_free - free previously allocated array of properties
 * @properties: array of properties to destroy
 *
 * This function frees given NULL-terminated array of property entries,
 * along with their data.
 */
void property_entries_free(const struct property_entry *properties)
{
	const struct property_entry *p;

	for (p = properties; p->name; p++)
		property_entry_free_data(p);

	kfree(properties);
}
EXPORT_SYMBOL_GPL(property_entries_free);

/**
 * pset_free_set - releases memory allocated for copied property set
 * @pset: Property set to release
 *
 * Function takes previously copied property set and releases all the
 * memory allocated to it.
 */
static void pset_free_set(struct property_set *pset)
{
	if (!pset)
		return;

	property_entries_free(pset->properties);
	kfree(pset);
858 859 860 861 862 863 864 865 866 867 868 869 870 871
}

/**
 * pset_copy_set - copies property set
 * @pset: Property set to copy
 *
 * This function takes a deep copy of the given property set and returns
 * pointer to the copy. Call device_free_property_set() to free resources
 * allocated in this function.
 *
 * Return: Pointer to the new property set or error pointer.
 */
static struct property_set *pset_copy_set(const struct property_set *pset)
{
872
	struct property_entry *properties;
873 874 875 876 877 878
	struct property_set *p;

	p = kzalloc(sizeof(*p), GFP_KERNEL);
	if (!p)
		return ERR_PTR(-ENOMEM);

879 880
	properties = property_entries_dup(pset->properties);
	if (IS_ERR(properties)) {
881
		kfree(p);
882
		return ERR_CAST(properties);
883 884
	}

885
	p->properties = properties;
886 887 888 889
	return p;
}

/**
890
 * device_remove_properties - Remove properties from a device object.
891 892 893
 * @dev: Device whose properties to remove.
 *
 * The function removes properties previously associated to the device
894
 * secondary firmware node with device_add_properties(). Memory allocated
895 896
 * to the properties will also be released.
 */
897
void device_remove_properties(struct device *dev)
898 899
{
	struct fwnode_handle *fwnode;
900
	struct property_set *pset;
901 902 903 904 905 906 907 908 909

	fwnode = dev_fwnode(dev);
	if (!fwnode)
		return;
	/*
	 * Pick either primary or secondary node depending which one holds
	 * the pset. If there is no real firmware node (ACPI/DT) primary
	 * will hold the pset.
	 */
910 911
	pset = to_pset_node(fwnode);
	if (pset) {
912 913
		set_primary_fwnode(dev, NULL);
	} else {
914 915
		pset = to_pset_node(fwnode->secondary);
		if (pset && dev == pset->dev)
916 917
			set_secondary_fwnode(dev, NULL);
	}
918 919
	if (pset && dev == pset->dev)
		pset_free_set(pset);
920
}
921
EXPORT_SYMBOL_GPL(device_remove_properties);
922 923

/**
924
 * device_add_properties - Add a collection of properties to a device object.
925
 * @dev: Device to add properties to.
926
 * @properties: Collection of properties to add.
927
 *
928 929 930
 * Associate a collection of device properties represented by @properties with
 * @dev as its secondary firmware node. The function takes a copy of
 * @properties.
931
 */
932 933
int device_add_properties(struct device *dev,
			  const struct property_entry *properties)
934
{
935
	struct property_set *p, pset;
936

937
	if (!properties)
938 939
		return -EINVAL;

940 941 942
	pset.properties = properties;

	p = pset_copy_set(&pset);
943 944 945
	if (IS_ERR(p))
		return PTR_ERR(p);

946
	p->fwnode.ops = &pset_fwnode_ops;
947
	set_secondary_fwnode(dev, &p->fwnode);
948
	p->dev = dev;
949 950
	return 0;
}
951
EXPORT_SYMBOL_GPL(device_add_properties);
952

953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973
/**
 * fwnode_get_next_parent - Iterate to the node's parent
 * @fwnode: Firmware whose parent is retrieved
 *
 * This is like fwnode_get_parent() except that it drops the refcount
 * on the passed node, making it suitable for iterating through a
 * node's parents.
 *
 * Returns a node pointer with refcount incremented, use
 * fwnode_handle_node() on it when done.
 */
struct fwnode_handle *fwnode_get_next_parent(struct fwnode_handle *fwnode)
{
	struct fwnode_handle *parent = fwnode_get_parent(fwnode);

	fwnode_handle_put(fwnode);

	return parent;
}
EXPORT_SYMBOL_GPL(fwnode_get_next_parent);

974 975 976 977 978 979 980
/**
 * fwnode_get_parent - Return parent firwmare node
 * @fwnode: Firmware whose parent is retrieved
 *
 * Return parent firmware node of the given node if possible or %NULL if no
 * parent was available.
 */
981
struct fwnode_handle *fwnode_get_parent(const struct fwnode_handle *fwnode)
982
{
983
	return fwnode_call_ptr_op(fwnode, get_parent);
984 985 986
}
EXPORT_SYMBOL_GPL(fwnode_get_parent);

987
/**
988 989 990
 * fwnode_get_next_child_node - Return the next child node handle for a node
 * @fwnode: Firmware node to find the next child node for.
 * @child: Handle to one of the node's child nodes or a %NULL handle.
991
 */
992 993 994
struct fwnode_handle *
fwnode_get_next_child_node(const struct fwnode_handle *fwnode,
			   struct fwnode_handle *child)
995
{
996
	return fwnode_call_ptr_op(fwnode, get_next_child_node, child);
997
}
998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
EXPORT_SYMBOL_GPL(fwnode_get_next_child_node);

/**
 * device_get_next_child_node - Return the next child node handle for a device
 * @dev: Device to find the next child node for.
 * @child: Handle to one of the device's child nodes or a null handle.
 */
struct fwnode_handle *device_get_next_child_node(struct device *dev,
						 struct fwnode_handle *child)
{
	struct acpi_device *adev = ACPI_COMPANION(dev);
	struct fwnode_handle *fwnode = NULL;

	if (dev->of_node)
		fwnode = &dev->of_node->fwnode;
	else if (adev)
		fwnode = acpi_fwnode_handle(adev);

	return fwnode_get_next_child_node(fwnode, child);
}
1018 1019
EXPORT_SYMBOL_GPL(device_get_next_child_node);

1020
/**
1021 1022
 * fwnode_get_named_child_node - Return first matching named child node handle
 * @fwnode: Firmware node to find the named child node for.
1023 1024
 * @childname: String to match child node name against.
 */
1025 1026 1027
struct fwnode_handle *
fwnode_get_named_child_node(const struct fwnode_handle *fwnode,
			    const char *childname)
1028
{
1029
	return fwnode_call_ptr_op(fwnode, get_named_child_node, childname);
1030
}
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
EXPORT_SYMBOL_GPL(fwnode_get_named_child_node);

/**
 * device_get_named_child_node - Return first matching named child node handle
 * @dev: Device to find the named child node for.
 * @childname: String to match child node name against.
 */
struct fwnode_handle *device_get_named_child_node(struct device *dev,
						  const char *childname)
{
	return fwnode_get_named_child_node(dev_fwnode(dev), childname);
}
1043 1044
EXPORT_SYMBOL_GPL(device_get_named_child_node);

1045 1046 1047
/**
 * fwnode_handle_get - Obtain a reference to a device node
 * @fwnode: Pointer to the device node to obtain the reference to.
1048 1049
 *
 * Returns the fwnode handle.
1050
 */
1051
struct fwnode_handle *fwnode_handle_get(struct fwnode_handle *fwnode)
1052
{
1053 1054 1055 1056
	if (!fwnode_has_op(fwnode, get))
		return fwnode;

	return fwnode_call_ptr_op(fwnode, get);
1057 1058 1059
}
EXPORT_SYMBOL_GPL(fwnode_handle_get);

1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
/**
 * fwnode_handle_put - Drop reference to a device node
 * @fwnode: Pointer to the device node to drop the reference to.
 *
 * This has to be used when terminating device_for_each_child_node() iteration
 * with break or return to prevent stale device node references from being left
 * behind.
 */
void fwnode_handle_put(struct fwnode_handle *fwnode)
{
1070
	fwnode_call_void_op(fwnode, put);
1071 1072 1073
}
EXPORT_SYMBOL_GPL(fwnode_handle_put);

1074 1075 1076 1077
/**
 * fwnode_device_is_available - check if a device is available for use
 * @fwnode: Pointer to the fwnode of the device.
 */
1078
bool fwnode_device_is_available(const struct fwnode_handle *fwnode)
1079
{
1080
	return fwnode_call_bool_op(fwnode, device_is_available);
1081 1082 1083
}
EXPORT_SYMBOL_GPL(fwnode_device_is_available);

1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
/**
 * device_get_child_node_count - return the number of child nodes for device
 * @dev: Device to cound the child nodes for
 */
unsigned int device_get_child_node_count(struct device *dev)
{
	struct fwnode_handle *child;
	unsigned int count = 0;

	device_for_each_child_node(dev, child)
		count++;

	return count;
}
EXPORT_SYMBOL_GPL(device_get_child_node_count);
1099

1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
bool device_dma_supported(struct device *dev)
{
	/* For DT, this is always supported.
	 * For ACPI, this depends on CCA, which
	 * is determined by the acpi_dma_supported().
	 */
	if (IS_ENABLED(CONFIG_OF) && dev->of_node)
		return true;

	return acpi_dma_supported(ACPI_COMPANION(dev));
}
EXPORT_SYMBOL_GPL(device_dma_supported);

enum dev_dma_attr device_get_dma_attr(struct device *dev)
{
	enum dev_dma_attr attr = DEV_DMA_NOT_SUPPORTED;

	if (IS_ENABLED(CONFIG_OF) && dev->of_node) {
		if (of_dma_is_coherent(dev->of_node))
			attr = DEV_DMA_COHERENT;
		else
			attr = DEV_DMA_NON_COHERENT;
	} else
		attr = acpi_get_dma_attr(ACPI_COMPANION(dev));

	return attr;
}
EXPORT_SYMBOL_GPL(device_get_dma_attr);

1129
/**
1130 1131
 * fwnode_get_phy_mode - Get phy mode for given firmware node
 * @fwnode:	Pointer to the given node
1132 1133 1134 1135 1136
 *
 * The function gets phy interface string from property 'phy-mode' or
 * 'phy-connection-type', and return its index in phy_modes table, or errno in
 * error case.
 */
1137
int fwnode_get_phy_mode(struct fwnode_handle *fwnode)
1138 1139 1140 1141
{
	const char *pm;
	int err, i;

1142
	err = fwnode_property_read_string(fwnode, "phy-mode", &pm);
1143
	if (err < 0)
1144
		err = fwnode_property_read_string(fwnode,
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
						  "phy-connection-type", &pm);
	if (err < 0)
		return err;

	for (i = 0; i < PHY_INTERFACE_MODE_MAX; i++)
		if (!strcasecmp(pm, phy_modes(i)))
			return i;

	return -ENODEV;
}
1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
EXPORT_SYMBOL_GPL(fwnode_get_phy_mode);

/**
 * device_get_phy_mode - Get phy mode for given device
 * @dev:	Pointer to the given device
 *
 * The function gets phy interface string from property 'phy-mode' or
 * 'phy-connection-type', and return its index in phy_modes table, or errno in
 * error case.
 */
int device_get_phy_mode(struct device *dev)
{
	return fwnode_get_phy_mode(dev_fwnode(dev));
}
1169 1170
EXPORT_SYMBOL_GPL(device_get_phy_mode);

1171
static void *fwnode_get_mac_addr(struct fwnode_handle *fwnode,
1172 1173 1174
				 const char *name, char *addr,
				 int alen)
{
1175
	int ret = fwnode_property_read_u8_array(fwnode, name, addr, alen);
1176

1177
	if (ret == 0 && alen == ETH_ALEN && is_valid_ether_addr(addr))
1178 1179 1180 1181 1182
		return addr;
	return NULL;
}

/**
1183 1184
 * fwnode_get_mac_address - Get the MAC from the firmware node
 * @fwnode:	Pointer to the firmware node
1185 1186 1187 1188
 * @addr:	Address of buffer to store the MAC in
 * @alen:	Length of the buffer pointed to by addr, should be ETH_ALEN
 *
 * Search the firmware node for the best MAC address to use.  'mac-address' is
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
 * checked first, because that is supposed to contain to "most recent" MAC
 * address. If that isn't set, then 'local-mac-address' is checked next,
 * because that is the default address.  If that isn't set, then the obsolete
 * 'address' is checked, just in case we're using an old device tree.
 *
 * Note that the 'address' property is supposed to contain a virtual address of
 * the register set, but some DTS files have redefined that property to be the
 * MAC address.
 *
 * All-zero MAC addresses are rejected, because those could be properties that
1199 1200 1201 1202 1203
 * exist in the firmware tables, but were not updated by the firmware.  For
 * example, the DTS could define 'mac-address' and 'local-mac-address', with
 * zero MAC addresses.  Some older U-Boots only initialized 'local-mac-address'.
 * In this case, the real MAC is in 'local-mac-address', and 'mac-address'
 * exists but is all zeros.
1204
*/
1205
void *fwnode_get_mac_address(struct fwnode_handle *fwnode, char *addr, int alen)
1206
{
1207
	char *res;
1208

1209
	res = fwnode_get_mac_addr(fwnode, "mac-address", addr, alen);
1210 1211 1212
	if (res)
		return res;

1213
	res = fwnode_get_mac_addr(fwnode, "local-mac-address", addr, alen);
1214 1215
	if (res)
		return res;
1216

1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
	return fwnode_get_mac_addr(fwnode, "address", addr, alen);
}
EXPORT_SYMBOL(fwnode_get_mac_address);

/**
 * device_get_mac_address - Get the MAC for a given device
 * @dev:	Pointer to the device
 * @addr:	Address of buffer to store the MAC in
 * @alen:	Length of the buffer pointed to by addr, should be ETH_ALEN
 */
void *device_get_mac_address(struct device *dev, char *addr, int alen)
{
	return fwnode_get_mac_address(dev_fwnode(dev), addr, alen);
1230 1231
}
EXPORT_SYMBOL(device_get_mac_address);
1232

1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
/**
 * fwnode_irq_get - Get IRQ directly from a fwnode
 * @fwnode:	Pointer to the firmware node
 * @index:	Zero-based index of the IRQ
 *
 * Returns Linux IRQ number on success. Other values are determined
 * accordingly to acpi_/of_ irq_get() operation.
 */
int fwnode_irq_get(struct fwnode_handle *fwnode, unsigned int index)
{
	struct device_node *of_node = to_of_node(fwnode);
	struct resource res;
	int ret;

	if (IS_ENABLED(CONFIG_OF) && of_node)
		return of_irq_get(of_node, index);

	ret = acpi_irq_get(ACPI_HANDLE_FWNODE(fwnode), index, &res);
	if (ret)
		return ret;

	return res.start;
}
EXPORT_SYMBOL(fwnode_irq_get);

1258 1259 1260 1261 1262 1263 1264 1265 1266
/**
 * device_graph_get_next_endpoint - Get next endpoint firmware node
 * @fwnode: Pointer to the parent firmware node
 * @prev: Previous endpoint node or %NULL to get the first
 *
 * Returns an endpoint firmware node pointer or %NULL if no more endpoints
 * are available.
 */
struct fwnode_handle *
1267
fwnode_graph_get_next_endpoint(const struct fwnode_handle *fwnode,
1268 1269
			       struct fwnode_handle *prev)
{
1270
	return fwnode_call_ptr_op(fwnode, graph_get_next_endpoint, prev);
1271 1272 1273
}
EXPORT_SYMBOL_GPL(fwnode_graph_get_next_endpoint);

1274 1275 1276 1277 1278 1279 1280
/**
 * fwnode_graph_get_port_parent - Return the device fwnode of a port endpoint
 * @endpoint: Endpoint firmware node of the port
 *
 * Return: the firmware node of the device the @endpoint belongs to.
 */
struct fwnode_handle *
1281
fwnode_graph_get_port_parent(const struct fwnode_handle *endpoint)
1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293
{
	struct fwnode_handle *port, *parent;

	port = fwnode_get_parent(endpoint);
	parent = fwnode_call_ptr_op(port, graph_get_port_parent);

	fwnode_handle_put(port);

	return parent;
}
EXPORT_SYMBOL_GPL(fwnode_graph_get_port_parent);

1294 1295 1296 1297 1298 1299 1300
/**
 * fwnode_graph_get_remote_port_parent - Return fwnode of a remote device
 * @fwnode: Endpoint firmware node pointing to the remote endpoint
 *
 * Extracts firmware node of a remote device the @fwnode points to.
 */
struct fwnode_handle *
1301
fwnode_graph_get_remote_port_parent(const struct fwnode_handle *fwnode)
1302
{
1303
	struct fwnode_handle *endpoint, *parent;
1304

1305 1306
	endpoint = fwnode_graph_get_remote_endpoint(fwnode);
	parent = fwnode_graph_get_port_parent(endpoint);
1307

1308
	fwnode_handle_put(endpoint);
1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319

	return parent;
}
EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port_parent);

/**
 * fwnode_graph_get_remote_port - Return fwnode of a remote port
 * @fwnode: Endpoint firmware node pointing to the remote endpoint
 *
 * Extracts firmware node of a remote port the @fwnode points to.
 */
1320 1321
struct fwnode_handle *
fwnode_graph_get_remote_port(const struct fwnode_handle *fwnode)
1322
{
1323
	return fwnode_get_next_parent(fwnode_graph_get_remote_endpoint(fwnode));
1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
}
EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port);

/**
 * fwnode_graph_get_remote_endpoint - Return fwnode of a remote endpoint
 * @fwnode: Endpoint firmware node pointing to the remote endpoint
 *
 * Extracts firmware node of a remote endpoint the @fwnode points to.
 */
struct fwnode_handle *
1334
fwnode_graph_get_remote_endpoint(const struct fwnode_handle *fwnode)
1335
{
1336
	return fwnode_call_ptr_op(fwnode, graph_get_remote_endpoint);
1337 1338
}
EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_endpoint);
1339

1340 1341 1342 1343 1344 1345 1346 1347 1348
/**
 * fwnode_graph_get_remote_node - get remote parent node for given port/endpoint
 * @fwnode: pointer to parent fwnode_handle containing graph port/endpoint
 * @port_id: identifier of the parent port node
 * @endpoint_id: identifier of the endpoint node
 *
 * Return: Remote fwnode handle associated with remote endpoint node linked
 *	   to @node. Use fwnode_node_put() on it when done.
 */
1349 1350 1351
struct fwnode_handle *
fwnode_graph_get_remote_node(const struct fwnode_handle *fwnode, u32 port_id,
			     u32 endpoint_id)
1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
{
	struct fwnode_handle *endpoint = NULL;

	while ((endpoint = fwnode_graph_get_next_endpoint(fwnode, endpoint))) {
		struct fwnode_endpoint fwnode_ep;
		struct fwnode_handle *remote;
		int ret;

		ret = fwnode_graph_parse_endpoint(endpoint, &fwnode_ep);
		if (ret < 0)
			continue;

		if (fwnode_ep.port != port_id || fwnode_ep.id != endpoint_id)
			continue;

		remote = fwnode_graph_get_remote_port_parent(endpoint);
		if (!remote)
			return NULL;

		return fwnode_device_is_available(remote) ? remote : NULL;
	}

	return NULL;
}
EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_node);

1378 1379 1380 1381 1382 1383 1384 1385 1386
/**
 * fwnode_graph_parse_endpoint - parse common endpoint node properties
 * @fwnode: pointer to endpoint fwnode_handle
 * @endpoint: pointer to the fwnode endpoint data structure
 *
 * Parse @fwnode representing a graph endpoint node and store the
 * information in @endpoint. The caller must hold a reference to
 * @fwnode.
 */
1387
int fwnode_graph_parse_endpoint(const struct fwnode_handle *fwnode,
1388 1389 1390 1391
				struct fwnode_endpoint *endpoint)
{
	memset(endpoint, 0, sizeof(*endpoint));

1392
	return fwnode_call_int_op(fwnode, graph_parse_endpoint, endpoint);
1393 1394
}
EXPORT_SYMBOL(fwnode_graph_parse_endpoint);