property.c 31.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
/*
 * property.c - Unified device property interface.
 *
 * Copyright (C) 2014, Intel Corporation
 * Authors: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
 *          Mika Westerberg <mika.westerberg@linux.intel.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/acpi.h>
14 15
#include <linux/export.h>
#include <linux/kernel.h>
16
#include <linux/of.h>
17
#include <linux/of_address.h>
18
#include <linux/property.h>
19 20
#include <linux/etherdevice.h>
#include <linux/phy.h>
21

22
static inline bool is_pset_node(struct fwnode_handle *fwnode)
23 24 25 26
{
	return fwnode && fwnode->type == FWNODE_PDATA;
}

27
static inline struct property_set *to_pset_node(struct fwnode_handle *fwnode)
28
{
29
	return is_pset_node(fwnode) ?
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
		container_of(fwnode, struct property_set, fwnode) : NULL;
}

static struct property_entry *pset_prop_get(struct property_set *pset,
					    const char *name)
{
	struct property_entry *prop;

	if (!pset || !pset->properties)
		return NULL;

	for (prop = pset->properties; prop->name; prop++)
		if (!strcmp(name, prop->name))
			return prop;

	return NULL;
}

48 49
static void *pset_prop_find(struct property_set *pset, const char *propname,
			    size_t length)
50 51
{
	struct property_entry *prop;
52
	void *pointer;
53

54 55 56
	prop = pset_prop_get(pset, propname);
	if (!prop)
		return ERR_PTR(-EINVAL);
57 58 59 60
	if (prop->is_array)
		pointer = prop->pointer.raw_data;
	else
		pointer = &prop->value.raw_data;
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
	if (!pointer)
		return ERR_PTR(-ENODATA);
	if (length > prop->length)
		return ERR_PTR(-EOVERFLOW);
	return pointer;
}

static int pset_prop_read_u8_array(struct property_set *pset,
				   const char *propname,
				   u8 *values, size_t nval)
{
	void *pointer;
	size_t length = nval * sizeof(*values);

	pointer = pset_prop_find(pset, propname, length);
	if (IS_ERR(pointer))
		return PTR_ERR(pointer);

	memcpy(values, pointer, length);
	return 0;
}

static int pset_prop_read_u16_array(struct property_set *pset,
				    const char *propname,
				    u16 *values, size_t nval)
{
	void *pointer;
	size_t length = nval * sizeof(*values);

	pointer = pset_prop_find(pset, propname, length);
	if (IS_ERR(pointer))
		return PTR_ERR(pointer);

	memcpy(values, pointer, length);
	return 0;
}

static int pset_prop_read_u32_array(struct property_set *pset,
				    const char *propname,
				    u32 *values, size_t nval)
{
	void *pointer;
	size_t length = nval * sizeof(*values);

	pointer = pset_prop_find(pset, propname, length);
	if (IS_ERR(pointer))
		return PTR_ERR(pointer);

	memcpy(values, pointer, length);
	return 0;
}

static int pset_prop_read_u64_array(struct property_set *pset,
				    const char *propname,
				    u64 *values, size_t nval)
{
	void *pointer;
	size_t length = nval * sizeof(*values);

	pointer = pset_prop_find(pset, propname, length);
	if (IS_ERR(pointer))
		return PTR_ERR(pointer);

	memcpy(values, pointer, length);
	return 0;
}

static int pset_prop_count_elems_of_size(struct property_set *pset,
					 const char *propname, size_t length)
{
	struct property_entry *prop;

	prop = pset_prop_get(pset, propname);
134 135
	if (!prop)
		return -EINVAL;
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151

	return prop->length / length;
}

static int pset_prop_read_string_array(struct property_set *pset,
				       const char *propname,
				       const char **strings, size_t nval)
{
	void *pointer;
	size_t length = nval * sizeof(*strings);

	pointer = pset_prop_find(pset, propname, length);
	if (IS_ERR(pointer))
		return PTR_ERR(pointer);

	memcpy(strings, pointer, length);
152 153
	return 0;
}
154

155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
static int pset_prop_read_string(struct property_set *pset,
				 const char *propname, const char **strings)
{
	struct property_entry *prop;
	const char **pointer;

	prop = pset_prop_get(pset, propname);
	if (!prop)
		return -EINVAL;
	if (!prop->is_string)
		return -EILSEQ;
	if (prop->is_array) {
		pointer = prop->pointer.str;
		if (!pointer)
			return -ENODATA;
	} else {
		pointer = &prop->value.str;
		if (*pointer && strnlen(*pointer, prop->length) >= prop->length)
			return -EILSEQ;
	}

	*strings = *pointer;
	return 0;
}

180 181 182 183 184
static inline struct fwnode_handle *dev_fwnode(struct device *dev)
{
	return IS_ENABLED(CONFIG_OF) && dev->of_node ?
		&dev->of_node->fwnode : dev->fwnode;
}
185 186 187 188 189 190 191 192 193 194

/**
 * device_property_present - check if a property of a device is present
 * @dev: Device whose property is being checked
 * @propname: Name of the property
 *
 * Check if property @propname is present in the device firmware description.
 */
bool device_property_present(struct device *dev, const char *propname)
{
195
	return fwnode_property_present(dev_fwnode(dev), propname);
196 197 198
}
EXPORT_SYMBOL_GPL(device_property_present);

199 200
static bool __fwnode_property_present(struct fwnode_handle *fwnode,
				      const char *propname)
201 202
{
	if (is_of_node(fwnode))
203
		return of_property_read_bool(to_of_node(fwnode), propname);
204
	else if (is_acpi_node(fwnode))
205
		return !acpi_node_prop_get(fwnode, propname, NULL);
206 207
	else if (is_pset_node(fwnode))
		return !!pset_prop_get(to_pset_node(fwnode), propname);
208
	return false;
209
}
210 211 212 213 214 215 216 217 218 219 220

/**
 * fwnode_property_present - check if a property of a firmware node is present
 * @fwnode: Firmware node whose property to check
 * @propname: Name of the property
 */
bool fwnode_property_present(struct fwnode_handle *fwnode, const char *propname)
{
	bool ret;

	ret = __fwnode_property_present(fwnode, propname);
221 222
	if (ret == false && !IS_ERR_OR_NULL(fwnode) &&
	    !IS_ERR_OR_NULL(fwnode->secondary))
223 224 225
		ret = __fwnode_property_present(fwnode->secondary, propname);
	return ret;
}
226 227
EXPORT_SYMBOL_GPL(fwnode_property_present);

228 229 230 231
/**
 * device_property_read_u8_array - return a u8 array property of a device
 * @dev: Device to get the property of
 * @propname: Name of the property
232
 * @val: The values are stored here or %NULL to return the number of values
233 234 235 236 237
 * @nval: Size of the @val array
 *
 * Function reads an array of u8 properties with @propname from the device
 * firmware description and stores them to @val if found.
 *
238 239
 * Return: number of values if @val was %NULL,
 *         %0 if the property was found (success),
240 241 242 243
 *	   %-EINVAL if given arguments are not valid,
 *	   %-ENODATA if the property does not have a value,
 *	   %-EPROTO if the property is not an array of numbers,
 *	   %-EOVERFLOW if the size of the property is not as expected.
244
 *	   %-ENXIO if no suitable firmware interface is present.
245 246 247 248
 */
int device_property_read_u8_array(struct device *dev, const char *propname,
				  u8 *val, size_t nval)
{
249
	return fwnode_property_read_u8_array(dev_fwnode(dev), propname, val, nval);
250 251 252 253 254 255 256
}
EXPORT_SYMBOL_GPL(device_property_read_u8_array);

/**
 * device_property_read_u16_array - return a u16 array property of a device
 * @dev: Device to get the property of
 * @propname: Name of the property
257
 * @val: The values are stored here or %NULL to return the number of values
258 259 260 261 262
 * @nval: Size of the @val array
 *
 * Function reads an array of u16 properties with @propname from the device
 * firmware description and stores them to @val if found.
 *
263 264
 * Return: number of values if @val was %NULL,
 *         %0 if the property was found (success),
265 266 267 268
 *	   %-EINVAL if given arguments are not valid,
 *	   %-ENODATA if the property does not have a value,
 *	   %-EPROTO if the property is not an array of numbers,
 *	   %-EOVERFLOW if the size of the property is not as expected.
269
 *	   %-ENXIO if no suitable firmware interface is present.
270 271 272 273
 */
int device_property_read_u16_array(struct device *dev, const char *propname,
				   u16 *val, size_t nval)
{
274
	return fwnode_property_read_u16_array(dev_fwnode(dev), propname, val, nval);
275 276 277 278 279 280 281
}
EXPORT_SYMBOL_GPL(device_property_read_u16_array);

/**
 * device_property_read_u32_array - return a u32 array property of a device
 * @dev: Device to get the property of
 * @propname: Name of the property
282
 * @val: The values are stored here or %NULL to return the number of values
283 284 285 286 287
 * @nval: Size of the @val array
 *
 * Function reads an array of u32 properties with @propname from the device
 * firmware description and stores them to @val if found.
 *
288 289
 * Return: number of values if @val was %NULL,
 *         %0 if the property was found (success),
290 291 292 293
 *	   %-EINVAL if given arguments are not valid,
 *	   %-ENODATA if the property does not have a value,
 *	   %-EPROTO if the property is not an array of numbers,
 *	   %-EOVERFLOW if the size of the property is not as expected.
294
 *	   %-ENXIO if no suitable firmware interface is present.
295 296 297 298
 */
int device_property_read_u32_array(struct device *dev, const char *propname,
				   u32 *val, size_t nval)
{
299
	return fwnode_property_read_u32_array(dev_fwnode(dev), propname, val, nval);
300 301 302 303 304 305 306
}
EXPORT_SYMBOL_GPL(device_property_read_u32_array);

/**
 * device_property_read_u64_array - return a u64 array property of a device
 * @dev: Device to get the property of
 * @propname: Name of the property
307
 * @val: The values are stored here or %NULL to return the number of values
308 309 310 311 312
 * @nval: Size of the @val array
 *
 * Function reads an array of u64 properties with @propname from the device
 * firmware description and stores them to @val if found.
 *
313 314
 * Return: number of values if @val was %NULL,
 *         %0 if the property was found (success),
315 316 317 318
 *	   %-EINVAL if given arguments are not valid,
 *	   %-ENODATA if the property does not have a value,
 *	   %-EPROTO if the property is not an array of numbers,
 *	   %-EOVERFLOW if the size of the property is not as expected.
319
 *	   %-ENXIO if no suitable firmware interface is present.
320 321 322 323
 */
int device_property_read_u64_array(struct device *dev, const char *propname,
				   u64 *val, size_t nval)
{
324
	return fwnode_property_read_u64_array(dev_fwnode(dev), propname, val, nval);
325 326 327 328 329 330 331
}
EXPORT_SYMBOL_GPL(device_property_read_u64_array);

/**
 * device_property_read_string_array - return a string array property of device
 * @dev: Device to get the property of
 * @propname: Name of the property
332
 * @val: The values are stored here or %NULL to return the number of values
333 334 335 336 337
 * @nval: Size of the @val array
 *
 * Function reads an array of string properties with @propname from the device
 * firmware description and stores them to @val if found.
 *
338 339
 * Return: number of values if @val was %NULL,
 *         %0 if the property was found (success),
340 341 342 343
 *	   %-EINVAL if given arguments are not valid,
 *	   %-ENODATA if the property does not have a value,
 *	   %-EPROTO or %-EILSEQ if the property is not an array of strings,
 *	   %-EOVERFLOW if the size of the property is not as expected.
344
 *	   %-ENXIO if no suitable firmware interface is present.
345 346 347 348
 */
int device_property_read_string_array(struct device *dev, const char *propname,
				      const char **val, size_t nval)
{
349
	return fwnode_property_read_string_array(dev_fwnode(dev), propname, val, nval);
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
}
EXPORT_SYMBOL_GPL(device_property_read_string_array);

/**
 * device_property_read_string - return a string property of a device
 * @dev: Device to get the property of
 * @propname: Name of the property
 * @val: The value is stored here
 *
 * Function reads property @propname from the device firmware description and
 * stores the value into @val if found. The value is checked to be a string.
 *
 * Return: %0 if the property was found (success),
 *	   %-EINVAL if given arguments are not valid,
 *	   %-ENODATA if the property does not have a value,
 *	   %-EPROTO or %-EILSEQ if the property type is not a string.
366
 *	   %-ENXIO if no suitable firmware interface is present.
367 368 369 370
 */
int device_property_read_string(struct device *dev, const char *propname,
				const char **val)
{
371
	return fwnode_property_read_string(dev_fwnode(dev), propname, val);
372 373
}
EXPORT_SYMBOL_GPL(device_property_read_string);
374

375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
/**
 * device_property_match_string - find a string in an array and return index
 * @dev: Device to get the property of
 * @propname: Name of the property holding the array
 * @string: String to look for
 *
 * Find a given string in a string array and if it is found return the
 * index back.
 *
 * Return: %0 if the property was found (success),
 *	   %-EINVAL if given arguments are not valid,
 *	   %-ENODATA if the property does not have a value,
 *	   %-EPROTO if the property is not an array of strings,
 *	   %-ENXIO if no suitable firmware interface is present.
 */
int device_property_match_string(struct device *dev, const char *propname,
				 const char *string)
{
	return fwnode_property_match_string(dev_fwnode(dev), propname, string);
}
EXPORT_SYMBOL_GPL(device_property_match_string);

397 398
#define OF_DEV_PROP_READ_ARRAY(node, propname, type, val, nval)				\
	(val) ? of_property_read_##type##_array((node), (propname), (val), (nval))	\
399 400
	      : of_property_count_elems_of_size((node), (propname), sizeof(type))

401 402 403 404
#define PSET_PROP_READ_ARRAY(node, propname, type, val, nval)				\
	(val) ? pset_prop_read_##type##_array((node), (propname), (val), (nval))	\
	      : pset_prop_count_elems_of_size((node), (propname), sizeof(type))

405
#define FWNODE_PROP_READ(_fwnode_, _propname_, _type_, _proptype_, _val_, _nval_)	\
406 407 408 409 410 411 412 413
({											\
	int _ret_;									\
	if (is_of_node(_fwnode_))							\
		_ret_ = OF_DEV_PROP_READ_ARRAY(to_of_node(_fwnode_), _propname_,	\
					       _type_, _val_, _nval_);			\
	else if (is_acpi_node(_fwnode_))						\
		_ret_ = acpi_node_prop_read(_fwnode_, _propname_, _proptype_,		\
					    _val_, _nval_);				\
414
	else if (is_pset_node(_fwnode_)) 						\
415 416
		_ret_ = PSET_PROP_READ_ARRAY(to_pset_node(_fwnode_), _propname_,	\
					     _type_, _val_, _nval_);			\
417 418 419
	else										\
		_ret_ = -ENXIO;								\
	_ret_;										\
420 421
})

422 423 424 425 426
#define FWNODE_PROP_READ_ARRAY(_fwnode_, _propname_, _type_, _proptype_, _val_, _nval_)	\
({											\
	int _ret_;									\
	_ret_ = FWNODE_PROP_READ(_fwnode_, _propname_, _type_, _proptype_,		\
				 _val_, _nval_);					\
427 428
	if (_ret_ == -EINVAL && !IS_ERR_OR_NULL(_fwnode_) &&				\
	    !IS_ERR_OR_NULL(_fwnode_->secondary))					\
429 430 431 432 433
		_ret_ = FWNODE_PROP_READ(_fwnode_->secondary, _propname_, _type_,	\
				_proptype_, _val_, _nval_);				\
	_ret_;										\
})

434 435 436 437
/**
 * fwnode_property_read_u8_array - return a u8 array property of firmware node
 * @fwnode: Firmware node to get the property of
 * @propname: Name of the property
438
 * @val: The values are stored here or %NULL to return the number of values
439 440 441 442 443
 * @nval: Size of the @val array
 *
 * Read an array of u8 properties with @propname from @fwnode and stores them to
 * @val if found.
 *
444 445
 * Return: number of values if @val was %NULL,
 *         %0 if the property was found (success),
446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
 *	   %-EINVAL if given arguments are not valid,
 *	   %-ENODATA if the property does not have a value,
 *	   %-EPROTO if the property is not an array of numbers,
 *	   %-EOVERFLOW if the size of the property is not as expected,
 *	   %-ENXIO if no suitable firmware interface is present.
 */
int fwnode_property_read_u8_array(struct fwnode_handle *fwnode,
				  const char *propname, u8 *val, size_t nval)
{
	return FWNODE_PROP_READ_ARRAY(fwnode, propname, u8, DEV_PROP_U8,
				      val, nval);
}
EXPORT_SYMBOL_GPL(fwnode_property_read_u8_array);

/**
 * fwnode_property_read_u16_array - return a u16 array property of firmware node
 * @fwnode: Firmware node to get the property of
 * @propname: Name of the property
464
 * @val: The values are stored here or %NULL to return the number of values
465 466 467 468 469
 * @nval: Size of the @val array
 *
 * Read an array of u16 properties with @propname from @fwnode and store them to
 * @val if found.
 *
470 471
 * Return: number of values if @val was %NULL,
 *         %0 if the property was found (success),
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
 *	   %-EINVAL if given arguments are not valid,
 *	   %-ENODATA if the property does not have a value,
 *	   %-EPROTO if the property is not an array of numbers,
 *	   %-EOVERFLOW if the size of the property is not as expected,
 *	   %-ENXIO if no suitable firmware interface is present.
 */
int fwnode_property_read_u16_array(struct fwnode_handle *fwnode,
				   const char *propname, u16 *val, size_t nval)
{
	return FWNODE_PROP_READ_ARRAY(fwnode, propname, u16, DEV_PROP_U16,
				      val, nval);
}
EXPORT_SYMBOL_GPL(fwnode_property_read_u16_array);

/**
 * fwnode_property_read_u32_array - return a u32 array property of firmware node
 * @fwnode: Firmware node to get the property of
 * @propname: Name of the property
490
 * @val: The values are stored here or %NULL to return the number of values
491 492 493 494 495
 * @nval: Size of the @val array
 *
 * Read an array of u32 properties with @propname from @fwnode store them to
 * @val if found.
 *
496 497
 * Return: number of values if @val was %NULL,
 *         %0 if the property was found (success),
498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
 *	   %-EINVAL if given arguments are not valid,
 *	   %-ENODATA if the property does not have a value,
 *	   %-EPROTO if the property is not an array of numbers,
 *	   %-EOVERFLOW if the size of the property is not as expected,
 *	   %-ENXIO if no suitable firmware interface is present.
 */
int fwnode_property_read_u32_array(struct fwnode_handle *fwnode,
				   const char *propname, u32 *val, size_t nval)
{
	return FWNODE_PROP_READ_ARRAY(fwnode, propname, u32, DEV_PROP_U32,
				      val, nval);
}
EXPORT_SYMBOL_GPL(fwnode_property_read_u32_array);

/**
 * fwnode_property_read_u64_array - return a u64 array property firmware node
 * @fwnode: Firmware node to get the property of
 * @propname: Name of the property
516
 * @val: The values are stored here or %NULL to return the number of values
517 518 519 520 521
 * @nval: Size of the @val array
 *
 * Read an array of u64 properties with @propname from @fwnode and store them to
 * @val if found.
 *
522 523
 * Return: number of values if @val was %NULL,
 *         %0 if the property was found (success),
524 525 526 527 528 529 530 531 532 533 534 535 536 537
 *	   %-EINVAL if given arguments are not valid,
 *	   %-ENODATA if the property does not have a value,
 *	   %-EPROTO if the property is not an array of numbers,
 *	   %-EOVERFLOW if the size of the property is not as expected,
 *	   %-ENXIO if no suitable firmware interface is present.
 */
int fwnode_property_read_u64_array(struct fwnode_handle *fwnode,
				   const char *propname, u64 *val, size_t nval)
{
	return FWNODE_PROP_READ_ARRAY(fwnode, propname, u64, DEV_PROP_U64,
				      val, nval);
}
EXPORT_SYMBOL_GPL(fwnode_property_read_u64_array);

538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
static int __fwnode_property_read_string_array(struct fwnode_handle *fwnode,
					       const char *propname,
					       const char **val, size_t nval)
{
	if (is_of_node(fwnode))
		return val ?
			of_property_read_string_array(to_of_node(fwnode),
						      propname, val, nval) :
			of_property_count_strings(to_of_node(fwnode), propname);
	else if (is_acpi_node(fwnode))
		return acpi_node_prop_read(fwnode, propname, DEV_PROP_STRING,
					   val, nval);
	else if (is_pset_node(fwnode))
		return val ?
			pset_prop_read_string_array(to_pset_node(fwnode),
						    propname, val, nval) :
			pset_prop_count_elems_of_size(to_pset_node(fwnode),
						      propname,
						      sizeof(const char *));
	return -ENXIO;
}

static int __fwnode_property_read_string(struct fwnode_handle *fwnode,
					 const char *propname, const char **val)
{
	if (is_of_node(fwnode))
		return of_property_read_string(to_of_node(fwnode), propname, val);
	else if (is_acpi_node(fwnode))
		return acpi_node_prop_read(fwnode, propname, DEV_PROP_STRING,
					   val, 1);
	else if (is_pset_node(fwnode))
		return pset_prop_read_string(to_pset_node(fwnode), propname, val);
	return -ENXIO;
}

573 574 575 576
/**
 * fwnode_property_read_string_array - return string array property of a node
 * @fwnode: Firmware node to get the property of
 * @propname: Name of the property
577
 * @val: The values are stored here or %NULL to return the number of values
578 579 580 581 582
 * @nval: Size of the @val array
 *
 * Read an string list property @propname from the given firmware node and store
 * them to @val if found.
 *
583 584
 * Return: number of values if @val was %NULL,
 *         %0 if the property was found (success),
585 586 587 588 589 590 591 592 593 594
 *	   %-EINVAL if given arguments are not valid,
 *	   %-ENODATA if the property does not have a value,
 *	   %-EPROTO if the property is not an array of strings,
 *	   %-EOVERFLOW if the size of the property is not as expected,
 *	   %-ENXIO if no suitable firmware interface is present.
 */
int fwnode_property_read_string_array(struct fwnode_handle *fwnode,
				      const char *propname, const char **val,
				      size_t nval)
{
595 596 597
	int ret;

	ret = __fwnode_property_read_string_array(fwnode, propname, val, nval);
598 599
	if (ret == -EINVAL && !IS_ERR_OR_NULL(fwnode) &&
	    !IS_ERR_OR_NULL(fwnode->secondary))
600 601 602
		ret = __fwnode_property_read_string_array(fwnode->secondary,
							  propname, val, nval);
	return ret;
603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
}
EXPORT_SYMBOL_GPL(fwnode_property_read_string_array);

/**
 * fwnode_property_read_string - return a string property of a firmware node
 * @fwnode: Firmware node to get the property of
 * @propname: Name of the property
 * @val: The value is stored here
 *
 * Read property @propname from the given firmware node and store the value into
 * @val if found.  The value is checked to be a string.
 *
 * Return: %0 if the property was found (success),
 *	   %-EINVAL if given arguments are not valid,
 *	   %-ENODATA if the property does not have a value,
 *	   %-EPROTO or %-EILSEQ if the property is not a string,
 *	   %-ENXIO if no suitable firmware interface is present.
 */
int fwnode_property_read_string(struct fwnode_handle *fwnode,
				const char *propname, const char **val)
{
624 625 626
	int ret;

	ret = __fwnode_property_read_string(fwnode, propname, val);
627 628
	if (ret == -EINVAL && !IS_ERR_OR_NULL(fwnode) &&
	    !IS_ERR_OR_NULL(fwnode->secondary))
629 630 631
		ret = __fwnode_property_read_string(fwnode->secondary,
						    propname, val);
	return ret;
632 633 634
}
EXPORT_SYMBOL_GPL(fwnode_property_read_string);

635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659
/**
 * fwnode_property_match_string - find a string in an array and return index
 * @fwnode: Firmware node to get the property of
 * @propname: Name of the property holding the array
 * @string: String to look for
 *
 * Find a given string in a string array and if it is found return the
 * index back.
 *
 * Return: %0 if the property was found (success),
 *	   %-EINVAL if given arguments are not valid,
 *	   %-ENODATA if the property does not have a value,
 *	   %-EPROTO if the property is not an array of strings,
 *	   %-ENXIO if no suitable firmware interface is present.
 */
int fwnode_property_match_string(struct fwnode_handle *fwnode,
	const char *propname, const char *string)
{
	const char **values;
	int nval, ret, i;

	nval = fwnode_property_read_string_array(fwnode, propname, NULL, 0);
	if (nval < 0)
		return nval;

660 661 662
	if (nval == 0)
		return -ENODATA;

663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
	values = kcalloc(nval, sizeof(*values), GFP_KERNEL);
	if (!values)
		return -ENOMEM;

	ret = fwnode_property_read_string_array(fwnode, propname, values, nval);
	if (ret < 0)
		goto out;

	ret = -ENODATA;
	for (i = 0; i < nval; i++) {
		if (!strcmp(values[i], string)) {
			ret = i;
			break;
		}
	}
out:
	kfree(values);
	return ret;
}
EXPORT_SYMBOL_GPL(fwnode_property_match_string);

684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
/**
 * pset_free_set - releases memory allocated for copied property set
 * @pset: Property set to release
 *
 * Function takes previously copied property set and releases all the
 * memory allocated to it.
 */
static void pset_free_set(struct property_set *pset)
{
	const struct property_entry *prop;
	size_t i, nval;

	if (!pset)
		return;

	for (prop = pset->properties; prop->name; prop++) {
		if (prop->is_array) {
			if (prop->is_string && prop->pointer.str) {
				nval = prop->length / sizeof(const char *);
				for (i = 0; i < nval; i++)
					kfree(prop->pointer.str[i]);
			}
			kfree(prop->pointer.raw_data);
		} else if (prop->is_string) {
			kfree(prop->value.str);
		}
		kfree(prop->name);
	}

	kfree(pset->properties);
	kfree(pset);
}

static int pset_copy_entry(struct property_entry *dst,
			   const struct property_entry *src)
{
	const char **d, **s;
	size_t i, nval;

	dst->name = kstrdup(src->name, GFP_KERNEL);
	if (!dst->name)
		return -ENOMEM;

	if (src->is_array) {
728 729 730
		if (!src->length)
			return -ENODATA;

731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
		if (src->is_string) {
			nval = src->length / sizeof(const char *);
			dst->pointer.str = kcalloc(nval, sizeof(const char *),
						   GFP_KERNEL);
			if (!dst->pointer.str)
				return -ENOMEM;

			d = dst->pointer.str;
			s = src->pointer.str;
			for (i = 0; i < nval; i++) {
				d[i] = kstrdup(s[i], GFP_KERNEL);
				if (!d[i] && s[i])
					return -ENOMEM;
			}
		} else {
			dst->pointer.raw_data = kmemdup(src->pointer.raw_data,
							src->length, GFP_KERNEL);
			if (!dst->pointer.raw_data)
				return -ENOMEM;
		}
	} else if (src->is_string) {
		dst->value.str = kstrdup(src->value.str, GFP_KERNEL);
		if (!dst->value.str && src->value.str)
			return -ENOMEM;
	} else {
		dst->value.raw_data = src->value.raw_data;
	}

	dst->length = src->length;
	dst->is_array = src->is_array;
	dst->is_string = src->is_string;

	return 0;
}

/**
 * pset_copy_set - copies property set
 * @pset: Property set to copy
 *
 * This function takes a deep copy of the given property set and returns
 * pointer to the copy. Call device_free_property_set() to free resources
 * allocated in this function.
 *
 * Return: Pointer to the new property set or error pointer.
 */
static struct property_set *pset_copy_set(const struct property_set *pset)
{
	const struct property_entry *entry;
	struct property_set *p;
	size_t i, n = 0;

	p = kzalloc(sizeof(*p), GFP_KERNEL);
	if (!p)
		return ERR_PTR(-ENOMEM);

	while (pset->properties[n].name)
		n++;

	p->properties = kcalloc(n + 1, sizeof(*entry), GFP_KERNEL);
	if (!p->properties) {
		kfree(p);
		return ERR_PTR(-ENOMEM);
	}

	for (i = 0; i < n; i++) {
		int ret = pset_copy_entry(&p->properties[i],
					  &pset->properties[i]);
		if (ret) {
			pset_free_set(p);
			return ERR_PTR(ret);
		}
	}

	return p;
}

/**
 * device_remove_property_set - Remove properties from a device object.
 * @dev: Device whose properties to remove.
 *
 * The function removes properties previously associated to the device
 * secondary firmware node with device_add_property_set(). Memory allocated
 * to the properties will also be released.
 */
void device_remove_property_set(struct device *dev)
{
	struct fwnode_handle *fwnode;

	fwnode = dev_fwnode(dev);
	if (!fwnode)
		return;
	/*
	 * Pick either primary or secondary node depending which one holds
	 * the pset. If there is no real firmware node (ACPI/DT) primary
	 * will hold the pset.
	 */
827 828
	if (is_pset_node(fwnode)) {
		set_primary_fwnode(dev, NULL);
829
		pset_free_set(to_pset_node(fwnode));
830 831 832 833 834 835 836
	} else {
		fwnode = fwnode->secondary;
		if (!IS_ERR(fwnode) && is_pset_node(fwnode)) {
			set_secondary_fwnode(dev, NULL);
			pset_free_set(to_pset_node(fwnode));
		}
	}
837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864
}
EXPORT_SYMBOL_GPL(device_remove_property_set);

/**
 * device_add_property_set - Add a collection of properties to a device object.
 * @dev: Device to add properties to.
 * @pset: Collection of properties to add.
 *
 * Associate a collection of device properties represented by @pset with @dev
 * as its secondary firmware node. The function takes a copy of @pset.
 */
int device_add_property_set(struct device *dev, const struct property_set *pset)
{
	struct property_set *p;

	if (!pset)
		return -EINVAL;

	p = pset_copy_set(pset);
	if (IS_ERR(p))
		return PTR_ERR(p);

	p->fwnode.type = FWNODE_PDATA;
	set_secondary_fwnode(dev, &p->fwnode);
	return 0;
}
EXPORT_SYMBOL_GPL(device_add_property_set);

865 866 867 868 869 870 871 872 873 874 875
/**
 * device_get_next_child_node - Return the next child node handle for a device
 * @dev: Device to find the next child node for.
 * @child: Handle to one of the device's child nodes or a null handle.
 */
struct fwnode_handle *device_get_next_child_node(struct device *dev,
						 struct fwnode_handle *child)
{
	if (IS_ENABLED(CONFIG_OF) && dev->of_node) {
		struct device_node *node;

876
		node = of_get_next_available_child(dev->of_node, to_of_node(child));
877 878 879
		if (node)
			return &node->fwnode;
	} else if (IS_ENABLED(CONFIG_ACPI)) {
880
		return acpi_get_next_subnode(dev, child);
881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896
	}
	return NULL;
}
EXPORT_SYMBOL_GPL(device_get_next_child_node);

/**
 * fwnode_handle_put - Drop reference to a device node
 * @fwnode: Pointer to the device node to drop the reference to.
 *
 * This has to be used when terminating device_for_each_child_node() iteration
 * with break or return to prevent stale device node references from being left
 * behind.
 */
void fwnode_handle_put(struct fwnode_handle *fwnode)
{
	if (is_of_node(fwnode))
897
		of_node_put(to_of_node(fwnode));
898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915
}
EXPORT_SYMBOL_GPL(fwnode_handle_put);

/**
 * device_get_child_node_count - return the number of child nodes for device
 * @dev: Device to cound the child nodes for
 */
unsigned int device_get_child_node_count(struct device *dev)
{
	struct fwnode_handle *child;
	unsigned int count = 0;

	device_for_each_child_node(dev, child)
		count++;

	return count;
}
EXPORT_SYMBOL_GPL(device_get_child_node_count);
916

917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945
bool device_dma_supported(struct device *dev)
{
	/* For DT, this is always supported.
	 * For ACPI, this depends on CCA, which
	 * is determined by the acpi_dma_supported().
	 */
	if (IS_ENABLED(CONFIG_OF) && dev->of_node)
		return true;

	return acpi_dma_supported(ACPI_COMPANION(dev));
}
EXPORT_SYMBOL_GPL(device_dma_supported);

enum dev_dma_attr device_get_dma_attr(struct device *dev)
{
	enum dev_dma_attr attr = DEV_DMA_NOT_SUPPORTED;

	if (IS_ENABLED(CONFIG_OF) && dev->of_node) {
		if (of_dma_is_coherent(dev->of_node))
			attr = DEV_DMA_COHERENT;
		else
			attr = DEV_DMA_NON_COHERENT;
	} else
		attr = acpi_get_dma_attr(ACPI_COMPANION(dev));

	return attr;
}
EXPORT_SYMBOL_GPL(device_get_dma_attr);

946
/**
947
 * device_get_phy_mode - Get phy mode for given device
948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979
 * @dev:	Pointer to the given device
 *
 * The function gets phy interface string from property 'phy-mode' or
 * 'phy-connection-type', and return its index in phy_modes table, or errno in
 * error case.
 */
int device_get_phy_mode(struct device *dev)
{
	const char *pm;
	int err, i;

	err = device_property_read_string(dev, "phy-mode", &pm);
	if (err < 0)
		err = device_property_read_string(dev,
						  "phy-connection-type", &pm);
	if (err < 0)
		return err;

	for (i = 0; i < PHY_INTERFACE_MODE_MAX; i++)
		if (!strcasecmp(pm, phy_modes(i)))
			return i;

	return -ENODEV;
}
EXPORT_SYMBOL_GPL(device_get_phy_mode);

static void *device_get_mac_addr(struct device *dev,
				 const char *name, char *addr,
				 int alen)
{
	int ret = device_property_read_u8_array(dev, name, addr, alen);

980
	if (ret == 0 && alen == ETH_ALEN && is_valid_ether_addr(addr))
981 982 983 984 985
		return addr;
	return NULL;
}

/**
986 987 988 989 990 991
 * device_get_mac_address - Get the MAC for a given device
 * @dev:	Pointer to the device
 * @addr:	Address of buffer to store the MAC in
 * @alen:	Length of the buffer pointed to by addr, should be ETH_ALEN
 *
 * Search the firmware node for the best MAC address to use.  'mac-address' is
992 993 994 995 996 997 998 999 1000 1001
 * checked first, because that is supposed to contain to "most recent" MAC
 * address. If that isn't set, then 'local-mac-address' is checked next,
 * because that is the default address.  If that isn't set, then the obsolete
 * 'address' is checked, just in case we're using an old device tree.
 *
 * Note that the 'address' property is supposed to contain a virtual address of
 * the register set, but some DTS files have redefined that property to be the
 * MAC address.
 *
 * All-zero MAC addresses are rejected, because those could be properties that
1002 1003 1004 1005 1006
 * exist in the firmware tables, but were not updated by the firmware.  For
 * example, the DTS could define 'mac-address' and 'local-mac-address', with
 * zero MAC addresses.  Some older U-Boots only initialized 'local-mac-address'.
 * In this case, the real MAC is in 'local-mac-address', and 'mac-address'
 * exists but is all zeros.
1007 1008 1009
*/
void *device_get_mac_address(struct device *dev, char *addr, int alen)
{
1010
	char *res;
1011

1012 1013 1014 1015 1016 1017 1018
	res = device_get_mac_addr(dev, "mac-address", addr, alen);
	if (res)
		return res;

	res = device_get_mac_addr(dev, "local-mac-address", addr, alen);
	if (res)
		return res;
1019 1020 1021 1022

	return device_get_mac_addr(dev, "address", addr, alen);
}
EXPORT_SYMBOL(device_get_mac_address);